151
|
Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathog 2015; 11:e1004933. [PMID: 26000450 PMCID: PMC4441509 DOI: 10.1371/journal.ppat.1004933] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
Two-component signal transduction systems (TCS) are used by bacteria to sense and respond to their environment. TCS are typically composed of a sensor histidine kinase (HK) and a response regulator (RR). The Vibrio cholerae genome encodes 52 RR, but the role of these RRs in V. cholerae pathogenesis is largely unknown. To identify RRs that control V. cholerae colonization, in-frame deletions of each RR were generated and the resulting mutants analyzed using an infant mouse intestine colonization assay. We found that 12 of the 52 RR were involved in intestinal colonization. Mutants lacking one previously uncharacterized RR, VCA0566 (renamed VxrB), displayed a significant colonization defect. Further experiments showed that VxrB phosphorylation state on the predicted conserved aspartate contributes to intestine colonization. The VxrB regulon was determined using whole genome expression analysis. It consists of several genes, including those genes that create the type VI secretion system (T6SS). We determined that VxrB is required for T6SS expression using several in vitro assays and bacterial killing assays, and furthermore that the T6SS is required for intestinal colonization. vxrB is encoded in a four gene operon and the other vxr operon members also modulate intestinal colonization. Lastly, though ΔvxrB exhibited a defect in single-strain intestinal colonization, the ΔvxrB strain did not show any in vitro growth defect. Overall, our work revealed that a small set of RRs is required for intestinal colonization and one of these regulators, VxrB affects colonization at least in part through its regulation of T6SS genes. Pathogenic bacteria experience varying conditions during infection of human hosts and often use two-component signal transduction systems (TCSs) to monitor their environment. TCS consists of a histidine kinase (HK), which senses environmental signals, and a corresponding response regulator (RR), which mediates a cellular response. The genome of the human pathogen V. cholerae contains a multitude of genes encoding HKs and RRs proteins. In the present study, we systematically analyzed the role of each V. cholerae RR for its role in pathogenesis. We identified a previously uncharacterized RR, VxrB, as a new virulence factor. We demonstrated that VxrB controls expression of the type VI secretion system (T6SS), a virulence nanomachine that directly translocates effectors into bacterial or host cells, thereby facilitating colonization by competing with sister cells and intestinal microbiota. This study represents the first systematic analysis of the role of all RRs in V. cholerae pathogenesis and provides a foundation for understanding the signal transduction pathways controlling V. cholerae pathogenesis.
Collapse
|
152
|
Liu Q, Cho H, Yeo WS, Bae T. The extracytoplasmic linker peptide of the sensor protein SaeS tunes the kinase activity required for staphylococcal virulence in response to host signals. PLoS Pathog 2015; 11:e1004799. [PMID: 25849574 PMCID: PMC4388633 DOI: 10.1371/journal.ppat.1004799] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 03/11/2015] [Indexed: 11/26/2022] Open
Abstract
Bacterial pathogens often employ two-component systems (TCSs), typically consisting of a sensor kinase and a response regulator, to control expression of a set of virulence genes in response to changing host environments. In Staphylococcus aureus, the SaeRS TCS is essential for in vivo survival of the bacterium. The intramembrane-sensing histidine kinase SaeS contains, along with a C-terminal kinase domain, a simple N-terminal domain composed of two transmembrane helices and a nine amino acid-long extracytoplasmic linker peptide. As a molecular switch, SaeS maintains low but significant basal kinase activity and increases its kinase activity in response to inducing signals such as human neutrophil peptide 1 (HNP1). Here we show that the linker peptide of SaeS controls SaeS’s basal kinase activity and that the amino acid sequence of the linker peptide is highly optimized for its function. Without the linker peptide, SaeS displays aberrantly elevated kinase activity even in the absence of the inducing signal, and does not respond to HNP1. Moreover, SaeS variants with alanine substitution of the linker peptide amino acids exhibit altered basal kinase activity and/or irresponsiveness to HNP1. Biochemical assays reveal that those SaeS variants have altered autokinase and phosphotransferase activities. Finally, animal experiments demonstrate that the linker peptide-mediated fine tuning of SaeS kinase activity is critical for survival of the pathogen. Our results indicate that the function of the linker peptide in SaeS is a highly evolved feature with very optimized amino acid sequences, and we propose that, in other SaeS-like intramembrane sensing histidine kinases, the extracytoplasmic linker peptides actively fine-control their kinases. A bacterial pathogen Staphylococcus aureus uses the SaeRS two-component system to control the production of multiple toxins, resulting in a wide range of diseases in human. The sensor kinase SaeS is a member of the intramembrane-sensing histidine kinases (IM-HKs) that lacks a sensory domain and harbors a simple N-terminal domain with two transmembrane helices and a short linker peptide. It’s been considered that the linker peptide of IM-HKs transmits the external signals into the cytoplasmic catalytic domain to control the HK’s kinase activity. However, it is unclear how the external signal input propagates through the linker to modulate the kinase activity of HKs. Here we show that the linker peptide of SaeS is critical in maintaining the basal kinase activity and functions as a part of a “tripwire” to jumpstart the activation of the SaeRS system upon exposure to the specific host signals. We establish that a single amino acid substitution of the linker peptide alters SaeS’s kinase activity, resulting in different expression levels of the SaeR-activated genes and alteration of the bacterial virulence in mice. Our study provides new molecular insights into how the pathogenic bacterium utilizes the simple protein domain to control its disease-causing potentials in response to host immune signals.
Collapse
Affiliation(s)
- Qian Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Hoonsik Cho
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Won-Sik Yeo
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest,Gary, Indiana, United States of America
- * E-mail:
| |
Collapse
|
153
|
Holtappels M, Vrancken K, Schoofs H, Deckers T, Remans T, Noben JP, Valcke R. A comparative proteome analysis reveals flagellin, chemotaxis regulated proteins and amylovoran to be involved in virulence differences between Erwinia amylovora strains. J Proteomics 2015; 123:54-69. [PMID: 25849252 DOI: 10.1016/j.jprot.2015.03.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/07/2015] [Accepted: 03/31/2015] [Indexed: 12/16/2022]
Abstract
UNLABELLED Erwinia amylovora is a Gram-negative bacterium that causes the destructive disease fire blight affecting most members of the Rosaceae family, of which apple and pear are economically the most important hosts. E. amylovora has been considered as a homogeneous species in whole, although significant differences in virulence patterns have been observed. However, the underlying causes of the differences in virulence remain to be discovered. In a first-time comparative proteomic approach using E. amylovora, 2D differential in-gel electrophoresis (DIGE) was used to identify proteins that could explain the gradual difference in virulence between four different strains. Two important proteins were identified, FliC and CheY, both involved in flagella structure, motility and chemotaxis, which were more abundant in the least virulent strain. In the highly virulent strains the protein GalF, involved in amylovoran production, was more abundant, which was consistent with the higher expression of the gene and the higher amylovoran content in this strain in vitro. Together, these results confirm the involvement of amylovoran in virulence, but also imply an indirect role of flagellin in virulence as elicitor of plant defence. BIOLOGICAL SIGNIFICANCE This research provides new insights into our current understanding of the virulence of Erwinia amylovora. This plant-pathogen is considered a homogeneous species although different strains show differences in virulence. Despite the efforts made on the genomic level which resulted in the discovery of virulence factors, the reason for the different virulence patterns between strains has not yet been identified. In our lab we used a comparative proteomic approach, which has never been published before, to identify proteins involved in these differences between strains and hereby possibly involved in virulence. Our results provide interesting insights in virulence and present us with the opportunity to glance into the proteome of E. amylovora.
