151
|
Suzuki T, Nakamura Y, Kato H. Calcium and vitamin D supplementation with 3-year denosumab treatment is beneficial to enhance bone mineral density in postmenopausal patients with osteoporosis and rheumatoid arthritis. Ther Clin Risk Manag 2018; 15:15-22. [PMID: 30588001 PMCID: PMC6302805 DOI: 10.2147/tcrm.s182858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This 3-year retrospective study compared the outcomes of bisphosphonate-pretreated denosumab therapy with or without vitamin D and calcium supplementation in postmenopausal osteoporosis (OP) patients with rheumatoid arthritis (RA). Materials and methods Fifty-eight patients under long-term denosumab treatment were divided into groups without (denosumab group; 31 cases) or with (combination group; 27 cases) vitamin D and calcium supplementation. The bone markers of BAP, TRACP-5b, and urinary NTX were measured at baseline and every year for 3 years. We also evaluated bone mineral density (BMD) of the lumbar 1–4 vertebrae (L-BMD) and bilateral total hips (H-BMD) at the same time points. Results There were no significant differences in the percent changes of serum albumin-corrected calcium between the groups. The percent change in TRACP-5b was significantly higher in the combination group at 2 years. Serum 25-hydroxyvitamin D status was persistently high during therapy in both groups, with significant percent increases over baseline at 2 and 6 months in both groups and at 24 months in the combination group. The percent increase from baseline of serum zinc was significantly higher at 3 years in the combination group over the denosumab group. L-BMD and H-BMD were significantly increased at every time point for 3 years vs pretreatment levels in both groups and were significantly higher in the combination group at all time points. Conclusion Compared with denosumab monotherapy, the combination group displayed significantly increased serum zinc, L-BMD, and H-BMD at 3 years in OP patients with RA. Thus, calcium and vitamin D supplementation may be beneficial to enhance BMD gains, but not necessarily 25-hydroxyvitamin D status, in patients with OP and RA under denosumab.
Collapse
Affiliation(s)
- Takako Suzuki
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan,
| | - Yukio Nakamura
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan, .,Department of Orthopaedic Surgery, Showa Inan General Hospital, Komagane, Japan,
| | - Hiroyuki Kato
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan,
| |
Collapse
|
152
|
Tatara MR, Łuszczewska-Sierakowska I, Krupski W. Serum Concentration of Macro-, Micro-, and Trace Elements in Silver Fox (Vulpes vulpes) and Their Interrelationships with Morphometric, Densitometric, and Mechanical Properties of the Mandible. Biol Trace Elem Res 2018; 185:98-105. [PMID: 29264823 DOI: 10.1007/s12011-017-1221-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
The optimal content of macro-, micro-, and trace elements in tissues ensures proper systemic growth and development and optimal health status in animals and humans. However, very little is known on the elemental content in the plasma compartment in Silver fox. The aim of this study was to determine the content of selected elements in serum obtained from 8-month-old female (N = 8) and male (N = 7) silver foxes. Moreover, relationships of the evaluated elements with the morphological, densitometric, and mechanical parameters of the mandible were determined. Serum content of 12 different elements was measured using inductively coupled plasma-atomic emission spectrometry. The morphometric and densitometric properties of the mandible were determined using quantitative computed tomography method, while mechanical endurance was tested using a three-point bending test. Serum concentration of calcium was significantly higher by 20% in male foxes (P = 0.01), while manganese concentration was significantly lower in males by over 17% (P = 0.03). Positive correlations of serum concentration of calcium, phosphorus, and magnesium with the morphological traits of the mandible such as weight, length, and bone volume were stated (P < 0.05). In the group of elements playing regulatory functions, the positive relationships between serum concentrations of selenium, chromium, manganese, copper, and cobalt were found (P < 0.05). The elaborated experimental model may serve for further studies on foxes, especially focused on nutritional factors affecting elemental homeostasis, whole-body metabolism, and systemic growth and development. Daily diet formulation and precise delivery for farm foxes, together with relatively large animal population maintained at the same environmental conditions, regularly subjected to slaughter procedure, enable economical experimentation with various dietary and pharmacological manipulations.
Collapse
Affiliation(s)
- Marcin R Tatara
- Department of Animal Physiology, University of Life Sciences in Lublin, ul. Akademicka 12, 20-950, Lublin, Poland.
