151
|
Jo S, Sung D, Kim S, Koo J. A review of wearable biosensors for sweat analysis. Biomed Eng Lett 2021; 11:117-129. [PMID: 34150348 DOI: 10.1007/s13534-021-00191-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 11/26/2022] Open
Abstract
Recent advances in the skin-interfaced wearable sweat sensors allow a personalized daily diagnosis and prognosis of the diseases in a form of a non-invasive, portable, and continuous monitoring system. Especially, the soft microfluidic system provides robust quantitative analysis platforms that integrate sweat sampling, storing, and various sensing capabilities. This review systematically introduces the sweat collecting mechanism using soft microfluidic valves, including calculation of sweat storage and loss. In terms of sweat analysis, colorimetric (e.g. enzymatic, chemical, or their mixed reactions), electrochemical (e.g. voltammetric, potentiometric, amperometric, or conductometric), and multiplex measurements of sweat contents facilitate diagnosis of diseases via analysis of combined multiple data, such as vital signals (e.g. ECG, EMG, EEG, etc.) and information from the skin (e.g. temperature, GSR, etc.). The integration of wireless communication with the microfluidic systems enables point-of-care health monitoring for disease and specific physiological status.
Collapse
Affiliation(s)
- Seongbin Jo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Daeun Sung
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Sungbong Kim
- Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois At Urbana-Champaign, Urbana, IL 61801 USA
| | - Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841 Republic of Korea
| |
Collapse
|
152
|
Man Ngo F, Tse ECM. Bioinorganic Platforms for Sensing, Biomimicry, and Energy Catalysis. CHEM LETT 2021. [DOI: 10.1246/cl.200875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fung Man Ngo
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| | - Edmund C. M. Tse
- Department of Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, University of Hong Kong, Hong Kong SAR, P. R. China
- Advanced Functional Materials Laboratory, HKU Zhejiang Institute of Research and Innovation, Zhejiang 311305, P. R. China
| |
Collapse
|
153
|
Mugo SM, Lu W, Wood M, Lemieux S. Wearable microneedle dual electrochemical sensor for simultaneous pH and cortisol detection in sweat. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Weihao Lu
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Marika Wood
- Physical Sciences Department MacEwan University Edmonton Canada
| | - Stephane Lemieux
- Department of Decision Sciences MacEwan University Edmonton Canada
| |
Collapse
|
154
|
Wolkowicz KL, Aiello EM, Vargas E, Teymourian H, Tehrani F, Wang J, Pinsker JE, Doyle FJ, Patti M, Laffel LM, Dassau E. A review of biomarkers in the context of type 1 diabetes: Biological sensing for enhanced glucose control. Bioeng Transl Med 2021; 6:e10201. [PMID: 34027090 PMCID: PMC8126822 DOI: 10.1002/btm2.10201] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
As wearable healthcare monitoring systems advance, there is immense potential for biological sensing to enhance the management of type 1 diabetes (T1D). The aim of this work is to describe the ongoing development of biomarker analytes in the context of T1D. Technological advances in transdermal biosensing offer remarkable opportunities to move from research laboratories to clinical point-of-care applications. In this review, a range of analytes, including glucose, insulin, glucagon, cortisol, lactate, epinephrine, and alcohol, as well as ketones such as beta-hydroxybutyrate, will be evaluated to determine the current status and research direction of those analytes specifically relevant to T1D management, using both in-vitro and on-body detection. Understanding state-of-the-art developments in biosensing technologies will aid in bridging the gap from bench-to-clinic T1D analyte measurement advancement.
Collapse
Affiliation(s)
- Kelilah L. Wolkowicz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Eleonora M. Aiello
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Eva Vargas
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Hazhir Teymourian
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Farshad Tehrani
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Joseph Wang
- Department of NanoengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Francis J. Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | | | - Lori M. Laffel
- Joslin Diabetes Center, Harvard Medical SchoolBostonMassachusettsUSA
| | - Eyal Dassau
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeMassachusettsUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
- Joslin Diabetes Center, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
155
|
Tang W, Yin L, Sempionatto JR, Moon JM, Teymourian H, Wang J. Touch-Based Stressless Cortisol Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008465. [PMID: 33786887 DOI: 10.1002/adma.202008465] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Indexed: 05/25/2023]
Abstract
Tracking fluctuations of the cortisol level is important in understanding the body's endocrine response to stress stimuli. Traditional cortisol sensing relies on centralized laboratory settings, while wearable cortisol sensors are limited to slow and complex assays. Here, a touch-based non-invasive molecularly imprinted polymer (MIP) electrochemical sensor for rapid, simple, and reliable stress-free detection of sweat cortisol is described. The sensor readily measures fingertip sweat cortisol via highly selective binding to the cortisol-imprinted electropolymerized polypyrrole coating. The MIP network is embedded with Prussian blue redox probes that offer direct electrical signaling of the binding event to realize sensitive label-free amperometric detection. Using a highly permeable sweat-wicking porous hydrogel, instantaneously secreted fingertip sweat can be conveniently and rapidly collected without any assistance. By eliminating time lags, such rapid (3.5 min) fingertip assay enables the capture of sharp variations in cortisol levels, compared to previous methods. Such advantages are demonstrated by tracking cortisol response in short cold-pressor tests and throughout day-long circadian rhythm, along with gold-standard immunoassay validation. A stretchable epidermal MIP sensor is also described for directly tracking cortisol in exercise-induced sweat. The rapid touch-based cortisol sensor offers an attractive, accessible, stressless avenue for quantitative stress management.
Collapse
Affiliation(s)
- Wanxin Tang
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China
| | - Lu Yin
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
| | - Juliane R Sempionatto
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
| | - Jong-Min Moon
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
| | - Hazhir Teymourian
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
| | - Joseph Wang
- Department of Nanoengineering, Center of Wearable Sensors, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, USA
| |
Collapse
|
156
|
Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021; 184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Advances in materials, bio-recognition elements, transducers, and microfabrication techniques, as well as progress in electronics, signal processing, and wireless communication have generated a new class of skin-interfaced wearable health monitoring systems for applications in personalized medicine and digital health. In comparison to conventional medical devices, these wearable systems are at the cusp of initiating a new era of longitudinal and noninvasive sensing for the prevention, detection, diagnosis, and treatment of diseases at the molecular level. Herein, we provide a review of recent developments in wearable biochemical and biophysical systems. We survey the sweat sampling and collection methods for biochemical systems, followed by an assessment of biochemical and biophysical sensors deployed in current wearable systems with an emphasis on their hardware specifications. Specifically, we address how sweat collection and sample handling platforms may be a rate limiting technology to realizing the clinical translation of wearable health monitoring systems; moreover, we highlight the importance of achieving both longitudinal sensing and assessment of intrapersonal variation in sweat-blood correlations to have the greatest clinical impact. Lastly, we assess a snapshot of integrated wireless wearable systems with multimodal sensing capabilities, and we conclude with our perspective on the state-of-the-art and the required developments to achieve the next-generation of integrated wearable health and performance monitoring systems.
