151
|
Zhang R, Zhou L, Li J, Oliveira H, Yang N, Jin W, Zhu Z, Li S, He J. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109097] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
152
|
Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L. Antimicrobial-loaded nanocarriers for food packaging applications. Adv Colloid Interface Sci 2020; 278:102140. [PMID: 32171115 DOI: 10.1016/j.cis.2020.102140] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing the demands of consumers for organic and safer foods has led to applying new technologies for food preservation. Active packaging (AP) containing natural antimicrobial agents is a good candidate for promoting the shelf life of food products. The efficiency of AP has been enhanced through nanoencapsulation methods, in which antimicrobial-loaded nanocarriers could provide a controlled release of antimicrobial active packaging for keeping the quality of foods during storage. The main objective of this review is to introduce common methods for designing novel encapsulation delivery systems offering controlled release of antimicrobials in the AP systems. The common nanocarriers for enveloping antimicrobial agents are described and the current state of art in the application of nanoencapsulated antimicrobials in development of antimicrobial APs have been summarized and tabulated. Incorporation of a carrier loaded with natural antimicrobial agents is the most effective method for developing AP in the food packaging sector which has become possible by using nanoencapsulated antimicrobials in films or coating structures, instead of using their free form. Nanoencapsulation approaches provide many advantages including protection against environmental stresses, release control, and improving the solubility and absorption of natural antimicrobials in AP, which are the main achievements overcoming the barriers for using natural antimicrobials in food packaging.
Collapse
|
153
|
Tantratian S, Pradeamchai M. Select a protective agent for encapsulation of Lactobacillus plantarum. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
154
|
Chen R, Zhang T, Bao S, Liu Y, Xu X. Formulation and characterization of voriconazole nanospray dried powders. Pharm Dev Technol 2020; 25:815-822. [DOI: 10.1080/10837450.2020.1741618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Rui Chen
- School of Pharmacy, Chengdu Medical College, Chengdu, P. R. China
| | - Tinghua Zhang
- School of Pharmacy, Chengdu Medical College, Chengdu, P. R. China
| | - Sha Bao
- School of Pharmacy, Chengdu Medical College, Chengdu, P. R. China
| | - Yinkun Liu
- School of Pharmacy, Chengdu Medical College, Chengdu, P. R. China
| | - Xiaohong Xu
- School of Pharmacy, Chengdu Medical College, Chengdu, P. R. China
| |
Collapse
|
155
|
Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34:1926-1946. [PMID: 32166813 DOI: 10.1002/ptr.6658] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Baku, Azerbaijan
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
156
|
de Melo MT, Piva HL, Tedesco AC. Design of new protein drug delivery system (PDDS) with photoactive compounds as a potential application in the treatment of glioblastoma brain cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110638. [PMID: 32204072 DOI: 10.1016/j.msec.2020.110638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/22/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022]
Abstract
Glioblastoma multiforme (GBM) is an extremely aggressive malignant brain tumor. Despite advances in treatment modalities, it remains largely incurable. This unfavorable prognosis for GBM is at least partly due to the lack of a successful drug delivery system across the blood-brain barrier (BBB). The delivery of drugs through nanomedicines combined with less invasive alternative therapies represents an important hope for the future of these incurable brain tumors. Whey protein nanocarriers represent promising strategy for targeted drug delivery to tumor cells by enhancing the drug's bioavailability and distribution, and reducing the body's response towards drug resistance. They have been extensively studied to find new alternatives for capacity to encapsulate different drugs and no need for cross-linkers. In this study, we report for the first time the incorporation and administration of Aluminum phthalocyanine chloride (AlClPc)-loaded whey protein drug delivery system (AlClPc-PDDS) for the treatment of glioblastoma brain cancer. This system was designed and optimized (with the use of the spray drying technique) to obtain the required particle size (in the range of 100 to 300 nm), zeta potential and drug loading. Our results suggest that we have developed a drug delivery system from a low-cost raw material and preparation method that is capable of incorporating hydrophobic drugs which, in combination with irradiation, cause photodamage to neoplasic cells, working as an effective adjuvant treatment for malignant glioma.
