151
|
Lim JA, Lee DH, Heu S. Isolation and Genomic Characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum. THE PLANT PATHOLOGY JOURNAL 2015; 31:83-89. [PMID: 25774115 PMCID: PMC4356610 DOI: 10.5423/ppj.nt.09.2014.0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In order to control Pectobacterium carotovorum subsp. carotovorum, a novel virulent bacteriophage PM2 was isolated. Bacteriophage PM2 can infect 48% of P. carotovorum subsp. carotovorum and 78% of P. carotovorum subsp. brasilliensis but none of atrosepticum, betavasculorum, odoriferum and wasabiae isolates had been infected with PM2. PM2 phage belongs to the family Myoviridae, and contains a large head and contractile tail. It has a 170,286 base pair genome that encodes 291 open reading frames (ORFs) and 12 tRNAs. Most ORFs in bacteriophage PM2 share a high level of homology with T4-like phages including IME08, RB69, and JS98. Phylogenetic analysis based on the amino acid sequence of terminase large subunits confirmed that PM2 is classified as a T4-like phage. It contains no integrase- or no repressor-coding genes related to the lysogenic cycle, and lifestyle prediction using PHACT software suggested that PM2 is a virulent bacteriophage.
Collapse
Affiliation(s)
| | | | - Sunggi Heu
- Corresponding author. Phone) +82-63-238-3403, FAX) +82-63-238-3840, E-mail)
| |
Collapse
|
152
|
Wang T, Lin H, Zhang L, Huang G, Wu L, Yu L, Xiong H. Expression and purification of recombinant lyase gp17 from the LSB-1 phage in Escherichia coli. Virol Sin 2015; 30:69-72. [PMID: 25628220 PMCID: PMC8200870 DOI: 10.1007/s12250-014-3527-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Taiwu Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Hui Lin
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Lu Zhang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Guorong Huang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Long Wu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Lei Yu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| | - Hongyan Xiong
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038 China
| |
Collapse
|
153
|
Kurantowicz N, Sawosz E, Jaworski S, Kutwin M, Strojny B, Wierzbicki M, Szeliga J, Hotowy A, Lipińska L, Koziński R, Jagiełło J, Chwalibog A. Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. NANOSCALE RESEARCH LETTERS 2015; 10:23. [PMID: 25685114 PMCID: PMC4312314 DOI: 10.1186/s11671-015-0749-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/10/2015] [Indexed: 05/23/2023]
Abstract
Graphene family materials have unique properties, which make them valuable for a range of applications. The antibacterial properties of graphene have been reported; however, findings have been contradictory. This study reports on the antimicrobial proprieties of three different graphene materials (pristine graphene (pG), graphene oxide (GO), and reduced graphene oxide (rGO)) against the food-borne bacterial pathogens Listeria monocytogenes and Salmonella enterica. A high concentration (250 μg/mL) of all the analyzed graphenes completely inhibited the growth of both pathogens, despite their difference in bacterial cell wall structure. At a lower concentration (25 μg/mL), similar effects were only observed with GO, as growth inhibition decreased with pG and rGO at the lower concentration. Interaction of the nanoparticles with the pathogenic bacteria was found to differ depending on the form of graphene. Microscopic imaging demonstrated that bacteria were arranged at the edges of pG and rGO, while with GO, they adhered to the nanoparticle surface. GO was found to have the highest antibacterial activity.
Collapse
Affiliation(s)
- Natalia Kurantowicz
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ewa Sawosz
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Sławomir Jaworski
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Marta Kutwin
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Barbara Strojny
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Mateusz Wierzbicki
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Jacek Szeliga
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Anna Hotowy
- />Department of Animal Nutrition and Biotechnology, Faculty of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
| | - Ludwika Lipińska
- />Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
| | - Rafał Koziński
- />Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
| | - Joanna Jagiełło
- />Institute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warsaw, Poland
| | - André Chwalibog
- />Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frdereiksberg C, Copenhagen, Denmark
| |
Collapse
|
154
|
Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus. Appl Environ Microbiol 2015; 81:2274-83. [PMID: 25595773 DOI: 10.1128/aem.03485-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.
Collapse
|
155
|
Feeney A, Kropp KA, O’Connor R, Sleator RD. Cronobacter sakazakii: stress survival and virulence potential in an opportunistic foodborne pathogen. Gut Microbes 2015; 5:711-8. [PMID: 25562731 PMCID: PMC4615781 DOI: 10.4161/19490976.2014.983774] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A characteristic feature of the opportunistic foodborne pathogen Cronobacter sakazakii is its ability to survive in extremely arid environments, such as powdered infant formula, making it a dangerous opportunistic pathogen of individuals of all age groups, especially infants and neonates. Herein, we provide a brief overview of the pathogen; clinical manifestations, environmental reservoirs and our current understanding of stress response mechanisms and virulence factors which allow it to cause disease.
Collapse
Affiliation(s)
- Audrey Feeney
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Kai A Kropp
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roxana O’Connor
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland,Correspondence to: Roy D Sleator;
| |
Collapse
|
156
|
Otter J, Vickery K, Walker J, deLancey Pulcini E, Stoodley P, Goldenberg S, Salkeld J, Chewins J, Yezli S, Edgeworth J. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection. J Hosp Infect 2015; 89:16-27. [DOI: 10.1016/j.jhin.2014.09.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
157
|
Sarhan WA, Azzazy HME. Phage approved in food, why not as a therapeutic? Expert Rev Anti Infect Ther 2014; 13:91-101. [DOI: 10.1586/14787210.2015.990383] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
158
|
Scaffold-based anti-infection strategies in bone repair. Ann Biomed Eng 2014; 43:515-28. [PMID: 25476163 DOI: 10.1007/s10439-014-1205-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Bone fractures and non-union defects often require surgical intervention where biomaterials are used to correct the defect, and approximately 10% of these procedures are compromised by bacterial infection. Currently, treatment options are limited to sustained, high doses of antibiotics and surgical debridement of affected tissue, leaving a significant, unmet need for the development of therapies to combat device-associated biofilm and infections. Engineering implants to prevent infection is a desirable material characteristic. Tissue engineered scaffolds for bone repair provide a means to both regenerate bone and serve as a base for adding antimicrobial agents. Incorporating anti-infection properties into regenerative medicine therapies could improve clinical outcomes and reduce the morbidity and mortality associated with biomaterial implant-associated infections. This review focuses on current animal models and technologies available to assess bone repair in the context of infection, antimicrobial agents to fight infection, the current state of antimicrobial scaffolds, and future directions in the field.
Collapse
|
159
|
Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol 2014; 197:410-9. [PMID: 25404701 DOI: 10.1128/jb.02230-14] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bacteriophages and genetic elements, such as prophage-like elements, pathogenicity islands, and phage morons, make up a considerable amount of bacterial genomes. Their transfer and subsequent activity within the host's genetic circuitry have had a significant impact on bacterial evolution. In this review, we consider what underlying mechanisms might cause the spontaneous activity of lysogenic phages in single bacterial cells and how the spontaneous induction of prophages can lead to competitive advantages for and influence the lifestyle of bacterial populations or the virulence of pathogenic strains.