Collapse
Affiliation(s)
- By Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.
| |
Collapse
|
157
|
Modha S, Castro C, Tsutsui H. Recent developments in flow modeling and fluid control for paper-based microfluidic biosensors. Biosens Bioelectron 2021; 178:113026. [PMID: 33545552 DOI: 10.1016/j.bios.2021.113026] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022]
Abstract
Over the last 10 years, researchers have shown that paper is a promising substrate for affordable biosensors. The field of paper-microfluidics has evolved rapidly in that time, with simple colorimetric assays giving way to more complex electrochemical devices that can handle multiple samples at a given time. As paper devices become more complex, the ability to precisely control different fluids simultaneously becomes a challenge. Specifically, automated flow control is a necessary attribute to make paper-based devices more useable in resource-limited settings. Flow control strategies on paper are typically developed experimentally through trial-and-error, with little focus on theory. This is because flow behavior in paper is not well understood and sometimes difficult to predict precisely. Additionally, popular theoretical models are too simplistic, making them unsuitable for complex device designs and application conditions. A better understanding of flow theory would allow devices conceived straight from theoretical models. This could save time and resources by reducing experimental work. In this review, we provide an overview of different theoretical models used to characterize imbibition in paper substrates and document the latest flow control strategies that have been applied to automated fluid control on paper. Additionally, we look at current efforts to commercialize paper-based devices along with challenges facing this industry.
Collapse
Affiliation(s)
- Sidharth Modha
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Carlos Castro
- Department of Mechanical Engineering, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA
| | - Hideaki Tsutsui
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA; Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, 92521, USA; Stem Cell Center, University of California, Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
158
|
Yang Y, Yue S, Qiao Y, Zhang P, Jiang N, Ning Z, Liu C, Hou Y. Activable Multi-Modal Nanoprobes for Imaging Diagnosis and Therapy of Tumors. Front Chem 2021; 8:572471. [PMID: 33912535 PMCID: PMC8075363 DOI: 10.3389/fchem.2020.572471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/18/2020] [Indexed: 01/05/2023] Open
Abstract
Malignant tumors have become one of the major causes of human death, but there remains a lack of effective methods for tiny tumor diagnosis, metastasis warning, clinical efficacy prediction, and effective treatment. In this context, localizing tiny tumors via imaging and non-invasively extracting molecular information related to tumor proliferation, invasion, metastasis, and drug resistance from the tumor microenvironment have become the most fundamental tasks faced by cancer researchers. Tumor-associated microenvironmental physiological parameters, such as hypoxia, acidic extracellular pH, protease, reducing conditions, and so forth, have much to do with prognostic indicators for cancer progression, and impact therapeutic administrations. By combining with various novel nanoparticle-based activatable probes, molecular imaging technologies can provide a feasible approach to visualize tumor-associated microenvironment parameters noninvasively and realize accurate treatment of tumors. This review focuses on the recent achievements in the design of “smart” nanomedicine responding to the tumor microenvironment-related features and highlights state-of- the-art technology in tumor imaging diagnosis and therapy.
Collapse
Affiliation(s)
- Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ni Jiang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhenbo Ning
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Chunyan Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
159
|
Ghaffari R, Rogers JA, Ray TR. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 332:129447. [PMID: 33542590 PMCID: PMC7853653 DOI: 10.1016/j.snb.2021.129447] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sweat is a promising, yet relatively unexplored biofluid containing biochemical information that offers broad insights into the underlying dynamic metabolic activity of the human body. The rich composition of electrolytes, metabolites, hormones, proteins, nucleic acids, micronutrients, and exogenous agents found in sweat dynamically vary in response to the state of health, stress, and diet. Emerging classes of skin-interfaced wearable sensors offer powerful capabilities for the real-time, continuous analysis of sweat produced by the eccrine glands in a manner suitable for use in athletics, consumer wellness, military, and healthcare industries. This perspective examines the rapid and continuous progress of wearable sweat sensors through the most advanced embodiments that address the fundamental challenges currently restricting widespread deployment. It concludes with a discussion of efforts to expand the overall utility of wearable sweat sensors and opportunities for commercialization, in which advances in biochemical sensor technologies will be critically important.
Collapse
Affiliation(s)
- Roozbeh Ghaffari
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
| | - John A. Rogers
- -Querrey Simpson Institute for Bioelectronics and Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- -Epicore Biosystems, Inc., Cambridge, MA, USA
- -Departments of Materials Science and Engineering, Mechanical Engineering, Electrical and Computer Engineering, Chemistry, Northwestern University, Evanston, IL, USA
- -Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler R. Ray
- -Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI
| |
Collapse
|
160
|
Abstract
Circadian dysfunction or dysregulation is associated with many chronic morbidities. Current state-of-art technologies do not provide an accurate estimation of the extent of disease affliction. Recent advances call for using wearables for improving management and diagnosis of circadian related disorders. Sweat contains an abundance of relevant biomarkers like cortisol, DHEA, and so forth, which could be leveraged toward tracking the user's chronobiology. In this article, we provide a review of the key developments in the field of wearable sensors for circadian technologies. We highlight the value of using sweat along with portable electronics toward developing state-of-the-art platforms for efficient diagnosis and management of chronic conditions. Finally, we discuss challenges and opportunities for using wearable sweat sensors for circadian diagnosis and disease management.
Collapse
Affiliation(s)
- Sayali Upasham
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | | | - Paul Rice
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
161
|
Raghavan VS, O'Driscoll B, Bloor JM, Li B, Katare P, Sethi J, Gorthi SS, Jenkins D. Emerging graphene-based sensors for the detection of food adulterants and toxicants - A review. Food Chem 2021; 355:129547. [PMID: 33773454 DOI: 10.1016/j.foodchem.2021.129547] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
The detection of food adulterants and toxicants can prevent a large variety of adverse health conditions for the global population. Through the process of rapid sensing enabled by deploying novel and robust sensors, the food industry can assist in the detection of adulterants and toxicants at trace levels. Sensor platforms which exploit graphene-based nanomaterials satisfy this requirement due to outstanding electrical, optical and thermal properties. The materials' facile conjugation with linkers and biomolecules along with the option for further enhancement using nanoparticles results in highly sensitive and selective sensing characteristics. This review highlights novel applications of graphene derivatives for detection covering three important approaches; optical, electrical (field-effect) and electrochemical sensing. Suitable graphene-based sensors for portable devices as point-of-need platforms are also presented. The future scope of these sensors is discussed to showcase how these emerging techniques will disrupt the food detection sector for years to come.