Collapse
Affiliation(s)
- Maryanne Trafani de Melo
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Henrique Luis Piva
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering -Photobiology and Photomedicine Research Group, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo (USP), 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
157
|
Rehman A, Tong Q, Jafari SM, Assadpour E, Shehzad Q, Aadil RM, Iqbal MW, Rashed MM, Mushtaq BS, Ashraf W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv Colloid Interface Sci 2020; 275:102048. [PMID: 31757387 DOI: 10.1016/j.cis.2019.102048] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/03/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Carotenoids retain plenty of health benefits and attracting much attention recently, but they have less resistance to processing stresses, easily oxidized and chemically unstable. Additionally, their application in food and pharmaceuticals are restricted due to some limitations such as poor bioavailability, less solubility and quick release. Nanoencapsulation techniques can be used to protect the carotenoids and to uphold their original characteristics during processing, storage and digestion, improve their physiochemical properties and enhance their health promoting effects. The importance of nanocarriers in foods and pharmaceuticals cannot be denied. This review comprehensively covers recent advances in nanoencapsulation of carotenoids with biopolymeric nanocarriers (polysaccharides and proteins), and lipid-based nanocarriers, their functionalities, aptness and innovative developments in preparation strategies. Furthermore, the present state of the art encapsulation of different carotenoids via biopolymeric and lipid-based nanocarriers have been enclosed and tabulated well. Nanoencapsulation has a vast range of applications for protection of carotenoids. Polysaccharides in combination with different proteins can offer a great avenue to achieve the desired formulation for encapsulation of carotenoids by using different nanoencapsulation strategies. In terms of lipid based nanocarriers, solid lipid nanoparticles and nanostructure lipid carriers are proving as the encouraging candidates for entrapment of carotenoids. Additionally, nanoliposomes and nanoemulsion are also promising and novel-vehicles for the protection of carotenoids against challenging aspects as well as offering an effectual controlled release on the targeted sites. In the future, further studies could be conducted for exploring the application of nanoencapsulated systems in food and gastrointestinal tract (GIT) for industrial applications.
Collapse
|
158
|
Bahrami A, Delshadi R, Jafari SM, Williams L. Nanoencapsulated nisin: An engineered natural antimicrobial system for the food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
159
|
|
160
|
Shehata TM, Ibrahima MM. BÜCHI nano spray dryer B-90: a promising technology for the production of metformin hydrochloride-loaded alginate-gelatin nanoparticles. Drug Dev Ind Pharm 2019; 45:1907-1914. [PMID: 31621436 DOI: 10.1080/03639045.2019.1680992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The current study aimed to formulate gelatin/sodium alginate nanoparticles utilizing BÜCHI nano spray dryer B-90. Nanoparticles possess many of the advantages including new routes of drug administrations and sustained release properties. Utilizing B-90 technology, metformin hydrochloride (MET) nanoparticles were successfully developed. Preformulation studies such as atomization head mesh size, flow rate, head temperature, polymer viscosity, and surface tension, were adjusted. Additionally, post-formulation characters such as particle size, flowability, surface scan, and dissolution profiles, were evaluated. Spray head (7 µm hole), flow rate (3.5 ml/min) and head temperature (120 °C) were optimized. Polymer viscosity was less than 11.2 cP with a surface tension less than 70.1 dyne/cm. Moreover, anti-diabetic effects of MET formulations were evaluated in streptozotocin-induced diabetic rats. Here, discrete, non-aggregated free-flowing nanoparticle powders with a particle size less than 850 nm were generated. Gelatin/sodium-alginate (1:3) produced nanoparticles were successfully sustained by the in vitro release profile of the drug. In vivo evaluations of the previous formula showed a significant reduction of blood glucose level over 24 h. In conclusion, Nano Spray Dryer B-90 (Büchi Labortechnik AG, Flawil, Switzerland) offers a promising technology for nanoparticles formulation as controlled drug delivery systems enhancing compliance of type-II diabetic patients.