Collapse
Affiliation(s)
- M Holtappels
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - K Vrancken
- Zoology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - H Schoofs
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Deckers
- Pomology Department, PCFruit Research Station, Fruittuinweg 1, 3800 Sint-Truiden, Belgium
| | - T Remans
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - J P Noben
- Biomedical Research Institute, Hasselt University and Transnational University Limburg, School of Life Sciences, Hasselt, Belgium
| | - R Valcke
- Molecular and Physical Plant Physiology, Faculty of Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
154
|
WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress. Biochem Biophys Res Commun 2015; 459:623-8. [DOI: 10.1016/j.bbrc.2015.02.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 02/26/2015] [Indexed: 01/18/2023]
|
155
|
Liu J, Hu L, Xu Z, Tan C, Yuan F, Fu S, Cheng H, Chen H, Bei W. Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. Vet Microbiol 2015; 177:184-92. [PMID: 25796134 DOI: 10.1016/j.vetmic.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 01/01/2023]
Abstract
QseB/QseC is one of the five predicted two-component systems (TCSs) in Actinobacillus pleuropneumoniae. To understand the roles of this TCS in A. pleuropneumoniae, a markerless gene-deletion mutant ΔqseBC was constructed. Differentially expressed (DE) genes in ΔqseBC were filtered by microarray analysis. A total of 44 DE genes were found to be regulated by QseB/QseC system. The transcriptional profile of A. pleuropneumoniae ΔqseBC was compared with that of ΔluxS and catecholamine (CA) stimulations, 13 genes regulated by QseB/QseC were found also regulated by LuxS, and 3 Qse-regulons were co-regulated by CA stimulations, respectively. Binding of QseB to the promoters of three regulons (pilM, glpK and hugZ), which were co-regulated by QseB/QseC and LuxS, was evaluated by electrophoretic mobility-shift assay. Results indicated that pilM was directly regulated by phosphorylated-QseB. Then the pilM deletion mutant ΔpilM was constructed and characterized. Data presented here revealed that adherence ability of ΔpilM to St. Jude porcine lung cells was significantly decreased, and ΔpilM exhibited reduced virulence in pigs, suggesting PilM contributes to the process of A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Jinlin Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Linlin Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhuofei Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fangyan Yuan
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Shulin Fu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Cheng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
156
|
Jiang J, Gu J, Zhang L, Zhang C, Deng X, Dou T, Zhao G, Zhou Y. Comparing Mycobacterium tuberculosis genomes using genome topology networks. BMC Genomics 2015; 16:85. [PMID: 25766780 PMCID: PMC4342819 DOI: 10.1186/s12864-015-1259-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 01/20/2015] [Indexed: 11/25/2022] Open
Abstract
Background Over the last decade, emerging research methods, such as comparative genomic analysis and phylogenetic study, have yielded new insights into genotypes and phenotypes of closely related bacterial strains. Several findings have revealed that genomic structural variations (SVs), including gene gain/loss, gene duplication and genome rearrangement, can lead to different phenotypes among strains, and an investigation of genes affected by SVs may extend our knowledge of the relationships between SVs and phenotypes in microbes, especially in pathogenic bacteria. Results In this work, we introduce a ‘Genome Topology Network’ (GTN) method based on gene homology and gene locations to analyze genomic SVs and perform phylogenetic analysis. Furthermore, the concept of ‘unfixed ortholog’ has been proposed, whose members are affected by SVs in genome topology among close species. To improve the precision of 'unfixed ortholog' recognition, a strategy to detect annotation differences and complete gene annotation was applied. To assess the GTN method, a set of thirteen complete M. tuberculosis genomes was analyzed as a case study. GTNs with two different gene homology-assigning methods were built, the Clusters of Orthologous Groups (COG) method and the orthoMCL clustering method, and two phylogenetic trees were constructed accordingly, which may provide additional insights into whole genome-based phylogenetic analysis. We obtained 24 unfixable COG groups, of which most members were related to immunogenicity and drug resistance, such as PPE-repeat proteins (COG5651) and transcriptional regulator TetR gene family members (COG1309). Conclusions The GTN method has been implemented in PERL and released on our website. The tool can be downloaded from http://homepage.fudan.edu.cn/zhouyan/gtn/, and allows re-annotating the ‘lost’ genes among closely related genomes, analyzing genes affected by SVs, and performing phylogenetic analysis. With this tool, many immunogenic-related and drug resistance-related genes were found to be affected by SVs in M. tuberculosis genomes. We believe that the GTN method will be suitable for the exploration of genomic SVs in connection with biological features of bacterial strains, and that GTN-based phylogenetic analysis will provide additional insights into whole genome-based phylogenetic analysis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1259-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jianping Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Jianlei Gu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Liang Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Chenyi Zhang
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Xiao Deng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Tonghai Dou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Guoping Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| | - Yan Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China. .,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
157
|
Uddin R, Saeed K, Khan W, Azam SS, Wadood A. Metabolic pathway analysis approach: Identification of novel therapeutic target against methicillin resistant Staphylococcus aureus. Gene 2015; 556:213-26. [DOI: 10.1016/j.gene.2014.11.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022]
|
158
|
Mulder DT, McPhee JB, Reid-Yu SA, Stogios PJ, Savchenko A, Coombes BK. Multiple histidines in the periplasmic domain of the Salmonella enterica sensor kinase SsrA enhance signaling in response to extracellular acidification. Mol Microbiol 2015; 95:678-91. [PMID: 25442048 DOI: 10.1111/mmi.12895] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The two-component regulatory system SsrA-SsrB in Salmonella enterica controls expression of a virulence gene program required for intracellular survival in host cells. SsrA signaling is induced within the acidic host vacuole in which the bacteria reside; however, the mechanism by which SsrA senses this intracellular environment is unknown. Here, we show that the periplasmic sensor domain of SsrA is enriched in histidine residues that increase SsrA signaling below external pH of 6. While no single histidine accounted for the full acid-responsiveness of SsrA, we localized the acid-responsiveness principally to five histidines in the C-terminal end of the periplasmic sensor domain, with input from additional histidines in the N-terminal end of the senor. A sensor mutant lacking critical pH-responsive histidines was defective for acid-promoted activity, yet retained basal activity similar to wild type at neutral pH, indicating that the role of these histidines is to enhance signaling in response to acidification. In support of this, a pH-blind mutant was insensitive to the vacuole acidification blocking activity of bafilomycin, and was attenuated for competitive fitness during infection of mice. Our data demonstrate that SsrA contains a histidine-rich periplasmic sensor that enhances signaling in response to the innate host defense of vacuolar acidification.
Collapse
Affiliation(s)
- David T Mulder
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8N 3Z5, Canada
| | | | | | | | | | | |
Collapse
|
159
|
Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol 2015; 166:332-43. [PMID: 25592073 DOI: 10.1016/j.resmic.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.
Collapse
Affiliation(s)
- Chloé Connan
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France.
| |
Collapse
|
160
|
The sensor histidine kinase RgfC affects group B streptococcal virulence factor expression independent of its response regulator RgfA. Infect Immun 2015; 83:1078-88. [PMID: 25561709 DOI: 10.1128/iai.02738-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Group B streptococci (GBS; Streptococcus agalactiae) are beta-hemolytic, Gram-positive bacteria that are common asymptomatic colonizers of healthy adults. However, these opportunistic bacteria also cause invasive infections in human newborns and in certain adult populations. To adapt to the various environments encountered during its disease cycle, GBS encodes a number of two-component signaling systems. Previous studies have indicated that the TCS comprising the sensor histidine kinase RgfC and the response regulator RgfA mediate GBS binding to extracellular matrix components, such as fibrinogen. However, in certain GBS clinical isolates, a point mutation in rgfA results in premature truncation of the response regulator. The truncated RgfA protein lacks the C-terminal DNA binding domain necessary for promoter binding and gene regulation. Here, we show that deletion of rgfC in GBS strains lacking a functional RgfA increased systemic infection. Furthermore, infection with the rgfC mutant increased induction of proinflammatory signaling pathways in vivo. Phosphoproteomic analysis revealed that 19 phosphopeptides corresponding to 12 proteins were differentially phosphorylated at aspartate, cysteine, serine, threonine, or tyrosine residues in the rgfC mutant. This included aspartate phosphorylation of a tyrosine kinase, CpsD, and a transcriptional regulator. Consistent with this observation, microarray analysis of the rgfC mutant indicated that >200 genes showed altered expression compared to the isogenic wild-type strain and included transcriptional regulators, transporters, and genes previously associated with GBS pathogenesis. Our observations suggest that in the absence of RgfA, nonspecific RgfC signaling affects the expression of virulence factors and GBS pathogenesis.
Collapse
|
161
|
Iyer R, Caimano MJ, Luthra A, Axline D, Corona A, Iacobas DA, Radolf JD, Schwartz I. Stage-specific global alterations in the transcriptomes of Lyme disease spirochetes during tick feeding and following mammalian host adaptation. Mol Microbiol 2014; 95:509-38. [PMID: 25425211 DOI: 10.1111/mmi.12882] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2014] [Indexed: 12/31/2022]
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is maintained in nature within an enzootic cycle involving a mammalian reservoir and an Ixodes sp. tick vector. The transmission, survival and pathogenic potential of B. burgdorferi depend on the bacterium's ability to modulate its transcriptome as it transits between vector and reservoir host. Herein, we employed an amplification-microarray approach to define the B. burgdorferi transcriptomes in fed larvae, fed nymphs and in mammalian host-adapted organisms cultivated in dialysis membrane chambers. The results show clearly that spirochetes exhibit unique expression profiles during each tick stage and during cultivation within the mammal; importantly, none of these profiles resembles that exhibited by in vitro grown organisms. Profound shifts in transcript levels were observed for genes encoding known or predicted lipoproteins as well as proteins involved in nutrient uptake, carbon utilization and lipid synthesis. Stage-specific expression patterns of chemotaxis-associated genes also were noted, suggesting that the composition and interactivities of the chemotaxis machinery components vary considerably in the feeding tick and mammal. The results as a whole make clear that environmental sensing by B. burgdorferi directly or indirectly drives an extensive and tightly integrated modulation of cell envelope constituents, chemotaxis/motility machinery, intermediary metabolism and cellular physiology. These findings provide the necessary transcriptional framework for delineating B. burgdorferi regulatory pathways throughout the enzootic cycle as well as defining the contribution(s) of individual genes to spirochete survival in nature and virulence in humans.
