151
|
McCoy LE, Quigley AF, Strokappe NM, Bulmer-Thomas B, Seaman MS, Mortier D, Rutten L, Chander N, Edwards CJ, Ketteler R, Davis D, Verrips T, Weiss RA. Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. ACTA ACUST UNITED AC 2012; 209:1091-103. [PMID: 22641382 PMCID: PMC3371729 DOI: 10.1084/jem.20112655] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A heavy chain–only antibody isolated from a llama repeatedly immunized with trimeric HIV-1 Env neutralizes 96% of tested HIV-1 strains. Llamas (Lama glama) naturally produce heavy chain–only antibodies (Abs) in addition to conventional Abs. The variable regions (VHH) in these heavy chain–only Abs demonstrate comparable affinity and specificity for antigens to conventional immunoglobulins despite their much smaller size. To date, immunizations in humans and animal models have yielded only Abs with limited ability to neutralize HIV-1. In this study, a VHH phagemid library generated from a llama that was multiply immunized with recombinant trimeric HIV-1 envelope proteins (Envs) was screened directly for HIV-1 neutralization. One VHH, L8CJ3 (J3), neutralized 96 of 100 tested HIV-1 strains, encompassing subtypes A, B, C, D, BC, AE, AG, AC, ACD, CD, and G. J3 also potently neutralized chimeric simian-HIV strains with HIV subtypes B and C Env. The sequence of J3 is highly divergent from previous anti–HIV-1 VHH and its own germline sequence. J3 achieves broad and potent neutralization of HIV-1 via interaction with the CD4-binding site of HIV-1 Env. This study may represent a new benchmark for immunogens to be included in B cell–based vaccines and supports the development of VHH as anti–HIV-1 microbicides.
Collapse
Affiliation(s)
- Laura E McCoy
- Wohl Virion Centre, University College London, London WC1E 6BT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Enríquez-Navas PM, Chiodo F, Marradi M, Angulo J, Penadés S. STD NMR study of the interactions between antibody 2G12 and synthetic oligomannosides that mimic selected branches of gp120 glycans. Chembiochem 2012; 13:1357-65. [PMID: 22628288 DOI: 10.1002/cbic.201200119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 11/11/2022]
Abstract
The human immunodeficiency virus type-1 (HIV-1) is able to shield immunogenic peptide epitopes on its envelope spike (a trimer of two glycoproteins, gp120 and gp41) by presenting numerous host-derived N-linked glycans. Nevertheless, broadly neutralizing antibodies against gp120 and gp41 have been isolated from HIV-1-infected patients and provide protection against viral challenge in animal models. Among these, the monoclonal antibody 2G12 binds to clusters of high-mannose-type glycans that are present on the surface of gp120. These types of glycans have thus been envisaged as target structures for the development of synthetic agents capable of eliciting 2G12-like antibodies. High-resolution structural studies of 2G12 and chemically defined glycan-type ligands, including crystallographic data, have been performed to gain an insight into this interaction. Further studies are still required to design a carbohydrate-based vaccine for HIV. Our previous NMR studies highlighted different recognition modes of two branched synthetic oligosaccharides, a penta- and a heptamannoside, by 2G12 in solution. In order to clarify the underlying structural reasons for such different behaviors, we have herein "dissected" the branches into the linear tri- and tetra- oligomannosides by chemical synthesis and studied their interactions with 2G12 in solution by saturation transfer difference (STD) NMR spectroscopy. The results confirm the distinct preferences of 2G12 for the studied branches and afford explanations for the observed differences. This study provides important structural information for further ligand optimizations. Possible effects of structural modifications on the solvent-exposed end of the ligands are also discussed.
Collapse
Affiliation(s)
- Pedro M Enríquez-Navas
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterial Unit, CIC biomaGUNE, Paseo de Miramón 182,20009 San Sebastián, Spain
| | | | | | | | | |
Collapse
|
153
|
B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol 2012; 30:423-33. [PMID: 22565972 DOI: 10.1038/nbt.2197] [Citation(s) in RCA: 380] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Failure of immunization with the HIV-1 envelope to induce broadly neutralizing antibodies against conserved epitopes is a major barrier to producing a preventive HIV-1 vaccine. Broadly neutralizing monoclonal antibodies (BnAbs) from those subjects who do produce them after years of chronic HIV-1 infection have one or more unusual characteristics, including polyreactivity for host antigens, extensive somatic hypermutation and long, variable heavy-chain third complementarity-determining regions, factors that may limit their expression by host immunoregulatory mechanisms. The isolation of BnAbs from HIV-1-infected subjects and the use of computationally derived clonal lineages as templates provide a new path for HIV-1 vaccine immunogen design. This approach, which should be applicable to many infectious agents, holds promise for the construction of vaccines that can drive B cells along rare but desirable maturation pathways.
Collapse
|
154
|
HIV-1 virus-like particles produced by stably transfected Drosophila S2 cells: a desirable vaccine component. J Virol 2012; 86:7662-76. [PMID: 22553333 DOI: 10.1128/jvi.07164-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a successful vaccine against human immunodeficiency virus type 1 (HIV-1) likely requires immunogens that elicit both broadly neutralizing antibodies against envelope spikes and T cell responses that recognize multiple viral proteins. HIV-1 virus-like particles (VLP), because they display authentic envelope spikes on the particle surface, may be developed into such immunogens. However, in one way or the other current systems for HIV-1 VLP production have many limitations. To overcome these, in the present study we developed a novel strategy to produce HIV-1 VLP using stably transfected Drosophila S2 cells. We cotransfected S2 cells with plasmids encoding HIV-1 envelope, Gag, and Rev proteins and a selection marker. After stably transfected S2 clones were established, HIV-1 VLP and their immunogenicity in mice were carefully evaluated. Here, we report that HIV-1 envelope proteins are properly cleaved, glycosylated, and incorporated into VLP with Gag. The amount of VLP released into culture supernatants is comparable to those produced by insect cells infected with recombinant baculoviruses. Moreover, cryo-electron microscopy tomography revealed average 17 spikes per purified VLP, and antigenic epitopes on the spikes were recognized by the broadly neutralizing antibodies 2G12, b12, VRC01, and 4E10 but not by PG16. Finally, mice primed with DNA and boosted with VLP in the presence of CpG exhibited anti-envelope antibody responses, including ELISA-binding, neutralizing, antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated viral inhibition, as well as envelope and Gag-specific CD8 T cell responses. Thus, we conclude that HIV-1 VLP produced by the S2 expression system has many desirable features to be developed into a vaccine component against HIV-1.
Collapse
|
155
|
Gómez CE, Perdiguero B, Jiménez V, Filali-Mouhim A, Ghneim K, Haddad EK, Quakkerlaar ED, Delaloye J, Harari A, Roger T, Dunhen T, Sékaly RP, Melief CJM, Calandra T, Sallusto F, Lanzavecchia A, Wagner R, Pantaleo G, Esteban M. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C. PLoS One 2012; 7:e35485. [PMID: 22536391 PMCID: PMC3334902 DOI: 10.1371/journal.pone.0035485] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023] Open
Abstract
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Collapse
Affiliation(s)
- Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Victoria Jiménez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | - Abdelali Filali-Mouhim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Khader Ghneim
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Elias K. Haddad
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Esther D. Quakkerlaar
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Julie Delaloye
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Thomas Dunhen
- Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Rafick P. Sékaly
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Cornelis J. M. Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | | | | | - Ralf Wagner
- University of Regensburg, Regensburg, Germany
| | - Giuseppe Pantaleo
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
156
|
Burke KP, Munshaw S, Osburn WO, Levine J, Liu L, Sidney J, Sette A, Ray SC, Cox AL. Immunogenicity and cross-reactivity of a representative ancestral sequence in hepatitis C virus infection. THE JOURNAL OF IMMUNOLOGY 2012; 188:5177-88. [PMID: 22508927 DOI: 10.4049/jimmunol.1103008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vaccines designed to prevent or to treat hepatitis C viral infection must achieve maximum cross-reactivity against widely divergent circulating strains. Rational approaches for sequence selection to maximize immunogenicity and minimize genetic distance across circulating strains may enhance vaccine induction of optimal cytotoxic T cell responses. We assessed T cell recognition of potential hepatitis C virus (HCV) vaccine sequences generated using three rational approaches: combining epitopes with predicted tight binding to the MHC, consensus sequence (most common amino acid at each position), and representative ancestral sequence that had been derived using bayesian phylogenetic tools. No correlation was seen between peptide-MHC binding affinity and frequency of recognition, as measured by an IFN-γ T cell response in HLA-matched HCV-infected individuals. Peptides encoding representative, consensus, and natural variant sequences were then tested for the capacity to expand CD8 T cell populations and to elicit cross-reactive CD8 T cell responses. CD8(+) T cells expanded with representative sequence HCV generally more broadly and robustly recognized highly diverse circulating HCV strains than did T cells expanded with either consensus sequence or naturally occurring sequence variants. These data support the use of representative sequence in HCV vaccine design.