Collapse
Affiliation(s)
- Tamer M Shehata
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Pharmaceutical Science Department, College of Clinical Pharmacy, King Faisal University, Al-Hasa, Saudi Arabia
| | - Mahmoud M Ibrahima
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.,Pharmacy Program, Ministry of Health, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
161
|
Synthesis of organic phase change materials (PCM) for energy storage applications: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100399] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
162
|
Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
163
|
Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
164
|
Preparation of submicron drug particles via spray drying from organic solvents. Int J Pharm 2019; 567:118501. [PMID: 31288055 DOI: 10.1016/j.ijpharm.2019.118501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/23/2022]
Abstract
Manufacturing poorly water-soluble active pharmaceutical ingredients (API) with sufficient bioavailability is a significant challenge in pharmaceutical research. A higher bioavailability can reduce both the applied dosage and the side effects for the patient. One method of increasing the bioavailability is to reduce the particle size of the drug down to the nanoscale. An innovative procedure for the preparation of particles in the submicron size range is spray drying with aerosol conditioning, followed by subsequent separation of the particles in an electrostatic precipitator (ESP). This process has been tested before in an earlier work with aqueous model substances at high production rates (1 g/h) and narrow particle-size distributions (mannitol: d50,0 = 455 nm, span = 0,8) in the submicron range. Spray drying from an aqueous solution with low drug concentrations (<1 wt-%) leads to particles in the lower nanosize range, but the low concentrations make this process inefficient. A custom-made plant was modified in order to handle the organic spray-drying process. In addition, explosion protection had to be considered. This work focuses on the spray drying of submicron particles from organic solvents for the purpose of increasing the dissolution rate of the API griseofulvin. API particles were successfully produced in the submicron size-range, characterized and the dissolution behavior was investigated. The dissolution time to dissolve 80% of the drug, t80, was reduced from 21.5 min for the micronized grade API to 8.5 min for the submicron product.
Collapse
|
165
|
Sarabandi K, Jafari SM, Mahoonak AS, Mohammadi A. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol 2019; 140:59-68. [PMID: 31422189 DOI: 10.1016/j.ijbiomac.2019.08.133] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022]
Abstract
Our aim was to produce an encapsulated powder loaded with eggplant peel extract as a natural source of color and antioxidants through gum Arabic and maltodextrin. The effect of spray drying inlet temperature (140-170°C) and various carriers (maltodextrin, gum Arabic, and their combination) on powder production yield, physical properties, flowability, color, total phenolic content (TPC), antioxidant activity, infrared spectroscopy (FTIR), microstructure and particle size were investigated. Our results revealed that physicochemical properties of powders were influenced by the carrier type and inlet temperature. Obtained powders by maltodextrin at 170°C showed the highest TPC (5.2mg/g), DPPH (73.4%), ABTS (90.5%), TEAC (2. 5mM), hydroxyl radicals scavenging activity (79.1%) and reducing power (1.2 Abs700) among all samples. FTIR spectroscopy indicated that the extract was encapsulated by the carriers. Microstructure evaluation of powders showed some hollow particles with matrix-type structures. Sensory evaluation indicated that addition of encapsulated eggplant extract into the formulation of gummy candy improved its color and overall acceptability.
Collapse
Affiliation(s)
- Khashayar Sarabandi
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Alireza Sadeghi Mahoonak
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Adeleh Mohammadi
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
166
|
Rehman A, Ahmad T, Aadil RM, Spotti MJ, Bakry AM, Khan IM, Zhao L, Riaz T, Tong Q. Pectin polymers as wall materials for the nano-encapsulation of bioactive compounds. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
167
|
Prolamins from cereal by-products: Classification, extraction, characterization and its applications in micro- and nanofabrication. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
168
|
Taheri A, Jafari SM. Gum-based nanocarriers for the protection and delivery of food bioactive compounds. Adv Colloid Interface Sci 2019; 269:277-295. [PMID: 31132673 DOI: 10.1016/j.cis.2019.04.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/09/2019] [Accepted: 04/24/2019] [Indexed: 11/28/2022]
Abstract
Gums, which for the most part are water-soluble polysaccharides, can interact with water to form viscous solutions, emulsions or gels. Their desirable properties, such as flexibility, biocompatibility, biodegradability, availability of reactive sites for molecular interactions and ease of use have led to their extremely large and broad applications in formation of nanostructures (nanoemulsions, nanoparticles, nanocomplexes, and nanofibers) and have already served as important wall materials for a variety of nano encapsulated food ingredients including flavoring agents, vitamins, minerals and essential fatty acids. The most common gums used in nano encapsulation systems include Arabic gum, carrageenan, xanthan, tragacanth plus some new sources of non-traditional gums, such as cress seed gum and Persian/or Angum gum identified as potential building blocks for nanostructured systems. New preparation techniques and sources of non-traditional gums are still being examined for commercialization in the food nanotechnology area as low-cost and reproducible sources. In this study, different nanostructures of gums and their preparation methods have been discussed along with a review of gum nanostructure applications for various food bioactive ingredients.
