151
|
Charyton M, Deboli F, Fischer P, Henrion G, Etienne M, Donten ML. Composite Anion Exchange Membranes Fabricated by Coating and UV Crosslinking of Low-Cost Precursors Tested in a Redox Flow Battery. Polymers (Basel) 2021; 13:polym13152396. [PMID: 34371998 PMCID: PMC8347460 DOI: 10.3390/polym13152396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 01/07/2023] Open
Abstract
This paper presents a novel, cost-effective approach to the fabrication of composite anion exchange membranes (AEMs). Hierarchical AEMs have been fabricated by coating a porous substrate with an interpenetrating polymer network (IPN) layer where poly(vinylpyrrolidone) (PVP) is immobilized in a crosslinked matrix. The IPN matrix was formed by UV initiated radical crosslinking of a mixture of acrylamide-based monomers and acrylic resins. The fabricated membranes have been compared with a commercial material (Fumatech FAP 450) in terms of ionic transport properties and performance in a vanadium redox flow battery (VRFB). Measures of area-specific resistance (ASR) and vanadium permeability for the proposed membranes demonstrated properties approaching the commercial benchmark. These properties could be tuned by changing the content of PVP in the IPN coating. Higher PVP/matrix ratios facilitate a higher water uptake of the coating layer and thus lower ASR (as low as 0.58 Ω.cm2). On the contrary, lower PVP/matrix ratios allow to reduce the water uptake of the coating and hence decrease the vanadium permeability at the cost of a higher ASR (as high as 1.99 Ω.cm2). In VRFB testing the hierarchical membranes enabled to reach energy efficiency comparable with the commercial AEM (PVP_14—74.7%, FAP 450—72.7% at 80 mA.cm−2).
Collapse
Affiliation(s)
- Martyna Charyton
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- CNRS, Institut Jean Lamour (IJL), Université de Lorraine, 2 Allée André Guinier, F-54011 Nancy, France;
- CNRS, Laboratory of Physical Chemistry and Microbiology for the Environment (LCPME), Université de Lorraine, 405 Rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France;
| | - Francesco Deboli
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Peter Fischer
- Electrochemistry, Fraunhofer Institute for Chemical Technology ICT, Joseph-von-Fraunhofer, Straße 7, 76327 Pfinztal, Germany;
| | - Gerard Henrion
- CNRS, Institut Jean Lamour (IJL), Université de Lorraine, 2 Allée André Guinier, F-54011 Nancy, France;
| | - Mathieu Etienne
- CNRS, Laboratory of Physical Chemistry and Microbiology for the Environment (LCPME), Université de Lorraine, 405 Rue de Vandoeuvre, F-54600 Villers-lès-Nancy, France;
| | - Mateusz L. Donten
- Amer-Sil S.A., 61 Rue D’Olm, Kehlen, 8281 Luxembourg, Luxembourg; (M.C.); (F.D.)
- Correspondence:
| |
Collapse
|
152
|
The alkaline stability and fuel cell performance of poly(N-spirocyclic quaternary ammonium) ionenes as anion exchange membrane. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
153
|
Principles of reverse electrodialysis and development of integrated-based system for power generation and water treatment: a review. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Abstract
Reverse electrodialysis (RED) is among the evolving membrane-based processes available for energy harvesting by mixing water with different salinities. The chemical potential difference causes the movement of cations and anions in opposite directions that can then be transformed into the electrical current at the electrodes by redox reactions. Although several works have shown the possibilities of achieving high power densities through the RED system, the transformation to the industrial-scale stacks remains a challenge particularly in understanding the correlation between ion-exchange membranes (IEMs) and the operating conditions. This work provides an overview of the RED system including its development and modifications of IEM utilized in the RED system. The effects of modified membranes particularly on the psychochemical properties of the membranes and the effects of numerous operating variables are discussed. The prospects of combining the RED system with other technologies such as reverse osmosis, electrodialysis, membrane distillation, heat engine, microbial fuel cell), and flow battery have been summarized based on open-loop and closed-loop configurations. This review attempts to explain the development and prospect of RED technology for salinity gradient power production and further elucidate the integrated RED system as a promising way to harvest energy while reducing the impact of liquid waste disposal on the environment.
Collapse
|
154
|
Current progress in membranes for fuel cells and reverse electrodialysis. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
155
|
Luo T, Zhong Y, Xu D, Wang X, Wessling M. Combining Manning's theory and the ionic conductivity experimental approach to characterize selectivity of cation exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
156
|
Glass S, Mantel T, Appold M, Sen S, Usman M, Ernst M, Filiz V. Amine‐Terminated PAN Membranes as Anion‐Adsorber Materials. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100037] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah Glass
- Helmholtz-Zentrum Hereon Institut für Membranforschung Max-Planck-Straße 1 21502 Geesthacht Germany
| | - Tomi Mantel
- Technische Universität Hamburg Institut für Wasserressourcen und Wasserversorgung Am Schwarzenberg-Campus 3E 21071 Hamburg Germany
| | - Michael Appold
- Helmholtz-Zentrum Hereon Institut für Membranforschung Max-Planck-Straße 1 21502 Geesthacht Germany
| | - Sitashree Sen
- Technische Universität Hamburg Institut für Wasserressourcen und Wasserversorgung Am Schwarzenberg-Campus 3E 21071 Hamburg Germany
| | - Muhammad Usman
- Technische Universität Hamburg Institut für Wasserressourcen und Wasserversorgung Am Schwarzenberg-Campus 3E 21071 Hamburg Germany
| | - Mathias Ernst
- Technische Universität Hamburg Institut für Wasserressourcen und Wasserversorgung Am Schwarzenberg-Campus 3E 21071 Hamburg Germany
| | - Volkan Filiz
- Helmholtz-Zentrum Hereon Institut für Membranforschung Max-Planck-Straße 1 21502 Geesthacht Germany
| |
Collapse
|
157
|
Kakihana Y, Hashim NA, Mizuno T, Anno M, Higa M. Ionic Transport Properties of Cation-Exchange Membranes Prepared from Poly(vinyl alcohol- b-sodium Styrene Sulfonate). MEMBRANES 2021; 11:452. [PMID: 34205395 PMCID: PMC8234076 DOI: 10.3390/membranes11060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Membrane resistance and permselectivity for counter-ions have important roles in determining the performance of cation-exchange membranes (CEMs). In this study, PVA-based polyanions-poly(vinyl alcohol-b-sodium styrene sulfonate)-were synthesized, changing the molar percentages CCEG of the cation-exchange groups with respect to the vinyl alcohol groups. From the block copolymer, poly(vinyl alcohol) (PVA)-based CEMs, hereafter called "B-CEMs", were prepared by crosslinking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations CGA. The ionic transport properties of the B-CEMs were compared with those previously reported for the CEMs prepared using a random copolymer-poly(vinyl alcohol-co-2-acrylamido-2-methylpropane sulfonic acid)-hereafter called "R-CEMs". The B-CEMs had lower water content than the R-CEMs at equal molar percentages of the cation-exchange groups. The charge density of the B-CEMs increased as CCEG increased, and reached a maximum value, which increased with increasing CGA. A maximum charge density of 1.47 mol/dm3 was obtained for a B-CEM with CCEG = 2.9 mol% and CGA = 0.10 vol.%, indicating that the B-CEM had almost two-thirds of the permselectivity of a commercial CEM (CMX: ASTOM Corp. Japan). The dynamic transport number and membrane resistance of a B-CEM with CCEG = 8.3 mol% and CGA = 0.10 vol.% were 0.99 and 1.6 Ωcm2, respectively. The B-CEM showed higher dynamic transport numbers than those of the R-CEMs with similar membrane resistances.