- II Department of Radiology, Medical University in Lublin, ul. Staszica 16, 20-081, Lublin, Poland.
| | | | - Witold Krupski
- II Department of Radiology, Medical University in Lublin, ul. Staszica 16, 20-081, Lublin, Poland
| |
Collapse
|
153
|
van den Beld AW, Kaufman JM, Zillikens MC, Lamberts SWJ, Egan JM, van der Lely AJ. The physiology of endocrine systems with ageing. Lancet Diabetes Endocrinol 2018; 6:647-658. [PMID: 30017799 PMCID: PMC6089223 DOI: 10.1016/s2213-8587(18)30026-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/17/2022]
Abstract
During ageing, the secretory patterns of the hormones produced by the hypothalamic-pituitary axis change, as does the sensitivity of the axis to negative feedback by end hormones. Additionally, glucose homoeostasis tends towards disequilibrium with increasing age. Along with these endocrine alterations, a loss of bone and muscle mass and strength occurs, coupled with an increase in fat mass. In addition, ageing-induced effects are difficult to disentangle from the influence of other factors that are common in older people, such as chronic diseases, inflammation, and low nutritional status, all of which can also affect endocrine systems. Traditionally, the decrease in hormone activity during the ageing process has been considered to be detrimental because of the related decline in bodily functions. The concept of hormone replacement therapy was suggested as a therapeutic intervention to stop or reverse this decline. However, clearly some of these changes are a beneficial adaptation to ageing, whereas hormonal intervention often causes important adverse effects. In this paper, we discuss the effects of age on the different hypothalamic-pituitary-hormonal organ axes, as well as age-related changes in calcium and bone metabolism and glucose homoeostasis.
Collapse
Affiliation(s)
- Annewieke W van den Beld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands; Department of Internal Medicine, Groene Hart Hospital, Gouda, Netherlands.
| | - Jean-Marc Kaufman
- Unit for Osteoporosis and Metabolic Bone Diseases, Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - M Carola Zillikens
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Steven W J Lamberts
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Aart J van der Lely
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Centre, Rotterdam, Netherlands
| |
Collapse
|
154
|
Akhavan-Khaleghi N, Hosseinsabet A, Mohseni-Badalabadi R. Effects of vitamin D deficiency on left atrial function as evaluated by 2D speckle-tracking echocardiography. JOURNAL OF CLINICAL ULTRASOUND : JCU 2018; 46:334-340. [PMID: 29064092 DOI: 10.1002/jcu.22548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 09/06/2017] [Indexed: 06/07/2023]
Abstract
PURPOSE Vitamin D deficiency is prevalent the world over, and some of its effects on the cardiovascular system have been previously demonstrated. We evaluated left atrial (LA) function via 2D speckle-tracking echocardiography (2DSTE) in subjects with and without vitamin D deficiency. METHODS Ninety-seven consecutive patients without significant coronary artery disease on selective coronary angiography were incorporated in our study and divided according to their serum level of vitamin D into 2 groups: with and without vitamin D deficiency. RESULTS The early diastolic strain rate, as a marker of LA conduit function, was increased in patients with vitamin D deficiency (P = .008) and after adjustment for age (P = .046). However, after adjustment for all the confounding factors, vitamin D deficiency showed only a trend to be the independent determinant of LA early diastolic longitudinal strain rate (SRE, P = .065). CONCLUSIONS Our findings indicated that LA function, as evaluated by 2DSTE, was not different between subjects with and without vitamin D deficiency after adjustment for the confounding factors.
Collapse
Affiliation(s)
- Niloofar Akhavan-Khaleghi
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Ali Hosseinsabet
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| | - Reza Mohseni-Badalabadi
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, I.R. Iran
| |
Collapse
|
155
|
Buchman CD, Chai SC, Chen T. A current structural perspective on PXR and CAR in drug metabolism. Expert Opin Drug Metab Toxicol 2018; 14:635-647. [PMID: 29757018 DOI: 10.1080/17425255.2018.1476488] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two members of the nuclear receptor superfamily that play major roles in the expression of various drug metabolism enzymes and are known for their ligand promiscuity. As with other nuclear receptors, PXR and CAR are each composed of a ligand-binding domain (LBD) and a DNA-binding domain (DBD) connected by a hinge region. Areas covered: This review focuses on the information obtained over the last 15+ years from X-ray crystallography studies of the structure of PXR and CAR. Areas of focus include the mobility of each structure, based on temperature factors (B factors); multimeric interactions; the binding of coregulators and ligands; and how the crystal structures were obtained. The first use of hydrogen-deuterium exchange coupled with mass spectroscopy (HDX-MS) to study compound-protein interactions in the PXR-LBD is also addressed. Expert opinion: X-ray crystallography studies have provided us with an excellent understanding of how the LBDs of each receptor function; however, many questions remain concerning the structure of these receptors. Future research should focus on determining the co-crystal structure of an antagonist bound to PXR and on studying the structural aspects of the full-length CAR and PXR proteins.