Collapse
Affiliation(s)
- Radha Iyer
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Hoo R, Lam JH, Huot L, Pant A, Li R, Hot D, Alonso S. Evidence for a role of the polysaccharide capsule transport proteins in pertussis pathogenesis. PLoS One 2014; 9:e115243. [PMID: 25501560 PMCID: PMC4264864 DOI: 10.1371/journal.pone.0115243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/20/2014] [Indexed: 11/19/2022] Open
Abstract
Polysaccharide (PS) capsules are important virulence determinants for many bacterial pathogens. Bordetella pertussis, the agent of whooping cough, produces a surface associated microcapsule but its role in pertussis pathogenesis remained unknown. Here we showed that the B. pertussis capsule locus is expressed in vivo in murine lungs and that absence of the membrane-associated protein KpsT, involved in the transport of the PS polymers across the envelope, but not the surface-exposed PS capsule itself, affects drastically B. pertussis colonization efficacy in mice. Microarray analysis revealed that absence of KpsT in B. pertussis resulted in global down-regulation of gene expression including key virulence genes regulated by BvgA/S, the master two-component system. Using a BvgS phase-locked mutant, we demonstrated a functional link between KpsT and BvgA/S-mediated signal transduction. Whereas pull-down assays do not support physical interaction between BvgS sensor and any of the capsule locus encoded proteins, absence of KpsT impaired BvgS oligomerization, necessary for BvgS function. Furthermore, complementation studies indicated that instead of KpsT alone, the entire PS capsule transport machinery spanning the cell envelope likely plays a role in BvgS-mediated signal transduction. Our work thus provides the first experimental evidence of a role for a virulence-repressed gene in pertussis pathogenesis.
Collapse
Affiliation(s)
- Regina Hoo
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Jian Hang Lam
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Ludovic Huot
- Transcriptomics and Applied Genomics, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille (CIIL), U1019, UMR8204, 1 rue du Professeur Calmette, F-59019 Lille, France,
| | - Aakanksha Pant
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - Rui Li
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
| | - David Hot
- Transcriptomics and Applied Genomics, Institut Pasteur de Lille, Centre for Infection and Immunity of Lille (CIIL), U1019, UMR8204, 1 rue du Professeur Calmette, F-59019 Lille, France,
| | - Sylvie Alonso
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Centre for Life Science #03-05, 28 Medical Drive, Singapore 117597, Singapore
- * E-mail:
| |
Collapse
|
163
|
Metabolic sensor governing bacterial virulence in Staphylococcus aureus. Proc Natl Acad Sci U S A 2014; 111:E4981-90. [PMID: 25368190 DOI: 10.1073/pnas.1411077111] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An effective metabolism is essential to all living organisms, including the important human pathogen Staphylococcus aureus. To establish successful infection, S. aureus must scavenge nutrients and coordinate its metabolism for proliferation. Meanwhile, it also must produce an array of virulence factors to interfere with host defenses. However, the ways in which S. aureus ties its metabolic state to its virulence regulation remain largely unknown. Here we show that citrate, the first intermediate of the tricarboxylic acid (TCA) cycle, binds to and activates the catabolite control protein E (CcpE) of S. aureus. Using structural and site-directed mutagenesis studies, we demonstrate that two arginine residues (Arg145 and Arg256) within the putative inducer-binding cavity of CcpE are important for its allosteric activation by citrate. Microarray analysis reveals that CcpE tunes the expression of 126 genes that comprise about 4.7% of the S. aureus genome. Intriguingly, although CcpE is a major positive regulator of the TCA-cycle activity, its regulon consists predominantly of genes involved in the pathogenesis of S. aureus. Moreover, inactivation of CcpE results in increased staphyloxanthin production, improved ability to acquire iron, increased resistance to whole-blood-mediated killing, and enhanced bacterial virulence in a mouse model of systemic infection. This study reveals CcpE as an important metabolic sensor that allows S. aureus to sense and adjust its metabolic state and subsequently to coordinate the expression of virulence factors and bacterial virulence.
Collapse
|
164
|
Landwehr-Kenzel S, Henneke P. Interaction of Streptococcus agalactiae and Cellular Innate Immunity in Colonization and Disease. Front Immunol 2014; 5:519. [PMID: 25400631 PMCID: PMC4212683 DOI: 10.3389/fimmu.2014.00519] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/05/2014] [Indexed: 12/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is highly adapted to humans, where it is a normal constituent of the intestinal and vaginal flora. Yet, GBS has highly invasive potential and causes excessive inflammation, sepsis, and death at the beginning of life, in the elderly and in diabetic patients. Thus, GBS is a model pathobiont that thrives in the healthy host, but has not lost its potential virulence during coevolution with mankind. It remains incompletely understood how the innate immune system contains GBS in the natural niches, the intestinal and genital tracts, and which molecular events underlie breakdown of mucocutaneous resistance. Newborn infants between days 7 and 90 of life are at risk of a particularly striking sepsis manifestation (late-onset disease), where the transition from colonization to invasion and dissemination, and thus from health to severe sepsis is typically fulminant and not predictable. The great majority of late-onset sepsis cases are caused by one clone, GBS ST17, which expresses HvgA as a signature virulence factor and adhesin. In mice, HvgA promotes the crossing of both the mucosal and the blood–brain barrier. Expression levels of HvgA and other GBS virulence factors, such as pili and toxins, are regulated by the upstream two-component control system CovR/S. This in turn is modulated by acidic epithelial pH, high glucose levels, and during the passage through the mouse intestine. After invasion, GBS has the ability to subvert innate immunity by mechanisms like glycerinaldehyde-3-phosphate-dehydrogenase-dependent induction of IL-10 and β-protein binding to the inhibitory phagocyte receptors sialic acid binding immunoglobulin-like lectin 5 and 14. On the host side, sensing of GBS nucleic acids and lipopeptides by both Toll-like receptors and the inflammasome appears to be critical for host resistance against GBS. Yet, comprehensive models on the interplay between GBS and human immune cells at the colonizing site are just emerging.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Berlin-Brandenburg Center for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Berlin-Brandenburg School for Regenerative Therapies, Charité University Medicine Berlin , Berlin , Germany ; Department of Pediatric Pulmonology and Immunology, Charité University Medicine Berlin , Berlin , Germany
| | - Philipp Henneke
- Center for Pediatrics and Adolescent Medicine, University Medical Center Freiburg , Freiburg , Germany ; Center for Chronic Immunodeficiency, University Medical Center Freiburg , Freiburg , Germany
| |
Collapse
|
165
|
Influence of PhoP and intra-species variations on virulence of Yersinia pseudotuberculosis during the natural oral infection route. PLoS One 2014; 9:e103541. [PMID: 25075520 PMCID: PMC4116203 DOI: 10.1371/journal.pone.0103541] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/03/2014] [Indexed: 01/02/2023] Open
Abstract
The two-component regulatory system PhoP/PhoQ has been shown to (i) control expression of virulence-associated traits, (ii) confer survival and growth within macrophages and (iii) play a role in Yersinia infections. However, the influence of PhoP on virulence varied greatly between different murine models of infection and its role in natural oral infections with frequently used representative isolates of Y. pseudotuberculosis was unknown. To address this issue, we constructed an isogenic set of phoP+ and phoP− variants of strain IP32953 and YPIII and analyzed the impact of PhoP using in vitro functionality experiments and a murine oral infection model, whereby we tested for bacterial dissemination and influence on the host immune response. Our results revealed that PhoP has a low impact on virulence, lymphatic and systemic organ colonization, and on immune response modulation by IP32953 and YPIII, indicating that PhoP is not absolutely essential for oral infections but may be involved in fine-tuning the outcome. Our work further revealed certain strain-specific differences in virulence properties, which do not strongly rely on the function of PhoP, but affect tissue colonization, dissemination and/or persistence of the bacteria. Highlighted intra-species variations may provide a potential means to rapidly adjust to environmental changes inside and outside of the host.
Collapse
|
166
|
Los sistemas de dos componentes: circuitos moleculares versátiles. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
167
|
Bioactivities of Compounds from Elephantopus scaber, an Ethnomedicinal Plant from Southwest China. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:569594. [PMID: 24963325 PMCID: PMC4055671 DOI: 10.1155/2014/569594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/30/2014] [Indexed: 11/17/2022]
Abstract
Elephantopus scaber is an ethnomedicinal plant used by the Zhuang people in Southwest China to treat headaches, colds, diarrhea, hepatitis, and bronchitis. A new δ-truxinate derivative, ethyl, methyl 3,4,3′,4′-tetrahydroxy-δ-truxinate (1), was isolated from the ethyl acetate extract of the entire plant, along with 4 known compounds. The antioxidant activity of these 5 compounds was determined by ABTS radical scavenging assay. Compound 1 was also tested for its cytotoxicity effect against HepG2 by MTT assay (IC50 = 60 μM), and its potential anti-inflammatory, antibiotic, and antitumor bioactivities were predicted using target fishing method software.