Collapse
Affiliation(s)
- Afsaneh Taheri
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
169
|
Li T, Teng D, Mao R, Hao Y, Wang X, Wang J. Recent progress in preparation and agricultural application of microcapsules. J Biomed Mater Res A 2019; 107:2371-2385. [PMID: 31161699 DOI: 10.1002/jbm.a.36739] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
Recent advances in life science technology have prompted the need to develop microcapsule delivery systems that can encapsulate many different functional or active materials such as drugs, peptides, and live cells, etc. The encapsulation technology is now commonly used in medicine, agriculture, food, and other many fields. The application of biodegradable microcapsule systems can not only effectively prevent the degradation of core materials in the body or the biological environment, but also improve the bioavailability, control the release and prolong the halftime or storage of core active materials. Various wall materials, preparation methods, encapsulation processes, and release mechanisms are covered in this review, as well as several main factors including pH values, temperatures, particle sizes, and additives, which can strongly influence the encapsulation efficiency, the strength, and release of microcapsules. The improvement of coating materials, preparation techniques, and challenges are also highlighted, as well as application prospects.
Collapse
Affiliation(s)
- Ting Li
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Da Teng
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ruoyu Mao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Ya Hao
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Xiumin Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| | - Jianhua Wang
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, People's Republic of China
| |
Collapse
|
170
|
Poozesh S, Mahdi Jafari S. Are traditional small-scale screening methods reliable to predict pharmaceutical spray drying? Pharm Dev Technol 2019; 24:915-925. [PMID: 31057007 DOI: 10.1080/10837450.2019.1616208] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Driven by the new trend to build quality into products and reducing empiricism, small-scale screening techniques have been frequently used to evaluate, thermodynamic of drug solubility in the polymer, and drug-polymer kinetic amorphous miscibility. In this paper, these methods have been overviewed to shed light on their liabilities in predicting spray-dried amorphous solid dispersions' (ASDs) properties. By scrutinizing relevant open literature, several inconsistencies have been recognized, deemed to be due to the inability of conventional miniaturized means to simulate the spray drying process operations/constraints in formulating active pharmaceutical ingredients (APIs). Given the complex interplay of thermodynamics of mixing, heat and mass transfer, and fluid dynamics in this process, scaling rules have been introduced to remedy arisen issues in conventional miniaturized tools. Accordingly, spray drying process is analyzed considering the fundamental physical transformations involved, i.e. atomization and drying. Each transformation is explored from a scaling perspective with an emphasis on key response factors, and ways to retain them for each transformation across scales. Prospective bifurcated developments may improve the odds of successful formulations/process conditions later on during development stages.