Collapse
|
160
|
Tzeng A, Tzeng TH, Vasdev S, Korth K, Healey T, Parvizi J, Saleh KJ. Treating periprosthetic joint infections as biofilms: key diagnosis and management strategies. Diagn Microbiol Infect Dis 2014; 81:192-200. [PMID: 25586931 DOI: 10.1016/j.diagmicrobio.2014.08.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/22/2014] [Indexed: 12/23/2022]
Abstract
Considerable evidence suggests that microbial biofilms play an important role in periprosthetic joint infection (PJI) pathogenesis. Compared to free-floating planktonic bacteria, biofilm bacteria are more difficult to culture and possess additional immune-evasive and antibiotic resistance mechanisms, making infections harder to detect and eradicate. This article reviews cutting-edge advances in biofilm-associated infection diagnosis and treatment in the context of current PJI guidelines and highlights emerging technologies that may improve the efficacy and reduce costs associated with PJI. Promising PJI diagnostic tools include culture-independent methods based on sequence comparisons of the bacterial 16S ribosomal RNA gene, which offer higher throughput and greater sensitivity than culture-based methods. For therapy, novel methods based on disrupting biofilm-specific properties include quorum quenchers, bacteriophages, and ultrasound/electrotherapy. Since biofilm infections are not easily detected or treated by conventional approaches, molecular diagnostic techniques and next-generation antibiofilm treatments should be integrated into PJI clinical practice guidelines in the near future.
Collapse
Affiliation(s)
- Alice Tzeng
- Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tony H Tzeng
- Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9679, USA
| | - Sonia Vasdev
- Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9679, USA
| | - Kyle Korth
- Rush University Medical College, Chicago, IL 60612, USA
| | - Travis Healey
- Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9679, USA
| | - Javad Parvizi
- Department of Orthopaedics, Rothman Institute, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Khaled J Saleh
- Division of Orthopaedics and Rehabilitation, Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL 62794-9679, USA.
| |
Collapse
|
161
|
Sutherland TD, Sriskantha A, Church JS, Strive T, Trueman HE, Kameda T. Stabilization of viruses by encapsulation in silk proteins. ACS APPLIED MATERIALS & INTERFACES 2014; 6:18189-18196. [PMID: 25229876 DOI: 10.1021/am5051873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Viruses are important for a range of modern day applications. However, their utility is limited by their susceptibility to temperature degradation. In this study, we report a simple system to compare the ability of different dried protein films to stabilize viruses against exposure to elevated temperatures. Films from each of three different silks, silkworm, honeybee silk and hornet silk, stabilized entrapped viruses at 37 °C better than films of albumin from bovine serum (BSA) and all four proteins provided substantially more stabilization than no protein controls. A comparison of the molecular structure of the silks and BSA films showed no correlation between the ability of the proteins to stabilize the virus and the secondary structure of the protein in the films. The mechanism of stabilization is discussed and a hypothesis is suggested to explain the superior performance of the silk proteins.
Collapse
Affiliation(s)
- Tara D Sutherland
- Ecosystem Sciences, Commonwealth Scientific and Industrial Research Organisation (CSIRO) , Clunies Ross Street, Acton, Australian Capital Territory 2601, Australia
| | | | | | | | | | | |
Collapse
|
162
|
Jassim SAA, Limoges RG. Natural solution to antibiotic resistance: bacteriophages 'The Living Drugs'. World J Microbiol Biotechnol 2014; 30:2153-70. [PMID: 24781265 PMCID: PMC4072922 DOI: 10.1007/s11274-014-1655-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/18/2014] [Indexed: 12/13/2022]
Abstract
Antibiotics have been a panacea in animal husbandry as well as in human therapy for decades. The huge amount of antibiotics used to induce the growth and protect the health of farm animals has lead to the evolution of bacteria that are resistant to the drug's effects. Today, many researchers are working with bacteriophages (phages) as an alternative to antibiotics in the control of pathogens for human therapy as well as prevention, biocontrol, and therapy in animal agriculture. Phage therapy and biocontrol have yet to fulfill their promise or potential, largely due to several key obstacles to their performance. Several suggestions are shared in order to point a direction for overcoming common obstacles in applied phage technology. The key to successful use of phages in modern scientific, farm, food processing and clinical applications is to understand the common obstacles as well as best practices and to develop answers that work in harmony with nature.
Collapse
Affiliation(s)
- Sabah A. A. Jassim
- Applied Bio Research Inc., 455 Pelissier St., Windsor, ON N9A 6Z9 Canada
| | - Richard G. Limoges
- Applied Bio Research Inc., 455 Pelissier St., Windsor, ON N9A 6Z9 Canada
| |
Collapse
|
163
|
Inhibition of biofilm formation by T7 bacteriophages producing quorum-quenching enzymes. Appl Environ Microbiol 2014; 80:5340-8. [PMID: 24951790 DOI: 10.1128/aem.01434-14] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bacterial growth in biofilms is the major cause of recalcitrant biofouling in industrial processes and of persistent infections in clinical settings. The use of bacteriophage treatment to lyse bacteria in biofilms has attracted growing interest. In particular, many natural or engineered phages produce depolymerases to degrade polysaccharides in the biofilm matrix and allow access to host bacteria. However, the phage-produced depolymerases are highly specific for only the host-derived polysaccharides and may have limited effects on natural multispecies biofilms. In this study, an engineered T7 bacteriophage was constructed to encode a lactonase enzyme with broad-range activity for quenching of quorum sensing, a form of bacterial cell-cell communication via small chemical molecules (acyl homoserine lactones [AHLs]) that is necessary for biofilm formation. Our results demonstrated that the engineered T7 phage expressed the AiiA lactonase to effectively degrade AHLs from many bacteria. Addition of the engineered T7 phage to mixed-species biofilms containing Pseudomonas aeruginosa and Escherichia coli resulted in inhibition of biofilm formation. Such quorum-quenching phages that can lyse host bacteria and express quorum-quenching enzymes to affect diverse bacteria in biofilm communities may become novel antifouling and antibiofilm agents in industrial and clinical settings.
Collapse
|
164
|
Citorik RJ, Mimee M, Lu TK. Bacteriophage-based synthetic biology for the study of infectious diseases. Curr Opin Microbiol 2014; 19:59-69. [PMID: 24997401 PMCID: PMC4125527 DOI: 10.1016/j.mib.2014.05.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/28/2014] [Indexed: 01/01/2023]
Abstract
Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome.
Collapse
Affiliation(s)
- Robert J. Citorik
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
| | - Mark Mimee
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
| | - Timothy K. Lu
- MIT Microbiology Program, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
165
|
Viertel TM, Ritter K, Horz HP. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 2014; 69:2326-36. [PMID: 24872344 DOI: 10.1093/jac/dku173] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bacteriophage therapy (the application of phages to treat bacterial infections) has a tradition dating back almost a century, but interest in phage therapy slowed down in the West when antibiotics were discovered. With the emerging threat of infections caused by multidrug-resistant bacteria and scarce prospects of newly introduced antibiotics in the future, phages are currently being reconsidered as alternative therapeutics. Conventional phage therapy uses lytic bacteriophages for treatment and recent human clinical trials have revealed encouraging results. In addition, several other modern approaches to phages as therapeutics have been made in vitro and in animal models. Dual therapy with phages and antibiotics has resulted in significant reductions in the number of bacterial pathogens. Bioengineered phages have overcome many of the problems of conventional phage therapy, enabled targeted drug delivery or reversed the resistance of drug-resistant bacteria. The use of enzymes derived from phages, such as endolysin, as therapeutic agents has been efficient in the elimination of Gram-positive pathogens. This review presents novel strategies for phage-related therapies and describes our current knowledge of natural bacteriophages within the human microbiome. Our aim is to provide an overview of the high number of different methodological concepts, thereby encouraging further research on this topic, with the ultimate goal of using phages as therapeutic or preventative medicines in daily clinical practice.