Collapse
Affiliation(s)
- Vikram Srinivasa Raghavan
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Benjamin O'Driscoll
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - J M Bloor
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Bing Li
- Department of Brain Sciences, Imperial College, London W12 0NN, UK
| | - Prateek Katare
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| | - Sai Siva Gorthi
- Optics and Microfluidics Instrumentation Lab, Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - David Jenkins
- Wolfson Nanomaterials & Devices Laboratory, School of Engineering, Computing and Mathematics, Plymouth University, Devon PL4 8AA, UK
| |
Collapse
|
162
|
Kim DS, Jeong JM, Park HJ, Kim YK, Lee KG, Choi BG. Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application. NANO-MICRO LETTERS 2021; 13:87. [PMID: 34138339 PMCID: PMC8006523 DOI: 10.1007/s40820-021-00617-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/29/2021] [Indexed: 05/20/2023]
Abstract
Ultrathin and defect-free graphene ink is prepared through a high-throughput fluid dynamics process, resulting in a high exfoliation yield (53.5%) and a high concentration (47.5 mg mL-1). A screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and good mechanical flexibility. An electrochemical sodium ion sensor based on graphene ink exhibits an excellent potentiometric sensing performance in a mechanically bent state. Real-time monitoring of sodium ion concentration in sweat is demonstrated. Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices. However, the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions. In this study, a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process. A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL-1 for graphene ink. The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m-1 and maintains high conductivity under mechanical bending, compressing, and fatigue tests. Based on the as-prepared graphene ink, a printed electrochemical sodium ion (Na+) sensor that shows high potentiometric sensing performance was fabricated. Further, by integrating a wireless electronic module, a prototype Na+-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer. The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost, reproducible, and large-scale printing of flexible and wearable electronic devices.
Collapse
Affiliation(s)
- Dong Seok Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Jae-Min Jeong
- Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Hong Jun Park
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Yeong Kyun Kim
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea
| | - Kyoung G Lee
- Center for Nano Bio Development, National Nanofab Center, Daejeon, 34141, Republic of Korea.
| | - Bong Gill Choi
- Department of Chemical Engineering, Kangwon National University, Samcheok, Gangwon-do, 25913, Republic of Korea.
| |
Collapse
|
163
|
Sun H, Ji Y, Li S, Dong H. Current strategies with sensing technologies to eliminate stress cardiomyopathy. Biotechnol Appl Biochem 2021; 69:576-586. [PMID: 33619791 DOI: 10.1002/bab.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 02/09/2021] [Indexed: 11/09/2022]
Abstract
Stress cardiomyopathy refers weakening of heart muscle due to the continuous stress. Generally, the severe status of stress cardiomyopathy has been revealed after damaging the muscles and measured by the physical changes in the heart system. To overcome this issue, biosensor can be used, which could eliminate the late identification stress cardiomyopathy. With biosensors, different stress markers such as epinephrine, dopamine, catecholamine, α-amylase, norepinephrine, serotonin and cortisol have been identified by a wide range of developments. These biosensors are available from laboratory to industry at the ranges of nano to macrodevices. To merge with the identification of stress cardiomyopathy, the above strategies might be utilized properly and can aid to reduce the stress-related problems. This overview gleaned the currently available biosensing methods and the associated biomarkers at various stages of the developments and implementations of stress cardiomyopathy.
Collapse
Affiliation(s)
- Hao Sun
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Yongjian Ji
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Shuang Li
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| | - Hongwei Dong
- Department of Cardiovascular Medicine, Dezhou People's Hospital, Dezhou City, Shandong Province, People's Republic of China
| |
Collapse
|
164
|
Aranyosi AJ, Model JB, Zhang MZ, Lee SP, Leech A, Li W, Seib MS, Chen S, Reny N, Wallace J, Shin MH, Bandodkar AJ, Choi J, Paller AS, Rogers JA, Xu S, Ghaffari R. Rapid Capture and Extraction of Sweat for Regional Rate and Cytokine Composition Analysis Using a Wearable Soft Microfluidic System. J Invest Dermatol 2021; 141:433-437.e3. [DOI: 10.1016/j.jid.2020.05.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 11/25/2022]
|
165
|
Tabish TA, Abbas A, Narayan RJ. Graphene nanocomposites for transdermal biosensing. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1699. [PMID: 33480118 DOI: 10.1002/wnan.1699] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/12/2022]
Abstract
Transdermal biosensors for the real-time and continuous detection and monitoring of target molecules represent an intriguing pathway for enhancing health outcomes in a cost-effective and non-invasive fashion. Many transdermal biosensor devices contain microneedles and other miniaturized components. There remains an unmet clinical need for microneedle transdermal biosensors to obtain a more accurate, rapid, and reliable insight into the real-time monitoring of disease. The ability to monitor biomarkers at an intradermal molecular level in a non-invasive manner remains the next technological gap to solve real-world clinical problems. The emergence of the two-dimensional material graphene with unique material properties and the ability to quantify analytes and physiological status can enable the detection of critical biomarkers indicative of human disease. The development of a user-friendly, affordable, and non-invasive transdermal biosensing device for continuous and personalized monitoring of target molecules could be beneficial for many patients. This focus article considers the use of graphene-based transdermal biosensors for health monitoring, evaluation of these sensors for glucose and hydrogen peroxide detection via in vitro, in vivo, and ex vivo studies, recent technological innovations, and potential challenges. This article is categorized under: Diagnostic Tools > Biosensing.
Collapse
Affiliation(s)
| | - Aumber Abbas
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
166
|
Ganguly A, Lin KC, Muthukumar S, Prasad S. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-microliter Volumes of Passively Eluted Human Sweat. ACS Sens 2021; 6:63-72. [PMID: 33382251 DOI: 10.1021/acssensors.0c01754] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proposed work involves the development of an autonomous, label-free electrochemical sensor for real-time monitoring of cortisol levels expressed naturally in sub-microliter sweat volumes, for prolonged sensing periods of ∼8 h. Highly specific single-stranded DNA (ssDNA) aptamer is used for affinity capture of cortisol hormone eluted in sweat dynamically. The cortisol present in sweat binds to the aptamer capture probe that changes conformation and modulates electrochemical properties at the electrode-buffer interface, which was studied using dynamic light scattering studies for the entire physiological sweat pH. Attenuated total reflectance-Fourier transform infrared spectroscopy and UV-vis spectroscopy were used to optimize the binding chemistry of the elements of the sensor stack. Nonfaradaic electrochemical impedance spectroscopy was used to calibrate the sensor for a dynamic range of 1-256 ng/mL. An R2 of 0.97 with an output signal range of 20-50% was obtained. Dynamic cortisol level variation tracking was studied using continuous dosing experiments to calibrate the sensor for temporal variation. The sensor did not show significant susceptibility to noise due to cross-reactive interferents and nonspecific buffer constituents. The performance of the developed aptasensor was compared with the previously established cortisol immunosensor in terms of surface charge behavior and nonfaradaic biosensing. The aptamer sensor shows a higher signal-to-noise ratio, better resolution, and has a larger output range for the same input range as the cortisol immunosensor. The feasibility of deploying the developed aptasensing scheme as continuous lifestyle and performance monitors was validated through human subject studies.