Collapse
|
168
|
NtrBC and Nac contribute to efficient Shigella flexneri intracellular replication. J Bacteriol 2014; 196:2578-86. [PMID: 24794563 DOI: 10.1128/jb.01613-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri two-component regulatory systems (TCRS) are responsible for sensing changes in environmental conditions and regulating gene expression accordingly. We examined 12 TCRS that were previously uncharacterized for potential roles in S. flexneri growth within the eukaryotic intracellular environment. We demonstrate that the TCRS EvgSA, NtrBC, and RstBA systems are required for wild-type plaque formation in cultured epithelial cells. The phenotype of the NtrBC mutant depended in part on the Nac transcriptional regulator. Microarray analysis was performed to identify S. flexneri genes differentially regulated by the NtrBC system or Nac in the intracellular environment. This study contributes to our understanding of the transcriptional regulation necessary for Shigella to effectively adapt to the mammalian host cell.
Collapse
|
169
|
Novak EA, Sultan SZ, Motaleb MA. The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi. Front Cell Infect Microbiol 2014; 4:56. [PMID: 24822172 PMCID: PMC4013479 DOI: 10.3389/fcimb.2014.00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/13/2014] [Indexed: 11/13/2022] Open
Abstract
In nature, the Lyme disease spirochete Borrelia burgdorferi cycles between the unrelated environments of the Ixodes tick vector and mammalian host. In order to survive transmission between hosts, B. burgdorferi must be able to not only detect changes in its environment, but also rapidly and appropriately respond to these changes. One manner in which this obligate parasite regulates and adapts to its changing environment is through cyclic-di-GMP (c-di-GMP) signaling. c-di-GMP has been shown to be instrumental in orchestrating the adaptation of B. burgdorferi to the tick environment. B. burgdorferi possesses only one set of c-di-GMP-metabolizing genes (one diguanylate cyclase and two distinct phosphodiesterases) and one c-di-GMP-binding PilZ-domain protein designated as PlzA. While studies in the realm of c-di-GMP signaling in B. burgdorferi have exploded in the last few years, there are still many more questions than answers. Elucidation of the importance of c-di-GMP signaling to B. burgdorferi may lead to the identification of mechanisms that are critical for the survival of B. burgdorferi in the tick phase of the enzootic cycle as well as potentially delineate a role (if any) c-di-GMP may play in the transmission and virulence of B. burgdorferi during the enzootic cycle, thereby enabling the development of effective drugs for the prevention and/or treatment of Lyme disease.
Collapse
Affiliation(s)
| | | | - Md. A. Motaleb
- Department of Microbiology and Immunology, East Carolina University Brody School of MedicineGreenville, NC, USA
| |
Collapse
|
170
|
Differential regulation of staphylococcal virulence by the sensor kinase SaeS in response to neutrophil-derived stimuli. Proc Natl Acad Sci U S A 2014; 111:E2037-45. [PMID: 24782537 DOI: 10.1073/pnas.1322125111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two-component systems (TCSs) are highly conserved across bacteria and are used to rapidly sense and respond to changing environmental conditions. The human pathogen Staphylococcus aureus uses the S. aureus exoprotein expression (sae) TCS to sense host signals and activate transcription of virulence factors essential to pathogenesis. Despite its importance, the mechanism by which the histidine kinase SaeS recognizes specific host stimuli is unknown. After mutagenizing the predicted extracellular loop of SaeS, we discovered one methionine residue (M31) was essential for the ability of S. aureus to transcribe sae target genes, including hla, lukAB/lukGH, and hlgA. This single M31A mutation also significantly reduced cytotoxicity in human neutrophils to levels observed in cells following interaction with ΔsaeS. Another important discovery was that mutation of two aromatic anchor residues (W32A and F33A) disrupted the normal basal signaling of SaeS in the absence of inducing signals, yet both mutant kinases had appropriate activation of effector genes following exposure to neutrophils. Although the transcriptional profile of aromatic mutation W32A was consistent with that of WT in response to human α-defensin 1, mutant kinase F33A did not properly transcribe the γ-toxin genes in response to this stimulus. Taken together, our results provide molecular evidence for how SaeS recognizes host signals and triggers activation of select virulence factors to facilitate evasion of innate immunity. These findings have important implications for signal transduction in prokaryotes and eukaryotes due to conservation of aromatic anchor residues across both of these domains and the important role they play in sensor protein structure and function.
Collapse
|
171
|
Olson AL, Thompson RJ, Melander C, Cavanagh J. Chemical shift assignments and secondary structure prediction of the C-terminal domain of the response regulator BfmR from Acinetobacter baumannii. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:67-70. [PMID: 23264007 PMCID: PMC3620908 DOI: 10.1007/s12104-012-9454-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 06/01/2023]
Abstract
Acinetobacter baumannii is a Gram-negative pathogen responsible for severe nocosomial infections by forming biofilms in healthcare environments. The two-domain response regulator BfmR has been shown to be the master controller for biofilm formation. Inactivation of BfmR resulted in an abolition of pili production and consequently biofilm creation. Here we report backbone and sidechain resonance assignments and secondary structure prediction for the C-terminal domain of BfmR (residues 130-238) from A. baumannii.
Collapse
Affiliation(s)
- Andrew L Olson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | |
Collapse
|
172
|
Rajamuthiah R, Fuchs BB, Jayamani E, Kim Y, Larkins-Ford J, Conery A, Ausubel FM, Mylonakis E. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus. PLoS One 2014; 9:e89189. [PMID: 24586584 PMCID: PMC3929655 DOI: 10.1371/journal.pone.0089189] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 01/15/2014] [Indexed: 11/19/2022] Open
Abstract
Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA) and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.
Collapse
Affiliation(s)
- Rajmohan Rajamuthiah
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elamparithi Jayamani
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Younghoon Kim
- Department of Animal Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jonah Larkins-Ford
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Annie Conery
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Frederick M. Ausubel
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
173
|
The global response regulator ExpA controls virulence gene expression through RsmA-mediated and RsmA-independent pathways in Pectobacterium wasabiae SCC3193. Appl Environ Microbiol 2014; 80:1972-84. [PMID: 24441162 DOI: 10.1128/aem.03829-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
ExpA (GacA) is a global response regulator that controls the expression of major virulence genes, such as those encoding plant cell wall-degrading enzymes (PCWDEs) in the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. Several studies with pectobacteria as well as related phytopathogenic gammaproteobacteria, such as Dickeya and Pseudomonas, suggest that the control of virulence by ExpA and its homologues is executed partly by modulating the activity of RsmA, an RNA-binding posttranscriptional regulator. To elucidate the extent of the overlap between the ExpA and RsmA regulons in P. wasabiae, we characterized both regulons by microarray analysis. To do this, we compared the transcriptomes of the wild-type strain, an expA mutant, an rsmA mutant, and an expA rsmA double mutant. The microarray data for selected virulence-related genes were confirmed through quantitative reverse transcription (qRT-PCR). Subsequently, assays were performed to link the observed transcriptome differences to changes in bacterial phenotypes such as growth, motility, PCWDE production, and virulence in planta. An extensive overlap between the ExpA and RsmA regulons was observed, suggesting that a substantial portion of ExpA regulation appears to be mediated through RsmA. However, a number of genes involved in the electron transport chain and oligogalacturonide metabolism, among other processes, were identified as being regulated by ExpA independently of RsmA. These results suggest that ExpA may only partially impact fitness and virulence via RsmA.
Collapse
|
174
|
Fothergill JL, Winstanley C, James CE. Novel therapeutic strategies to counterPseudomonas aeruginosainfections. Expert Rev Anti Infect Ther 2014; 10:219-35. [DOI: 10.1586/eri.11.168] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
175
|
Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev Proteomics 2014; 5:619-27. [DOI: 10.1586/14789450.5.4.619] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
176
|
Dhiman A, Bhatnagar S, Kulshreshtha P, Bhatnagar R. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis. FEBS Open Bio 2014; 4:65-76. [PMID: 24490131 PMCID: PMC3907690 DOI: 10.1016/j.fob.2013.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 12/20/2022] Open
Abstract
Two-component signal transduction systems (TCS), consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK. WalRK forms a functional TCS in B. anthracis, expressed throughout the growth phase. WalK variants exhibit autophosphorylation and phosphotransfer to WalR. WalKc variants also show phosphatase activity towards phosphorylated WalR. A potential WalR regulon in B. anthracis was predicted in silico. DNA binding ability was demonstrated for WalR.
Collapse
Affiliation(s)
- Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Division of Biotechnology, Netaji Subhas Institute of Technology, Dwarka, New Delhi 110078, India
| | - Parul Kulshreshtha
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
- Corresponding author. Tel.: +91 1126704079/1126742040; fax: +91 1126742040.
| |
Collapse
|
177
|
Song F, Peng Q, Brillard J, Lereclus D, Nielsen-LeRoux C. An insect gut environment reveals the induction of a new sugar-phosphate sensor system in Bacillus cereus. Gut Microbes 2014; 5:58-63. [PMID: 24256737 PMCID: PMC4049939 DOI: 10.4161/gmic.27092] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Bacteria survive under various conditions by sensing stimuli triggering specific adaptive physiological responses, which are often based on membrane-integrated sensors connected to a cytoplasmic regulator. Recent studies reveal that mucus glycans may act as signal molecules for two-component systems involved in intestinal colonization. Bacillus cereus, a human and insect opportunistic pathogen was used to identify bacterial factors expressed in an insect gut infection model. The screen revealed a promoter involved in the expression of a gene with so far unknown functions. A search for gut-related compounds, inducing its transcription, identified glucose-6-phosphate as an activation signal. The gene is part of a five-gene cluster, including a two-component system. Interestingly such five gene loci are conserved in the pathogenic Bacillus group as well as in various Clostridia bacteria and are with analogy to other multi-component sensor systems in enteropathogenic bacteria, such as E. coli. Thus our results provide insights into the function of two-component and auxiliary sensor systems in host-microbe interactions and opens up possible investigations of such systems in other gut associated bacteria.