Collapse
Affiliation(s)
- Cameron D Buchman
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Sergio C Chai
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
156
|
Vitamin D, Hypercalciuria and Kidney Stones. Nutrients 2018; 10:nu10030366. [PMID: 29562593 PMCID: PMC5872784 DOI: 10.3390/nu10030366] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/30/2023] Open
Abstract
The estimated lifetime risk of nephrolithiasis is growing nowadays, and the formation of kidney stones is frequently promoted by hypercalciuria. Vitamin D, and especially its active metabolite calcitriol, increase digestive calcium absorption—as urinary calcium excretion is directly correlated with digestive calcium absorption, vitamin D metabolites could theoretically increase calciuria and promote urinary stone formation. Nevertheless, there was, until recently, low evidence that 25-hydroxyvitamin D serum levels would be correlated with kidney stone formation, even if high calcitriol concentrations are frequently observed in hypercalciuric stone formers. Low 25-hydroxyvitamin D serum levels have been associated with a broad spectrum of diseases, leading to a huge increase in vitamin D prescription in the general population. In parallel, an increased frequency of kidney stone episodes has been observed in prospective studies evaluating vitamin D alone or in association with calcium supplements, and epidemiological studies have identified an association between high 25-hydroxyvitamin D serum levels and kidney stone formation in some groups of patients. Moreover, urinary calcium excretion has been shown to increase in response to vitamin D supplements, at least in some groups of kidney stone formers. It seems likely that predisposed individuals may develop hypercalciuria and kidney stones in response to vitamin D supplements.
Collapse
|
157
|
van der Wijst J, Tutakhel OAZ, Bos C, Danser AHJ, Hoorn EJ, Hoenderop JGJ, Bindels RJM. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol 2018; 315:F110-F122. [PMID: 29357414 DOI: 10.1152/ajprenal.00379.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distal convoluted tubule (DCT) of the kidney plays an important role in blood pressure regulation by modulating Na+ reabsorption via the Na+-Cl- cotransporter (NCC). A diet containing high salt (NaCl) and low K+ activates NCC, thereby causing Na+ retention and a rise in blood pressure. Since high blood pressure, hypertension, is associated with changes in serum calcium (Ca2+) and magnesium (Mg2+) levels, we hypothesized that dietary Na+ and K+ intake affects Ca2+ and Mg2+ transport in the DCT. Therefore, the present study aimed to investigate the effect of a high-Na+/low-K+ diet on renal Ca2+ and Mg2+ handling. Mice were divided in four groups and fed a normal-Na+/normal-K+, normal-Na+/low-K+, high-Na+/normal-K+, or high-Na+/low-K+ diet for 4 days. Serum and urine were collected for electrolyte and hormone analysis. Gene and protein expression of electrolyte transporters were assessed in kidney and intestine by qPCR and immunoblotting. Whereas Mg2+ homeostasis was not affected, the mice had elevated urinary Ca2+ and phosphate (Pi) excretion upon high Na+ intake, as well as significantly lower serum Ca2+ levels in the high-Na+/low-K+ group. Alterations in the gene and protein expression of players involved in Ca2+ and Pi transport indicate that reabsorption in the proximal tubular and TAL is affected, while inducing a compensatory response in the DCT. These effects may contribute to the negative health impact of a high-salt diet, including kidney stone formation, chronic kidney disease, and loss of bone mineral density.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Omar A Z Tutakhel
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - Alexander H J Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands
| |
Collapse
|
158
|
Ikedo A, Arimitsu T, Kurihara T, Ebi K, Fujita S. The Effect of Ongoing Vitamin D and Low-Fat Milk Intake on Bone Metabolism in Female High-School Endurance Runners. J Clin Med Res 2017; 10:13-21. [PMID: 29238429 PMCID: PMC5722040 DOI: 10.14740/jocmr3209w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