Collapse
Affiliation(s)
- Antra Ganguly
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Kai Chun Lin
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | - Sriram Muthukumar
- Enlisense LLC, 1813 Audubon Pond Way, Allen, Texas 75013, United States
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
167
|
Balaban S, Beduk T, Durmus C, Aydindogan E, Salama KN, Timur S. Laser‐scribed Graphene Electrodes as an Electrochemical Immunosensing Platform for Cancer Biomarker ‘eIF3d’. ELECTROANAL 2021. [DOI: 10.1002/elan.202060482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Simge Balaban
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Tutku Beduk
- Sensors Lab Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia
| | - Ceren Durmus
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Eda Aydindogan
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Khaled Nabil Salama
- Sensors Lab Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia
| | - Suna Timur
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center Ege University 35100, Bornova Izmir Turkey
| |
Collapse
|
168
|
Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. SCIENCE ADVANCES 2021; 7:7/3/eabe3778. [PMID: 33523888 PMCID: PMC7806229 DOI: 10.1126/sciadv.abe3778] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/17/2020] [Indexed: 05/18/2023]
Abstract
Electronic tattoos have great potential in health and movement sensing applications on the skin. However, existing electronic tattoos cannot be conformal, sticky, and multilayered at the same time. Here, we have achieved multilayered integration of the electronic tattoo that is highly stretchable (800%), conformal, and sticky. This electronic tattoo can enable the crease amplification effect, which can amplify the output signal of integrated strain sensors by three times. The tattoo can be transferred to different surfaces and form a firm attachment, where no solvent or heat is needed. The tattoo fabrication is straightforward and scalable; a layer-by-layer strategy and two materials (metal-polymer conductors and the elastomeric block copolymer) are used to fabricate the circuit module with desirable numbers of layers within the tattoo. A three-layered tattoo integrating 1 heater and 15 strain sensors is developed for temperature adjustment, movement monitoring, and remote control of robots.
Collapse
Affiliation(s)
- Lixue Tang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- School of Biomedical Engineering, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing 100069, P. R. China
| | - Jin Shang
- National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, No. 11 Zhongguancun Beiyitiao, Beijing 100190, P. R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Shenzhen Bay Laboratory, Southern University of Science and Technology, No 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong 518055, P. R. China.
| |
Collapse
|
169
|
Darwish T, Korouri S, Pasini M, Cortez MV, IsHak WW. Integration of Advanced Health Technology Within the Healthcare System to Fight the Global Pandemic: Current Challenges and Future Opportunities. INNOVATIONS IN CLINICAL NEUROSCIENCE 2021; 18:31-34. [PMID: 34150361 PMCID: PMC8195559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
UNLABELLED The COVID-19 pandemic presents a significant challenge for providing adequate healthcare services in the context of patient isolation. DISCUSSION The ability of our current healthcare system to cope with the current situation is mainly dependent on advanced health technology, such as telehealth, chatbots, virtual reality (VR), and artificial intelligence (AI). Telehealth can be a novel tool for improving our current healthcare system and allowing for greater delivery of healthcare services during global crises (i.e., the COVID-19 pandemic). Technology, such as chatbots, VR, and AI, could be utilized to reduce the burden of both communicable and noncommunicable diseases, as well as to build a patient-centered decision-making healthcare system. OBJECTIVES Understanding the various methods of enhancing healthcare services using advanced health technology will help to develop new applications that can be integrated into regular healthcare and in time of healthcare crises. CONCLUSION Advanced health technology is a main tool to face a pandemic that decreased the burden on physicians and patients as well as the entire healthcare system.
Collapse
Affiliation(s)
- Tarneem Darwish
- Drs. Darwish and IsHak and Mr. Korouri, Ms. Pasini, and Ms. Cortez are with the Department of Psychiatry and Behavioral Neurosciences at Cedars-Sinai Medical Center in Los Angeles, California
- Dr. IsHak is also with the Department of Psychiatry at the David Geffen School of Medicine in Los Angeles, California
| | - Samuel Korouri
- Drs. Darwish and IsHak and Mr. Korouri, Ms. Pasini, and Ms. Cortez are with the Department of Psychiatry and Behavioral Neurosciences at Cedars-Sinai Medical Center in Los Angeles, California
- Dr. IsHak is also with the Department of Psychiatry at the David Geffen School of Medicine in Los Angeles, California
| | - Mia Pasini
- Drs. Darwish and IsHak and Mr. Korouri, Ms. Pasini, and Ms. Cortez are with the Department of Psychiatry and Behavioral Neurosciences at Cedars-Sinai Medical Center in Los Angeles, California
- Dr. IsHak is also with the Department of Psychiatry at the David Geffen School of Medicine in Los Angeles, California
| | - Maria Veronica Cortez
- Drs. Darwish and IsHak and Mr. Korouri, Ms. Pasini, and Ms. Cortez are with the Department of Psychiatry and Behavioral Neurosciences at Cedars-Sinai Medical Center in Los Angeles, California
- Dr. IsHak is also with the Department of Psychiatry at the David Geffen School of Medicine in Los Angeles, California
| | - Waguih William IsHak
- Drs. Darwish and IsHak and Mr. Korouri, Ms. Pasini, and Ms. Cortez are with the Department of Psychiatry and Behavioral Neurosciences at Cedars-Sinai Medical Center in Los Angeles, California
- Dr. IsHak is also with the Department of Psychiatry at the David Geffen School of Medicine in Los Angeles, California
| |
Collapse
|
170
|
Min J, Sempionatto JR, Teymourian H, Wang J, Gao W. Wearable electrochemical biosensors in North America. Biosens Bioelectron 2021; 172:112750. [DOI: 10.1016/j.bios.2020.112750] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/08/2023]
|
171
|
Mathew M, Radhakrishnan S, Vaidyanathan A, Chakraborty B, Rout CS. Flexible and wearable electrochemical biosensors based on two-dimensional materials: Recent developments. Anal Bioanal Chem 2021; 413:727-762. [PMID: 33094369 PMCID: PMC7581469 DOI: 10.1007/s00216-020-03002-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 12/19/2022]
Abstract
The research interest in wearable sensors has tremendously increased in recent years. Amid the different biosensors, electrochemical biosensors are unparalleled and ideal for the design and manufacture of such flexible and wearable sensors because of their various benefits, including convenient operation, quick response, portability, and inherent miniaturization. A number of studies on flexible and wearable electrochemical biosensors have been reported in recent years for invasive/non-invasive and real-time monitoring of biologically relevant molecules such as glucose, lactate, dopamine, cortisol, and antigens. To attain this, novel two-dimensional nanomaterials and their hybrids, various substrates, and detection methods have been explored to fabricate flexible conductive platforms that can be used to develop flexible electrochemical biosensors. In particular, there are many advantages associated with the advent of two-dimensional materials, such as light weight, high stretchability, high performance, and excellent biocompatibility, which offer new opportunities to improve the performance of wearable electrochemical sensors. Therefore, it is urgently required to study wearable/flexible electrochemical biosensors based on two-dimensional nanomaterials for health care monitoring and clinical analysis. In this review, we described recently reported flexible electrochemical biosensors based on two-dimensional nanomaterials. We classified them into specific groups, including enzymatic/non-enzymatic biosensors and affinity biosensors (immunosensors), recent developments in flexible electrochemical immunosensors based on polymer and plastic substrates to monitor biologically relevant molecules. This review will discuss perspectives on flexible electrochemical biosensors based on two-dimensional materials for the clinical analysis and wearable biosensing devices, as well as the limitations and prospects of the these electrochemical flexible/wearable biosensors.Graphical abstract.