Collapse
Affiliation(s)
- Fuping Song
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Qi Peng
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,State Key Laboratory for Biology of Plant Diseases and Insect Pests; CAAS; Beijing, China
| | - Julien Brillard
- INRA; UMR408 & Université d'Avignon et des Pays de Vaucluse; Avignon, France
| | - Didier Lereclus
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France
| | - Christina Nielsen-LeRoux
- INRA; UMR1319 Micalis-AgroParisTech; La Minière; Guyancourt, France,Correspondence to: Christina Nielsen-LeRoux,
| |
Collapse
|
178
|
Skorek K, Raczkowska A, Dudek B, Miętka K, Guz-Regner K, Pawlak A, Klausa E, Bugla-Płoskońska G, Brzostek K. Regulatory protein OmpR influences the serum resistance of Yersinia enterocolitica O:9 by modifying the structure of the outer membrane. PLoS One 2013; 8:e79525. [PMID: 24260242 PMCID: PMC3834241 DOI: 10.1371/journal.pone.0079525] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/01/2013] [Indexed: 11/29/2022] Open
Abstract
The EnvZ/OmpR two-component system constitutes a regulatory pathway involved in bacterial adaptive responses to environmental cues. Our previous findings indicated that the OmpR regulator in Yersinia enterocolitica O:9 positively regulates the expression of FlhDC, the master flagellar activator, which influences adhesion/invasion properties and biofilm formation. Here we show that a strain lacking OmpR grown at 37°C exhibits extremely high resistance to the bactericidal activity of normal human serum (NHS) compared with the wild-type strain. Analysis of OMP expression in the ompR mutant revealed that OmpR reciprocally regulates Ail and OmpX, two homologous OMPs of Y. enterocolitica, without causing significant changes in the level of YadA, the major serum resistance factor. Analysis of mutants in individual genes belonging to the OmpR regulon (ail, ompX, ompC and flhDC) and strains lacking plasmid pYV, expressing YadA, demonstrated the contribution of the respective proteins to serum resistance. We show that Ail and OmpC act in an opposite way to the OmpX protein to confer serum resistance to the wild-type strain, but are not responsible for the high resistance of the ompR mutant. The serum resistance phenotype of ompR seems to be multifactorial and mainly attributable to alterations that potentiate the function of YadA. Our results indicate that a decreased level of FlhDC in the ompR mutant cells is partly responsible for the serum resistance and this effect can be suppressed by overexpression of flhDC in trans. The observation that the loss of FlhDC enhances the survival of wild-type cells in NHS supports the involvement of FlhDC regulator in this phenotype. In addition, the ompR mutant exhibited a lower level of LPS, but this was not correlated with changes in the level of FlhDC. We propose that OmpR might alter the susceptibility of Y. enterocolitica O:9 to complement-mediated killing through remodeling of the outer membrane.
Collapse
Affiliation(s)
- Karolina Skorek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Adrianna Raczkowska
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Miętka
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Katarzyna Guz-Regner
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Aleksandra Pawlak
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, Wroclaw, Poland
| | - Elżbieta Klausa
- Regional Centre of Transfusion Medicine and Blood Bank, Wroclaw, Poland
| | | | - Katarzyna Brzostek
- Department of Applied Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
179
|
Xu J, Fu S, Liu M, Xu Q, Bei W, Chen H, Tan C. The two-component system NisK/NisR contributes to the virulence of Streptococcus suis serotype 2. Microbiol Res 2013; 169:541-6. [PMID: 24342108 DOI: 10.1016/j.micres.2013.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/09/2013] [Indexed: 10/26/2022]
Abstract
Two-component signal-transduction systems (TCSTSs) may regulate some virulence factors in response to external stimuli, and thus allowing Streptococcus suis serotype 2 to interact with the host, promote survival, and cause disease. Here, a mutant of the NisKR TCSTS had attenuated virulence in vitro, as exemplified by lowered hemolytic activity, reduced adherence to epithelial cells, increased elimination by macrophages, and decreased resistance to killing by neutrophils. Results also showed that this system is important for the ability of S. suis serotype 2 to survive and proliferate in an in vivo mouse model. Thus, the NisKR system plays a significant role in pathogenesis, both in colonization and invasive disease.
Collapse
Affiliation(s)
- Juan Xu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shulin Fu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Manli Liu
- Center of Bio-Pesticide Engineering Research, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, China
| | - Qiaoxia Xu
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Weicheng Bei
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Chen Tan
- Division of Animal Infectious Disease, State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
180
|
Aptamer cocktails: enhancement of sensing signals compared to single use of aptamers for detection of bacteria. Biosens Bioelectron 2013; 54:195-8. [PMID: 24280049 DOI: 10.1016/j.bios.2013.11.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/16/2013] [Accepted: 11/02/2013] [Indexed: 12/30/2022]
Abstract
Microbial cells have many binding moieties on their surface for binding to their specific bioreceptors. The whole-cell SELEX process enables the isolation of various aptamers that can bind to different components on the cell surface such as proteins, polysaccharides, or flagella with high affinity and specificity. Here, we examine the binding capacity of an aptamer mixture (aptamer cocktail) composed of various combinations of 3 different DNA aptamers isolated from Escherichia coli and compare it with one of the single aptamers using fluorescence-tagged aptamers. The aptamer mixtures showed higher fluorescence signal than did any single aptamer used, which suggests that use of aptamer mixtures can enhance the sensitivity of detection of microbial cells. To further evaluate this effect, the signal enhancement and improvement of sensitivity provided by combinatorial use of aptamers were examined in an electrochemical detection system. With regard to current decreases, the aptamer cocktail immobilized on gold electrodes performed better than a single aptamer immobilized on gold electrodes did. Consequently, the detection limit achieved using the aptamers individually was approximately 18 times that when the 3 aptamers were used in combination. These results support the use of aptamer cocktails for detection of complex targets such as E. coli with enhanced sensitivity.
Collapse
|
181
|
Québatte M, Dick MS, Kaever V, Schmidt A, Dehio C. Dual input control: activation of theBartonella henselae VirB/D4 type IV secretion system by the stringent sigma factor RpoH1 and the BatR/BatS two-component system. Mol Microbiol 2013; 90:756-75. [DOI: 10.1111/mmi.12396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Maxime Québatte
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Mathias S. Dick
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| | - Volkhard Kaever
- Research Core Unit for Mass Spectrometry - Metabolomics; Institute of Pharmacology; Hannover Medical School; Hannover Germany
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum; University of Basel; Basel Switzerland
| | - Christoph Dehio
- Focal Area Infection Biology, Biozentrum; University of Basel; Klingelbergstrasse 70 4056 Basel Switzerland
| |
Collapse
|
182
|
Zimbres FM, Tárnok A, Ulrich H, Wrenger C. Aptamers: novel molecules as diagnostic markers in bacterial and viral infections? BIOMED RESEARCH INTERNATIONAL 2013; 2013:731516. [PMID: 24083239 PMCID: PMC3780515 DOI: 10.1155/2013/731516] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/30/2013] [Indexed: 01/01/2023]
Abstract
Worldwide the entire human population is at risk of infectious diseases of which a high degree is caused by pathogenic protozoans, worms, bacteria, and virus infections. Moreover the current medications against pathogenic agents are losing their efficacy due to increasing and even further spreading drug resistance. Therefore, there is an urgent need to discover novel diagnostic as well as therapeutic tools against infectious agents. In view of that, the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) represents a powerful technology to target selectively pathogenic factors as well as entire bacteria or viruses. SELEX uses a large combinatorial oligonucleic acid library (DNA or RNA) which is processed a by high-flux in vitro screen of iterative cycles. The selected ligands, termed aptamers, are characterized by high specificity and affinity to their target molecule, which are already exploited in diagnostic and therapeutic applications. In this minireview we will discuss the current status of the SELEX technique applied on bacterial and viral pathogens.