Collapse
Affiliation(s)
- Kelly P Burke
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Andersen-Nissen E, Heit A, McElrath MJ. Profiling immunity to HIV vaccines with systems biology. Curr Opin HIV AIDS 2012; 7:32-7. [PMID: 22134340 DOI: 10.1097/coh.0b013e32834ddcd9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW The recent modest success of the RV144 HIV vaccine trial in Thailand has shown that development of an HIV vaccine is possible. Designing a vaccine that achieves better protection, however, will require a more complete understanding of vaccine mechanisms of action and correlates of protection. Systems biology approaches enable integration of large datasets from a variety of assays and offer new approaches to understanding how vaccine-induced immune responses are coordinately regulated. In this review, we discuss the recent advances in clinical trial design, specimen collection, and assay standardization that will generate datasets for systems analyses of immune responses to HIV vaccines. RECENT FINDINGS Several recently published HIV vaccine trials have shown that different HIV vaccine prime/boost combinations can greatly affect the immune response generated, but mechanistic insights into their modes of action are lacking. Novel systems biology studies of efficacious, licensed vaccines provide a new template for analysis of HIV vaccines. To generate datasets appropriate for systems analysis, current HIV vaccine clinical trials are undergoing design modifications and increased standardization of specimen collection and immune response assays. SUMMARY Systems biology approaches to HIV vaccine evaluation are driving new methods of HIV vaccine immune response profiling in clinical trials and will hopefully lead to new improved HIV vaccines in the near future.
Collapse
Affiliation(s)
- Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | |
Collapse
|
158
|
Cortez V, Odem-Davis K, McClelland RS, Jaoko W, Overbaugh J. HIV-1 superinfection in women broadens and strengthens the neutralizing antibody response. PLoS Pathog 2012; 8:e1002611. [PMID: 22479183 PMCID: PMC3315492 DOI: 10.1371/journal.ppat.1002611] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/14/2012] [Indexed: 12/16/2022] Open
Abstract
Identifying naturally-occurring neutralizing antibodies (NAb) that are cross-reactive against all global subtypes of HIV-1 is an important step toward the development of a vaccine. Establishing the host and viral determinants for eliciting such broadly NAbs is also critical for immunogen design. NAb breadth has previously been shown to be positively associated with viral diversity. Therefore, we hypothesized that superinfected individuals develop a broad NAb response as a result of increased antigenic stimulation by two distinct viruses. To test this hypothesis, plasma samples from 12 superinfected women each assigned to three singly infected women were tested against a panel of eight viruses representing four different HIV-1 subtypes at matched time points post-superinfection (~5 years post-initial infection). Here we show superinfected individuals develop significantly broader NAb responses post-superinfection when compared to singly infected individuals (RR = 1.68, CI: 1.23-2.30, p = 0.001). This was true even after controlling for NAb breadth developed prior to superinfection, contemporaneous CD4+ T cell count and viral load. Similarly, both unadjusted and adjusted analyses showed significantly greater potency in superinfected cases compared to controls. Notably, two superinfected individuals were able to neutralize variants from four different subtypes at plasma dilutions >1∶300, suggesting that their NAbs exhibit elite activity. Cross-subtype breadth was detected within a year of superinfection in both of these individuals, which was within 1.5 years of their initial infection. These data suggest that sequential infections lead to augmentation of the NAb response, a process that may provide insight into potential mechanisms that contribute to the development of antibody breadth. Therefore, a successful vaccination strategy that mimics superinfection may lead to the development of broad NAbs in immunized individuals.
Collapse
Affiliation(s)
- Valerie Cortez
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - R. Scott McClelland
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Walter Jaoko
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
159
|
Hessell AJ, Haigwood NL. Neutralizing antibodies and control of HIV: moves and countermoves. Curr HIV/AIDS Rep 2012; 9:64-72. [PMID: 22203469 DOI: 10.1007/s11904-011-0105-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is now evident that powerful antibodies directed to conserved regions of HIV-1 envelope protein develop during chronic infection in some individuals and that these antibodies can neutralize a broad array of diverse isolates in vitro, so termed broadly neutralizing antibodies (bNAbs). A great deal of effort is directed internationally at understanding the ontogeny of NAbs during infection as well as in designing and testing immunogens that can elicit bNAbs in animal models and in humans. Given the parrying tactics of Env, multiple approaches, along with high-resolution structural studies, will be needed to reach a degree of understanding sufficient to design an effective vaccine. We discuss and note here some of the most important recent advances in our knowledge of how neutralizing antibodies develop in vivo, the recent discovery of extremely powerful neutralizing monoclonal antibodies isolated from natural infection, enhanced methodologies that have accelerated discoveries on both fronts, and the progress made in eliciting potent NAbs with limited breadth by vaccination.
Collapse
Affiliation(s)
- Ann J Hessell
- Pathobiology and Immunology Division, Oregon National Primate Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | |
Collapse
|
160
|
Di Nunzio F, Félix T, Arhel N, Nisole S, Charneau P, Beignon AS. HIV-derived vectors for therapy and vaccination against HIV. Vaccine 2012; 30:2499-509. [DOI: 10.1016/j.vaccine.2012.01.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/29/2022]
|
161
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
162
|
Ackerman ME, Dugast AS, Alter G. Emerging Concepts on the Role of Innate Immunity in the Prevention and Control of HIV Infection. Annu Rev Med 2012; 63:113-30. [DOI: 10.1146/annurev-med-050310-085221] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Margaret E. Ackerman
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755
| | - Anne-Sophie Dugast
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Charlestown, Massachusetts 02149;
| |
Collapse
|
163
|
Two distinct broadly neutralizing antibody specificities of different clonal lineages in a single HIV-1-infected donor: implications for vaccine design. J Virol 2012; 86:4688-92. [PMID: 22301150 DOI: 10.1128/jvi.07163-11] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma from a small subset of subjects chronically infected with HIV-1 shows remarkable magnitude and breadth of neutralizing activity. From one of these individuals (CH0219), we isolated two broadly neutralizing antibodies (bnAbs), CH01 and VRC-CH31, from two clonal lineages of memory B cells with distinct specificities (variable loop 1 and 2 [V1V2] conformational specificity and CD4-binding site specificity, respectively) that recapitulate 95% of CH0219 serum neutralization breadth. These data provide proof of concept for an HIV-1 vaccine that aims to elicit bnAbs of multiple specificities.