Collapse
Affiliation(s)
- Sadegh Poozesh
- a Mechanical Engineering Department , Tuskegee University , Tuskegee , AL , US
| | - Seid Mahdi Jafari
- b Food Materials and Process Design Engineering Department , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| |
Collapse
|
171
|
Rostamabadi H, Falsafi SR, Jafari SM. Starch-based nanocarriers as cutting-edge natural cargos for nutraceutical delivery. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.04.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
172
|
Baghdan E, Raschpichler M, Lutfi W, Pinnapireddy SR, Pourasghar M, Schäfer J, Schneider M, Bakowsky U. Nano spray dried antibacterial coatings for dental implants. Eur J Pharm Biopharm 2019; 139:59-67. [DOI: 10.1016/j.ejpb.2019.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/11/2022]
|
173
|
Multi-Solvent Microdroplet Evaporation: Modeling and Measurement of Spray-Drying Kinetics with Inhalable Pharmaceutics. Pharm Res 2019; 36:100. [DOI: 10.1007/s11095-019-2630-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/17/2022]
|
174
|
|
175
|
Ali HSM, Hanafy AF, Alqurshi A. Engineering of solidified glyburide nanocrystals for tablet formulation via loading of carriers: downstream processing, characterization, and bioavailability. Int J Nanomedicine 2019; 14:1893-1906. [PMID: 30936692 PMCID: PMC6422418 DOI: 10.2147/ijn.s194734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Presenting poorly water-soluble drugs as nanoparticles has shown to be an effective technique in enhancing drug dissolution rate, intrinsic solubility, and thus oral bioavailability. Nevertheless, working with nanoparticles introduces many challenges, one of which is their physical instability. Formulating nanoparticles into a solid dosage form may overcome such challenges and thus unlock the potential benefits of nanosizing. METHODS The current work investigates the possibility of developing a novel solid dosage form, with enhanced dissolution rate, whereby nanocrystals (~400 nm) of the class II Biopharmaceutical Classification System drug, glyburide (GBD) were fabricated through combined precipitation and homogenization procedures. Using a novel, but scalable, spraying technique, GBD nanocrystals were loaded onto commonly used tablet fillers, water-soluble lactose monohydrate (LAC), and water insoluble microcrystalline cellulose (MCC). Conventional tableting processes were then used to convert the powders generated into a tablet dosage form. RESULTS Studies of redispersibility showed considerable preservation of size characteristics of GBD nanocrystals during downstream processing with redispersibility indices of 105 and 118 for GBD-LAC and GBD-MCC, respectively. Characterization by differential scanning calorimetry, powder X-ray diffraction, and scanning electron microscopy showed that the powders generated powders contained nanosized crystals of GBD which adhered to carrier surfaces. Powder flowability was characterized using Hausner ratio (HR) and Carr's index (CI). GBD-LAC-loaded particles exhibited poor flowability with CI and HR of 37.5% and 1.60, respectively, whilst GBD-MCC particles showed a slightly improved flowability with CI and HR of 26.47% and 1.36, respectively. The novel tablet dosage form met US Pharmacopeia specifications, including drug content, hardness, and friability. CONCLUSION Higher dissolution rates were observed from the nanocrystal-based tablets compared to the microsized and commercial drug formulations. Moreover, the novel nanocrystal tablet dosage forms showed enhanced in vivo performance with area under the plasma concentration- time curve in the first 24 hours values 1.97 and 2.24 times greater than that of marketed tablets.
Collapse
Affiliation(s)
- Hany S M Ali
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt,
| | - Ahmed F Hanafy
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
- Research and Development Department, Al Andalous Pharmaceutical Industries, Cairo, Egypt
| | - Abdulmalik Alqurshi
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia,
| |
Collapse
|
176
|
Schoubben A, Vivani R, Paolantoni M, Perinelli DR, Gioiello A, Macchiarulo A, Ricci M. D-leucine microparticles as an excipient to improve the aerosolization performances of dry powders for inhalation. Eur J Pharm Sci 2019; 130:54-64. [DOI: 10.1016/j.ejps.2019.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/14/2018] [Accepted: 01/21/2019] [Indexed: 11/25/2022]
|
177
|
Peng HH, Hong DX, Guan YX, Yao SJ. Preparation of pH-responsive DOX-loaded chitosan nanoparticles using supercritical assisted atomization with an enhanced mixer. Int J Pharm 2019; 558:82-90. [DOI: 10.1016/j.ijpharm.2018.12.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/07/2018] [Accepted: 12/23/2018] [Indexed: 12/11/2022]
|
178
|
Joye IJ, Corradini MG, Duizer LM, Bohrer BM, LaPointe G, Farber JM, Spagnuolo PA, Rogers MA. A comprehensive perspective of food nanomaterials. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:1-45. [PMID: 31151722 DOI: 10.1016/bs.afnr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanotechnology is a rapidly developing toolbox that provides solutions to numerous challenges in the food industry and meet public demands for healthier and safer food products. The diversity of nanostructures and their vast, tunable functionality drives their inclusion in food products and packaging materials to improve their nutritional quality through bioactive fortification and probiotics encapsulation, enhance their safety due to their antimicrobial and sensing capabilities and confer novel sensorial properties. In this food nanotechnology state-of-the-art communication, matrix materials with particular focus on food-grade components, existing and novel production techniques, and current and potential applications in the fields of food quality, safety and preservation, nutrient bioaccessibility and digestibility will be detailed. Additionally, a thorough analysis of potential strategies to assess the safety of these novel nanostructures is presented.