Collapse
Affiliation(s)
- Yuriko Kakihana
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube Yamaguchi 755-8611, Japan; (Y.K.); (T.M.); (M.A.)
- Blue Energy Center for SGE Technology (BEST), 2-16-1 Tokiwadai, Ube City, Yamaguchi 755-8611, Japan
| | - N. Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Taiko Mizuno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube Yamaguchi 755-8611, Japan; (Y.K.); (T.M.); (M.A.)
| | - Marika Anno
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube Yamaguchi 755-8611, Japan; (Y.K.); (T.M.); (M.A.)
| | - Mitsuru Higa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube Yamaguchi 755-8611, Japan; (Y.K.); (T.M.); (M.A.)
- Blue Energy Center for SGE Technology (BEST), 2-16-1 Tokiwadai, Ube City, Yamaguchi 755-8611, Japan
| |
Collapse
|
158
|
Culcasi A, Gurreri L, Micale G, Tamburini A. Bipolar membrane reverse electrodialysis for the sustainable recovery of energy from pH gradients of industrial wastewater: Performance prediction by a validated process model. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112319. [PMID: 33721763 DOI: 10.1016/j.jenvman.2021.112319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/16/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The theoretical energy density extractable from acidic and alkaline solutions is higher than 20 kWh m-3 of single solution when mixing 1 M concentrated streams. Therefore, acidic and alkaline industrial wastewater have a huge potential for the recovery of energy. To this purpose, bipolar membrane reverse electrodialysis (BMRED) is an interesting, yet poorly studied technology for the conversion of the mixing entropy of solutions at different pH into electricity. Although it shows promising performance, only few works have been presented in the literature so far, and no comprehensive models have been developed yet. This work presents a mathematical multi-scale model based on a semi-empirical approach. The model was validated against experimental data and was applied over a variety of operating conditions, showing that it may represent an effective tool for the prediction of the BMRED performance. A sensitivity analysis was performed in two different scenarios, i.e. (i) a reference case and (ii) an improved case with high-performance membrane properties. A Net Power Density of ~15 W m-2 was predicted in the reference scenario with 1 M HCl and NaOH solutions, but it increased significantly by simulating high-performance membranes. A simulated scheme for an industrial application yielded an energy density of ~50 kWh m-3 (of acid solution) with an energy efficiency of ~80-90% in the improved scenario.
Collapse
Affiliation(s)
- Andrea Culcasi
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Viale Delle Scienze Ed. 6, 90128, Palermo, Italy.
| | - Luigi Gurreri
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Viale Delle Scienze Ed. 6, 90128, Palermo, Italy.
| | - Giorgio Micale
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Viale Delle Scienze Ed. 6, 90128, Palermo, Italy.
| | - Alessandro Tamburini
- Dipartimento di Ingegneria, Università Degli Studi di Palermo, Viale Delle Scienze Ed. 6, 90128, Palermo, Italy.
| |
Collapse
|
159
|
Filippov SP, Yaroslavtsev AB. Hydrogen energy: development prospects and materials. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
160
|
Use of the Microheterogeneous Model to Assess the Applicability of Ion-Exchange Membranes in the Process of Generating Electricity from a Concentration Gradient. MEMBRANES 2021; 11:membranes11060406. [PMID: 34071631 PMCID: PMC8230344 DOI: 10.3390/membranes11060406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/18/2022]
Abstract
The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named “batch 1” and “batch 2”. According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.
Collapse
|
161
|
Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, Yang H. Radiation-Grafted Anion-Exchange Membrane for Fuel Cell and Electrolyzer Applications: A Mini Review. MEMBRANES 2021; 11:397. [PMID: 34072048 PMCID: PMC8228207 DOI: 10.3390/membranes11060397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022]
Abstract
This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
Collapse
Affiliation(s)
- Kean Long Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Chun Yik Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Wai Yin Wong
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Kee Shyuan Loh
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia; (C.Y.W.); (W.Y.W.); (K.S.L.)
| | - Sarala Selambakkannu
- Radiation Processing Technology Division, Malaysia Nuclear Agency, Kajang 43000, Malaysia; (S.S.); (N.A.F.O.)
| | - Nor Azillah Fatimah Othman
- Radiation Processing Technology Division, Malaysia Nuclear Agency, Kajang 43000, Malaysia; (S.S.); (N.A.F.O.)