Collapse
Affiliation(s)
- Tania Mareike Viertel
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Klaus Ritter
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Hans-Peter Horz
- Division of Virology, Institute of Medical Microbiology, RWTH Aachen University Hospital, Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
166
|
Kitti T, Thummeepak R, Thanwisai A, Boonyodying K, Kunthalert D, Ritvirool P, Sitthisak S. Characterization and Detection of Endolysin Gene from Three Acinetobacter baumannii Bacteriophages Isolated from Sewage Water. Indian J Microbiol 2014; 54:383-8. [PMID: 25320435 DOI: 10.1007/s12088-014-0472-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/09/2014] [Indexed: 01/21/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen that exists in hospital environments. The emergence of multidrug resistant A. baumannii (MDRAB) has been reported worldwide. It is necessary to find a novel and effective treatment for MDRAB infection. In this study, three bacteriophages, designated as ØABP-01, ØABP-02 and ØABP-04 were selected for analysis. Transmission electron microscopy showed that bacteriophage ØABP-01 belonged to the Podoviridae family and bacteriophage ØABP-02 and ØABP-04 are classified into the family Myoviridae. ØABP-01 had the widest host range. ØABP-01, ØABP-02 and ØABP-04 exhibited a latent period of 15, 20 and 20 min. The burst sizes of the three bacteriophages were 110, 120 and 150 PFU/cell. DNA restriction analysis using EcoRI, HindIII, PstI, SphI, BamHI and SmaI showed different DNA fragment patterns between the three bacteriophages. ØABP-01 and ØABP-04 was positive for the endolysin gene as determined by PCR. In conclusion, bacteriophage ØABP-01 showed broad host-specificity, good lytic activity and a short latency period, making it an appropriate candidate for studying the control and diagnosis associated with MDRAB infections.
Collapse
Affiliation(s)
- Thawatchai Kitti
- Faculty of Oriental Medicine, Chiang Rai College, Chiang Rai, Thailand
| | - Rapee Thummeepak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Kamala Boonyodying
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Duangkamol Kunthalert
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pannika Ritvirool
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutthirat Sitthisak
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand ; Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
167
|
Mandal SM, Roy A, Ghosh AK, Hazra TK, Basak A, Franco OL. Challenges and future prospects of antibiotic therapy: from peptides to phages utilization. Front Pharmacol 2014; 5:105. [PMID: 24860506 PMCID: PMC4027024 DOI: 10.3389/fphar.2014.00105] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/22/2014] [Indexed: 12/30/2022] Open
Abstract
Bacterial infections are raising serious concern across the globe. The effectiveness of conventional antibiotics is decreasing due to global emergence of multi-drug-resistant (MDR) bacterial pathogens. This process seems to be primarily caused by an indiscriminate and inappropriate use of antibiotics in non-infected patients and in the food industry. New classes of antibiotics with different actions against MDR pathogens need to be developed urgently. In this context, this review focuses on several ways and future directions to search for the next generation of safe and effective antibiotics compounds including antimicrobial peptides, phage therapy, phytochemicals, metalloantibiotics, lipopolysaccharide, and efflux pump inhibitors to control the infections caused by MDR pathogens.
Collapse
Affiliation(s)
- Santi M Mandal
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Anupam Roy
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Ananta K Ghosh
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Tapas K Hazra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Amit Basak
- Central Research Facility, Department of Chemistry and Department of Biotechnology, Indian Institute of Technology Kharagpur Kharagpur, India
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasilia, Brazil
| |
Collapse
|
168
|
Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, Kapoor S. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. Pak J Biol Sci 2014; 16:1076-85. [PMID: 24506006 DOI: 10.3923/pjbs.2013.1076.1085] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The term food borne diseases or food-borne illnesses or more commonly food poisoning are used to denote gastrointestinal complications that occur following recent consumption of a particular food or drink. Millions of people suffer worldwide every year and the situation is quiet grave in developing nations creating social and economic strain. The food borne pathogens include various bacteria viz., Salmonella, Campylobacter, Escherichia coli, Listeria monocytogenes, Yersinia enterocolitica, Staphylococcus, Arcobacter, Clostridium perfringens, Cl. botulinum and Bacillus cereus and helminths viz., Taenia. They also include protozoa viz., Trichinella, Sarcocystis, Toxoplasma gondii and Cryptosporidium parvum. The zoonotic potential and the ability to elaborate toxins by many of the microbes causing fatal intoxication are sufficient to understand the seriousness of the situation. The viral agents being host specific their transmission to humans through food of animal origin is not yet confirmed although these animal viruses are similar to that of viruses infecting human. Food-borne bacteria; protozoa and helminthes have complex distribution pattern in the environment and inside the host system. This along with complexity of the maintenance chain and life cycle (of parasites) has made it difficult for epidemiologist and diagnostician to undertake any immediate safety measures against them. Serological and molecular diagnostic tests viz. ELISA, Latex agglutination test, Lateral flow assays, Immunomagnetic separation assays, molecular assays viz. Polymerase Chain Reaction (PCR), multiplex PCR, immuno-PCR, Realtime PCR, Random Amplified Polymorphic DNA (RAPD)-PCR, DNA microarrays and probes are widely used. Along with these LAMP assays, Capillary Electrophoresis-Single Strand Confirmation polymorphism (CE-SSCP); Flow cytometry, FISH, Biosensors, Direct epifluorescent filter technique, nanotechnology based methods and sophisticated tools (ultrasonography, magnetic resonance imaging and chlonangio-pancreatography) have aided in the diagnosis greatly. Most of the food-borne illnesses are self-limiting but in many instances antibiotics are recommended. With the increased drug resistance however use of chicken immunoglobulin, bacteriophage therapy, probiotics and herbs are gaining much importance these days. Adoption of proper prevention and control measures (including cooking procedures; hygiene, strict adherence to HACCP principles, public awareness and disease surveillance and monitoring) are the need of hour. All these have been discussed vividly in this review to help epidemiologists, diagnosticians, clinicians and above all common people so as to enable them avoid negligence regarding such serious issue.
Collapse
Affiliation(s)
- K Dhama
- Division of Pathology, Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.)-243122, India
| | - S Rajagunalan
- Division of Veterinary Public Health, Indian Veterinary Research Institute, Izatnagar, Bareilly (U.P.)-243122, India
| | - S Chakraborty
- Animal Resource Development Department, Pt. Nehru Complex, Agartala, Tripura-799001, India
| | - A K Verma
- Department of Veterinary Epidemiology and Preventive Medicine, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura (U.P.)-281001, India
| | - A Kumar
- Department of Veterinary Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura (U.P.)-281001, India
| | - R Tiwari
- Department of Veterinary Microbiology and Immunology, Uttar Pradesh Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwa Vidyalaya Evum Go-Anusandhan Sansthan (DUVASU), Mathura (U.P.)-281001, India
| | - S Kapoor
- Department of Veterinary Microbiology, LLRUVAS, Hisar, Haryana, India
| |
Collapse
|
169
|
Uchiyama J, Takemura-Uchiyama I, Kato SI, Sato M, Ujihara T, Matsui H, Hanaki H, Daibata M, Matsuzaki S. In silico analysis of AHJD-like viruses, Staphylococcus aureus phages S24-1 and S13', and study of phage S24-1 adsorption. Microbiologyopen 2014; 3:257-70. [PMID: 24591378 PMCID: PMC3996573 DOI: 10.1002/mbo3.166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 12/27/2013] [Accepted: 01/18/2014] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is a clinically important bacterium that is commensal in both humans and animals. Bacteriophage (phage) attachment to the host bacterial surface is an important process during phage infection, which involves interactions between phage receptor-binding proteins and host receptor molecules. However, little information is available on the receptor-binding protein of S. aureus phages. S. aureus virulent phages S24-1 and S13' (family Podoviridae, genus AHJD-like viruses) were isolated from sewage. In the present study, we investigated the receptor-binding protein of AHJD-like viruses using phage S24-1. First, based on a comparative genomic analysis of phages S24-1 and S13', open reading frame 16 (ORF16) of phage S24-1 was speculated to be the receptor-binding protein, which possibly determines the host range. Second, we demonstrated that this was the receptor-binding protein of phage S24-1. Third, our study suggested that wall teichoic acids in the cell walls of S. aureus are the main receptor molecules for ORF16 and phage S24-1. Finally, the C-terminal region of ORF16 may be essential for binding to S. aureus. These results strongly suggest that ORF16 of phage S24-1 and its homologs may be the receptor-binding proteins of AHJD-like viruses.