Collapse
Affiliation(s)
- Minu Mathew
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Sithara Radhakrishnan
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India
| | - Antara Vaidyanathan
- Department of Chemistry, Ramnarain Ruia Autonomous College, Matunga, Mumbai, 40085, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India.
- Homi Bhabha National Institute, Mumbai, 40094, India.
| | - Chandra Sekhar Rout
- Centre for Nano and Material Science, Jain University, Jain global campus, Jakkasandra, Ramanagara, Bangalore, 562112, India.
| |
Collapse
|
172
|
Goldoni R, Farronato M, Connelly ST, Tartaglia GM, Yeo WH. Recent advances in graphene-based nanobiosensors for salivary biomarker detection. Biosens Bioelectron 2021; 171:112723. [PMID: 33096432 PMCID: PMC7666013 DOI: 10.1016/j.bios.2020.112723] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 12/11/2022]
Abstract
As biosensing research is rapidly advancing due to significant developments in materials, chemistry, and electronics, researchers strive to build cutting-edge biomedical devices capable of detecting health-monitoring biomarkers with high sensitivity and specificity. Biosensors using nanomaterials are highly promising because of the wide detection range, fast response time, system miniaturization, and enhanced sensitivity. In the recent development of biosensors and electronics, graphene has rapidly gained popularity due to its superior electrical, biochemical, and mechanical properties. For biomarker detection, human saliva offers easy access with a large variety of analytes, making it a promising candidate for its use in point-of-care (POC) devices. Here, we report a comprehensive review that summarizes the most recent graphene-based nanobiosensors and oral bioelectronics for salivary biomarker detection. We discuss the details of structural designs of graphene electronics, use cases of salivary biomarkers, the performance of existing sensors, and applications in health monitoring. This review also describes current challenges in materials and systems and future directions of the graphene bioelectronics for clinical POC applications. Collectively, the main contribution of this paper is to deliver an extensive review of the graphene-enabled biosensors and oral electronics and their successful applications in human salivary biomarker detection.
Collapse
Affiliation(s)
- Riccardo Goldoni
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Marco Farronato
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Stephen Thaddeus Connelly
- Department of Oral & Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Gianluca Martino Tartaglia
- Department of Medicine, Surgery, and Dentistry, Università Degli Studi di Milano, Milan, Italy; Maxillofacial and Dental Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico di Milano, Italy
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Parker H. Petit Institute for Bioengineering and Biosciences, Atlanta, GA, 30332, USA; Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
173
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|
174
|
Lukas H, Xu C, Yu Y, Gao W. Emerging Telemedicine Tools for Remote COVID-19 Diagnosis, Monitoring, and Management. ACS NANO 2020; 14:16180-16193. [PMID: 33314910 PMCID: PMC7754783 DOI: 10.1021/acsnano.0c08494] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The management of the COVID-19 pandemic has relied on cautious contact tracing, quarantine, and sterilization protocols while we await a vaccine to be made widely available. Telemedicine or mobile health (mHealth) is well-positioned during this time to reduce potential disease spread and prevent overloading of the healthcare system through at-home COVID-19 screening, diagnosis, and monitoring. With the rise of mass-fabricated electronics for wearable and portable sensors, emerging telemedicine tools have been developed to address shortcomings in COVID-19 diagnostics, monitoring, and management. In this Perspective, we summarize current implementations of mHealth sensors for COVID-19, highlight recent technological advances, and provide an overview on how these tools may be utilized to better control the COVID-19 pandemic.
Collapse
Affiliation(s)
- Heather Lukas
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Changhao Xu
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - You Yu
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department
of Medical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
175
|
Ye S, Feng S, Huang L, Bian S. Recent Progress in Wearable Biosensors: From Healthcare Monitoring to Sports Analytics. BIOSENSORS 2020; 10:E205. [PMID: 33333888 PMCID: PMC7765261 DOI: 10.3390/bios10120205] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Recent advances in lab-on-a-chip technology establish solid foundations for wearable biosensors. These newly emerging wearable biosensors are capable of non-invasive, continuous monitoring by miniaturization of electronics and integration with microfluidics. The advent of flexible electronics, biochemical sensors, soft microfluidics, and pain-free microneedles have created new generations of wearable biosensors that explore brand-new avenues to interface with the human epidermis for monitoring physiological status. However, these devices are relatively underexplored for sports monitoring and analytics, which may be largely facilitated by the recent emergence of wearable biosensors characterized by real-time, non-invasive, and non-irritating sensing capacities. Here, we present a systematic review of wearable biosensing technologies with a focus on materials and fabrication strategies, sampling modalities, sensing modalities, as well as key analytes and wearable biosensing platforms for healthcare and sports monitoring with an emphasis on sweat and interstitial fluid biosensing. This review concludes with a summary of unresolved challenges and opportunities for future researchers interested in these technologies. With an in-depth understanding of the state-of-the-art wearable biosensing technologies, wearable biosensors for sports analytics would have a significant impact on the rapidly growing field-microfluidics for biosensing.
Collapse
Affiliation(s)
- Shun Ye
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
- Biomedical Engineering Department, College of Engineering, Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Liang Huang
- School of Instrument Science and Opto–Electronics Engineering, Hefei University of Technology, Hefei 230009, China;
| | - Shengtai Bian
- Microfluidics Research & Innovation Laboratory, School of Sport Science, Beijing Sport University, Beijing 100084, China;
| |
Collapse
|
176
|
Zhang Z, Tang Z, Farokhzad N, Chen T, Tao W. Sensitive, Rapid, Low-Cost, and Multiplexed COVID-19 Monitoring by the Wireless Telemedicine Platform. MATTER 2020; 3:1818-1820. [PMID: 33289009 PMCID: PMC7709617 DOI: 10.1016/j.matt.2020.11.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To prevent the more severe spread of COVID-19 infections, sensitive, rapid, low-cost, and multiplexed detection is critical. Recently, Gao et al. reported a laser-engraved graphene-based wireless device to monitor multiple biomarkers from human biofluids, allowing for high-frequency self-testing of COVID-19 with high accuracy and low cost.
Collapse
Affiliation(s)
- Zhongyang Zhang
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Tianfeng Chen
- The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
177
|
Torrente-Rodríguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rossiter HB, Gao W. SARS-CoV-2 RapidPlex: A Graphene-Based Multiplexed Telemedicine Platform for Rapid and Low-Cost COVID-19 Diagnosis and Monitoring. MATTER 2020; 3:1981-1998. [PMID: 33043291 PMCID: PMC7535803 DOI: 10.1016/j.matt.2020.09.027] [Citation(s) in RCA: 285] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 05/15/2023]
Abstract
The COVID-19 pandemic is an ongoing global challenge for public health systems. Ultrasensitive and early identification of infection is critical in preventing widespread COVID-19 infection by presymptomatic and asymptomatic individuals, especially in the community and in-home settings. We demonstrate a multiplexed, portable, wireless electrochemical platform for ultra-rapid detection of COVID-19: the SARS-CoV-2 RapidPlex. It detects viral antigen nucleocapsid protein, IgM and IgG antibodies, as well as the inflammatory biomarker C-reactive protein, based on our mass-producible laser-engraved graphene electrodes. We demonstrate ultrasensitive, highly selective, and rapid electrochemical detection in the physiologically relevant ranges. We successfully evaluated the applicability of our SARS-CoV-2 RapidPlex platform with COVID-19-positive and COVID-19-negative blood and saliva samples. Based on this pilot study, our multiplexed immunosensor platform may allow for high-frequency at-home testing for COVID-19 telemedicine diagnosis and monitoring.