| | - Hsiharng Yang
- Graduate Institute of Precision Engineering and Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, 145 Xingda Road, South District, Taichung City 402, Taiwan
| |
Collapse
|
162
|
Lee G, Kim D, Han JI. Gas-diffusion-electrode based direct electro-stripping system for gaseous ammonia recovery from livestock wastewater. WATER RESEARCH 2021; 196:117012. [PMID: 33740728 DOI: 10.1016/j.watres.2021.117012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Livestock wastewater (LW) typically contains a substantial amount of NH4+ that can potentially be recovered and used in fertilizers or chemicals. In an attempt to recover NH4+ from LW, a novel electrochemical approach using a gas diffusion electrode (GDE) was developed and its efficacy was demonstrated in this study. The GDE-based electrochemical device, when operated at an air-flow rate of 20 mL/min, was free of back-diffusion flux, which is a fatal drawback of any membrane-based NH4+ separation approach. Continuous operation resulted in a nitrogen flux of 890 g N/m2d with synthetic LW and 770 g N/m2d with real LW at a current density of 10 mA/cm2. The electrochemical energy input was 7.42 kWh/kg N with synthetic LW and 9.44 kWh/kg N with real LW. Compared with the traditional stripping method, the GDE-based electrochemical system has a certain potential to be competitive, in terms of energy consumption. For instance, a rough-cost estimate based only on operating costs regarding chemical usage, air blowing, and water pumping revealed that the system consumed 13.44 kWh/kg N, whereas the conventional stripper required 27.6 kWh/kg N. This analysis showed that an electrochemical approach such as our GDE-based method can recover NH3, (particularly in gaseous form) from LW. In addition, with the future development of a smart operation method, as proposed and demonstrated in this study, the cost-effective implementation of a GDE-based method is feasible.
Collapse
Affiliation(s)
- Gwangtaek Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea
| | - DongYeon Kim
- Environment & Sustainable Resources Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea.
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-338, Republic of Korea.
| |
Collapse
|
163
|
Asante-Sackey D, Rathilal S, Kweinor Tetteh E, Ezugbe EO, Pillay LV. Donnan Membrane Process for the Selective Recovery and Removal of Target Metal Ions-A Mini Review. MEMBRANES 2021; 11:358. [PMID: 34068870 PMCID: PMC8153574 DOI: 10.3390/membranes11050358] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/18/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022]
Abstract
Membrane-based water purification technologies contribute significantly to water settings, where it is imperative to use low-cost energy sources to make the process economically and technically competitive for large-scale applications. Donnan membrane processes (DMPs) are driven by a potential gradient across an ion exchange membrane and have an advantage over fouling in conventional pressure driven membrane technologies, which are gaining attention. DMP is a removal, recovery and recycling technology that is commonly used for separation, purification and the concentrating of metals in different water and waste streams. In this study, the principle and application of DMP for sustainable wastewater treatment and prospects of chemical remediation are reviewed and discussed. In addition, the separation of dissolved metal ions in wastewater settings without the use of pressure driven gradients or external energy supply membrane technologies is highlighted. Furthermore, DMP distinctive configurations and operational factors are explored and the prospects of integrating them into the wastewater treatment plants are recommended.
Collapse
Affiliation(s)
- Dennis Asante-Sackey
- Department of Chemical Engineering, Durban University of Technology, Durban 4001, South Africa; (D.A.-S.); (S.R.); (E.O.E.)
| | - Sudesh Rathilal
- Department of Chemical Engineering, Durban University of Technology, Durban 4001, South Africa; (D.A.-S.); (S.R.); (E.O.E.)
| | - Emmanuel Kweinor Tetteh
- Department of Chemical Engineering, Durban University of Technology, Durban 4001, South Africa; (D.A.-S.); (S.R.); (E.O.E.)
| | - Elorm Obotey Ezugbe
- Department of Chemical Engineering, Durban University of Technology, Durban 4001, South Africa; (D.A.-S.); (S.R.); (E.O.E.)
| | - Lingham V. Pillay
- Department of Process Engineering, Stellenbosch University, Matieland 7600, South Africa;
| |
Collapse
|
164
|
Omrani R, Shabani B. Hydrogen crossover in proton exchange membrane electrolysers: The effect of current density, pressure, temperature, and compression. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138085] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
165
|
Chu X, Liu J, Miao S, Liu L, Huang Y, Tang E, Liu S, Xing X, Li N. Crucial role of side-chain functionality in anion exchange membranes: Properties and alkaline fuel cell performance. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119172] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
166
|
|
167
|
Chen Y, Li Y, Xu J, Chen S, Chen D. Densely Quaternized Fluorinated Poly(fluorenyl ether)s with Excellent Conductivity and Stability for Vanadium Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18923-18933. [PMID: 33852269 DOI: 10.1021/acsami.1c04250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cationic group distribution and elemental composition are two key factors determining the conductivity and stability of anion exchange membranes (AEMs) for vanadium redox flow batteries (VRFBs). Herein, fluorinated tetra-dimethylaminomethyl-poly(fluorenyl ether)s (TAPFE)s were designed as the polymer precursors, which were reacted with 6-bromo-N,N,N-trimethylhexan-1-aminium bromide to introduce di-quaternary ammonium (DQA) containing side chains. The resultant DQA-TAPFEs with a rigid fluorinated backbone and flexible multi-cationic side chains exhibited distinct micro-phase separation as probed by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM). DQA-TAPFE-20 with an ion exchange capacity (IEC) of 1.55 mmol g-1 exhibited a SO42- conductivity of 10.1 mS cm-1 at room temperature, much higher than that of a control AEM with an identical backbone but spaced out cationic groups, which had a similar IEC of 1.60 mmol g-1 but a SO42- conductivity of only 3.2 mS cm-1. Due to the Donnan repulsion effect, the DQA-TAPFEs exhibited significantly lower VO2+ permeability than Nafion 212. The VRFB assembled with DQA-TAPFE-20 achieved an energy efficiency of 80.4% at 80 mA cm-1 and a capacity retention rate of 82.9% after the 50th cycling test, both higher than those of the VRFB assembled with Nafion 212 and other AEMs in the literature. Therefore, the rationally designed DQA-TAPFEs are promising candidates for VRFB applications.