Collapse
Affiliation(s)
- Jumpei Uchiyama
- Department of Microbiology and Infection, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
- Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
| | - Iyo Takemura-Uchiyama
- Department of Microbiology and Infection, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
| | - Shin-ichiro Kato
- Research Institute of Molecular Genetics, Kochi UniversityNankoku City, Kochi, Japan
| | - Miho Sato
- Science Research Center, Kochi UniversityNankoku City, Kochi, Japan
| | - Takako Ujihara
- Science Research Center, Kochi UniversityNankoku City, Kochi, Japan
| | - Hidehito Matsui
- Research Center for Infections and Antimicrobials, Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
| | - Hideaki Hanaki
- Research Center for Infections and Antimicrobials, Kitasato Institute for Life Sciences, Kitasato UniversityTokyo, Japan
| | - Masanori Daibata
- Department of Microbiology and Infection, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
- Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
| | - Shigenobu Matsuzaki
- Department of Microbiology and Infection, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
- Center for Innovative and Translational Medicine, Faculty of Medicine, Kochi UniversityNankoku City, Kochi, Japan
| |
Collapse
|
170
|
Pohane AA, Joshi H, Jain V. Molecular dissection of phage endolysin: an interdomain interaction confers host specificity in Lysin A of Mycobacterium phage D29. J Biol Chem 2014; 289:12085-12095. [PMID: 24627486 DOI: 10.1074/jbc.m113.529594] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis has always been recognized as one of the most successful pathogens. Bacteriophages that attack and kill mycobacteria offer an alternate mechanism for the curtailment of this bacterium. Upon infection, mycobacteriophages produce lysins that catalyze cell wall peptidoglycan hydrolysis and mycolic acid layer breakdown of the host resulting in bacterial cell rupture and virus release. The ability to lyse bacterial cells make lysins extremely significant. We report here a detailed molecular dissection of the function and regulation of mycobacteriophage D29 Lysin A. Several truncated versions of Lysin A were constructed, and their activities were analyzed by zymography and by expressing them in both Escherichia coli and Mycobacterium smegmatis. Our experiments establish that Lysin A harbors two catalytically active domains, both of which show E. coli cell lysis upon their expression exclusively in the periplasmic space. However, the expression of only one of these domains and the full-length Lysin A caused M. smegmatis cell lysis. Interestingly, full-length protein remained inactive in E. coli periplasm. Our data suggest that the inactivity is ensued by a C-terminal domain that interacts with the N-terminal domain. This interaction was affirmed by surface plasmon resonance. Our experiments also demonstrate that the C-terminal domain of Lysin A selectively binds to M. tuberculosis and M. smegmatis peptidoglycans. Our methodology of studying E. coli cell lysis by Lysin A and its truncations after expressing these proteins in the bacterial periplasm with the help of signal peptide paves the way for a large scale identification and analysis of such proteins obtained from other bacteriophages.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Himanshu Joshi
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|
171
|
Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microbes Infect 2014; 16:512-7. [PMID: 24631574 DOI: 10.1016/j.micinf.2014.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/06/2014] [Accepted: 02/28/2014] [Indexed: 02/02/2023]
Abstract
Nosocomial respiratory infections caused by methicillin-resistant Staphylococcus aureus (MRSA) can progress to lethal systemic infections. Bacteriophage (phage) therapy is expected to be effective against these critical infections. Previously, phage S13' was proposed as a potential therapeutic phage. We here examined phage treatment in a mouse model of lung-derived septicemia using phage S13'. Intraperitoneal phage administration at 6 h postinfection reduced the severity of infection and rescued the infected mice. Phage S13' can efficiently lyse hospital-acquired MRSA strains causing pneumonia-associated bacteremia in vitro. Thus, phage therapy may be a possible therapeutic intervention in staphylococcal lung-derived septicemia.
Collapse
|
172
|
Abstract
The increasing emergence of antimicrobial multiresistant bacteria is of great concern to public health. While these bacteria are becoming an ever more prominent cause of nosocomial and community-acquired infections worldwide, the antibiotic discovery pipeline has been stalled in the last few years with very few efforts in the research and development of novel antibacterial therapies. Some of the root causes that have hampered current antibiotic drug development are the lack of understanding of the mode of action (MOA) of novel antibiotic molecules and the poor characterization of the bacterial physiological response to antibiotics that ultimately causes resistance. Here, we review how bacterial genetic tools can be applied at the genomic level with the goal of profiling resistance to antibiotics and elucidating antibiotic MOAs. Specifically, we highlight how chemical genomic detection of the MOA of novel antibiotic molecules and antibiotic profiling by next-generation sequencing are leveraging basic antibiotic research to unprecedented levels with great opportunities for knowledge translation.
Collapse
Affiliation(s)
- Silvia T Cardona
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and.,b Department of Medical Microbiology & Infectious Disease , University of Manitoba , Winnipeg , Canada
| | - Carrie Selin
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| | - April S Gislason
- a Department of Microbiology , University of Manitoba , Winnipeg , Canada and
| |
Collapse
|
173
|
Yosef I, Kiro R, Molshanski-Mor S, Edgar R, Qimron U. Different approaches for using bacteriophages against antibiotic-resistant bacteria. BACTERIOPHAGE 2014; 4:e28491. [PMID: 24653944 DOI: 10.4161/bact.28491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/03/2014] [Accepted: 03/10/2014] [Indexed: 01/21/2023]
Abstract
Bacterial resistance to antibiotics is an emerging threat requiring urgent solutions. Ever since their discovery, lytic bacteriophages have been suggested as therapeutic agents, but their application faces various obstacles: sequestration of the phage by the spleen and liver, antibodies against the phage, narrow host range, poor accessibility to the infected tissue, and bacterial resistance. Variations on bacteriophage use have been suggested, such as temperate phages as gene-delivery vehicles into pathogens. This approach, which is proposed to sensitize pathogens residing on hospital surfaces and medical personnel's skin, and its prospects are described in this addendum. Furthermore, phage-encoded products have been proposed as weapons against antibiotic resistance in bacteria. We describe a new phage protein which was identified during basic research into T7 bacteriophages. This protein may serendipitously prove useful for treating antibiotic-resistant pathogens. We believe that further basic research will lead to novel strategies in the fight against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Ruth Kiro
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Shahar Molshanski-Mor
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Rotem Edgar
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology; Sackler School of Medicine; Tel Aviv University; Tel Aviv, Israel
| |
Collapse
|
174
|
Al-Fendi A, Shueb RH, Ravichandran M, Yean CY. Isolation and characterization of lytic vibriophage against Vibrio cholerae O1 from environmental water samples in Kelantan, Malaysia. J Basic Microbiol 2014; 54:1036-43. [PMID: 24532381 DOI: 10.1002/jobm.201300458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
Water samples from a variety of sources in Kelantan, Malaysia (lakes, ponds, rivers, ditches, fish farms, and sewage) were screened for the presence of bacteriophages infecting Vibrio cholerae. Ten strains of V. cholerae that appeared to be free of inducible prophages were used as the host strains. Eleven bacteriophage isolates were obtained by plaque assay, three of which were lytic and further characterized. The morphologies of the three lytic phages were similar with each having an icosahedral head (ca. 50-60 nm in diameter), a neck, and a sheathed tail (ca. 90-100 nm in length) characteristic of the family Myoviridae. The genomes of the lytic phages were indistinguishable in length (ca. 33.5 kb), nuclease sensitivity (digestible with DNase I, but not RNase A or S1 nuclease), and restriction enzyme sensitivity (identical banding patterns with HindIII, no digestion with seven other enzymes). Testing for infection against 46 strains of V. cholerae and 16 other species of enteric bacteria revealed that all three isolates had a narrow host range and were only capable of infecting V. cholerae O1 El Tor Inaba. The similar morphologies, indistinguishable genome characteristics, and identical host ranges of these lytic isolates suggests that they represent one phage, or several very closely related phages, present in different water sources. These isolates are good candidates for further bio-phage-control studies.