Collapse
|
164
|
Ahmed FK, Clark BE, Burton DR, Pantophlet R. An engineered mutant of HIV-1 gp120 formulated with adjuvant Quil A promotes elicitation of antibody responses overlapping the CD4-binding site. Vaccine 2012; 30:922-30. [PMID: 22142583 PMCID: PMC3733221 DOI: 10.1016/j.vaccine.2011.11.089] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/20/2011] [Accepted: 11/22/2011] [Indexed: 01/08/2023]
Abstract
A major priority in HIV vaccine research is the development of an immunogen to elicit broadly neutralizing antibodies (NAbs). Monoclonal antibody (mAb) b12 is one of now several broadly neutralizing mAbs that bind epitopes overlapping the CD4-binding site (CD4bs) on HIV-1 gp120 and that serve as templates to engineer effective immunogens. We are exploring a strategy whereby extra glycans are incorporated onto gp120 to occlude the epitopes of non-neutralizing mAbs while maintaining exposure of the b12 site. Immunizing with these so-called hyperglycosylated gp120s is hypothesized to preferentially elicit b12-like NAbs. Here, the effects of two adjuvants, monophosphoryl lipid A (MPL) and Quil A, on eliciting b12-like responses when formulated with a new hyperglycosylated mutant, ΔN2mCHO(Q105N), is presented. Sera from ΔN2mCHO(Q105N)_MPL immunized animals bound the homologous antigen ΔN2mCHO(Q105N) with greater preference than sera from ΔN2mCHO(Q105N)_QuilA immunized animals, demonstrating the modulation of antibody fine specificity by these two adjuvants. We also found that sera from ΔN2mCHO(Q105N)_QuilA immunized animals bound best to a resurfaced HIV gp120 core protein on which non-CD4bs epitopes are substituted with non-HIV residues, suggesting that these sera contain a relatively larger fraction of CD4bs-specific antibodies. Consistent with these data, inhibition assays revealed epitope overlap with the binding sites of the CD4bs-specific antibodies b12, b13 and VRC03. Unexpectedly, these sera did not exhibit significant neutralizing activity against a set of HIV-1 primary strains. Our results show that although formulating mutant ΔN2mCHO(Q105N) with Quil A promotes the elicitation of CD4bs-directed antibodies relative to wild-type gp120, tweaking of the immunization regimen is needed to yield robust, CD4bs-focused NAbs.
Collapse
Affiliation(s)
- Fatima K. Ahmed
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada
| | - Brenda E. Clark
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada
| | - Dennis R. Burton
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- The Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02129, USA
| | - Ralph Pantophlet
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A1S6, Canada
| |
Collapse
|
165
|
HIV-1 neutralization coverage is improved by combining monoclonal antibodies that target independent epitopes. J Virol 2012; 86:3393-7. [PMID: 22258252 DOI: 10.1128/jvi.06745-11] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HIV-1 neutralizing monoclonal antibodies (MAbs) define key targets for vaccine development and are being considered for passive prevention of infection. We analyzed the interaction of MAbs to two independent epitopes on the viral envelope glycoprotein. Potently neutralizing MAbs to the CD4 binding site and V1V2 region displayed no in vitro cross-competition and displayed additive, though not synergistic, neutralization activity. Predicted neutralization coverage of a combination of two MAbs reached 97% on a 208-isolate panel.
Collapse
|
166
|
Abstract
Interleukin (IL)-21 is a member of a family of cytokines that includes IL-2, IL-4, IL-7, IL-9, and IL-15, all of which utilize a common γ chain in their individual receptor complexes for delivering intracellular signals in their target cells. IL-21 is produced by CD4+ T-cells, in particular follicular T-helper cells, and is critically important in the regulation and maintenance of T cells and B cells in innate and adaptive immunity. The effects of IL-21 are pleiotropic because of the broad cellular distribution of the IL-21 receptor, and it plays a critical role in T cell-dependent and -independent human B cell differentiation for generating humoral immune responses. This article reviews the current knowledge about the importance of IL-21 and IL-21 receptor interaction in human B cell responses, immune defects of B cells and IL-21 in HIV infection, and the potential applicability of IL-21 in vaccines/immunotherapeutic approaches to augment relevant immune responses.
Collapse
Affiliation(s)
- Suresh Pallikkuth
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| | - Anita Parmigiani
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| | - Savita Pahwa
- Department of Microbiology & Immunology, University of Miami Miller School of Medicine, Miami, FL- 33136
| |
Collapse
|
167
|
The lectins griffithsin, cyanovirin-N and scytovirin inhibit HIV-1 binding to the DC-SIGN receptor and transfer to CD4(+) cells. Virology 2011; 423:175-86. [PMID: 22209231 DOI: 10.1016/j.virol.2011.12.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 01/19/2023]
Abstract
It is generally believed that during the sexual transmission of HIV-1, the glycan-specific DC-SIGN receptor binds the virus and mediates its transfer to CD4(+) cells. The lectins griffithsin (GRFT), cyanovirin-N (CV-N) and scytovirin (SVN) inhibit HIV-1 infection by binding to mannose-rich glycans on gp120. We measured the ability of these lectins to inhibit both the HIV-1 binding to DC-SIGN and the DC-SIGN-mediated HIV-1 infection of CD4(+) cells. While GRFT, CV-N and SVN were moderately inhibitory to DC-SIGN binding, they potently inhibited DC-SIGN-transfer of HIV-1. The introduction of the 234 glycosylation site abolished HIV-1 sensitivity to lectin inhibition of binding to DC-SIGN and virus transfer to susceptible cells. However, the addition of the 295 glycosylation site increased the inhibition of transfer. Our data suggest that GRFT, CV-N and SVN can block two important stages of the sexual transmission of HIV-1, DC-SIGN binding and transfer, supporting their further development as microbicides.
Collapse
|
168
|
Vyas GN, Stoddart CA, Killian MS, Brennan TV, Goldberg T, Ziman A, Bryson Y. Derivation of non-infectious envelope proteins from virions isolated from plasma negative for HIV antibodies. Biologicals 2011; 40:15-20. [PMID: 22192456 DOI: 10.1016/j.biologicals.2011.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 10/03/2011] [Accepted: 11/16/2011] [Indexed: 11/17/2022] Open
Abstract
Natural membrane-bound HIV-1 envelope proteins (mHIVenv) could be used to produce an effective subunit vaccine against HIV infection, akin to effective vaccination against HBV infection using the hepatitis B surface antigen. The quaternary structure of mHIVenv is postulated to elicit broadly neutralizing antibodies protective against HIV-1 transmission. The founder virus transmitted to infected individuals during acute HIV-1 infection is genetically homogeneous and restricted to CCR5-tropic phenotype. Therefore, isolates of plasma-derived HIV-1 (PHIV) from infected blood donors while negative for antibodies to HIV proteins were selected for expansion in primary lymphocytes as an optimized cell substrate (OCS). Virions in the culture supernatants were purified by removing contaminating microvesicles using immunomagnetic beads coated with anti-CD45. Membrane cholesterol was extracted from purified virions with beta-cyclodextrin to permeabilize them and expel p24, RT and viral RNA, and permit protease-free Benzonase to hydrolyze the residual viral/host DNA/RNA without loss of gp120. The resultant mHIVenv, containing gp120 bound to native gp41 in immunoreactive form, was free from infectivity in vitro in co-cultures with OCS and in vivo after inoculating SCID-hu Thy/Liv mice. These data should help development of mHIVenv as a virally safe immunogen and enable preparation of polyclonal hyper-immune globulins for immunoprophylaxis against HIV-1 infection.
Collapse
Affiliation(s)
- Girish N Vyas
- Department of Laboratory Medicine, University of California, School of Medicine, UCSF Box 0134, 185 Berry Street, Suite 2010-07, San Francisco, CA 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Currier JR, Robb ML, Michael NL, Marovich MA. Defining epitope coverage requirements for T cell-based HIV vaccines: theoretical considerations and practical applications. J Transl Med 2011; 9:212. [PMID: 22152192 PMCID: PMC3284408 DOI: 10.1186/1479-5876-9-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting.
Collapse
|
170
|
Longitudinal analysis of early HIV-1-specific neutralizing activity in an elite neutralizer and in five patients who developed cross-reactive neutralizing activity. J Virol 2011; 86:2045-55. [PMID: 22156522 DOI: 10.1128/jvi.06091-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously established that at 3 years postseroconversion, ~30% of HIV-infected individuals have cross-reactive neutralizing activity (CrNA) in their sera. Here we studied the kinetics with which CrNA develops and how these relate to the development of autologous neutralizing activity as well as viral escape and diversification. For this purpose, sera from five individuals with CrNA and one elite neutralizer that were obtained at three monthly intervals in the first year after seroconversion and at multiple intervals over the disease course were tested for neutralizing activity against an established multiclade panel of six viruses. The same serum samples, as well as sera from three individuals who lacked CrNA, were tested for their neutralizing activities against autologous clonal HIV-1 variants from multiple time points covering the disease course from seroconversion onward. The elite neutralizer already had CrNA at 9.8 months postseroconversion, in contrast with the findings for the other five patients, in whom CrNA was first detected at 20 to 35 months postseroconversion and peaked around 35 months postseroconversion. In all patients, CrNA coincided with neutralizing activity against autologous viruses that were isolated <12 months postseroconversion, while viruses from later time points had already escaped autologous neutralizing activity. Also, the peak in gp160 sequence diversity coincided with the peak of CrNA titers. Individuals who lacked CrNA had lower peak autologous neutralizing titers, viral escape, and sequence diversity than individuals with CrNA. A better understanding of the underlying factors that determine the presence of CrNA or even an elite neutralizer phenotype may aid in the design of an HIV-1 vaccine.