Background Vitamin D and calcium are essential nutrients for bone health. In addition, vitamin D suppresses inflammatory cytokines and increases bone resorption. Therefore, improvements in bone health by calcium and vitamin D supplementation have the potential to not only improve calcium metabolism but also suppress inflammation associated with exercise training. The purpose of this study was to determine whether ongoing vitamin D supplementation and low-fat milk intake by female high-school endurance runners would improve bone metabolism by suppressing inflammatory cytokines and the parathyroid hormone (PTH). Methods Twenty female high-school runners were assigned to a vitamin D supplement and low-fat milk intake group (MKD) or a control group (CON). Participants in the MKD group consumed a vitamin D supplement (1,000 IU/day) and low-fat milk (Ca 315 mg/day) for 6 months. Bone mineral density measurements, blood samples, and questionnaires (regarding menses and diet) were carried out. The UMIN Clinical Trials Registry number is UMIN000027854. Results The 25-hydroxyvitamin D (25(OH)D) concentration in MKD was sustained and PTH concentration was decreased regardless of the state of menses. The correlation coefficients of 25(OH)D or PTH concentrations and bone metabolism markers were analyzed by partial correlation coefficient via adjusting the model for frequency of menses. CTX and 25(OH)D concentration were significantly and inversely correlated at baseline (r = -0.61, P < 0.01), 3 months (r = -0.54, P = 0.02), and 6 months (r = -0.53, P = 0.02). CTX and PTH were significantly and positively correlated at 3 months (r = 0.63, P < 0.01) and 6 months (r = 0.52, P = 0.02). The bone alkaline phosphatase (BAP)/CTX ratio and 25(OH)D concentration were significantly and positively correlated at 3 months (r = 0.59, P = 0.01) and 6 months (r = 0.56, P = 0.01). The BAP/CTX ratio and PTH were significantly and inversely correlated at 3 months (r = -0.59, P = 0.01) and 6 months (r = -0.58, P < 0.01). Conclusions This study suggested that vitamin D and low-fat milk supplementation improves bone metabolism by sustaining the 25(OH)D concentration and decreasing the PTH concentration in female high-school endurance runners regardless of the state of menses.
Collapse
Affiliation(s)
- Aoi Ikedo
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Takuma Arimitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toshiyuki Kurihara
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kumiko Ebi
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Satoshi Fujita
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
159
|
Lee JJ, Plain A, Beggs MR, Dimke H, Alexander RT. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule. F1000Res 2017; 6:1797. [PMID: 29043081 PMCID: PMC5627579 DOI: 10.12688/f1000research.12097.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/04/2017] [Indexed: 12/17/2022] Open
Abstract
Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH), active vitamin D
3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms responsible for phosphate reclamation are well described, and emerging work is delineating the molecular identity of the paracellular shunt wherein calcium permeates the proximal tubular epithelium. Significant experimental work has delineated the molecular effects of PTH and FGF23 on these processes as well as their regulation of active vitamin D
3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms of calcium and phosphate reabsorption from the proximal tubule and how they are influenced by the phospho- and calciotropic hormones acting on this segment and then consider the implications on both renal calcium and phosphate handling as well as whole body mineral balance.
Collapse
Affiliation(s)
- Justin J Lee
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Allein Plain
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Megan R Beggs
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada
| | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Edmonton, Canada.,The Women and Children's Health Research Institute, Edmonton, Canada.,Department of Pediatrics, Edmonton Clinic Health Academy, University of Alberta, Edmonton, Canada
| |
Collapse
|
160
|
Affiliation(s)
- Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, FIN-70211 Kuopio, Finland.