Collapse
Affiliation(s)
- I J Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M G Corradini
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - L M Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - B M Bohrer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - G LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - J M Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - P A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
179
|
Assadpour E, Jafari SM. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu Rev Food Sci Technol 2019; 10:103-131. [PMID: 30649963 DOI: 10.1146/annurev-food-032818-121641] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many natural food bioactive ingredients are sensitive to processing and environmental conditions and thus it is necessary to improve their stability to create products with long shelf lives. Encapsulation by spray drying is a widely used economical strategy to tackle this issue, and many scientists and manufacturers are using it in their research, development, and production activities. In this review, the spray-drying process is described, as are recent trends in the encapsulation of fish oils, essential fatty acids, probiotics, phenolic compounds, and natural food colorants. The formulation and process conditions used in previous research and the results obtained are tabulated. Also, new innovations in bioactive encapsulation using nano-spray drying are described.
Collapse
Affiliation(s)
- Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran;
| |
Collapse
|
180
|
Baghdan E, Pinnapireddy SR, Vögeling H, Schäfer J, Eckert AW, Bakowsky U. Nano spray drying: A novel technique to prepare well-defined surface coatings for medical implants. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
181
|
da Fonseca Machado AP, Alves Rezende C, Alexandre Rodrigues R, Fernández Barbero G, de Tarso Vieira e Rosa P, Martínez J. Encapsulation of anthocyanin-rich extract from blackberry residues by spray-drying, freeze-drying and supercritical antisolvent. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.09.063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
182
|
Strob R, Dobrowolski A, Pieloth D, Schaldach G, Wiggers H, Walzel P, Thommes M. Preparation and characterization of spray-dried submicron particles for pharmaceutical application. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
183
|
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 2018; 59:3468-3497. [DOI: 10.1080/10408398.2018.1495174] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohammad Nejatian
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
184
|
Vasvári G, Kalmár J, Veres P, Vecsernyés M, Bácskay I, Fehér P, Ujhelyi Z, Haimhoffer Á, Rusznyák Á, Fenyvesi F, Váradi J. Matrix systems for oral drug delivery: Formulations and drug release. DRUG DISCOVERY TODAY. TECHNOLOGIES 2018; 27:71-80. [PMID: 30103866 DOI: 10.1016/j.ddtec.2018.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 06/08/2023]
Abstract
In this current article matrix formulations for oral drug delivery are reviewed. Conventional dosage forms and novel applications such as 3D printed matrices and aerogel matrices are discussed. Beside characterization, excipients and matrix forming agents are also enlisted and classified. The incorporated drug could exist in crystalline or in amorphous forms, which makes drug dissolution easily tunable. Main drug release mechanisms are detailed and reviewed to support rational design in pharmaceutical technology and manufacturing considering the fact that R&D members of the industry are forced to obtain knowledge about excipients and methods pros and cons. As innovative and promising research fields of drug delivery, 3D printed products and highly porous, low density aerogels with high specific surface area are spreading, currently limitlessly. These compositions can also be considered as matrix formulations.
Collapse
Affiliation(s)
- Gábor Vasvári
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - József Kalmár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary; MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Péter Veres
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary
| | - Miklós Vecsernyés
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ádám Haimhoffer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ágnes Rusznyák
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| | - Ferenc Fenyvesi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary.
| | - Judit Váradi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98., H-4032, Debrecen, Hungary
| |
Collapse
|