Collapse
|
171
|
Moir S, Malaspina A, Fauci AS. Prospects for an HIV vaccine: leading B cells down the right path. Nat Struct Mol Biol 2011; 18:1317-21. [PMID: 22139037 DOI: 10.1038/nsmb.2194] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Susan Moir
- Laboratory of Immunoregulation, US National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
172
|
Diskin R, Scheid JF, Marcovecchio PM, West AP, Klein F, Gao H, Gnanapragasam PNP, Abadir A, Seaman MS, Nussenzweig MC, Bjorkman PJ. Increasing the potency and breadth of an HIV antibody by using structure-based rational design. Science 2011; 334:1289-93. [PMID: 22033520 PMCID: PMC3232316 DOI: 10.1126/science.1213782] [Citation(s) in RCA: 317] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Antibodies against the CD4 binding site (CD4bs) on the HIV-1 spike protein gp120 can show exceptional potency and breadth. We determined structures of NIH45-46, a more potent clonal variant of VRC01, alone and bound to gp120. Comparisons with VRC01-gp120 revealed that a four-residue insertion in heavy chain complementarity-determining region 3 (CDRH3) contributed to increased interaction between NIH45-46 and the gp120 inner domain, which correlated with enhanced neutralization. We used structure-based design to create NIH45-46(G54W), a single substitution in CDRH2 that increases contact with the gp120 bridging sheet and improves breadth and potency, critical properties for potential clinical use, by an order of magnitude. Together with the NIH45-46-gp120 structure, these results indicate that gp120 inner domain and bridging sheet residues should be included in immunogens to elicit CD4bs antibodies.
Collapse
Affiliation(s)
- Ron Diskin
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Chhatbar C, Mishra R, Kumar A, Singh SK. HIV vaccine: hopes and hurdles. Drug Discov Today 2011; 16:948-56. [DOI: 10.1016/j.drudis.2011.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 07/16/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
174
|
Van Regenmortel MHV. Requirements for empirical immunogenicity trials, rather than structure-based design, for developing an effective HIV vaccine. Arch Virol 2011; 157:1-20. [PMID: 22012269 PMCID: PMC7087187 DOI: 10.1007/s00705-011-1145-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 10/07/2011] [Indexed: 11/29/2022]
Abstract
The claim that it is possible to rationally design a structure-based HIV-1 vaccine is based on misconceptions regarding the nature of protein epitopes and of immunological specificity. Attempts to use reverse vaccinology to generate an HIV-1 vaccine on the basis of the structure of viral epitopes bound to monoclonal neutralizing antibodies have failed so far because it was not possible to extrapolate from an observed antigenic structure to the immunogenic structure required in a vaccine. Vaccine immunogenicity depends on numerous extrinsic factors such as the host immunoglobulin gene repertoire, the presence of various cellular and regulatory mechanisms in the immunized host and the process of antibody affinity maturation. All these factors played a role in the appearance of the neutralizing antibody used to select the epitope to be investigated as potential vaccine immunogen, but they cannot be expected to be present in identical form in the host to be vaccinated. It is possible to rationally design and optimize an epitope to fit one particular antibody molecule or to improve the paratope binding efficacy of a monoclonal antibody intended for passive immunotherapy. What is not possible is to rationally design an HIV-1 vaccine immunogen that will elicit a protective polyclonal antibody response of predetermined efficacy. An effective vaccine immunogen can only be discovered by investigating experimentally the immunogenicity of a candidate molecule and demonstrating its ability to induce a protective immune response. It cannot be discovered by determining which epitopes of an engineered antigen molecule are recognized by a neutralizing monoclonal antibody. This means that empirical immunogenicity trials rather than structural analyses of antigens offer the best hope of discovering an HIV-1 vaccine.
Collapse
Affiliation(s)
- Marc H V Van Regenmortel
- Stellenbosch Institute of Advanced Study, Wallenberg Research Center at Stellenbosch University, Stellenbosch 7600, South Africa.
| |
Collapse
|
175
|
Kim M, Sun ZYJ, Rand KD, Shi X, Song L, Cheng Y, Fahmy AF, Majumdar S, Ofek G, Yang Y, Kwong PD, Wang JH, Engen JR, Wagner G, Reinherz EL. Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization. Nat Struct Mol Biol 2011; 18:1235-43. [PMID: 22002224 PMCID: PMC3253551 DOI: 10.1038/nsmb.2154] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/09/2011] [Indexed: 11/08/2022]
Abstract
Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity. To understand this paradox, we used biophysical methods to investigate the binding of human 2F5 to the MPER in a membrane environment, where it resides in vivo. Recognition is stepwise, through a paratope more extensive than core binding site contacts alone, and dynamic rearrangement through an apparent scoop-like movement of heavy chain complementarity-determining region 3 (CDRH3) is essential for MPER extraction from the viral membrane. Core-epitope recognition on the virus requires the induction of conformational changes in both the MPER and the paratope. Hence, target neutralization through this lipid-embedded viral segment places stringent requirements on the plasticity of the antibody combining site.
Collapse
Affiliation(s)
- Mikyung Kim
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kasper D. Rand
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Xiaomeng Shi
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Likai Song
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yuxing Cheng
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- PhD Program in Biological Sciences in Public Health, Harvard School of Public Health, Boston, MA 02115, USA
| | - Amr F. Fahmy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Shreoshi Majumdar
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gilad Ofek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongping Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jia-huai Wang
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - John R. Engen
- Department of Chemistry & Chemical Biology and The Barnett Institute of Chemical & Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ellis L. Reinherz
- Laboratory of Immunobiology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
176
|
Akinsiku OT, Bansal A, Sabbaj S, Heath SL, Goepfert PA. Interleukin-2 production by polyfunctional HIV-1-specific CD8 T cells is associated with enhanced viral suppression. J Acquir Immune Defic Syndr 2011; 58:132-40. [PMID: 21637109 PMCID: PMC3391567 DOI: 10.1097/qai.0b013e318224d2e9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Assays to measure the induction of HIV-1-specific CD8 T-cell responses often rely on measurements of indirect effector function such as chemokine and cytokine production, which may not reflect direct elimination of an invading pathogen. Assessment of the functional ability of CD8 T cells to suppress HIV-1 replication has been viewed as a surrogate marker of an effectual immune response. To further investigate this, we measured the capacity of virus-specific CD8 T cells to inhibit HIV-1 replication in an in vitro suppression assay. METHODS We expanded 15 epitope-specific CD8 T-cell lines from peripheral blood mononuclear cells of chronically HIV--infected progressors (n = 5) and controllers (n = 4) who were not on antiretroviral therapy. Cell lines were tested for their ability to produce effector molecules (CD107a, IL-2, IFN-γ, TNF-α, perforin) and suppress virus replication in autologous CD4 T cells. RESULTS CD8 T-cell lines from both progressors and controllers had largely similar effector function profiles as determined by intracellular cytokine staining. In contrast, we observed that CD8 T-cell lines derived from controllers show enhanced virus suppression when compared with progressors. Virus suppression was mediated in an major histocompatibility complex-dependent manner and found to correlate with a polyfunctional IL-2 CD8 T-cell response. CONCLUSIONS Using a sensitive in vitro suppression assay, we demonstrate that CD8 T-cell-mediated suppression of HIV-1 replication is a marker of HIV-1 control. Suppressive capacity was found to correlate with polyfunctional IL-2 production. Assessment of CD8 T-cell-mediated suppression may be an important tool to evaluate vaccine-induced responses.