| |
Collapse
|
161
|
van Ballegooijen AJ, Pilz S, Tomaschitz A, Grübler MR, Verheyen N. The Synergistic Interplay between Vitamins D and K for Bone and Cardiovascular Health: A Narrative Review. Int J Endocrinol 2017; 2017:7454376. [PMID: 29138634 PMCID: PMC5613455 DOI: 10.1155/2017/7454376] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/17/2017] [Indexed: 12/11/2022] Open
Abstract
Vitamins D and K are both fat-soluble vitamins and play a central role in calcium metabolism. Vitamin D promotes the production of vitamin K-dependent proteins, which require vitamin K for carboxylation in order to function properly. The purpose of this review is to summarize available evidence of the synergistic interplay between vitamins D and K on bone and cardiovascular health. Animal and human studies suggest that optimal concentrations of both vitamin D and vitamin K are beneficial for bone and cardiovascular health as supported by genetic, molecular, cellular, and human studies. Most clinical trials studied vitamin D and K supplementation with bone health in postmenopausal women. Few intervention trials studied vitamin D and K supplementation with cardiovascular-related outcomes. These limited studies indicate that joint supplementation might be beneficial for cardiovascular health. Current evidence supports the notion that joint supplementation of vitamins D and K might be more effective than the consumption of either alone for bone and cardiovascular health. As more is discovered about the powerful combination of vitamins D and K, it gives a renewed reason to eat a healthy diet including a variety of foods such as vegetables and fermented dairy for bone and cardiovascular health.
Collapse
Affiliation(s)
- Adriana J. van Ballegooijen
- Department of Health Sciences, Vrije Universiteit Amsterdam and the Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | - Stefan Pilz
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Epidemiology and Biostatistics, VU University Medical Center and the Amsterdam Public Health Research Institute, Amsterdam, Netherlands
| | | | - Martin R. Grübler
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Department of Cardiology, Swiss Cardiovascular Center Bern, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolas Verheyen
- Department of Cardiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
162
|
Chen B, Wang L, Li L, Zhu R, Liu H, Liu C, Ma R, Jia Q, Zhao D, Niu J, Fu M, Gao S, Zhang D. Fructus Ligustri Lucidi in Osteoporosis: A Review of its Pharmacology, Phytochemistry, Pharmacokinetics and Safety. Molecules 2017; 22:molecules22091469. [PMID: 28872612 PMCID: PMC6151717 DOI: 10.3390/molecules22091469] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Background: Fructus Ligustri Lucidi (FLL) has now attracted increasing attention as an alternative medicine in the prevention and treatment of osteoporosis. This study aimed to provide a general review of traditional interpretation of the actions of FLL in osteoporosis, main phytochemical constituents, pharmacokinetics, pharmacology in bone improving effect, and safety. Materials and Methods: Several databases, including PubMed, China National Knowledge Infrastructure, National Science and Technology Library, China Science and Technology Journal Database, and Web of Science were consulted to locate publications pertaining to FLL. The initial inquiry was conducted for the presence of the following keywords combinations in the abstracts: Fructus Ligustri Lucidi, osteoporosis, phytochemistry, pharmacokinetics, pharmacology, osteoblasts, osteoclasts, salidroside. About 150 research papers and reviews were consulted. Results: FLL is assumed to exhibit anti-osteoporotic effects by improving liver and kidney deficiencies and reducing lower back soreness in Traditional Chinese Medicine (TCM). The data from animal and cell experiments demonstrate that FLL is able to improve bone metabolism and bone quality in ovariectomized, growing, aged and diabetic rats through the regulation of PTH/FGF-23/1,25-(OH)2D3/CaSR, Nox4/ROS/NF-κB, and OPG/RANKL/cathepsin K signaling pathways. More than 100 individual compounds have been isolated from this plant. Oleanolic acid, ursolic acid, salidroside, and nuzhenide have been reported to exhibit the anti-osteoporosis effect. The pharmacokinetics data reveals that salidroside is one of the active constituents, and that tyrosol is hard to detect under physiological conditions. Acute and subacute toxicity studies show that FLL is well tolerated and presents no safety concerns. Conclusions: FLL provides a new option for the prevention and treatment of osteoporosis, which attracts rising interests in identifying potential anti-osteoporotic compounds and fractions from this plant. Further scientific evidences are expected from well-designed clinical trials on its bone protective effects and safety.
Collapse
Affiliation(s)
- Beibei Chen
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lili Wang
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Ruyuan Zhu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Haixia Liu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Chenyue Liu
- Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Rufeng Ma
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Qiangqiang Jia
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dandan Zhao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jianzhao Niu
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Min Fu
- The Research Institute of McGill University Health Center, Montreal, QC H4A 3J1, Canada.
| | - Sihua Gao
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Dongwei Zhang
- Diabetes Research Center, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
163
|
The Endoplasmic Reticulum and the Cellular Reticular Network. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:61-76. [DOI: 10.1007/978-3-319-55858-5_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|