Collapse
Affiliation(s)
- Flávia M. Zimbres
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| | - Attila Tárnok
- Department of Pediatric Cardiology, Heart Centre Leipzig, Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Strümpellstraße 39, 04289 Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Science, University of São Paulo, Avenida Professor Lineu Prestes 1374, 05508-000 São Paulo, SP, Brazil
| |
Collapse
|
183
|
Patras KA, Wang NY, Fletcher EM, Cavaco CK, Jimenez A, Garg M, Fierer J, Sheen TR, Rajagopal L, Doran KS. Group B Streptococcus CovR regulation modulates host immune signalling pathways to promote vaginal colonization. Cell Microbiol 2013; 15:1154-67. [PMID: 23298320 PMCID: PMC3657335 DOI: 10.1111/cmi.12105] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/28/2012] [Accepted: 01/02/2013] [Indexed: 12/24/2022]
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a frequent commensal organism of the vaginal tract of healthy women. However, GBS can transition to a pathogen in susceptible hosts, but host and microbial factors that contribute to this conversion are not well understood. GBS CovR/S (CsrR/S) is a two component regulatory system that regulates key virulence elements including adherence and toxin production. We performed global transcription profiling of human vaginal epithelial cells exposed to WT, CovR deficient, and toxin deficient strains, and observed that insufficient regulation by CovR and subsequent increased toxin production results in a drastic increase in host inflammatory responses, particularly in cytokine signalling pathways promoted by IL-8 and CXCL2. Additionally, we observed that CovR regulation impacts epithelial cell attachment and intracellular invasion. In our mouse model of GBS vaginal colonization, we further demonstrated that CovR regulation promotes vaginal persistence, as infection with a CovR deficient strainresulted in a heightened host immune response as measured by cytokine production and neutrophil activation. Using CXCr2 KO mice, we determined that this immune alteration occurs, at least in part, via signalling through the CXCL2 receptor. Taken together, we conclude that CovR is an important regulator of GBS vaginal colonization and loss of this regulatory function may contribute to the inflammatory havoc seen during the course of infection.
Collapse
Affiliation(s)
- Kathryn A. Patras
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Nai-Yu Wang
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Erin M. Fletcher
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Courtney K. Cavaco
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Alyssa Jimenez
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Mansi Garg
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Joshua Fierer
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093
| | - Tamsin R. Sheen
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of 10 Washington School of Medicine and Seattle Children’s Hospital Research Institute, Seattle, WA 98101
| | - Kelly S. Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, CA 92182
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093
| |
Collapse
|
184
|
Steinmann R, Dersch P. Thermosensing to adjust bacterial virulence in a fluctuating environment. Future Microbiol 2013; 8:85-105. [PMID: 23252495 DOI: 10.2217/fmb.12.129] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The lifecycle of most microbial pathogens can be divided into two states: existence outside and inside their hosts. The sudden temperature upshift experienced upon entry from environmental or vector reservoirs into a warm-blooded host is one of the most crucial signals informing the pathogens to adjust virulence gene expression and their host-stress survival program. This article reviews the plethora of sophisticated strategies that bacteria have evolved to sense temperature, and outlines the molecular signal transduction mechanisms used to modulate synthesis of crucial virulence determinants. The molecular details of thermal control through conformational changes of DNA, RNA and proteins are summarized, complex and diverse thermosensing principles are introduced and their potential as drug targets or synthetic tools are discussed.
Collapse
Affiliation(s)
- Rebekka Steinmann
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | |
Collapse
|
185
|
Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A. Cytokinins résumé: their signaling and role in programmed cell death in plants. PLANT CELL REPORTS 2013; 32:771-80. [PMID: 23579381 PMCID: PMC3654191 DOI: 10.1007/s00299-013-1436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Cytokinins (CKs) are a large group of plant hormones which play a crucial role in many physiological processes in plants. One of the interesting functions of CKs is the control of programmed cell death (PCD). It seems that all CKs-dependent phenomena including PCD are accompanied by special multi-step phosphorelay signaling pathway. This pathway consists of three elements: histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). This review shows the résumé of the latest knowledge about CKs signaling pathways in many physiological processes in plants with special attention paid to PCD process.
Collapse
Affiliation(s)
- A. Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - M. Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| |
Collapse
|
186
|
Zhang Y, Ezeji TC. Transcriptional analysis of Clostridium beijerinckii NCIMB 8052 to elucidate role of furfural stress during acetone butanol ethanol fermentation. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:66. [PMID: 23642190 PMCID: PMC3681630 DOI: 10.1186/1754-6834-6-66] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 04/29/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND Furfural is the prevalent microbial inhibitor generated during pretreatment and hydrolysis of lignocellulose biomass to monomeric sugars, but the response of acetone butanol ethanol (ABE) producing Clostridium beijerinckii NCIMB 8052 to this compound at the molecular level is unknown. To discern the effect of furfural on C. beijerinckii and to gain insight into molecular mechanisms of action and detoxification, physiological changes of furfural-stressed cultures during acetone butanol ethanol (ABE) fermentation were studied, and differentially expressed genes were profiled by genome-wide transcriptional analysis. RESULTS A total of 5,003 C. beijerinckii NCIMB 8052 genes capturing about 99.7% of the genome were examined. About 111 genes were differentially expressed (up- or down-regulated) by C. beijerinckii when it was challenged with furfural at acidogenic growth phase compared with 721 genes that were differentially expressed (up- or down-regulated) when C. beijerinckii was challenged with furfural at solventogenic growth phase. The differentially expressed genes include genes related to redox and cofactors, membrane transporters, carbohydrate, amino sugar and nucleotide sugar metabolisms, heat shock proteins, DNA repair, and two-component signal transduction system. While C. beijerinckii exposed to furfural stress during the acidogenic growth phase produced 13% more ABE than the unstressed control, ABE production by C. beijerinckii ceased following exposure to furfural stress during the solventogenic growth phase. CONCLUSION Genome-wide transcriptional response of C. beijerinckii to furfural stress was investigated for the first time using microarray analysis. Stresses emanating from ABE accumulation in the fermentation medium; redox balance perturbations; and repression of genes that code for the phosphotransferase system, cell motility and flagellar proteins (and combinations thereof) may have caused the premature termination of C. beijerinckii 8052 growth and ABE production following furfural challenge at the solventogenic phase.This study provides insights into basis for metabolic engineering of C. beijerinckii NCIMB 8052 for enhanced tolerance of lignocellulose-derived microbial inhibitory compounds, thereby improving bioconversion of lignocellulose biomass hydrolysates to biofuels and chemicals. Indeed, two enzymes encoded by Cbei_3974 and Cbei_3904 belonging to aldo/keto reductase (AKR) and short-chain dehydrogenase/reductase (SDR) families have been identified to be involved in furfural detoxification and tolerance.
Collapse
Affiliation(s)
- Yan Zhang
- The Ohio State University, Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Thaddeus Chukwuemeka Ezeji
- The Ohio State University, Department of Animal Sciences and Ohio Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
187
|
Core-gene-encoded peptide regulating virulence-associated traits in Streptococcus mutans. J Bacteriol 2013; 195:2912-20. [PMID: 23603743 DOI: 10.1128/jb.00189-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recently, high-coverage genome sequence of 57 isolates of Streptococcus mutans, the primary etiological agent of human dental caries, was completed. The SMU.1147 gene, encoding a 61-amino-acid (61-aa) peptide, was present in all sequenced strains of S. mutans but absent in all bacteria in current databases. Reverse transcription-PCR revealed that SMU.1147 is cotranscribed with scnK and scnR, which encode the histidine kinase and response regulator, respectively, of a two-component system (TCS). The C terminus of the SMU.1147 gene product was tagged with a FLAG epitope and shown to be expressed in S. mutans by Western blotting with an anti-FLAG antibody. A nonpolar mutant of SMU.1147 formed less biofilm in glucose-containing medium and grew slower than did the wild-type strain under aerobic and anaerobic conditions, at low pH, or in the presence of H2O2. Mutation of SMU.1147 dramatically reduced genetic competence and expression of comX and comY, compared to S. mutans UA159. The competence defect of the SMU.1147 mutant could not be overcome by addition of sigX-inducing peptide (XIP) in defined medium or by competence-stimulating peptide (CSP) in complex medium. Complementation with SMU.1147 on a plasmid restored all phenotypes. Interestingly, mutants lacking either one of the TCS components and a mutant lacking all three genes behaved like the wild-type strain for all phenotypes mentioned above, but all mutant strains grew slower than UA159 in medium supplemented with 0.3 M NaCl. Thus, the SMU.1147-encoded peptide affects virulence-related traits and dominantly controls quorum-sensing pathways for development of genetic competence in S. mutans.