Collapse
Affiliation(s)
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Steffanie Sabbaj
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Sonya L. Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Paul A. Goepfert
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
177
|
Verkoczy L, Chen Y, Bouton-Verville H, Zhang J, Diaz M, Hutchinson J, Ouyang YB, Alam SM, Holl TM, Hwang KK, Kelsoe G, Haynes BF. Rescue of HIV-1 broad neutralizing antibody-expressing B cells in 2F5 VH x VL knockin mice reveals multiple tolerance controls. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3785-97. [PMID: 21908739 PMCID: PMC3192533 DOI: 10.4049/jimmunol.1101633] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 broadly neutralizing Ab (bnAb) 2F5 has been shown to be poly-/self-reactive in vitro, and we previously demonstrated that targeted expression of its VDJ rearrangement alone was sufficient to trigger a profound B cell developmental blockade in 2F5 V(H) knockin (KI) mice, consistent with central deletion of 2F5 H chain-expressing B cells. In this study, we generate a strain expressing the entire 2F5 bnAb specificity, 2F5 V(H) × V(L) KI mice, and find an even higher degree of tolerance control than observed in the 2F5 V(H) KI strain. Although B cell development was severely impaired in 2F5 V(H) × V(L) KI animals, we demonstrate rescue of their B cells when cultured in IL-7/BAFF. Intriguingly, even under these conditions, most rescued B cell hybridomas produced mAbs that lacked HIV-1 Envelope (Env) reactivity due to editing of the 2F5 L chain, and the majority of rescued B cells retained an anergic phenotype. Thus, when clonal deletion is circumvented, κ editing and anergy are additional safeguards preventing 2F5 V(H)/V(L) expression by immature/transitional B cells. Importantly, 7% of rescued B cells retained 2F5 V(H)/V(L) expression and secreted Env-specific mAbs with HIV-1-neutralizing activity. This partial rescue was further corroborated in vivo, as reflected by the anergic phenotype of most rescued B cells in 2F5 V(H) × V(L) KI × Eμ-Bcl-2 transgenic mice and significant (yet modest) enrichment of Env-specific B cells and serum Igs. The rescued 2F5 mAb-producing B cell clones in this study are the first examples, to our knowledge, of in vivo-derived bone marrow precursors specifying HIV-1 bnAbs and provide a starting point for design of strategies aimed at rescuing such B cells.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Morris L, Chen X, Alam M, Tomaras G, Zhang R, Marshall DJ, Chen B, Parks R, Foulger A, Jaeger F, Donathan M, Bilska M, Gray ES, Abdool Karim SS, Kepler TB, Whitesides J, Montefiori D, Moody MA, Liao HX, Haynes BF. Isolation of a human anti-HIV gp41 membrane proximal region neutralizing antibody by antigen-specific single B cell sorting. PLoS One 2011; 6:e23532. [PMID: 21980336 PMCID: PMC3184076 DOI: 10.1371/journal.pone.0023532] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022] Open
Abstract
Broadly neutralizing antibodies are not commonly produced in HIV-1 infected individuals nor by experimental HIV-1 vaccines. When these antibodies do occur, it is important to be able to isolate and characterize them to provide clues for vaccine design. CAP206 is a South African subtype C HIV-1-infected individual previously shown to have broadly neutralizing plasma antibodies targeting the envelope gp41 distal membrane proximal external region (MPER). We have now used a fluoresceinated peptide tetramer antigen with specific cell sorting to isolate a human neutralizing monoclonal antibody (mAb) against the HIV-1 envelope gp41 MPER. The isolated recombinant mAb, CAP206-CH12, utilized a portion of the distal MPER (HXB2 amino acid residues, 673-680) and neutralized a subset of HIV-1 pseudoviruses sensitive to CAP206 plasma antibodies. Interestingly, this mAb was polyreactive and used the same germ-line variable heavy (V(H)1-69) and variable kappa light chain (V(K)3-20) gene families as the prototype broadly neutralizing anti-MPER mAb, 4E10 (residues 672-680). These data indicate that there are multiple immunogenic targets in the C-terminus of the MPER of HIV-1 gp41 envelope and suggests that gp41 neutralizing epitopes may interact with a restricted set of naive B cells during HIV-1 infection.
Collapse
Affiliation(s)
- Lynn Morris
- Duke Human Vaccine Institute and Departments of Medicine, Surgery and Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Affiliation(s)
- Bette Korber
- Theoretical Biology and Biophysics, T6, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | |
Collapse
|
180
|
Wang J, Xu L, Tong P, Chen YH. Mucosal antibodies induced by tandem repeat of 2F5 epitope block transcytosis of HIV-1. Vaccine 2011; 29:8542-8. [PMID: 21939723 DOI: 10.1016/j.vaccine.2011.09.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 08/31/2011] [Accepted: 09/09/2011] [Indexed: 11/19/2022]
Abstract
Induction of mucosal antibodies to prevent HIV infection is an important strategy for the HIV-1 prophylaxis. Here we report an epitope-vaccine based antigen that was able to elicit mucosal antibodies capable of blocking HIV-1 transcytosis. Because the ELDKWA epitope of neutralizing antibody 2F5 plays a crucial role in transcytosis, a series of immunogens that contain tandem copies of ELDKWA were prepared. Mice were immunized with these immunogens intranasally, and received intraperitoneal+intranasal boosters. The immunogens that contained more ELDKWA epitopes elicited higher level of mucosal ELDKWA-epitope specific IgAs and systemic IgGs. Although the antisera from the immunized mice exhibited mild neutralizing potency to HIV-1 isolates HXB2 and JRFL, the affinity purified mucosal ELDKWA-epitope specific antibodies could block the transcytosis of cell-free CNE3 (a primary isolate of subtype CRF01_AE) in human tight epithelial models.
Collapse
Affiliation(s)
- Ji Wang
- School of Life Sciences, Tsinghua University, People's Republic of China
| | | | | | | |
Collapse
|
181
|
Abstract
HIV-1 and its simian counterpart SIV have been exquisitely tailored by evolution to evade host immunity. By virtue of specific adaptations that thwart individual innate or adaptive immune mechanisms, and an overall replication strategy that provides for rapid establishment of a large, systemic viral population, capable of dynamic adaptation to almost all immune selection pressures, these viruses, once established, almost invariably stay one step ahead of the host's immune system, and in the vast majority of infected individuals, replicate indefinitely. Although many vaccine approaches tested to date have been able to enhance the magnitude of the immune responses to HIV/SIV infection, most of these responses, whether cellular or humoral, have largely failed to be both effectively antiviral and targeted to prevent the emergence of fully functional escape variants. Recent advances, however, have provided strong evidence that the initial stages of infection following mucosal transmission of these viruses are more vulnerable to immune intervention, and have led to the development of vaccine strategies that elicit responses able to effectively intervene in these early stages of infection, either preventing acquisition of infection or establishing early, stringent, and durable control. Here, we place HIV/AIDS vaccine development in the context of the basic immunobiology of HIV and SIV, review the evidence for their vulnerability to immune responses immediately after mucosal transmission, and discuss how this newly recognized vulnerability might be exploited for the development of an effective HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute, Department of Molecular Microbiology, Oregon Health & Science University, Beaverton, Oregon 97006, USA.
| | | | | |
Collapse
|
182
|
Abstract
Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anticancer immune response in a patient with advanced cancer. But what is the evidence to support the "more-is-better" approach of multiple vaccinations? Because we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anticancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Because few large trials include immunologic monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at 1 or more times following the first vaccine, was performed. In some studies, there is convincing evidence that repeated administration of a specific vaccine can augment the immune response to antigens contained in the vaccine. In other settings, multiple vaccinations can significantly reduce the immune response to 1 or more targets. Results from 3 large adjuvant vaccine studies support the potential detrimental effect of multiple vaccinations as clinical outcomes in the control arms were significantly better than that for treatment groups. Recent research has provided insights into mechanisms that are likely responsible for the reduced responses in the studies noted above, but supporting evidence from clinical specimens is generally lacking. Interpretation of these results is further complicated by the possibility that the dominant immune response may evolve to recognize epitopes not present in the vaccine. Nonetheless, the Food and Drug Administration approval of the first therapeutic cancer vaccine and recent developments from preclinical models and clinical trials provide a substantial basis for optimism and a critical evaluation of cancer vaccine strategies.