Collapse
Affiliation(s)
- Ali Al-Fendi
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | | | | | | |
Collapse
|
175
|
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of “smart” antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions, what remains elusive is a generalized and programmable strategy that can distinguish between even closely related microorganisms and that allows for fine control over the composition of a microbial population. This study demonstrates that RNA-directed immune systems in bacteria and archaea called CRISPR-Cas systems can provide such a strategy. These systems can be employed to selectively and quantitatively remove individual bacterial strains based purely on sequence information, creating opportunities in the treatment of multidrug-resistant infections, the control of industrial fermentations, and the study of microbial consortia.
Collapse
|
176
|
Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 2014. [PMID: 24473129 DOI: 10.1128/mbio.00928-13.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems in bacteria and archaea employ CRISPR RNAs to specifically recognize the complementary DNA of foreign invaders, leading to sequence-specific cleavage or degradation of the target DNA. Recent work has shown that the accidental or intentional targeting of the bacterial genome is cytotoxic and can lead to cell death. Here, we have demonstrated that genome targeting with CRISPR-Cas systems can be employed for the sequence-specific and titratable removal of individual bacterial strains and species. Using the type I-E CRISPR-Cas system in Escherichia coli as a model, we found that this effect could be elicited using native or imported systems and was similarly potent regardless of the genomic location, strand, or transcriptional activity of the target sequence. Furthermore, the specificity of targeting with CRISPR RNAs could readily distinguish between even highly similar strains in pure or mixed cultures. Finally, varying the collection of delivered CRISPR RNAs could quantitatively control the relative number of individual strains within a mixed culture. Critically, the observed selectivity and programmability of bacterial removal would be virtually impossible with traditional antibiotics, bacteriophages, selectable markers, or tailored growth conditions. Once delivery challenges are addressed, we envision that this approach could offer a novel means to quantitatively control the composition of environmental and industrial microbial consortia and may open new avenues for the development of "smart" antibiotics that circumvent multidrug resistance and differentiate between pathogenic and beneficial microorganisms. IMPORTANCE Controlling the composition of microbial populations is a critical aspect in medicine, biotechnology, and environmental cycles. While different antimicrobial strategies, such as antibiotics, antimicrobial peptides, and lytic bacteriophages, offer partial solutions, what remains elusive is a generalized and programmable strategy that can distinguish between even closely related microorganisms and that allows for fine control over the composition of a microbial population. This study demonstrates that RNA-directed immune systems in bacteria and archaea called CRISPR-Cas systems can provide such a strategy. These systems can be employed to selectively and quantitatively remove individual bacterial strains based purely on sequence information, creating opportunities in the treatment of multidrug-resistant infections, the control of industrial fermentations, and the study of microbial consortia.
Collapse
|
177
|
Drilling A, Morales S, Boase S, Jervis-Bardy J, James C, Jardeleza C, Tan NCW, Cleland E, Speck P, Vreugde S, Wormald PJ. Safety and efficacy of topical bacteriophage and ethylenediaminetetraacetic acid treatment ofStaphylococcus aureusinfection in a sheep model of sinusitis. Int Forum Allergy Rhinol 2014; 4:176-86. [DOI: 10.1002/alr.21270] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/11/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Amanda Drilling
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Sandra Morales
- Special Phage Services Pty Ltd; Brookvale New South Wales Australia
| | - Samuel Boase
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Joshua Jervis-Bardy
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Craig James
- Adelaide Pathology Partners; Adelaide South Australia Australia
| | - Camille Jardeleza
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Neil Cheng-Wen Tan
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Edward Cleland
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Peter Speck
- School of Biological Sciences; Flinders University; Bedford Park South Australia Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery; University of Adelaide; Adelaide SA Australia
| |
Collapse
|
178
|
Stewart CR, Deery WJ, Egan ESK, Myles B, Petti AA. The product of SPO1 gene 56 inhibits host cell division during infection of Bacillus subtilis by bacteriophage SPO1. Virology 2013; 447:249-53. [PMID: 24210121 DOI: 10.1016/j.virol.2013.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/12/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Abstract
Although cells of Bacillus subtilis continue to grow after being infected by bacteriophage SPO1, they do not undergo cell division. The product of SPO1 gene 56 is necessary and sufficient for this inhibition of cell division. GP56 inhibits cell division when expressed in uninfected B. subtilis, without preventing cell growth, DNA synthesis or chromosome segregation, ultimately causing filamentation and loss of viability. During infection, a gene 56 mutation prevents the inhibition of cell division that occurs in wild-type infection. Under the laboratory conditions used, the gene 56 mutation did not affect burst size, latent period, or other components of the host-takeover process.
Collapse
Affiliation(s)
- Charles R Stewart
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, United States.
| | | | | | | | | |
Collapse
|
179
|
Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi. J Virol 2013; 87:12260-9. [PMID: 24006436 DOI: 10.1128/jvi.01948-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yep-phi is a T7-related bacteriophage specific to Yersinia pestis, and it is routinely used in the identification of Y. pestis in China. Yep-phi infects Y. pestis grown at both 20°C and 37°C. It is inactive in other Yersinia species irrespective of the growth temperature. Based on phage adsorption, phage plaque formation, affinity chromatography, and Western blot assays, the outer membrane proteins of Y. pestis Ail and OmpF were identified to be involved, in addition to the rough lipopolysaccharide, in the adsorption of Yep-phi. The phage tail fiber protein specifically interacts with Ail and OmpF proteins, and residues 518N, 519N, and 523S of the phage tail fiber protein are essential for the interaction with OmpF, whereas residues 518N, 519N, 522C, and 523S are essential for the interaction with Ail. This is the first report to demonstrate that membrane-bound proteins are involved in the adsorption of a T7-related bacteriophage. The observations highlight the importance of the tail fiber protein in the evolution and function of various complex phage systems and provide insights into phage-bacterium interactions.
Collapse
|
180
|
Gervasi T, Horn N, Wegmann U, Dugo G, Narbad A, Mayer MJ. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol 2013; 98:2495-505. [PMID: 23942878 PMCID: PMC3936119 DOI: 10.1007/s00253-013-5128-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/02/2013] [Accepted: 07/13/2013] [Indexed: 12/29/2022]
Abstract
Clostridium perfringens is a cause for increasing concern due to its responsibility for severe infections both in humans and animals, especially poultry. To find new control strategies to treat C. perfringens infection, we investigated the activity and delivery of a bacteriophage endolysin. We identified a new endolysin, designated CP25L, which shows similarity to an N-acetylmuramoyl-l-alanine amidase domain and is distinct from other C. perfringens endolysins whose activity has been demonstrated in vitro. The cp25l gene was cloned and expressed in Escherichia coli, and the gene product demonstrated lytic activity against all 25 C. perfringens strains tested. The probiotic strain Lactobacillus johnsonii FI9785 was engineered to deliver the endolysin to the gastrointestinal tract. The integration of the nisRK two-component regulatory system from the Lactococcus lactis nisin A biosynthesis operon into the chromosome of L. johnsonii allowed constitutive expression of the endolysin under the control of the nisA promoter (PnisA), while the use of a signal peptide (SLPmod) led to successful secretion of the active endolysin to the surrounding media. The high specificity and activity of the endolysin suggest that it may be developed as an effective tool to enhance the control of C. perfringens by L. johnsonii in the gastrointestinal tract.