Collapse
|
188
|
Behrends V, Bell TJ, Liebeke M, Cordes-Blauert A, Ashraf SN, Nair C, Zlosnik JEA, Williams HD, Bundy JG. Metabolite profiling to characterize disease-related bacteria: gluconate excretion by Pseudomonas aeruginosa mutants and clinical isolates from cystic fibrosis patients. J Biol Chem 2013; 288:15098-109. [PMID: 23572517 PMCID: PMC3663530 DOI: 10.1074/jbc.m112.442814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metabolic footprinting of supernatants has been proposed as a tool for assigning gene function. We used NMR spectroscopy to measure the exometabolome of 86 single-gene transposon insertion mutant strains (mutants from central carbon metabolism and regulatory mutants) of the opportunistic pathogen Pseudomonas aeruginosa, grown on a medium designed to represent the nutritional content of cystic fibrosis sputum. Functionally related genes had similar metabolic profiles. E.g. for two-component system mutants, the cognate response regulator and sensor kinase genes clustered tightly together. Some strains had metabolic phenotypes (metabotypes) that could be related to the known gene function. E.g. pyruvate dehydrogenase mutants accumulated large amounts of pyruvate in the medium. In other cases, the metabolic phenotypes were not easily interpretable. The rpoN mutant, which lacks the alternative σ factor RpoN (σ54), accumulated high levels of gluconate in the medium. In addition, endometabolome profiling of intracellular metabolites identified a number of systemic metabolic changes. We linked this to indirect regulation of the catabolite repression protein Crc via the non-coding RNA crcZ and found that a crcZ (but not crc) mutant also shared the high-gluconate phenotype. We profiled an additional set of relevant metabolic enzymes and transporters, including Crc targets, and showed that the Crc-regulated edd mutant (gluconate-6-phosphate dehydratase) had similar gluconate levels as the rpoN mutant. Finally, a set of clinical isolates showed patient- and random amplification of polymorphic DNA (RAPD) type-specific differences in gluconate production, which were associated significantly with resistance across four antibiotics (tobramycin, ciprofloxacin, aztreonam, and imipenem), indicating that this has potential clinical relevance.
Collapse
Affiliation(s)
- Volker Behrends
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria. J Bacteriol 2013; 195:2632-41. [PMID: 23564168 DOI: 10.1128/jb.02062-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
Collapse
|
190
|
Zhang Z, Korkeala H, Dahlsten E, Sahala E, Heap JT, Minton NP, Lindström M. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 2013; 9:e1003252. [PMID: 23555260 PMCID: PMC3610760 DOI: 10.1371/journal.ppat.1003252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved −10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike. Botulinum neurotoxin produced by the spore-forming bacterium Clostridium botulinum is the most poisonous biological substance known to mankind. By blocking neurotransmission, the neurotoxin causes a flaccid paralysis called botulism which may to lead to death upon respiratory muscle collapse. Despite its infamy as the scourge of the food industry, the neurotoxin is attracting increasing interest as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin production by C. botulinum appears tightly regulated, to date only positive regulatory elements, thus enhancing the neurotoxin production, have been implicated in this control. The identification of negative regulators, responsible for down-tuning the neurotoxin synthesis, has proven to be elusive, but would offer novel approaches both for the production of safe foods and for the development of therapeutic neurotoxins. Here, we report a two-component signal transduction system that negatively regulates botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Sahala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - John T. Heap
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
191
|
Liou ML, Soo PC, Ling SR, Kuo HY, Tang CY, Chang KC. The sensor kinase BfmS mediates virulence in Acinetobacter baumannii. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 47:275-81. [PMID: 23453128 DOI: 10.1016/j.jmii.2012.12.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/15/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND/PURPOSE BfmR, the response regulator component of the two-component system BfmRS, has important roles in biofilm formation and cellular morphology of Acinetobacter baumannii. Until now, the contribution of the sensor kinase BfmS to the virulence of this bacterium remains unknown. In this study, a bfmS knockout and complementation studies were performed to clarify the role of BfmS in A. baumannii virulence. METHODS We constructed a bfmS knockout mutant in the A. baumannii 17978 type strain by transposon inactivation. To clarify the role of bfmS in A. baumannii virulence, the biofilm formation, adherence ability to eukaryotic cells, serum resistance, and antibiotic susceptibility tests were performed in A. baumannii 17978 and its derivative knockout and complementation strains. RESULTS The bfmS knockout displayed a reduction in biofilm formation, loss of adherence to eukaryotic cells, and greater sensitivity to serum killing compared with the parent strain. Proteomic analysis of culture supernatants revealed that the release of outer membrane proteins (Omps), including CarO and outer membrane protein A (OmpA), was associated with the inactivation of BfmS in A. baumannii. CONCLUSION This study is the first to demonstrate that the pathway regulated by the sensor kinase BfmS is associated with biofilm formation, adherence to biotic surfaces, serum resistance, and antibiotic susceptibility, which may be associated with the release of Omps in A. baumannii.
Collapse
Affiliation(s)
- Ming-Li Liou
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsin-Chu City, Taiwan; Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Po-Chi Soo
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Siao-Ru Ling
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan
| | - Han-Yueh Kuo
- Department of Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu City, Taiwan; School of Medicine, National Yang-Ming University, New Taipei City, Taiwan
| | - Chuan Yi Tang
- Department of Computer Science and Information Engineering, Providence University, Taichung County, Taiwan
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien, Taiwan; Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.
| |
Collapse
|
192
|
Martinez MA, Das K, Saikolappan S, Materon LA, Dhandayuthapani S. A serine/threonine phosphatase encoded by MG_207 of Mycoplasma genitalium is critical for its virulence. BMC Microbiol 2013; 13:44. [PMID: 23432936 PMCID: PMC3639085 DOI: 10.1186/1471-2180-13-44] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/19/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Bacterial signal transduction systems like two component system (TCS) and Serine/Threonine kinase (STK) and Serine/Threonine phosphatase (STP) play important roles in the virulence and pathogenesis of bacterial pathogens. Mycoplasma genitalium, a mollicute that causes the urogenital diseases urethritis and cervicitis in men and women, respectively, is a pathogen which lacks TCS but possesses STK/STP. In this study, we investigated the biochemical and virulence properties of an STP protein encoded by the gene MG_207 of this species. RESULTS We overexpressed MG207 in Escherichia coli overexpression system as a recombinant His10MG207 protein and purified it with affinity chromatography. This recombinant protein readily hydrolyzed the substrate p-nitrophenyl phosphate (pNPP) in a dose-dependent manner. Additional studies using synthetic peptides as substrates revealed that the recombinant protein was able to hydrolyze the threonine phosphate. Further, a transposon insertion mutant strain of M. genitalium (TIM207) that lacks the protein MG207 showed differentially phosphorylated proteins when compared to the wild type G37 strain. Mass spectrometry revealed that some of the key proteins differentially phosphorylated in TIM207 strain were putative cytoskeletal protein encoded by the gene MG_328 and pyruvate dehydrogenase E1 α chain encoded by the gene MG_274. In addition, TIM207 was noticed to be less cytotoxic to HeLa cells and this correlated with the production of less hydrogen peroxide by this strain. This strain was also less efficient in inducing the differentiation of THP-1 cell line as compared to wild type M. genitalium. CONCLUSIONS The results of the study suggest that MG207 is an important signaling protein of M. genitalium and its presence may be crucial for the virulence of this species.
Collapse
Affiliation(s)
- Mario A Martinez
- Regional Academic Health Center and Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, Edinburg, TX 78541, USA
| | | | | | | | | |
Collapse
|
193
|
Piek S, Kahler CM. A comparison of the endotoxin biosynthesis and protein oxidation pathways in the biogenesis of the outer membrane of Escherichia coli and Neisseria meningitidis. Front Cell Infect Microbiol 2012; 2:162. [PMID: 23267440 PMCID: PMC3526765 DOI: 10.3389/fcimb.2012.00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/01/2012] [Indexed: 01/13/2023] Open
Abstract
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism.
Collapse
Affiliation(s)
- Susannah Piek
- Department of Pathology and Laboratory Medicine, The University of Western Australia Perth, WA, Australia
| | | |
Collapse
|
194
|
Fernandes N, Steinberg P, Rusch D, Kjelleberg S, Thomas T. Community structure and functional gene profile of bacteria on healthy and diseased thalli of the red seaweed Delisea pulchra. PLoS One 2012; 7:e50854. [PMID: 23226544 PMCID: PMC3513314 DOI: 10.1371/journal.pone.0050854] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/29/2012] [Indexed: 12/13/2022] Open
Abstract
Disease is increasingly viewed as a major factor in the ecology of marine communities and its impact appears to be increasing with environmental change, such as global warming. The temperate macroalga Delisea pulchra bleaches in Southeast Australia during warm summer periods, a phenomenon which previous studies have indicated is caused by a temperature induced bacterial disease. In order to better understand the ecology of this disease, the bacterial communities associated with threes type of samples was investigated using 16S rRNA gene and environmental shotgun sequencing: 1) unbleached (healthy) D. pulchra 2) bleached parts of D. pulchra and 3) apparently healthy tissue adjacent to bleached regions. Phylogenetic differences between healthy and bleached communities mainly reflected relative changes in the taxa Colwelliaceae, Rhodobacteraceae, Thalassomonas and Parvularcula. Comparative metagenomics showed clear difference in the communities of healthy and diseased D. pulchra as reflected by changes in functions associated with transcriptional regulation, cation/multidrug efflux and non-ribosomal peptide synthesis. Importantly, the phylogenetic and functional composition of apparently healthy tissue adjacent to bleached sections of the thalli indicated that changes in the microbial communities already occur in the absence of visible tissue damage. This shift in unbleached sections might be due to the decrease in furanones, algal metabolites which are antagonists of bacterial quorum sensing. This study reveals the complex shift in the community composition associated with bleaching of Delisea pulchra and together with previous studies is consistent with a model in which elevated temperatures reduce levels of chemical defenses in stressed thalli, leading to colonization or proliferation by opportunistic pathogens or scavengers.