Collapse
Affiliation(s)
- Yu Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yanyan Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jiaqi Xu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Shaoyun Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, China
| | - Dongyang Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
168
|
Sawada SI, Maekawa Y. Radiation-Induced Asymmetric Grafting of Different Monomers into Base Films to Prepare Novel Bipolar Membranes. Molecules 2021; 26:molecules26072028. [PMID: 33918272 PMCID: PMC8038194 DOI: 10.3390/molecules26072028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
We prepared novel bipolar membranes (BPMs) consisting of cation and anion exchange layers (CEL and AEL) using radiation-induced asymmetric graft polymerization (RIAGP). In this technique, graft polymers containing cation and anion exchange groups were introduced into a base film from each side. To create a clear CEL/AEL boundary, grafting reactions were performed from each surface side using two graft monomer solutions, which are immiscible in each other. Sodium p-styrenesulfonate (SSS) and acrylic acid (AA) in water were co-grafted from one side of the base ethylene-co-tetrafluoroethylene film, and chloromethyl styrene (CMS) in xylene was simultaneously grafted from the other side, and then the CMS units were quaternized to afford a BPM. The distinct SSS + AA- and CMS-grafted layers were formed owing to the immiscibility of hydrophilic SSS + AA and hydrophobic CMS monomer solutions. This is the first BPM with a clear CEL/AEL boundary prepared by RIAGP. However, in this BPM, the CEL was considerably thinner than the AEL, which may be a problem in practical applications. Then, by using different starting times of the first SSS+AA and second CMS grafting reactions, the CEL and AEL thicknesses was found to be controlled in RIAGP.
Collapse
|
169
|
Titorova V, Mareev S, Gorobchenko A, Gil V, Nikonenko V, Sabbatovskii K, Pismenskaya N. Effect of current-induced coion transfer on the shape of chronopotentiograms of cation-exchange membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
170
|
|
171
|
Stenina IA, Yurova PA, Novak L, Achoh AR, Zabolotsky VI, Yaroslavtsev AB. Improvement of ion conductivity and selectivity of heterogeneous membranes by sulfated zirconia modification. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-020-04800-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
172
|
Wang Y, Yang Z, Wu L, Ge L, Xu T. Ion Exchange Membrane “
ABC
” – A Key Material for Upgrading Process Industries. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Zhengjin Yang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Wu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Liang Ge
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
173
|
Honarparvar S, Zhang X, Chen T, Alborzi A, Afroz K, Reible D. Frontiers of Membrane Desalination Processes for Brackish Water Treatment: A Review. MEMBRANES 2021; 11:246. [PMID: 33805438 PMCID: PMC8066301 DOI: 10.3390/membranes11040246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022]
Abstract
Climate change, population growth, and increased industrial activities are exacerbating freshwater scarcity and leading to increased interest in desalination of saline water. Brackish water is an attractive alternative to freshwater due to its low salinity and widespread availability in many water-scarce areas. However, partial or total desalination of brackish water is essential to reach the water quality requirements for a variety of applications. Selection of appropriate technology requires knowledge and understanding of the operational principles, capabilities, and limitations of the available desalination processes. Proper combination of feedwater technology improves the energy efficiency of desalination. In this article, we focus on pressure-driven and electro-driven membrane desalination processes. We review the principles, as well as challenges and recent improvements for reverse osmosis (RO), nanofiltration (NF), electrodialysis (ED), and membrane capacitive deionization (MCDI). RO is the dominant membrane process for large-scale desalination of brackish water with higher salinity, while ED and MCDI are energy-efficient for lower salinity ranges. Selective removal of multivalent components makes NF an excellent option for water softening. Brackish water desalination with membrane processes faces a series of challenges. Membrane fouling and scaling are the common issues associated with these processes, resulting in a reduction in their water recovery and energy efficiency. To overcome such adverse effects, many efforts have been dedicated toward development of pre-treatment steps, surface modification of membranes, use of anti-scalant, and modification of operational conditions. However, the effectiveness of these approaches depends on the fouling propensity of the feed water. In addition to the fouling and scaling, each process may face other challenges depending on their state of development and maturity. This review provides recent advances in the material, architecture, and operation of these processes that can assist in the selection and design of technologies for particular applications. The active research directions to improve the performance of these processes are also identified. The review shows that technologies that are tunable and particularly efficient for partial desalination such as ED and MCDI are increasingly competitive with traditional RO processes. Development of cost-effective ion exchange membranes with high chemical and mechanical stability can further improve the economy of desalination with electro-membrane processes and advance their future applications.
Collapse
Affiliation(s)
- Soraya Honarparvar
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Xin Zhang
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Tianyu Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Ashkan Alborzi
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| | - Khurshida Afroz
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (S.H.); (X.Z.); (T.C.); (K.A.)
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
174
|
Garrido B, Cifuentes G, Fredes P, Pino E, Calderón C, Cifuentes-Cabezas M. Copper Recovery From Ammonia Solutions Through Electro-Electrodialysis (EED). Front Chem 2021; 8:622611. [PMID: 33732681 PMCID: PMC7958873 DOI: 10.3389/fchem.2020.622611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 11/25/2022] Open
Abstract
Alkaline leaching with highly selective ammoniacal complexing agents is an interesting alternative for the treatment of copper concentrates. This treatment is beneficial for copper recovery because it allows the formation of soluble amines complexes, with cupric tetramine ( Cu(NH3)42+) being the most stable. In order to suppress the unit operation of solvent extraction (SX) and move directly to the electrochemical process, an electro-electrodialysis (EED) process using ion exchange membranes to obtain copper is proposed. The study contemplates the operation with synthetic ammonia solutions containing copper at different concentrations and current density under standard conditions of pressure and temperature. The presented data demonstrate that the concentration of copper in the solution and the excess of ammonia are inversely related to the efficiency of the current and the voltage of the cell, whereas an increase in current density causes an increase in current efficiency, contrary to what happens in sulfuric systems.