Collapse
Affiliation(s)
- Teresa Gervasi
- Gut Health and Food Safety Programme, Institute of Food Research, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | | | |
Collapse
|
181
|
Abstract
Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.
Collapse
Affiliation(s)
- Bijan Zakeri
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| | - Timothy K. Lu
- Synthetic Biology Group, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Department of Electrical Engineering & Computer Science and Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge MA 02139, USA
| |
Collapse
|
182
|
Betts A, Vasse M, Kaltz O, Hochberg ME. Back to the future: evolving bacteriophages to increase their effectiveness against the pathogen Pseudomonas aeruginosa PAO1. Evol Appl 2013; 6:1054-63. [PMID: 24187587 PMCID: PMC3804238 DOI: 10.1111/eva.12085] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/30/2013] [Indexed: 12/26/2022] Open
Abstract
Antibiotic resistance is becoming increasingly problematic for the treatment of infectious disease in both humans and livestock. The bacterium Pseudomonas aeruginosa is often found to be resistant to multiple antibiotics and causes high patient mortality in hospitals. Bacteriophages represent a potential option to combat pathogenic bacteria through their application in phage therapy. Here, we capitalize on previous studies showing how evolution may increase phage infection capacity relative to ancestral genotypes. We passaged four different phage isolates (podoviridae, myoviridae) through six serial transfers on the ancestral strain of Pseudomonas aeruginosa PAO1. We first demonstrate that repeated serial passage on ancestral bacteria increases infection capacity of bacteriophage on ancestral hosts and on those evolved for one transfer. This result is confirmed when examining the ability of evolved phage to reduce ancestral host population sizes. Second, through interaction with a single bacteriophage for 24 h, P. aeruginosa can evolve resistance to the ancestor of that bacteriophage; this also provides these evolved bacteria with cross-resistance to the other three bacteriophages. We discuss how the evolutionary training of phages could be employed as effective means of combatting bacterial infections or disinfecting surfaces in hospital settings, with reduced risk of bacterial resistance compared with conventional methods.
Collapse
Affiliation(s)
- Alex Betts
- Institut des Sciences de l'Evolution, UMR 5554, Université Montpellier 2 Montpellier CEDEX 05, France
| | | | | | | |
Collapse
|
183
|
Merabishvili M, Vervaet C, Pirnay JP, De Vos D, Verbeken G, Mast J, Chanishvili N, Vaneechoutte M. Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLoS One 2013; 8:e68797. [PMID: 23844241 PMCID: PMC3699554 DOI: 10.1371/journal.pone.0068797] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 06/03/2013] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus phage ISP was lyophilized, using an Amsco-Finn Aqua GT4 freeze dryer, in the presence of six different stabilizers at different concentrations. Stability of the lyophilized phage at 4°C was monitored up to 37 months and compared to stability in Luria Bertani broth and physiological saline at 4°C. Sucrose and trehalose were shown to be the best stabilizing additives, causing a decrease of only 1 log immediately after the lyophilization procedure and showing high stability during a 27 month storage period.
Collapse
Affiliation(s)
- Maia Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Ojala V, Laitalainen J, Jalasvuori M. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol Appl 2013; 6:925-32. [PMID: 24062801 PMCID: PMC3779093 DOI: 10.1111/eva.12076] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 04/26/2013] [Indexed: 11/27/2022] Open
Abstract
The emergence of pathogenic bacteria resistant to multiple antibiotics is a serious worldwide public health concern. Whenever antibiotics are applied, the genes encoding for antibiotic resistance are selected for within bacterial populations. This has led to the prevalence of conjugative plasmids that carry resistance genes and can transfer themselves between diverse bacterial groups. In this study, we investigated whether it is feasible to attempt to prevent the spread of antibiotic resistances with a lytic bacteriophage, which can replicate in a wide range of gram-negative bacteria harbouring conjugative drug resistance–conferring plasmids. The counter-selection against the plasmid was shown to be effective, reducing the frequency of multidrug-resistant bacteria that formed via horizontal transfer by several orders of magnitude. This was true also in the presence of an antibiotic against which the plasmid provided resistance. Majority of the multiresistant bacteria subjected to phage selection also lost their conjugation capability. Overall this study suggests that, while we are obligated to maintain the selection for the spread of the drug resistances, the ‘fight evolution with evolution’ approach could help us even out the outcome to our favour.
Collapse
Affiliation(s)
- Ville Ojala
- Centre of Excellence in Biological Interactions, Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä Jyväskylä, Finland
| | | | | |
Collapse
|
185
|
Lu TK, Bowers J, Koeris MS. Advancing bacteriophage-based microbial diagnostics with synthetic biology. Trends Biotechnol 2013; 31:325-7. [PMID: 23608522 DOI: 10.1016/j.tibtech.2013.03.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/17/2013] [Accepted: 03/18/2013] [Indexed: 10/26/2022]
|
186
|
Abstract
Due to their crucial role in pathogenesis and virulence, phages of Staphylococcus aureus have been extensively studied. Most of them encode and disseminate potent staphylococcal virulence factors. In addition, their movements contribute to the extraordinary versatility and adaptability of this prominent pathogen by improving genome plasticity. In addition to S. aureus, phages from coagulase-negative Staphylococci (CoNS) are gaining increasing interest. Some of these species, such as S. epidermidis, cause nosocomial infections and are therefore problematic for public health. This review provides an overview of the staphylococcal phages family extended to CoNS phages. At the morphological level, all these phages characterized so far belong to the Caudovirales order and are mainly temperate Siphoviridae. At the molecular level, comparative genomics revealed an extensive mosaicism, with genes organized into functional modules that are frequently exchanged between phages. Evolutionary relationships within this family, as well as with other families, have been highlighted. All these aspects are of crucial importance for our understanding of evolution and emergence of pathogens among bacterial species such as Staphylococci.
Collapse
Affiliation(s)
- Marie Deghorain
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| | - Laurence Van Melderen
- Author to whom correspondence should be addressed; (L.V.M.); (M.D.); Tel.: +32-2-650-97-76 (M.D.); +32-2-650-97-78 (L.V.M.); Fax: +32-2-650-97-70
| |
Collapse
|
187
|
Dhama K, Chakraborty S, Wani MY, Verma AK, Deb R, Tiwari R, Kapoor S. Novel and emerging therapies safeguarding health of humans and their companion animals: a review. Pak J Biol Sci 2013; 16:101-111. [PMID: 24171271 DOI: 10.3923/pjbs.2013.101.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Modern medicine has helped to a great extent to eradicate and cure several diseases of mankind and animals. But the existence of incurable diseases like cancer, Acquired Immunodeficiency Syndrome (AIDS), diabetes or rheumatoid arthritis, side effects of allopathic medicine, increasing trend of antibiotic resistance and chemicals and biopesticides causing dietary risk have made the situation more critical than ever before. Thus, it has become a matter of concern for the scientists and researchers to develop novel therapies. Bacteriophage therapy to treat pathogenic bacterial infections, virophage therapy for conservation of global system and avian egg yolk antibody therapy for designing prophylactic strategies against Gastrointestinal (GI) diseases are interesting approaches. Others include the use of cytokines as adjunctive immunomodulators, gene therapy focusing on diseases caused by single gene defects, RNAi technology to suppress specific gene of interest and apoptins for cancer treatment. Stem cell therapy against several diseases and ailments has also been discussed. The use of nanoparticles for better drug delivery, even though costly, has been given equal importance. Nevertheless, immunomodulation, be it through physiological, chemical or microbial products, or through essential micronutrients, probiotics, herbs or cow therapy prove to be cost-effective, causing minimum adverse reactions when compared to allopathy. Development in the field of molecular biology has created an enormous impact on vaccine development. The present review deals with all these novel and emerging therapies essential to safeguard the health of humans and companion animals.