Collapse
Affiliation(s)
- Sarah E Church
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Cancer Center, Portland Medical Center, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Abstract
Conventional vaccines have been extremely successful in preventing infections by pathogens expressing relatively conserved antigens through antibody‐mediated effector mechanisms. Thanks to vaccination some diseases have been eradicated and mortality due to infectious diseases has been significantly reduced. However, there are still many infections that are not preventable with vaccination, which represent a major cause of mortality worldwide. Some of these infections are caused by pathogens with a high degree of antigen variability that cannot be controlled only by antibodies, but require a mix of humoral and cellular immune responses. Novel technologies for antigen discovery, expression and formulation allow now for the development of vaccines that can better cope with pathogen diversity and trigger multifunctional immune responses. In addition, the application of new genomic assays and systems biology approaches in human immunology can help to better identify vaccine correlates of protection. The availability of novel vaccine technologies, together with the knowledge of the distinct human immune responses that are required to prevent different types of infection, should help to rationally design effective vaccines where conventional approaches have failed.
Collapse
|
184
|
The HIV/AIDS vaccine candidate MVA-B administered as a single immunogen in humans triggers robust, polyfunctional, and selective effector memory T cell responses to HIV-1 antigens. J Virol 2011; 85:11468-78. [PMID: 21865377 DOI: 10.1128/jvi.05165-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Attenuated poxvirus vectors expressing human immunodeficiency virus type 1 (HIV-1) antigens are considered promising HIV/AIDS vaccine candidates. Here, we describe the nature of T cell immune responses induced in healthy volunteers participating in a phase I clinical trial in Spain after intramuscular administration of three doses of the recombinant MVA-B-expressing monomeric gp120 and the fused Gag-Pol-Nef (GPN) polyprotein of clade B. The majority (92.3%) of the volunteers immunized had a positive specific T cell response at any time postvaccination as detected by gamma interferon (IFN-γ) intracellular cytokine staining (ICS) assay. The CD4(+) T cell responses were predominantly Env directed, whereas the CD8(+) T cell responses were similarly distributed against Env, Gag, and GPN. The proportion of responders after two doses of MVA-B was similar to that obtained after the third dose of MVA-B vaccination, and the responses were sustained (84.6% at week 48). Vaccine-induced CD8(+) T cells to HIV-1 antigens after 1 year were polyfunctional and distributed mainly within the effector memory (TEM) and terminally differentiated effector memory (TEMRA) T cell populations. Antivector T cell responses were mostly induced by CD8(+) T cells, highly polyfunctional, and of TEMRA phenotype. These findings demonstrate that the poxvirus MVA-B vaccine candidate given alone is highly immunogenic, inducing broad, polyfunctional, and long-lasting CD4 and CD8 T cell responses to HIV-1 antigens, with preference for TEM. Thus, on the basis of the immune profile of MVA-B in humans, this immunogen can be considered a promising HIV/AIDS vaccine candidate.
Collapse
|
185
|
Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection. J Virol 2011; 85:11196-207. [PMID: 21865397 DOI: 10.1128/jvi.05601-11] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the interactions between human immunodeficiency virus type 1 (HIV-1) virions and antibodies (Ab) produced during acute HIV-1 infection (AHI) is critical for defining antibody antiviral capabilities. Antibodies that bind virions may prevent transmission by neutralization of virus or mechanically prevent HIV-1 migration through mucosal layers. In this study, we quantified circulating HIV-1 virion-immune complexes (ICs), present in approximately 90% of AHI subjects, and compared the levels and antibody specificity to those in chronic infection. Circulating HIV-1 virions coated with IgG (immune complexes) were in significantly lower levels relative to the viral load in acute infection than in chronic HIV-1 infection. The specificities of the antibodies in the immune complexes differed between acute and chronic infection (anti-gp41 Ab in acute infection and anti-gp120 in chronic infection), potentially suggesting different roles in immunopathogenesis for complexes arising at different stages of infection. We also determined the ability of circulating IgG from AHI to bind infectious versus noninfectious virions. Similar to a nonneutralizing anti-gp41 monoclonal antibody (MAb), purified plasma IgG from acute HIV-1 subjects bound both infectious and noninfectious virions. This was in contrast to the neutralizing antibody 2G12 MAb that bound predominantly infectious virions. Moreover, the initial antibody response captured acute HIV-1 virions without selection for different HIV-1 envelope sequences. In total, this study demonstrates that the composition of immune complexes are dynamic over the course of HIV-1 infection and are comprised initially of antibodies that nonselectively opsonize both infectious and noninfectious virions, likely contributing to the lack of efficacy of the antibody response during acute infection.
Collapse
|
186
|
Almeida CAM, Bronke C, Roberts SG, McKinnon E, Keane NM, Chopra A, Kadie C, Carlson J, Haas DW, Riddler SA, Haubrich R, Heckerman D, Mallal S, John M. Translation of HLA-HIV associations to the cellular level: HIV adapts to inflate CD8 T cell responses against Nef and HLA-adapted variant epitopes. THE JOURNAL OF IMMUNOLOGY 2011; 187:2502-13. [PMID: 21821798 DOI: 10.4049/jimmunol.1100691] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Strong statistical associations between polymorphisms in HIV-1 population sequences and carriage of HLA class I alleles have been widely used to identify possible sites of CD8 T cell immune selection in vivo. However, there have been few attempts to prospectively and systematically test these genetic hypotheses arising from population-based studies at a cellular, functional level. We assayed CD8 T cell epitope-specific IFN-γ responses in 290 individuals from the same cohort, which gave rise to 874 HLA-HIV associations in genetic analyses, taking into account autologous viral sequences and individual HLA genotypes. We found immunological evidence for 58% of 374 associations tested as sites of primary immune selection and identified up to 50 novel HIV-1 epitopes using this reverse-genomics approach. Many HLA-adapted epitopes elicited equivalent or higher-magnitude IFN-γ responses than did the nonadapted epitopes, particularly in Nef. At a population level, inclusion of all of the immunoreactive variant CD8 T cell epitopes in Gag, Pol, Nef, and Env suggested that HIV adaptation leads to an inflation of Nef-directed immune responses relative to other proteins. We concluded that HLA-HIV associations mark viral epitopes subject to CD8 T cell selection. These results can be used to guide functional studies of specific epitopes and escape mutations, as well as to test, train, and evaluate analytical models of viral escape and fitness. The inflation of Nef and HLA-adapted variant responses may have negative effects on natural and vaccine immunity against HIV and, therefore, has implications for diversity coverage approaches in HIV vaccine design.
Collapse
Affiliation(s)
- Coral-Ann M Almeida
- Centre for Clinical Immunology and Biomedical Statistics, Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia 6150, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Garçon N, Van Mechelen M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev Vaccines 2011; 10:471-86. [PMID: 21506645 DOI: 10.1586/erv.11.29] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The immunostimulants 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and the saponin QS-21 are part of licensed or candidate vaccines. MPL and QS-21 directly affect the innate immune response to orchestrate the quality and intensity of the adaptive immune response to the vaccine antigens. The combination of immunostimulants in different adjuvant formulations forms the basis of Adjuvant Systems (AS) as a way to promote appropriate protective immune responses following vaccination. MPL and aluminum salts are present in AS04, and both MPL and QS-21 are present in AS01 and AS02, which are liposome- and emulsion-based formulations, respectively. The recent clinical performance of AS01-, AS02- and AS04-adjuvanted vaccines will be discussed in the context of the diseases being targeted. The licensing of two AS04-adjuvanted vaccines and the initiation of Phase III trials with an AS01-adjuvanted vaccine demonstrate the potential to develop new or improved human vaccines that contain MPL or MPL and QS-21.