Collapse
Affiliation(s)
- Belen Garrido
- Metallurgical Engineering Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Gerardo Cifuentes
- Metallurgical Engineering Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Pedro Fredes
- Metallurgical Engineering Department, University of Santiago of Chile (USACH), Santiago, Chile
| | - Eduardo Pino
- Department of Environmental Science, University of Santiago of Chile (USACH), Santiago, Chile
| | - Cristian Calderón
- Department of Environmental Science, University of Santiago of Chile (USACH), Santiago, Chile
| | - Magdalena Cifuentes-Cabezas
- University Research Institute for Industrial, Radiophysical and Environmental Safety (ISIRYM), Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
175
|
Düerkop D, Widdecke H, Schilde C, Kunz U, Schmiemann A. Polymer Membranes for All-Vanadium Redox Flow Batteries: A Review. MEMBRANES 2021; 11:214. [PMID: 33803681 PMCID: PMC8003036 DOI: 10.3390/membranes11030214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023]
Abstract
Redox flow batteries such as the all-vanadium redox flow battery (VRFB) are a technical solution for storing fluctuating renewable energies on a large scale. The optimization of cells regarding performance, cycle stability as well as cost reduction are the main areas of research which aim to enable more environmentally friendly energy conversion, especially for stationary applications. As a critical component of the electrochemical cell, the membrane influences battery performance, cycle stability, initial investment and maintenance costs. This review provides an overview about flow-battery targeted membranes in the past years (1995-2020). More than 200 membrane samples are sorted into fluoro-carbons, hydro-carbons or N-heterocycles according to the basic polymer used. Furthermore, the common description in membrane technology regarding the membrane structure is applied, whereby the samples are categorized as dense homogeneous, dense heterogeneous, symmetrical or asymmetrically porous. Moreover, these properties as well as the efficiencies achieved from VRFB cycling tests are discussed, e.g., membrane samples of fluoro-carbons, hydro-carbons and N-heterocycles as a function of current density. Membrane properties taken into consideration include membrane thickness, ion-exchange capacity, water uptake and vanadium-ion diffusion. The data on cycle stability and costs of commercial membranes, as well as membrane developments, are compared. Overall, this investigation shows that dense anion-exchange membranes (AEM) and N-heterocycle-based membranes, especially poly(benzimidazole) (PBI) membranes, are suitable for VRFB requiring low self-discharge. Symmetric and asymmetric porous membranes, as well as cation-exchange membranes (CEM) enable VRFB operation at high current densities. Amphoteric ion-exchange membranes (AIEM) and dense heterogeneous CEM are the choice for operation mode with the highest energy efficiency.
Collapse
Affiliation(s)
- Dennis Düerkop
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Hartmut Widdecke
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| | - Carsten Schilde
- Institute of Particle Technology, Braunschweig University of Technology, Volkmaroder Straße 5, 38100 Braunschweig, Germany;
| | - Ulrich Kunz
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstraße 17, 38678 Clausthal-Zellerfeld, Germany;
| | - Achim Schmiemann
- Institute of Recycling, Ostfalia University of Applied Sciences, Robert-Koch-Platz 8a, 38440 Wolfsburg, Germany; (H.W.); (A.S.)
| |
Collapse
|
176
|
Zhang M, Zhang L, Wu Z, Ding A, Shen C, Gao S. Multi‐cation side‐chain‐type containing piperidinium group poly(2,6‐dimethyl‐1,4‐phenylene oxide) alkaline anion exchange membranes. J Appl Polym Sci 2021. [DOI: 10.1002/app.50736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingliang Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Lin Zhang
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Zhihui Wu
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Ao Ding
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Chunhui Shen
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| | - Shanjun Gao
- School of Materials Science and Engineering Wuhan University of Technology Wuhan China
| |
Collapse
|
177
|
Zhao N, Riley H, Song C, Jiang Z, Tsay KC, Neagu R, Shi Z. Ex-Situ Evaluation of Commercial Polymer Membranes for Vanadium Redox Flow Batteries (VRFBs). Polymers (Basel) 2021; 13:polym13060926. [PMID: 33802914 PMCID: PMC8002826 DOI: 10.3390/polym13060926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022] Open
Abstract
Polymer membranes play a vital role in vanadium redox flow batteries (VRFBs), acting as a separator between the two compartments, an electronic insulator for maintaining electrical neutrality of the cell, and an ionic conductor for allowing the transport of ionic charge carriers. It is a major influencer of VRFB performance, but also identified as one of the major factors limiting the large-scale implementation of VRFB technology in energy storage applications due to its cost and durability. In this work, five (5) high-priority characteristics of membranes related to VRFB performance were selected as major considerable factors for membrane screening before in-situ testing. Eight (8) state-of-the-art of commercially available ion exchange membranes (IEMs) were specifically selected, evaluated and compared by a set of ex-situ assessment approaches to determine the possibility of the membranes applied for VRFB. The results recommend perfluorosulfonic acid (PFSA) membranes and hydrocarbon anion exchange membranes (AEMs) as the candidates for further in-situ testing, while one hydrocarbon cation exchange membrane (CEM) is not recommended for VRFB application due to its relatively high VO2+ ion crossover and low mechanical stability during/after the chemical stability test. This work could provide VRFB researchers and industry a valuable reference for selecting the polymer membrane materials before VRFB in-situ testing.
Collapse
|
178
|
Stenina IA, Yaroslavtsev AB. Ionic Mobility in Ion-Exchange Membranes. MEMBRANES 2021; 11:198. [PMID: 33799886 PMCID: PMC7998860 DOI: 10.3390/membranes11030198] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/17/2022]
Abstract
Membrane technologies are widely demanded in a number of modern industries. Ion-exchange membranes are one of the most widespread and demanded types of membranes. Their main task is the selective transfer of certain ions and prevention of transfer of other ions or molecules, and the most important characteristics are ionic conductivity and selectivity of transfer processes. Both parameters are determined by ionic and molecular mobility in membranes. To study this mobility, the main techniques used are nuclear magnetic resonance and impedance spectroscopy. In this comprehensive review, mechanisms of transfer processes in various ion-exchange membranes, including homogeneous, heterogeneous, and hybrid ones, are discussed. Correlations of structures of ion-exchange membranes and their hydration with ion transport mechanisms are also reviewed. The features of proton transfer, which plays a decisive role in the membrane used in fuel cells and electrolyzers, are highlighted. These devices largely determine development of hydrogen energy in the modern world. The features of ion transfer in heterogeneous and hybrid membranes with inorganic nanoparticles are also discussed.