Collapse
Affiliation(s)
- Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute, Iztnagar, Bareilly,. U.P., 243122, India
| | | | | | | | | | | | | |
Collapse
|
188
|
Seal BS. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci 2013; 92:526-33. [PMID: 23300321 PMCID: PMC4089029 DOI: 10.3382/ps.2012-02708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently used antibiotics. Clostridium perfringens is a gram-positive, spore-forming anaerobic bacterium that plays a significant role in human foodborne disease as well as non-foodborne human, animal, and avian diseases. Countries that have complied with the ban on antimicrobial growth promoters in feeds have reported increased incidences of C. perfringens-associated diseases in poultry. To address these issues, new antimicrobial agents, putative lysins encoded by the genomes of bacteriophages, are being identified in our laboratory. Poultry intestinal material, soil, sewage, and poultry processing drainage water were screened for virulent bacteriophages that could lyse C. perfringens and produce clear plaques in spot assays. Bacteriophages were isolated that had long noncontractile tails, members of the family Siphoviridae, and with short noncontractile tails, members of the family Podoviridae. Several bacteriophage genes were identified that encoded N-acetylmuramoyl-l-alanine amidases, lysozyme-endopeptidases, and a zinc carboxypeptidase domain that has not been previously reported in viral genomes. Putative phage lysin genes (ply) were cloned and expressed in Escherichia coli. The recombinant lysins were amidases capable of lysing both parental phage host strains of C. perfringens as well as other strains of the bacterium in spot and turbidity reduction assays, but did not lyse any clostridia beyond the species. Consequently, bacteriophage gene products could eventually be used to target bacterial pathogens, such as C. perfringens via a species-specific strategy, to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria.
Collapse
Affiliation(s)
- Bruce S Seal
- Poultry Microbiological Safety Research Unit, R.B. Russell Agricultural Research Center, Agricultural Research Service, USDA, 950 College Station Road, Athens, GA 30605, USA.
| |
Collapse
|
189
|
Hosseinidoust Z, Tufenkji N, van de Ven TGM. Formation of biofilms under phage predation: considerations concerning a biofilm increase. BIOFOULING 2013; 29:457-468. [PMID: 23597188 DOI: 10.1080/08927014.2013.779370] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bacteriophages are emerging as strong candidates for combating bacterial biofilms. However, reports indicating that host populations can, in some cases, respond to phage predation by an increase in biofilm formation are of concern. This study investigates whether phage predation can enhance the formation of biofilm and if so, if this phenomenon is governed by the emergence of phage-resistance or by non-evolutionary mechanisms (eg spatial refuge). Single-species biofilms of three bacterial pathogens (Pseudomonas aeruginosa, Salmonella enterica serotype Typhimurium, and Staphylococcus aureus) were pretreated and post-treated with species-specific phages. Some of the phage treatments resulted in an increase in the levels of biofilm of their host. It is proposed that the phenotypic change brought about by acquiring phage resistance is the main reason for the increase in the level of biofilm of P. aeruginosa. For biofilms of S. aureus and S. enterica Typhimurium, although resistance was detected, increased formation of biofilm appeared to be a result of non-evolutionary mechanisms.
Collapse
|
190
|
Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B, Delattre AS, Lavigne R. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications. Curr Protein Pept Sci 2012; 13:699-722. [PMID: 23305359 PMCID: PMC3594737 DOI: 10.2174/138920312804871193] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/12/2012] [Accepted: 09/20/2012] [Indexed: 12/18/2022]
Abstract
The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.
Collapse
Affiliation(s)
- Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
191
|
Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 2012; 7:e51017. [PMID: 23226451 PMCID: PMC3511404 DOI: 10.1371/journal.pone.0051017] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/30/2012] [Indexed: 11/19/2022] Open
Abstract
With the increasing frequency of antibiotic resistance and the decreasing frequency of new antibiotics entering the market, interest has returned to developing bacteriophage as a therapeutic agent. Acceptance of phage therapy, however, is limited by the unknown pharmacodynamics of a replicating agent, as well as the potential for the evolution of resistant bacteria. One way to overcome some of these limitations is to incorporate phage and antibiotics into a dual therapy regimen; however, this increases the complexity of the pharmacodynamics. The aim of this study is to develop an experimental system to evaluate the pharmacodynamics of dual phage-drug therapy. A continuous culture system for Staphylococcus aureus is used to simulate the pharmacokinetics of periodic antibiotic dosing alone and in combination with lytic phage. A computer model representation of the system allows further evaluation of the conditions governing the observed pharmacodynamics. The results of this experimental/modeling approach suggest that dual therapy can be more efficacious than single therapies, particularly if there is an overlap in the physiological pathways targeted by the individual agents. In this case, treatment with gentamicin induces a population of cells with a strong aggregation phenotype. These aggregators also have an increased ability to form biofilm, which is a well-known, non-genetic mechanism of drug resistance. However, the aggregators are also more susceptible than the parental strain to the action of the phage. Thus, dual treatment with gentamicin and phage resulted in lower final cell densities than either treatment alone. Unlike in the phage-only treatment, phage-resistant isolates were not detected in the dual treatment.
Collapse
|
192
|
Rigvava S, Tchgkonia I, Jgenti D, Dvalidze T, Carpino J, Goderdzishvili M. Comparative analysis of the biological and physical properties of Enterococcus faecalis bacteriophage vB_EfaS_GEC-EfS_3 and Streptococcus mitis bacteriophage vB_SmM_GEC-SmitisM_2. Can J Microbiol 2012; 59:18-21. [PMID: 23391224 DOI: 10.1139/cjm-2012-0385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Enterococcus faecalis and Streptococcus mitis are common commensal inhabitants of the human gastrointestinal and genitourinary tracts. However, both species can be opportunistic pathogens and cause disease in nosocomial settings. These infections can be difficult to treat because of the frequency of antibiotic resistance among these strains. Bacteriophages are often suggested as an alternative therapeutic agent against these infections. In this study, E. faecalis and S. mitis strains were isolated from female patients with urinary tract infections. Bacteriophages active against these strains were isolated from sewage water from the Mtkvari River. Two phages, designated vB_EfaS_GEC-EfS_3 (Syphoviridae) and vB_SmM_GEC-SmitisM_2 (Myoviridae), were specific for E. faecalis and S. mitis, respectively. Each phage's growth patterns and adsorption rates were quantified. Sensitivity to ultraviolet light and temperature was determined, as was host range and serology. The S. mitis bacteriophage was found to be more resistant to ultraviolet light and exposure to high temperatures than the E. faecalis bacteriophage, despite having a much greater rate of replication. While each phage was able to infect a broad range of strains of the same species as the host species from which they were isolated, they were unable to infect other host species tested.