Collapse
|
188
|
Férir G, Palmer KE, Schols D. Synergistic activity profile of griffithsin in combination with tenofovir, maraviroc and enfuvirtide against HIV-1 clade C. Virology 2011; 417:253-8. [PMID: 21802104 DOI: 10.1016/j.virol.2011.07.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/06/2011] [Accepted: 07/07/2011] [Indexed: 12/19/2022]
Abstract
Griffithsin (GRFT) is possibly the most potent anti-HIV peptide found in natural sources. Due to its potent and broad-spectrum antiviral activity and unique safety profile it has great potential as topical microbicide component. Here, we evaluated various combinations of GRFT against HIV-1 clade B and clade C isolates in primary peripheral blood mononuclear cells (PBMCs) and in CD4(+) MT-4 cells. In all combinations tested, GRFT showed synergistic activity profile with tenofovir, maraviroc and enfuvirtide based on the median effect principle with combination indices (CI) varying between 0.34 and 0.79 at the calculated EC(95) level. Furthermore, the different glycosylation patterns on the viral envelope of clade B and clade C gp120 had no observable effect on the synergistic interactions. Overall, we can conclude that the evaluated two-drug combination increases their antiviral potency and supports further clinical investigations in pre-exposure prophylaxis for GRFT combinations in the context of HIV-1 clade C infection.
Collapse
Affiliation(s)
- Geoffrey Férir
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | |
Collapse
|
189
|
Abstract
PURPOSE OF REVIEW To understand the role of HIV-specific CD4 T cells in viral control and highlight recent progress in the field. RECENT FINDINGS HIV-specific CD4 T cells show higher functional avidity in elite controllers than in patients with progressive infection. There is an attrition of the HIV-specific CD4 T-cell population in the digestive mucosa of antiretroviral therapy (ART)-treated patients that contrasts with robust responses in individuals with spontaneous viral control. Secretion of the cytokine IL-21, by HIV-specific CD4 T cells, is associated with disease control and enhances the capacity of HIV-specific CD8 T cells to suppress viral replication. Studies of the PD-1, IL-10, and Tim-3 pathways provided insight into mechanisms of HIV-specific CD4 T-cell exhaustion and new evidence that manipulation of these networks may restore immune functions. Robust, polyfunctional CD4 T-cell responses can be elicited with novel HIV and simian immunodeficiency virus (SIV) vaccines. SUMMARY These observations show that HIV-specific CD4 T-cell responses are different in elite controllers and individuals with progressive disease. Evidence suggests that HIV-specific CD4 T cells will be an important component of an effective HIV vaccine and significant efforts need to be made to further our understanding of HIV-specific CD4 T-cell functions in different body compartments.
Collapse
|
190
|
Analysis of a clonal lineage of HIV-1 envelope V2/V3 conformational epitope-specific broadly neutralizing antibodies and their inferred unmutated common ancestors. J Virol 2011; 85:9998-10009. [PMID: 21795340 DOI: 10.1128/jvi.05045-11] [Citation(s) in RCA: 341] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
V2/V3 conformational epitope antibodies that broadly neutralize HIV-1 (PG9 and PG16) have been recently described. Since an elicitation of previously known broadly neutralizing antibodies has proven elusive, the induction of antibodies with such specificity is an important goal for HIV-1 vaccine development. A critical question is which immunogens and vaccine formulations might be used to trigger and drive the development of memory B cell precursors with V2/V3 conformational epitope specificity. In this paper we identified a clonal lineage of four V2/V3 conformational epitope broadly neutralizing antibodies (CH01 to CH04) from an African HIV-1-infected broad neutralizer and inferred their common reverted unmutated ancestor (RUA) antibodies. While conformational epitope antibodies rarely bind recombinant Env monomers, a screen of 32 recombinant envelopes for binding to the CH01 to CH04 antibodies showed monoclonal antibody (MAb) binding to the E.A244 gp120 Env and to chronic Env AE.CM243; MAbs CH01 and CH02 also bound to transmitted/founder Env B.9021. CH01 to CH04 neutralized 38% to 49% of a panel of 91 HIV-1 tier 2 pseudoviruses, while the RUAs neutralized only 16% of HIV-1 isolates. Although the reverted unmutated ancestors showed restricted neutralizing activity, they retained the ability to bind to the E.A244 gp120 HIV-1 envelope with an affinity predicted to trigger B cell development. Thus, E.A244, B.9021, and AE.CM243 Envs are three potential immunogen candidates for studies aimed at defining strategies to induce V2/V3 conformational epitope-specific antibodies.
Collapse
|
191
|
Lakhashe SK, Wang W, Siddappa NB, Hemashettar G, Polacino P, Hu SL, Villinger F, Else JG, Novembre FJ, Yoon JK, Lee SJ, Montefiori DC, Ruprecht RM, Rasmussen RA. Vaccination against heterologous R5 clade C SHIV: prevention of infection and correlates of protection. PLoS One 2011; 6:e22010. [PMID: 21799765 PMCID: PMC3140488 DOI: 10.1371/journal.pone.0022010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 06/10/2011] [Indexed: 11/30/2022] Open
Abstract
A safe, efficacious vaccine is required to stop the AIDS pandemic. Disappointing results from the STEP trial implied a need to include humoral anti-HIV-1 responses, a notion supported by RV144 trial data even though correlates of protection are unknown. We vaccinated rhesus macaques with recombinant simian immunodeficiency virus (SIV) Gag-Pol particles, HIV-1 Tat and trimeric clade C (HIV-C) gp160, which induced cross-neutralizing antibodies (nAbs) and robust cellular immune responses. After five low-dose mucosal challenges with a simian-human immunodeficiency virus (SHIV) that encoded a heterologous R5 HIV-C envelope (22.1% divergence from the gp160 immunogen), 94% of controls became viremic, whereas one third of vaccinees remained virus-free. Upon high-dose SHIV rechallenge, all controls became infected, whereas some vaccinees remained aviremic. Peak viremia was inversely correlated with both cellular immunity (p<0.001) and cross-nAb titers (p<0.001). These data simultaneously linked cellular as well as humoral immune responses with the degree of protection for the first time.
Collapse
Affiliation(s)
- Samir K. Lakhashe
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wendy Wang
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Nagadenahalli B. Siddappa
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Girish Hemashettar
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Patricia Polacino
- University of Washington, Seattle, Washington, United States of America
| | - Shiu-Lok Hu
- University of Washington, Seattle, Washington, United States of America
| | - François Villinger
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - James G. Else
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Francis J. Novembre
- Department of Microbiology, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - John K. Yoon
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Sandra J. Lee
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Ruth M. Ruprecht
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert A. Rasmussen
- Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
192
|
Padian NS, McCoy SI, Karim SA, Hasen N, Kim J, Bartos M, Katabira E, Bertozzi S, Schwartländer B, Cohen MS. HIV prevention transformed: the new prevention research agenda. Lancet 2011; 378:269-78. [PMID: 21763938 PMCID: PMC3606928 DOI: 10.1016/s0140-6736(11)60877-5] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have entered a new era in HIV prevention whereby priorities have expanded from biomedical discovery to include implementation, effectiveness, and the effect of combination prevention at the population level. However, gaps in knowledge and implementation challenges remain. In this Review we analyse trends in the rapidly changing landscape of HIV prevention, and chart a new path for HIV prevention research that focuses on the implementation of effective and efficient combination prevention strategies to turn the tide on the HIV pandemic.