Collapse
Affiliation(s)
| | - Andrey B. Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky pr. 31, 119991 Moscow, Russia;
| |
Collapse
|
179
|
A two-step strategy for the preparation of anion-exchange membranes based on poly(vinylidenefluoride-co-hexafluoropropylene) for electrodialysis desalination. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
180
|
Wieczorek J, Ulbricht M. Amphiphilic poly(arylene ether sulfone) multiblock copolymers with quaternary ammonium groups for novel thin-film composite nanofiltration membranes. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
181
|
Recovery of Acid and Base from Sodium Sulfate Containing Lithium Carbonate Using Bipolar Membrane Electrodialysis. MEMBRANES 2021; 11:membranes11020152. [PMID: 33671622 PMCID: PMC7927085 DOI: 10.3390/membranes11020152] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022]
Abstract
Lithium carbonate is an important chemical raw material that is widely used in many contexts. The preparation of lithium carbonate by acid roasting is limited due to the large amounts of low-value sodium sulfate waste salts that result. In this research, bipolar membrane electrodialysis (BMED) technology was developed to treat waste sodium sulfate containing lithium carbonate for conversion of low-value sodium sulfate into high-value sulfuric acid and sodium hydroxide. Both can be used as raw materials in upstream processes. In order to verify the feasibility of the method, the effects of the feed salt concentration, current density, flow rate, and volume ratio on the desalination performance were determined. The conversion rate of sodium sulfate was close to 100%. The energy consumption obtained under the best experimental conditions was 1.4 kWh·kg-1. The purity of the obtained sulfuric acid and sodium hydroxide products reached 98.32% and 98.23%, respectively. Calculated under the best process conditions, the total process cost of BMED was estimated to be USD 0.705 kg-1 Na2SO4, which is considered low and provides an indication of the potential economic and environmental benefits of using applying this technology.
Collapse
|
182
|
Achoh AR, Zabolotsky VI, Lebedev KA, Sharafan MV, Yaroslavtsev AB. Electrochemical Properties and Selectivity of Bilayer Ion-Exchange Membranes in Ternary Solutions of Strong Electrolytes. MEMBRANES AND MEMBRANE TECHNOLOGIES 2021. [DOI: 10.1134/s2517751621010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
183
|
He Z, Wang G, Wang C, Guo L, Wei R, Song G, Pan D, Das R, Naik N, Hu Z, Guo Z. Overview of Anion Exchange Membranes Based on Ring Opening Metathesis Polymerization (ROMP). POLYM REV 2021. [DOI: 10.1080/15583724.2021.1881792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhenfeng He
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Guoqing Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan, China
| | - Chao Wang
- College of Materials Science and Engineering, North University of China, Taiyuan, China
| | - Li Guo
- Advanced Energy Materials and Systems Institute, North University of China, Taiyuan, China
| | - Renbo Wei
- School of Chemical Engineering, Northwest University, Xi’an, China
| | - Gang Song
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
| | - Duo Pan
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, China
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Rajib Das
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Nithesh Naik
- Department of Mechanical & Manufacturing Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Zhuolin Hu
- Advanced Energy Materials and Systems Institute, North University of China, Taiyuan, China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
184
|
Mathematical Modeling of the Effect of Pulsed Electric Field on the Specific Permselectivity of Ion-Exchange Membranes. MEMBRANES 2021; 11:membranes11020115. [PMID: 33562034 PMCID: PMC7915755 DOI: 10.3390/membranes11020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022]
Abstract
The application of pulsed electric field (PEF) in electrodialysis has been proven to be efficient for a number of effects: increasing mass transfer rate, mitigation of scaling and fouling, reducing water splitting. Recently, the improvement of the membrane permselectivity for specific counterions was discovered experimentally by the group of Laurent Bazinet (N. Lemay et al. J. Memb. Sci. 604, 117878 (2020)). To better understanding the effect of PEF in electrodialysis, simulations were performed using a non-stationary mathematical model based on the Nernst–Planck and Poisson equations. For the first time, it was not only the condition used when the current density is specified but also the condition when the voltage is set. A membrane and two adjacent diffusion layers are considered. It is shown that when applying the regime used by Lemay et al. (the same current density in conventional continuous current (CC) mode and during the pulses in PEF mode), there is a significant gain in specific permselectivity. It is explained by a reduction in the membrane concentration polarization in PEF mode. In the CC mode of electrodialysis, increasing current density leads to a loss in specific permselectivity: concentration profiles in the diffusion layers and membrane are formed in such a way that ion diffusion reduces the migration flux of the preferentially transferred ion and increases that of the poorly transferred ion. In PEF mode, the concentration profiles are partially restored during the pauses when the current is zero. However, if a different condition is used than the condition applied by Lemay et al., that is, when the same average current density is applied in both the PEF and CC modes, there is no gain in specific permeability. It is shown that within the framework of the applied mathematical model, the specific selectivity depends only on the average current density and does not depend on the mode of its application (CC or PEF mode).