Collapse
Affiliation(s)
- Rebeca M Torrente-Rodríguez
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Harry B Rossiter
- Rehabilitation Clinical Trials Center, Division of Respiratory and Critical Care Physiology and Medicine, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
178
|
Hernández-Rodríguez JF, Rojas D, Escarpa A. Electrochemical Sensing Directions for Next-Generation Healthcare: Trends, Challenges, and Frontiers. Anal Chem 2020; 93:167-183. [PMID: 33174738 DOI: 10.1021/acs.analchem.0c04378] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Juan F Hernández-Rodríguez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Daniel Rojas
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain.,Chemical Research Institute Andres M. del Rio, University of Alcalá, E-28871 Madrid, Spain
| |
Collapse
|
179
|
Pearlmutter P, DeRose G, Samson C, Linehan N, Cen Y, Begdache L, Won D, Koh A. Sweat and saliva cortisol response to stress and nutrition factors. Sci Rep 2020; 10:19050. [PMID: 33149196 PMCID: PMC7643128 DOI: 10.1038/s41598-020-75871-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/05/2020] [Indexed: 01/02/2023] Open
Abstract
Cortisol is a biomarker for stress monitoring; however, the biomedical and clinical relevance is still controversial due to the complexity of cortisol secretion mechanisms and their circadian cycles as well as environmental factors that affect physiological cortisol level, which include individual mood and dietary intake. To further investigate this multifaceted relationship, a human pilot study examined cortisol concentration in sweat and saliva samples collected from 48 college-aged participants during aerobic exercise sessions along with mental distress and nutrition surveys. Enzyme-linked immunosorbent assays determined highly significant differences between apocrine-dominant sweat (AP), saliva before exercise (SBE), and saliva after exercise (SAE) cortisol concentration (AP-SBE: p = 0.0017, AP-SAE: p = 0.0102). A significantly greater AP cortisol concentration was detected in males compared to females (p = 0.0559), and significant SAE cortisol concentration differences were also recorded between recreational athletes and non-athletes (p = 0.044). However, Kessler 10 Psychological Distress Scale (K10) scores, an examination administered to deduce overall wellness, provided no significant differences between males and females or athletes and non-athletes in distress levels, which statistically signifies a direct relationship to cortisol was not present. For further analysis, dietary intake from all participants was considered to investigate whether a multiplexed association was prevalent between nutrition, mood, and cortisol release. Significant positive correlations between AP cortisol, SAE cortisol, K10 scores, and fat intake among female participants and athletes were discovered. The various machine learning algorithms utilized the extensive connections between dietary intake, overall well-being, sex factors, athletic activity, and cortisol concentrations in various biofluids to predict K10 scores. Indeed, the understanding of physiochemical stress response and the associations between studied factors can advance algorithm developments for cortisol biosensing systems to mitigate stress-based illnesses and improve an individual's quality of life.
Collapse
Affiliation(s)
- Paul Pearlmutter
- Department of Biomedical Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Gia DeRose
- Health and Wellness Studies Department, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Cheyenne Samson
- Department of Biomedical Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Nicholas Linehan
- Department of Biomedical Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Yuqiao Cen
- Department of System Sciences and Industrial Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Lina Begdache
- Health and Wellness Studies Department, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Daehan Won
- Department of System Sciences and Industrial Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA
| | - Ahyeon Koh
- Department of Biomedical Engineering, Binghamton University-State University of New York, Binghamton, NY, 13902, USA.
| |
Collapse
|
180
|
Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication. Biosens Bioelectron 2020; 172:112782. [PMID: 33157409 DOI: 10.1016/j.bios.2020.112782] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Wearable and flexible biosensing devices have been widely developed for in situ detections. Cortisol is a vital biomarker which plays crucial regulatory role in numerous physiological processes of the human body. Here, a wireless, battery-free, and flexible integrated patch is developed for real-time on-body sweat cortisol detection. The patch integrated with all-printed flexible electrochemical immunosensor, which was used to detect cortisol through differential pulse voltammetry (DPV). The near field communication (NFC) module on the patch enables wireless power harvesting and data interaction with an NFC-enabled smartphone, which makes the patch get rid of rigid batteries and realize epidermal on-body testing. Multiple in situ detections on volunteers' sweat on the surface of skin showed that the flexible integrated patch could reflect the circadian rhythm of the body's sweat cortisol level changes in relaxed mood or under stress, which could be confirmed with the enzyme linked immunosorbent assay (ELISA) kit. In this way, the patch provides a rapid-detecting, convenient, and non-invasive sensing solution for in situ analysis of sweat cortisol, which can be applied for the personalized mental health management.
Collapse
|
181
|
Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities. Proc Natl Acad Sci U S A 2020; 117:27906-27915. [PMID: 33106394 PMCID: PMC7668081 DOI: 10.1073/pnas.2012700117] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Soft microfluidic systems that capture, store, and perform biomarker analysis of microliter volumes of sweat, in situ, as it emerges from the surface of the skin, represent an emerging class of wearable technology with powerful capabilities that complement those of traditional biophysical sensing devices. Recent work establishes applications in the real-time characterization of sweat dynamics and sweat chemistry in the context of sports performance and healthcare diagnostics. This paper presents a collection of advances in biochemical sensors and microfluidic designs that support multimodal operation in the monitoring of physiological signatures directly correlated to physical and mental stresses. These wireless, battery-free, skin-interfaced devices combine lateral flow immunoassays for cortisol, fluorometric assays for glucose and ascorbic acid (vitamin C), and digital tracking of skin galvanic responses. Systematic benchtop evaluations and field studies on human subjects highlight the key features of this platform for the continuous, noninvasive monitoring of biochemical and biophysical correlates of the stress state.
Collapse
|
182
|
Woods GA, Rommelfanger NJ, Hong G. Bioinspired Materials for In Vivo Bioelectronic Neural Interfaces. MATTER 2020; 3:1087-1113. [PMID: 33103115 PMCID: PMC7583599 DOI: 10.1016/j.matt.2020.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The success of in vivo neural interfaces relies on their long-term stability and large scale in interrogating and manipulating neural activity after implantation. Conventional neural probes, owing to their limited spatiotemporal resolution and scale, face challenges for studying the massive, interconnected neural network in its native state. In this review, we argue that taking inspiration from biology will unlock the next generation of in vivo bioelectronic neural interfaces. Reducing the feature sizes of bioelectronic neural interfaces to mimic those of neurons enables high spatial resolution and multiplexity. Additionally, chronic stability at the device-tissue interface is realized by matching the mechanical properties of bioelectronic neural interfaces to those of the endogenous tissue. Further, modeling the design of neural interfaces after the endogenous topology of the neural circuitry enables new insights into the connectivity and dynamics of the brain. Lastly, functionalization of neural probe surfaces with coatings inspired by biology leads to enhanced tissue acceptance over extended timescales. Bioinspired neural interfaces will facilitate future developments in neuroscience studies and neurological treatments by leveraging bidirectional information transfer and integrating neuromorphic computing elements.