Collapse
Affiliation(s)
- Neil Fernandes
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Peter Steinberg
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
- Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, Singapore
| | - Doug Rusch
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Staffan Kjelleberg
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Torsten Thomas
- The Centre for Marine Bio-Innovation, University of New South Wales, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
195
|
Thompson RJ, Bobay BG, Stowe SD, Olson AL, Peng L, Su Z, Actis LA, Melander C, Cavanagh J. Identification of BfmR, a response regulator involved in biofilm development, as a target for a 2-Aminoimidazole-based antibiofilm agent. Biochemistry 2012. [PMID: 23186243 DOI: 10.1021/bi3015289] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2-Aminoimidazoles (2AIs) have been documented to disrupt bacterial protection mechanisms, including biofilm formation and genetically encoded antibiotic resistance traits. Using Acinetobacter baumannii, we provide initial insight into the mechanism of action of a 2AI-based antibiofilm agent. Confocal microscopy confirmed that the 2AI is cell permeable, while pull-down assays identified BfmR, a response regulator that is the master controller of biofilm formation, as a target for this compound. Binding assays demonstrated specificity of the 2AI for response regulators, while computational docking provided models for 2AI-BfmR interactions. The 2AI compound studied here represents a unique small molecule scaffold that targets bacterial response regulators.
Collapse
Affiliation(s)
- Richele J Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Francis S, Wilke KE, Brown DE, Carlson EE. Mechanistic insight into inhibition of two-component system signaling. MEDCHEMCOMM 2012; 4:269-277. [PMID: 23336064 DOI: 10.1039/c2md20308a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two-component signal transduction systems (TCSs) are commonly used by bacteria to couple environmental stimuli to adaptive responses. Targeting the highly conserved kinase domain in these systems represents a promising strategy for the design of a broad-spectrum antibiotic; however, development of such compounds has been marred by an incomplete understanding of the conserved binding features within the active site that could be exploited in molecule design. Consequently, a large percentage of the available TCS inhibitors demonstrate poor target specificity and act via multiple mechanisms, with aggregation of the kinase being the most notable. In order to elucidate the mode of action of some of these compounds, molecular modeling was employed to dock a suite of molecules into the ATP-binding domain of several histidine kinases. This effort revealed a key structural feature of the domain that is likely interacting with several known inhibitors and is also highly conserved. Furthermore, generation of several simplified scaffolds derived from a reported inhibitor and characterization of these compounds using activity assays, protein aggregation studies and saturation transfer differential (STD) NMR suggests that targeting of this protein feature may provide a basis for the design of ATP-competitive compounds.
Collapse
Affiliation(s)
- Samson Francis
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana, USA. Tel: 812-855-3665;
| | | | | | | |
Collapse
|
197
|
Hirano T, Beck DAC, Wright CJ, Demuth DR, Hackett M, Lamont RJ. Regulon controlled by the GppX hybrid two component system in Porphyromonas gingivalis. Mol Oral Microbiol 2012. [PMID: 23194602 DOI: 10.1111/omi.12007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The periodontal pathogen Porphyromonas gingivalis experiences a number of environmental conditions in the oral cavity, and must monitor and respond to a variety of environmental cues. However, the organism possesses only five full two-component systems, one of which is the hybrid system GppX. To investigate the regulon controlled by GppX we performed RNA-Seq on a ΔGppX mutant. Fifty-three genes were upregulated and 37 genes were downregulated in the ΔGppX mutant. Pathway analyses revealed no systemic function for GppX under nutrient-replete conditions; however, over 40% of the differentially abundant genes were annotated as encoding hypothetical proteins indicating a novel role for GppX. Abundance of small RNA was, in general, not affected by the absence of GppX. To further define the role of GppX with respect to regulation of a hypothetical protein observed with the greatest significant relative abundance change relative to a wild-type control, PGN_0151, we constructed a series of strains in which the ΔgppX mutation was complemented with a GppX protein containing specific domain and phosphotransfer mutations. The transmembrane domains, the DNA-binding domain and the phosphotransfer residues were all required for regulation of PGN_0151. In addition, binding of GppX to the PGN_0151 promoter regions was confirmed by an electrophoretic mobility shift assay. Both the ΔGppX mutant and a ΔPGN_0151 mutant were deficient in monospecies biofilm formation, suggesting a role for the GppX-PGN_0151 regulon in colonization and survival of the organism.
Collapse
Affiliation(s)
- T Hirano
- Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, KY, USA
| | | | | | | | | | | |
Collapse
|
198
|
Abstract
LysR-type transcriptional regulators (LTTRs) are the largest, most diverse family of prokaryotic transcription factors, with regulatory roles spanning metabolism, cell growth and division, and pathogenesis. Using a sequence-defined transposon mutant library, we screened a panel of V. cholerae El Tor mutants to identify LTTRs required for host intestinal colonization. Surprisingly, out of 38 LTTRs, only one severely affected intestinal colonization in the suckling mouse model of cholera: the methionine metabolism regulator, MetR. Genetic analysis of genes influenced by MetR revealed that glyA1 and metJ were also required for intestinal colonization. Chromatin immunoprecipitation of MetR and quantitative reverse transcription-PCR (qRT-PCR) confirmed interaction with and regulation of glyA1, indicating that misregulation of glyA1 is likely responsible for the colonization defect observed in the metR mutant. The glyA1 mutant was auxotrophic for glycine but exhibited wild-type trimethoprim sensitivity, making folate deficiency an unlikely cause of its colonization defect. MetJ regulatory mutants are not auxotrophic but are likely altered in the regulation of amino acid-biosynthetic pathways, including those for methionine, glycine, and serine, and this misregulation likely explains its colonization defect. However, mutants defective in methionine, serine, and cysteine biosynthesis exhibited wild-type virulence, suggesting that these amino acids can be scavenged in vivo. Taken together, our results suggest that glycine biosynthesis may be required to alleviate an in vivo nutritional restriction in the mouse intestine; however, additional roles for glycine may exist. Irrespective of the precise nature of this requirement, this study illustrates the importance of pathogen metabolism, and the regulation thereof, as a virulence factor. Vibrio cholerae continues to be a severe cause of morbidity and mortality in developing countries. Identification of V. cholerae factors critical to disease progression offers the potential to develop or improve upon therapeutics and prevention strategies. To increase the efficiency of virulence factor discovery, we employed a regulator-centric approach to multiplex our in vivo screening capabilities and allow whole regulons in V. cholerae to be interrogated for pathogenic potential. We identified MetR as a new virulence regulator and serine hydroxymethyltransferase GlyA1 as a new MetR-regulated virulence factor, both required by V. cholerae to colonize the infant mouse intestine. Bacterial metabolism is a prerequisite to virulence, and current knowledge of in vivo metabolism of pathogens is limited. Here, we expand the known role of amino acid metabolism and regulation in virulence and offer new insights into the in vivo metabolic requirements of V. cholerae within the mouse intestine.
Collapse
|
199
|
Jeong DW, Cho H, Jones MB, Shatzkes K, Sun F, Ji Q, Liu Q, Peterson SN, He C, Bae T. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus. Mol Microbiol 2012; 86:331-48. [PMID: 22882143 DOI: 10.1111/j.1365-2958.2012.08198.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2012] [Indexed: 12/21/2022]
Abstract
In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate the sensor kinase's phosphatase activity. Efficient activation of the phosphatase activity required the presence of both SaeP and SaeQ. When SaeP and SaeQ were ectopically expressed, the expression of coagulase, a sae target with low affinity for phosphorylated SaeR, was greatly reduced, while the expression of alpha-haemolysin, a sae target with high affinity for phosphorylated SaeR, was not, demonstrating a differential effect of SaePQ on sae target gene expression. When expression of SaePQ was abolished, most sae target genes were induced at an elevated level. Since the expression of SaeP and SaeQ is induced by the SaeRS TCS, these results suggest that the SaeRS TCS returns to the pre-activation state by a negative feedback mechanism.
Collapse
Affiliation(s)
- Do-Won Jeong
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN 46408, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Han H, Liu C, Wang Q, Xuan C, Zheng B, Tang J, Yan J, Zhang J, Li M, Cheng H, Lu G, Gao GF. The two-component system Ihk/Irr contributes to the virulence of Streptococcus suis serotype 2 strain 05ZYH33 through alteration of the bacterial cell metabolism. Microbiology (Reading) 2012; 158:1852-1866. [DOI: 10.1099/mic.0.057448-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Huiming Han
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cuihua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Quanhui Wang
- Beijing Proteomics Institute, Beijing 101318, PR China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100029, PR China
| | - Chunling Xuan
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Beiwen Zheng
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jiaqi Tang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing 210002, PR China
| | - Jinghua Yan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingren Zhang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Ming Li
- Department of Microbiology, Third Military Medical University, Chongqing 630030, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Hao Cheng
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Guangwen Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - George F. Gao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, PR China
- Graduate University, Chinese Academy of Sciences, Beijing 100049, PR China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|