Collapse
|
185
|
Liu R, Dai Y, Li J, Chen X, Pan C, Yang J, Li Q. 1-(3-Aminopropyl)imidazole functionalized poly(vinyl chloride) for high temperature proton exchange membrane fuel cell applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
186
|
Porozhnyy M, Shkirskaya S, Butylskii D, Dotsenko V, Safronova E, Yaroslavtsev A, Deabate S, Huguet P, Nikonenko V. Physicochemical and electrochemical characterization of Nafion-type membranes with embedded silica nanoparticles: Effect of functionalization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
187
|
|
188
|
Yu S, Zhu J, Liao J, Ruan H, Sotto A, Shen J. Homogeneous trimethylamine-quaternized polysulfone-based anion exchange membranes with crosslinked structure for electrodialysis desalination. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117874] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
189
|
Chen Y, Zhang S, Liu Q, Jian X. The effect of counter-ion substitution on poly(phthalazinone ether ketone) amphoteric ion exchange membranes for vanadium redox flow battery. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
190
|
Petrov O, Iwaszczuk N, Kharebava T, Bejanidze I, Pohrebennyk V, Nakashidze N, Petrov A. Neutralization of Industrial Water by Electrodialysis. MEMBRANES 2021; 11:membranes11020101. [PMID: 33572584 PMCID: PMC7911343 DOI: 10.3390/membranes11020101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The process of non-reagent adjustment of the pH of a NaCl solution (0.5 g/L) of different acidity was investigated by the method of bipolar electrodialysis on a device operating according to the K-system (concentration). The experiments were carried out in the range pH = 2.0–12.0 with monopolar cation-exchange MK-40 (for alkaline solutions) or anion-exchange MA-40 (for acidic solutions) and bipolar MB-2 membranes. The regularities of the change in the pH of the solution on the current density, process productivity and energy consumption for the neutralization process have been investigated. Revealed: with different productivity of the apparatus (Q = 0.5–1.5 m3/h), in the range of pH 3.0–11.0, with an increase in the current density, a neutral pH value is achieved. It has been shown that at pH above 11.0 and below 3.0, even at high current densities (i > 20 A/m2), its value cannot be changed. This is due to the neutralization of the H+ or OH− ions generated by the bipolar membrane by water ions, which are formed as a result of the dissociation of water molecules at the border of the monopolar membrane and the solution under conditions when the value of current exceeds the limiting value.
Collapse
Affiliation(s)
- Oleksandr Petrov
- Faculty of Management, AGH University of Science and Technology, 30-059 Kraków, Poland;
- Correspondence: ; Tel.: +48-886-818-122
| | - Natalia Iwaszczuk
- Faculty of Management, AGH University of Science and Technology, 30-059 Kraków, Poland;
| | - Tina Kharebava
- Department of Chemistry, Batumi Shota Rustaveli State University, Batumi, GE 6010, Georgia; (T.K.); (I.B.)
| | - Irina Bejanidze
- Department of Chemistry, Batumi Shota Rustaveli State University, Batumi, GE 6010, Georgia; (T.K.); (I.B.)
| | - Volodymyr Pohrebennyk
- Department of Ecological Safety and Nature Protection Activity, Lviv Polytechnic National University, 79013 Lviv, Ukraine;
| | - Nunu Nakashidze
- Department of Agroecology and Forestry, Batumi Shota Rustaveli State University, Batumi, GE 6010, Georgia;
| | - Anton Petrov
- Department of Information Systems, Kuban State Agrarian University named after I.T. Trubilin, 350044 Krasnodar, Russia;
| |
Collapse
|
191
|
Sarapulova V, Pismenskaya N, Titorova V, Sharafan M, Wang Y, Xu T, Zhang Y, Nikonenko V. Transport Characteristics of CJMAED™ Homogeneous Anion Exchange Membranes in Sodium Chloride and Sodium Sulfate Solutions. Int J Mol Sci 2021; 22:1415. [PMID: 33572516 PMCID: PMC7866833 DOI: 10.3390/ijms22031415] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The interplay between the ion exchange capacity, water content and concentration dependences of conductivity, diffusion permeability, and counterion transport numbers (counterion permselectivity) of CJMA-3, CJMA-6 and CJMA-7 (Hefei Chemjoy Polymer Materials Co. Ltd., China) anion-exchange membranes (AEMs) is analyzed using the application of the microheterogeneous model to experimental data. The structure-properties relationship for these membranes is examined when they are bathed by NaCl and Na2SO4 solutions. These results are compared with the characteristics of the well-studied homogenous Neosepta AMX (ASTOM Corporation, Japan) and heterogeneous AMH-PES (Mega a.s., Czech Republic) anion-exchange membranes. It is found that the CJMA-6 membrane has the highest counterion permselectivity (chlorides, sulfates) among the CJMAED series membranes, very close to that of the AMX membrane. The CJMA-3 membrane has the transport characteristics close to the AMH-PES membrane. The CJMA-7 membrane has the lowest exchange capacity and the highest volume fraction of the intergel spaces filled with an equilibrium electroneutral solution. These properties predetermine the lowest counterion transport number in CJMA-7 among other investigated AEMs, which nevertheless does not fall below 0.87 even in 1.0 eq L-1 solutions of NaCl or Na2SO4. One of the reasons for the decrease in the permselectivity of CJMAED membranes is the extended macropores, which are localized at the ion-exchange material/reinforcing cloth boundaries. In relatively concentrated solutions, the electric current prefers to pass through these well-conductive but nonselective macropores rather than the highly selective but low-conductive elements of the gel phase. It is shown that the counterion permselectivity of the CJMA-7 membrane can be significantly improved by coating its surface with a dense homogeneous ion-exchange film.
Collapse
Affiliation(s)
- Veronika Sarapulova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Natalia Pismenskaya
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Valentina Titorova
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Mikhail Sharafan
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| | - Yaoming Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Tongwen Xu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, China; (Y.W.); (T.X.)
| | - Yang Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science and Technology, 53 Zhenzhou Road, Qingdao 266042, China;
| | - Victor Nikonenko
- Membrane Institute, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (V.S.); (N.P.); (V.T.); (M.S.)
| |
Collapse
|
192
|
Yang, de Groot HJM, Buda F. Tuning the Proton-Coupled Electron-Transfer Rate by Ligand Modification in Catalyst-Dye Supramolecular Complexes for Photocatalytic Water Splitting. CHEMSUSCHEM 2021; 14:479-486. [PMID: 32871047 PMCID: PMC7821158 DOI: 10.1002/cssc.202001863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/31/2020] [Indexed: 05/21/2023]
Abstract
In view of the considerably high activation energy barrier of the O-O bond formation photocatalytic step in water oxidation, it is essential to understand if and how nonadiabatic factors can accelerate the proton-coupled electron transfer (PCET) rate in this process to find rational design strategies facilitating this step. Herein, constrained ab initio molecular dynamics simulations are performed to investigate this rate-limiting step in a series of catalyst-dye supramolecular complexes functionalized with different alkyl groups on the catalyst component. These structural modifications lead to tunable thermodynamic driving forces, PCET rates, and vibronic coupling with specific resonant torsional modes. These results reveal that such resonant coupling between electronic and nuclear motions contributes to crossing catalytic barriers in PCET reactions by enabling semiclassical coherent conversion of a reactant into a product. Our results provide insight on how to engineer efficient catalyst-dye supramolecular complexes by functionalization with steric substituents for high-performance dye-sensitized photoelectrochemical cells.