Collapse
Affiliation(s)
- Grace A. Woods
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| | - Nicholas J. Rommelfanger
- Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, California, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
183
|
Mohan A, Rajendran V, Mishra RK, Jayaraman M. Recent advances and perspectives in sweat based wearable electrochemical sensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116024] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
184
|
Samson C, Koh A. Stress Monitoring and Recent Advancements in Wearable Biosensors. Front Bioeng Biotechnol 2020; 8:1037. [PMID: 32984293 PMCID: PMC7492543 DOI: 10.3389/fbioe.2020.01037] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
The stress response allows the body to overcome obstacles and prepare for threats, but sustained levels of stress can damage one's health. Stress has long been measured through physical tests and questionnaires that rely primarily on user-inputted data, which can be subjective and inaccurate. To quantify the amount of stress that the body is experiencing biologically, analytical detection of biomarkers associated with the stress response recently have been developed. Novel stress sensing devices focus on cortisol sweat sensing as a part of wearable, flexible devices. These devices promise a real-time, continuous collection of stress data that can be used in clinical diagnoses or for personal stress monitoring and mediation.
Collapse
Affiliation(s)
- Cheyenne Samson
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering, Binghamton University, Binghamton, NY, United States
| | - Ahyeon Koh
- Department of Biomedical Engineering, Thomas J. Watson School of Engineering, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
185
|
Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, Gao W. Wireless battery-free wearable sweat sensor powered by human motion. SCIENCE ADVANCES 2020; 6:6/40/eaay9842. [PMID: 32998888 PMCID: PMC7527225 DOI: 10.1126/sciadv.aay9842] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/14/2020] [Indexed: 05/18/2023]
Abstract
Wireless wearable sweat biosensors have gained huge traction due to their potential for noninvasive health monitoring. As high energy consumption is a crucial challenge in this field, efficient energy harvesting from human motion represents an attractive approach to sustainably power future wearables. Despite intensive research activities, most wearable energy harvesters suffer from complex fabrication procedures, poor robustness, and low power density, making them unsuitable for continuous biosensing. Here, we propose a highly robust, mass-producible, and battery-free wearable platform that efficiently extracts power from body motion through a flexible printed circuit board (FPCB)-based freestanding triboelectric nanogenerator (FTENG). The judiciously engineered FTENG displays a high power output of ~416 mW m-2 Through seamless system integration and efficient power management, we demonstrate a battery-free triboelectrically driven system that is able to power multiplexed sweat biosensors and wirelessly transmit data to the user interfaces through Bluetooth during on-body human trials.
Collapse
Affiliation(s)
- Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - You Yu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haobin Wang
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Haixia Zhang
- National Key Lab of Micro/Nano Fabrication Technology, Peking University, Beijing 100871, China
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
186
|
Luo Y, Wang M, Wan C, Cai P, Loh XJ, Chen X. Devising Materials Manufacturing Toward Lab-to-Fab Translation of Flexible Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001903. [PMID: 32743815 DOI: 10.1002/adma.202001903] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Flexible electronics have witnessed exciting progress in academia over the past decade, but most of the research outcomes have yet to be translated into products or gain much market share. For mass production and commercialization, industrial adoption of newly developed functional materials and fabrication techniques is a prerequisite. However, due to the disparate features of academic laboratories and industrial plants, translating materials and manufacturing technologies from labs to fabs is notoriously difficult. Therefore, herein, key challenges in the materials manufacturing of flexible electronics are identified and discussed for its lab-to-fab translation, along the four stages in product manufacturing: design, materials supply, processing, and integration. Perspectives on industry-oriented strategies to overcome some of these obstacles are also proposed. Priorities for action are outlined, including standardization, iteration between basic and applied research, and adoption of smart manufacturing. With concerted efforts from academia and industry, flexible electronics will bring a bigger impact to society as promised.
Collapse
Affiliation(s)
- Yifei Luo
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Ming Wang
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Changjin Wan
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck - NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
187
|
Lahcen AA, Rauf S, Beduk T, Durmus C, Aljedaibi A, Timur S, Alshareef HN, Amine A, Wolfbeis OS, Salama KN. Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosens Bioelectron 2020; 168:112565. [PMID: 32927277 DOI: 10.1016/j.bios.2020.112565] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Laser-derived graphene (LDG) technology is gaining attention as a promising material for the development of novel electrochemical sensors and biosensors. Compared to established methods for graphene synthesis, LDG provides many advantages such as cost-effectiveness, fast electron mobility, mask-free, green synthesis, good electrical conductivity, porosity, mechanical stability, and large surface area. This review discusses, in a critical way, recent advancements in this field. First, we focused on the fabrication and doping of LDG platforms using different strategies. Next, the techniques for the modification of LDG sensors using nanomaterials, conducting polymers, biological and artificial receptors are presented. We then discussed the advances achieved for various LDG sensing and biosensing schemes and their applications in the fields of environmental monitoring, food safety, and clinical diagnosis. Finally, the drawbacks and limitations of LDG based electrochemical biosensors are addressed, and future trends are also highlighted.
Collapse
Affiliation(s)
- Abdellatif Ait Lahcen
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Sakandar Rauf
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ceren Durmus
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Abdulrahman Aljedaibi
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science & Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Aziz Amine
- Chemical Analysis and Biosensors Group, Laboratory of Process Engineering and Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146. Mohammedia, Morocco.
| | - Otto S Wolfbeis
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, D-93040, Regensburg, Germany.