Collapse
Affiliation(s)
- Nancy S. Padian
- University of California, Berkeley, California, USA
- Office of the U.S. Global AIDS Coordinator, U.S. Department of State, Washington, D.C., USA
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, Congella, South Africa
| | - Nina Hasen
- Office of the U.S. Global AIDS Coordinator, U.S. Department of State, Washington, D.C., USA
| | - Julia Kim
- United Nations Development Programme (UNDP), HIV/AIDS Group, BDP, New York, New York USA
| | - Michael Bartos
- Joint United Nations Programme on HIV/AIDS (UNAIDS), Geneva, Switzerland
| | - Elly Katabira
- Makerere University College of Health Sciences, Kampala, Uganda
| | | | | | - Myron S. Cohen
- University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
193
|
Prime-boost vaccination with heterologous live vectors encoding SIV gag and multimeric HIV-1 gp160 protein: efficacy against repeated mucosal R5 clade C SHIV challenges. Vaccine 2011; 29:5611-22. [PMID: 21693155 DOI: 10.1016/j.vaccine.2011.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/02/2011] [Accepted: 06/07/2011] [Indexed: 11/20/2022]
Abstract
We sought to induce primate immunodeficiency virus-specific cellular and neutralizing antibody (nAb) responses in rhesus macaques (RM) through a bimodal vaccine approach. RM were immunized intragastrically (i.g.) with the live-attenuated Listeria monocytogenes (Lm) vector Lmdd-BdopSIVgag encoding SIVmac239 gag. SIV Gag-specific cellular responses were boosted by intranasal and intratracheal administration of replication-competent adenovirus (Ad5hr-SIVgag) encoding the same gag. To broaden antiviral immunity, the RM were immunized with multimeric HIV clade C (HIV-C) gp160 and HIV Tat. SIV Gag-specific cellular immune responses and HIV-1 nAb developed in some RM. The animals were challenged intrarectally with five low doses of R5 SHIV-1157ipEL-p, encoding a heterologous HIV-C Env (22.1% divergent to the Env immunogen). All five controls became viremic. One out of ten vaccinees was completely protected and another had low peak viremia. Sera from the completely and partially protected RM neutralized the challenge virus > 90%; these RM also had strong SIV Gag-specific proliferation of CD8⁺ T cells. Peak and area under the curve of plasma viremia (during acute phase) among vaccinees was lower than for controls, but did not attain significance. The completely protected RM showed persistently low numbers of the α4β7-expressing CD4⁺ T cells; the latter have been implicated as preferential virus targets in vivo. Thus, vaccine-induced immune responses and relatively lower numbers of potential target cells were associated with protection.
Collapse
|
194
|
Ben Haij N, Mzoughi O, Planès R, Bahraoui E. Cationic nanoglycolipidic particles as vector and adjuvant for the study of the immunogenicity of SIV Nef protein. Int J Pharm 2011; 423:116-23. [PMID: 21762763 DOI: 10.1016/j.ijpharm.2011.06.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 06/24/2011] [Accepted: 06/29/2011] [Indexed: 10/18/2022]
Abstract
The objective of this study was to test the immunogenicity of SIV Nef protein formulated in cationic nanoglycolipidic particles of 100nm of diameter. In parallel, the adjuvant effect of these nanoglycolipidic particles was compared in similar experiments using GST-Nef in association with the commonly strongest used complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant in association with MDP or MDP alone. Our results showed that these particles do not alter the integrity of our immunogen GST-Nef, which remains stable for more than three months at 4°C. We demonstrated that in the presence of nanoglycolipidic particles antibodies against Nef were produced since the first injection and remained stable after the third injection with high titers for long lasting periods as observed with CFA and IFA/MDP adjuvant. The analysis of immunoglobulin isotype profiles of antibodies generated by the different protocols of immunization showed the preponderance of IgG1 isotypes suggesting the predominance of Th2-type immune response.
Collapse
Affiliation(s)
- Nawal Ben Haij
- Unité mixte INSERM, Université Paul Sabatier 1043, CNRS, Centre de Physiopathologie de Toulouse Purpan, CHU Purpan, Toulouse, France
| | | | | | | |
Collapse
|
195
|
Abstract
Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.
Collapse
|
196
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
197
|
Charles-Niño C, Pedroza-Roldan C, Viveros M, Gevorkian G, Manoutcharian K. Variable epitope libraries: new vaccine immunogens capable of inducing broad human immunodeficiency virus type 1-neutralizing antibody response. Vaccine 2011; 29:5313-21. [PMID: 21600948 DOI: 10.1016/j.vaccine.2011.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/03/2011] [Accepted: 05/04/2011] [Indexed: 11/25/2022]
Abstract
The extreme antigenic variability of human immunodeficiency virus (HIV) leads to immune escape of the virus, representing a major challenge in the design of effective vaccine. We have developed a novel concept for immunogen construction based on introduction of massive mutations within the epitopes targeting antigenically variable pathogens and diseases. Previously, we showed that these immunogens carrying large combinatorial libraries of mutated epitope variants, termed as variable epitope libraries (VELs), induce potent, broad and long lasting CD8+IFN-γ+ T-cell response. Moreover, we demonstrated that these T cells recognize more than 50% of heavily mutated variants (5 out of 10 amino acid positions were mutated in each epitope variant) of HIV-1 gp120 V3 loop-derived cytotoxic T lymphocyte epitope (RGPGRAFVTI) in mice. The constructed VELs had complexities of 10000 and 12500 individual members, generated as plasmid DNA or as M13 phage display combinatorial libraries, respectively, and with structural composition RGPGXAXXXX or XGXGXAXVXI, where X is any of 20 natural amino acids. Here, we demonstrated that sera from mice immunized with these VELs are capable of neutralizing 5 out of 10 viral isolates from Tier 2 reference panel of subtype B envelope clones, including HIV-1 isolates which are known to be resistant to neutralization by several potent monoclonal antibodies, described previously. These data indicate the feasibility of the application of immunogens based on VEL concept as an alternative approach for the development of molecular vaccines against antigenically variable pathogens.
Collapse
Affiliation(s)
- Claudia Charles-Niño
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, Cuidad Universitaria, México, Distrito Federal 04510, Mexico
| | | | | | | | | |
Collapse
|
198
|
Abstract
In 2009, the United Nations Estimated that 33.2 Million People worldwide were living with human immunodeficiency virus type 1 (HIV-1) infection and that 2.6 million people had been newly infected. The need for effective HIV-1 prevention has never been greater. In this review, we address recent critical advances in our understanding of HIV-1 transmission and acute HIV-1 infection. Fourth-generation HIV-1 testing, now available worldwide,, will allow the diagnosis of infection in many patients and may lead to new treatments and opportunities for prevention.
Collapse
Affiliation(s)
- Myron S Cohen
- Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| | | | | | | |
Collapse
|
199
|
Climent N, Guerra S, García F, Rovira C, Miralles L, Gómez CE, Piqué N, Gil C, Gatell JM, Esteban M, Gallart T. Dendritic cells exposed to MVA-based HIV-1 vaccine induce highly functional HIV-1-specific CD8(+) T cell responses in HIV-1-infected individuals. PLoS One 2011; 6:e19644. [PMID: 21625608 PMCID: PMC3097254 DOI: 10.1371/journal.pone.0019644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/06/2011] [Indexed: 01/04/2023] Open
Abstract
Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.
Collapse
Affiliation(s)
- Núria Climent
- Service of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Activity of broadly neutralizing antibodies, including PG9, PG16, and VRC01, against recently transmitted subtype B HIV-1 variants from early and late in the epidemic. J Virol 2011; 85:7236-45. [PMID: 21561918 DOI: 10.1128/jvi.00196-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
For the development of a neutralizing antibody-based human immunodeficiency virus type 1 (HIV-1) vaccine, it is important to characterize which antibody specificities are most effective against currently circulating HIV-1 variants. We recently reported that HIV-1 has become more resistant to antibody neutralization over the course of the epidemic, and we here explore whether this increased neutralization resistance is also observed for the newly identified broadly neutralizing antibodies (BrNAbs) PG9, PG16, and VRC01. Furthermore, we performed a comprehensive analysis of the neutralizing sensitivity of currently circulating recently transmitted subtype B viruses to the currently most known BrNAbs. Virus variants isolated less than 6 months after seroconversion from individuals who seroconverted between 2003 and 2006 (n = 21) were significantly more resistant to neutralization by VRC01 than viruses from individuals who seroconverted between 1985 and 1989 (n = 14). In addition, viruses from contemporary seroconverters tended to be more resistant to neutralization by PG16, which coincided with the presence of more mutations at positions in the viral envelope that may potentially influence neutralization by this antibody. Despite this increased neutralization resistance, all recently transmitted viruses from contemporary seroconverters were sensitive to at least one BrNAb at concentrations of ≤5 μg/ml, with PG9, PG16, and VRC01 showing the greatest breadth of neutralization at lower concentrations. These results suggest that a vaccine capable of eliciting multiple BrNAb specificities will be necessary for protection of the population against HIV-1 infection.
Collapse
|