Collapse
Affiliation(s)
- Yang
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeiden (TheNetherlands
| | - Huub J. M. de Groot
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeiden (TheNetherlands
| | - Francesco Buda
- Leiden Institute of ChemistryLeiden UniversityEinsteinweg 552300 RALeiden (TheNetherlands
| |
Collapse
|
193
|
Díaz JC, Kamcev J. Ionic conductivity of ion-exchange membranes: Measurement techniques and salt concentration dependence. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
194
|
Wan R, Xu S, Wang J, Yang Y, Zhang D, He R. Construction of ion conducting channels by embedding hydrophilic oligomers in piperidine functionalized poly(2, 6-dimethyl-1, 4-phenylene oxide) membranes. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
195
|
Sun Y, Li J, Li M, Ma Z, Wang X, Wang Q, Wang X, Xu D, Gao J, Gao X. Towards improved hydrodynamics of the electrodialysis (ED) cell via computational fluid dynamics and cost estimation model: Effects of spacer parameters. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
196
|
Pärnamäe R, Mareev S, Nikonenko V, Melnikov S, Sheldeshov N, Zabolotskii V, Hamelers H, Tedesco M. Bipolar membranes: A review on principles, latest developments, and applications. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118538] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
197
|
Tarpeh WA, Chen X. Making wastewater obsolete: Selective separations to enable circular water treatment. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 5:100078. [PMID: 36158609 PMCID: PMC9488079 DOI: 10.1016/j.ese.2021.100078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/02/2023]
Abstract
By 2050, the societal needs and innovation drivers of the 21st century will be in full swing: mitigating climate change, minimizing anthropogenic effects on natural ecosystems, navigating scarcity of natural resources, and ensuring equitable access to quality of life will have matured from future needs to exigent realities. Water is one such natural resource, and will need to be treated and transported to maximize resource efficiency. In particular, wastewater will be mined for the valuable product precursors it contains, which will require highly selective separation processes capable of capturing specific target compounds from complex solutions. As a case study, we focus on the nitrogen cycle because it plays a central role in both natural and engineered systems. Nitrogen occurs as several species, including ammonia, a fertilizer and precursor to many nitrogen products, and nitrate, a fertilizer and component of explosives. We describe two applications of selective separations: selective materials and electrochemical processes. Ultimately, this perspective outlines the next thirty years of modular, selective, resource-efficient separations that will play a major role in enabling element-specific circular economies and redefining wastewater as a resource.
Collapse
Affiliation(s)
- William A. Tarpeh
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- Engineering Research Center for Re-inventing the Nation’s Urban Water Infrastructure (ReNUWIt), Stanford, CA, 94305, USA
- Corresponding author. 443 Via Ortega, Room 387, Stanford, CA, 94305, USA.
| | - Xi Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
198
|
Zhang P, Wu Y, Liu W, Cui P, Huang Q, Ran J. Construction of two dimensional anion exchange membranes to boost acid recovery performances. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
199
|
Pan XH, Zu JH. A highly hydrophilic cation exchange nonwoven with a further modifiable epoxy group prepared by radiation-induced graft polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00866h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cation exchange nonwoven PP-g-SSS/GMA containing epoxy and sulfonic groups was successfully prepared via radiation-induced simultaneous grafting polymerization by attaching GMA and SSS monomers onto PP nonwoven.
Collapse
Affiliation(s)
- Xiao-han Pan
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-hua Zu
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
200
|
Zhang D, Zhang P, Xiao D, Hao X. Investigation of a novel high-efficiency ion-permselective membrane module based on the electrochemically switched ion exchange scheme. RSC Adv 2021; 11:21248-21258. [PMID: 35478835 PMCID: PMC9034045 DOI: 10.1039/d1ra00924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/28/2021] [Indexed: 11/24/2022] Open
Abstract
Electric field-accelerated ion-permselective membrane (EISM) separation has attracted significant attention in recent years. Thus, herein, to further investigate the ion transport mechanism and optimize the separation efficiency, five types of ion-permselective membrane modules (IPMM I–V) based on the electrochemically switched ion exchange (ESIX) scheme were designed. Compared with the traditional ion separation systems, the in situ membrane-based ion separation system was set up with an extra pulse potential applied to the PPy/PSS/SSWM (polypyrrole/polystyrenesulfonate/stainless steel wire mesh) membrane. The continuous permselective separation of K+ as target ions was performed from dilute aqueous solution through the IPMM system. The pulse potential combined with the regulated cell voltage was functionalized synergistically to create an “ion-sieving effect” and effectively guide the target cations from the source cell to the receiving cell. Moreover, the formation of an equal potential volume in IPMM-V suppressed the reverse migration of the target ions and the detected ion flux across the membrane was 100 times that of the IPMM-I system. The ion transport mechanism was also analyzed in detail based on the equivalent circuit of the system, and the optimized operation parameters were obtained for the high-efficient ion separation system. These results can provide some beneficial information for the design and practical operation of novel EISM systems. Novel ion permselective membrane modules based on the ESIX scheme.![]()
Collapse
Affiliation(s)
- Di Zhang
- Department of Chemistry
- Shanxi Medical University
- Taiyuan
- China
| | - Pengle Zhang
- Department of Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Du Xiao
- Department of Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| | - Xiaogang Hao
- Department of Chemical Engineering
- Taiyuan University of Technology
- Taiyuan
- China
| |
Collapse
|