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
188
|
Liu Q, Zhao C, Chen M, Liu Y, Zhao Z, Wu F, Li Z, Weiss PS, Andrews AM, Zhou C. Flexible Multiplexed In 2O 3 Nanoribbon Aptamer-Field-Effect Transistors for Biosensing. iScience 2020; 23:101469. [PMID: 33083757 PMCID: PMC7509003 DOI: 10.1016/j.isci.2020.101469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/13/2020] [Indexed: 11/05/2022] Open
Abstract
Flexible sensors are essential for advancing implantable and wearable bioelectronics toward monitoring chemical signals within and on the body. Developing biosensors for monitoring multiple neurotransmitters in real time represents a key in vivo application that will increase understanding of information encoded in brain neurochemical fluxes. Here, arrays of devices having multiple In2O3 nanoribbon field-effect transistors (FETs) were fabricated on 1.4-μm-thick polyethylene terephthalate (PET) substrates using shadow mask patterning techniques. Thin PET-FET devices withstood crumpling and bending such that stable transistor performance with high mobility was maintained over >100 bending cycles. Real-time detection of the small-molecule neurotransmitters serotonin and dopamine was achieved by immobilizing recently identified high-affinity nucleic-acid aptamers on individual In2O3 nanoribbon devices. Limits of detection were 10 fM for serotonin and dopamine with detection ranges spanning eight orders of magnitude. Simultaneous sensing of temperature, pH, serotonin, and dopamine enabled integration of physiological and neurochemical data from individual bioelectronic devices. We fabricated flexible In2O3 nanoribbon transistors using cleanroom-free processes Flexible In2O3 transistors withstood crumpling and bending with stable performance Flexible aptamer biosensors detect neurotransmitters in real time Multiplexed sensors monitor temperature, pH, serotonin, and dopamine simultaneously
Collapse
Affiliation(s)
- Qingzhou Liu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Chuanzhen Zhao
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mingrui Chen
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yihang Liu
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiyuan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Fanqi Wu
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhen Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chongwu Zhou
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089, USA.,Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
189
|
Xu H, Gao L, Wang Y, Cao K, Hu X, Wang L, Mu M, Liu M, Zhang H, Wang W, Lu Y. Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics. NANO-MICRO LETTERS 2020; 12:159. [PMID: 34138142 DOI: 10.3847/1538-4357/abc69f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 05/27/2023]
Abstract
HIGHLIGHTS The laser-engraved method was introduced to fabricate the electrode for the sensor. The sensor showed a wide linear working range, superior sensitivity, and fast response time and also exhibited excellent viability in a wet situation. Wireless integrated network sensors successfully monitored the health states. ABSTRACT Developing flexible sensors with high working performance holds intense interest for diverse applications in leveraging the Internet-of-things (IoT) infrastructures. For flexible piezoresistive sensors, traditionally most efforts are focused on tailoring the sensing materials to enhance the contact resistance variation for improving the sensitivity and working range, and it, however, remains challenging to simultaneously achieve flexible sensor with a linear working range over a high-pressure region (> 100 kPa) and keep a reliable sensitivity. Herein, we devised a laser-engraved silver-coated fabric as “soft” sensor electrode material to markedly advance the flexible sensor’s linear working range to a level of 800 kPa with a high sensitivity of 6.4 kPa−1 yet a fast response time of only 4 ms as well as long-time durability, which was rarely reported before. The integrated sensor successfully routed the wireless signal of pulse rate to the portable smartphone, further demonstrating its potential as a reliable electronic. Along with the rationally building the electrode instead of merely focusing on sensing materials capable of significantly improving the sensor’s performance, we expect that this design concept and sensor system could potentially pave the way for developing more advanced wearable electronics in the future. [Image: see text] ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (10.1007/s40820-020-00498-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Libo Gao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Yuejiao Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, People's Republic of China
- Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Ke Cao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Xinkang Hu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Liang Wang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Meng Mu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Min Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Haiyan Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Yang Lu
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, People's Republic of China.
- Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
190
|
Xu H, Gao L, Wang Y, Cao K, Hu X, Wang L, Mu M, Liu M, Zhang H, Wang W, Lu Y. Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics. NANO-MICRO LETTERS 2020; 12:159. [PMID: 34138142 PMCID: PMC7770928 DOI: 10.1007/s40820-020-00498-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/13/2020] [Indexed: 05/07/2023]
Abstract
Highlights The laser-engraved method was introduced to fabricate the electrode for the sensor. The sensor showed a wide linear working range, superior sensitivity, and fast response time and also exhibited excellent viability in a wet situation. Wireless integrated network sensors successfully monitored the health states. Abstract Developing flexible sensors with high working performance holds intense interest for diverse applications in leveraging the Internet-of-things (IoT) infrastructures. For flexible piezoresistive sensors, traditionally most efforts are focused on tailoring the sensing materials to enhance the contact resistance variation for improving the sensitivity and working range, and it, however, remains challenging to simultaneously achieve flexible sensor with a linear working range over a high-pressure region (> 100 kPa) and keep a reliable sensitivity. Herein, we devised a laser-engraved silver-coated fabric as “soft” sensor electrode material to markedly advance the flexible sensor’s linear working range to a level of 800 kPa with a high sensitivity of 6.4 kPa−1 yet a fast response time of only 4 ms as well as long-time durability, which was rarely reported before. The integrated sensor successfully routed the wireless signal of pulse rate to the portable smartphone, further demonstrating its potential as a reliable electronic. Along with the rationally building the electrode instead of merely focusing on sensing materials capable of significantly improving the sensor’s performance, we expect that this design concept and sensor system could potentially pave the way for developing more advanced wearable electronics in the future. Electronic supplementary material The online version of this article (10.1007/s40820-020-00498-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongcheng Xu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Libo Gao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Yuejiao Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, People's Republic of China
- Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China
| | - Ke Cao
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Xinkang Hu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Liang Wang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Meng Mu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Min Liu
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Haiyan Zhang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China
| | - Weidong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi'an, 710071, People's Republic of China.
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
| | - Yang Lu
- CityU-Xidian Joint Laboratory of Micro/Nano-Manufacturing, Xi'an, 710071, People's Republic of China.
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong SAR, People's Republic of China.
- Nano-Manufacturing Laboratory (NML), Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
191
|
Nair V, Yi J, Isheim D, Rotenberg M, Meng L, Shi F, Chen X, Gao X, Prominski A, Jiang Y, Yue J, Gallagher CT, Seidman DN, Tian B. Laser writing of nitrogen-doped silicon carbide for biological modulation. SCIENCE ADVANCES 2020; 6:6/34/eaaz2743. [PMID: 32937377 PMCID: PMC7442483 DOI: 10.1126/sciadv.aaz2743] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 07/08/2020] [Indexed: 05/05/2023]
Abstract
Conducting or semiconducting materials embedded in insulating polymeric substrates can be useful in biointerface applications; however, attainment of this composite configuration by direct chemical processes is challenging. Laser-assisted synthesis has evolved as a fast and inexpensive technique to prepare various materials, but its utility in the construction of biophysical tools or biomedical devices is less explored. Here, we use laser writing to convert portions of polydimethylsiloxane (PDMS) into nitrogen-doped cubic silicon carbide (3C-SiC). The dense 3C-SiC surface layer is connected to the PDMS matrix via a spongy graphite layer, facilitating electrochemical and photoelectrochemical activity. We demonstrate the fabrication of arbitrary two-dimensional (2D) SiC-based patterns in PDMS and freestanding 3D constructs. To establish the functionality of the laser-produced composite, we apply it as flexible electrodes for pacing isolated hearts and as photoelectrodes for local peroxide delivery to smooth muscle sheets.
Collapse
Affiliation(s)
- Vishnu Nair
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jaeseok Yi
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Dieter Isheim
- Northwestern University Center for Atom-Probe Tomography, Evanston, IL 60208, USA
| | - Menahem Rotenberg
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Lingyuan Meng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Fengyuan Shi
- Electron Microscopy Core, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Xinqi Chen
- Keck Interdisciplinary Surface Science Center, Northwestern University, Evanston, IL 60208, USA
| | - Xiang Gao
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Aleksander Prominski
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Yuanwen Jiang
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jiping Yue
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | | | - David N Seidman
- Northwestern University Center for Atom-Probe Tomography, Evanston, IL 60208, USA
| | - Bozhi Tian
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA.
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
192
|
Kim DW, Zavala E, Kim JK. Wearable technology and systems modeling for personalized chronotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.coisb.2020.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|