Collapse
|
193
|
Rodríguez-Rubio L, Martínez B, Donovan DM, Rodríguez A, García P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 2012; 39:427-34. [DOI: 10.3109/1040841x.2012.723675] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
194
|
Practical tips for construction of custom Peptide libraries and affinity selection by using commercially available phage display cloning systems. J Nucleic Acids 2012; 2012:295719. [PMID: 22991651 PMCID: PMC3444042 DOI: 10.1155/2012/295719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/25/2012] [Accepted: 08/01/2012] [Indexed: 02/01/2023] Open
Abstract
Phage display technology is undoubtedly a powerful tool for affinity selection of target-specific peptide. Commercially available premade phage libraries allow us to take screening in the easiest way. On the other hand, construction of a custom phage library seems to be inaccessible, because several practical tips are absent in instructions. This paper focuses on what should be born in mind for beginners using commercially available cloning kits (Ph.D. with type 3 vector and T7Select systems for M13 and T7 phage, respectively). In the M13 system, Pro or a basic amino acid (especially, Arg) should be avoided at the N-terminus of peptide fused to gp3. In both systems, peptides containing odd number(s) of Cys should be designed with caution. Also, DNA sequencing of a constructed library before biopanning is highly recommended for finding unexpected bias.
Collapse
|
195
|
Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrob Agents Chemother 2012; 56:5612-7. [PMID: 22908158 DOI: 10.1128/aac.00504-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Phage therapy against bacterial pathogens has been resurrected as an alternative and supplementary anti-infective modality. Here, we observed that bacterial group motilities were impaired in Pseudomonas aeruginosa strain PA14 lysogens for some temperate siphophages; the PA14 lysogens for DMS3 and MP22 were impaired in swarming motility, whereas the PA14 lysogen for D3112 was impaired in twitching motility. The swarming and twitching motilities of PA14 were also affected in the presence of MP22 and D3112, respectively. The in vitro killing activities of D3112 and MP22 toward PA14 did not differ, and neither did their in vivo persistence in the absence of bacterial infections in mice as well as in flies. Nevertheless, administration of D3112, not MP22, significantly reduced the mortality and the bacterial burdens in murine peritonitis-sepsis and Drosophila systemic infection caused by PA14. Taken together, we suggest that a temperate phage-mediated twitching motility inhibition might be comparably effective to control the acute infections caused by P. aeruginosa.
Collapse
|
196
|
Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol 2012; 10:607-17. [PMID: 22864264 DOI: 10.1038/nrmicro2853] [Citation(s) in RCA: 307] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Over the past decade, researchers have begun to characterize viral diversity using metagenomic methods. These studies have shown that viruses, the majority of which infect bacteria, are probably the most genetically diverse components of the biosphere. Here, we briefly review the incipient rise of a phage biology renaissance, which has been catalysed by advances in next-generation sequencing. We explore how work characterizing phage diversity and lifestyles in the human gut is changing our view of ourselves as supra-organisms. Finally, we discuss how a renewed appreciation of phage dynamics may yield new applications for phage therapies designed to manipulate the structure and functions of our gut microbiomes.
Collapse
|
197
|
Affiliation(s)
- Eric C Keen
- Department of Natural Sciences, Montgomery College Germantown, MD, USA
| |
Collapse
|
198
|
Singh A, Arutyunov D, Szymanski CM, Evoy S. Bacteriophage based probes for pathogen detection. Analyst 2012; 137:3405-21. [PMID: 22724121 DOI: 10.1039/c2an35371g] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and specific detection of pathogenic bacteria is important for the proper treatment, containment and prevention of human, animal and plant diseases. Identifying unique biological probes to achieve a high degree of specificity and minimize false positives has therefore garnered much interest in recent years. Bacteriophages are obligate intracellular parasites that subvert bacterial cell resources for their own multiplication and production of disseminative new virions, which repeat the cycle by binding specifically to the host surface receptors and injecting genetic material into the bacterial cells. The precision of host recognition in phages is imparted by the receptor binding proteins (RBPs) that are often located in the tail-spike or tail fiber protein assemblies of the virions. Phage host recognition specificity has been traditionally exploited for bacterial typing using laborious and time consuming bacterial growth assays. At the same time this feature makes phage virions or RBPs an excellent choice for the development of probes capable of selectively capturing bacteria on solid surfaces with subsequent quick and automatic detection of the binding event. This review focuses on the description of pathogen detection approaches based on immobilized phage virions as well as pure recombinant RBPs. Specific advantages of RBP-based molecular probes are also discussed.
Collapse
Affiliation(s)
- Amit Singh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.
| | | | | | | |
Collapse
|
199
|
Genome, integration, and transduction of a novel temperate phage of Helicobacter pylori. J Virol 2012; 86:8781-92. [PMID: 22696647 DOI: 10.1128/jvi.00446-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is a common human pathogen that has been identified to be carcinogenic. This study isolated the temperate bacteriophage 1961P from the lysate of a clinical strain of H. pylori isolated in Taiwan. The bacteriophage has an icosahedral head and a short tail, typical of the Podoviridae family. Its double-stranded DNA genome is 26,836 bp long and has 33 open reading frames. Only 9 of the predicted proteins have homologs of known functions, while the remaining 24 are only similar to unknown proteins encoded by Helicobacter prophages and remnants. Analysis of sequences proximal to the phage-host junctions suggests that 1961P may integrate into the host chromosome via a mechanism similar to that of bacteriophage lambda. In addition, 1961P is capable of generalized transduction. To the best of our knowledge, this is the first report of the isolation, characterization, genome analysis, integration, and transduction of a Helicobacter pylori phage.
Collapse
|
200
|
Ohno S, Okano H, Tanji Y, Ohashi A, Watanabe K, Takai K, Imachi H. A method for evaluating the host range of bacteriophages using phages fluorescently labeled with 5-ethynyl-2'-deoxyuridine (EdU). Appl Microbiol Biotechnol 2012; 95:777-88. [PMID: 22660768 DOI: 10.1007/s00253-012-4174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 01/09/2023]
Abstract
The evaluation of bacteriophage (phage) host range is a significant issue in understanding phage and prokaryotic community interactions. However, in conventional methods, such as plaque assay, target host strains must be isolated, although almost all environmental prokaryotes are recalcitrant to cultivation. Here, we introduce a novel phage host range evaluation method using fluorescently labeled phages (the FLP method), which consists of the following four steps: (i) Fluorescently labeled phages are added to a microbial consortium, and host cells are infected and fluorescently labeled. (ii) Fluorescent cells are sorted by fluorescence-activated cell sorting. (iii) 16S rRNA gene sequences retrieved from sorted cells are analyzed, and specific oligonucleotide probes for fluorescence in situ hybridization (FISH) are designed. (iv) Cells labeled with both fluorescently labeled phage and FISH probe are identified as host cells. To verify the feasibility of this method, we used T4 phage and Escherichia coli as a model. We first used nucleic acid stain reagents for phage labeling; however, the reagents also stained non-host cells. Next, we employed the Click-iT EdU (5-ethynyl-2'-deoxyuridine) assay kit from Invitrogen for phage labeling. Using EdU-labeled T4 phage, we could specifically detect E. coli cells in a complex microbial consortium from municipal sewage. We also confirmed that FISH could be applied to the infected E. coli cells. These results suggest that this FLP method using the EdU assay kit is a useful method for evaluating phage host range and may have a potential application for various types of phages, even if their prokaryotic hosts are currently unculturable.
Collapse
Affiliation(s)
- Sayaka Ohno
- Subsurface Geobiology Advanced Research-SUGAR Project, Institute of Biogeosciences, Japan Agency for Marine-Earth Science and Technology-JAMSTEC, 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | | | | | | | | | | | | |
Collapse
|