151
|
Hahn P, Böse J, Edler S, Lengeling A. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins. BMC Genomics 2008; 9:293. [PMID: 18564434 PMCID: PMC2453528 DOI: 10.1186/1471-2164-9-293] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/18/2008] [Indexed: 12/24/2022] Open
Abstract
Background The jumonji C (JmjC) domain containing gene 6 (Jmjd6, previously known as phosphatidylserine receptor) has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in Jmjd6 gene organisation, evolution, and protein function. Results We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved Jmjd6 sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the Jmjd6 and 1110005A03Rik genes and to the recognition of a new, before overseen Jmjd6 exon in mammals. Using expression studies, two novel Jmjd6 splice variants were identified and validated in vivo. Analysis of the Jmjd6 neighbouring gene 1110005A03Rik revealed an incident deletion of this gene in two out of three earlier reported Jmjd6 knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for Jmjd6 function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded β-helix (DSBH) fold and a HxDxnH facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups. Conclusion We give further evidence that Jmjd6 most likely has a function as a nonheme-Fe(II)-2-oxoglutarate-dependent dioxygenase as previously suggested. Further, we provide novel insights into the evolution of Jmjd6 and other related members of the superfamily of JmjC domain containing proteins. Finally, we discuss possibilities of the involvement of Jmjd6 and 1110005A03Rik in an antagonistic biochemical pathway.
Collapse
Affiliation(s)
- Phillip Hahn
- Research Group Infection Genetics, Department of Experimental Mouse Genetics, Helmholtz Centre for Infection Research, D-31824 Braunschweig, Germany.
| | | | | | | |
Collapse
|
152
|
DiBenedetto AJ, Guinto JB, Ebert TD, Bee KJ, Schmidt MM, Jackman TR. Zebrafish brd2a and brd2b are paralogous members of the bromodomain-ET (BET) family of transcriptional coregulators that show structural and expression divergence. BMC DEVELOPMENTAL BIOLOGY 2008; 8:39. [PMID: 18402692 PMCID: PMC2373290 DOI: 10.1186/1471-213x-8-39] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2007] [Accepted: 04/10/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Brd2 belongs to the bromodomain-extraterminal domain (BET) family of transcriptional co-regulators, and functions as a pivotal histone-directed recruitment scaffold in chromatin modification complexes affecting signal-dependent transcription. Brd2 facilitates expression of genes promoting proliferation and is implicated in apoptosis and in egg maturation and meiotic competence in mammals; it is also a susceptibility gene for juvenile myoclonic epilepsy (JME) in humans. The brd2 ortholog in Drosophila is a maternal effect, embryonic lethal gene that regulates several homeotic loci, including Ultrabithorax. Despite its importance, there are few systematic studies of Brd2 developmental expression in any organism. To help elucidate both conserved and novel gene functions, we cloned and characterized expression of brd2 cDNAs in zebrafish, a vertebrate system useful for genetic analysis of development and disease, and for study of the evolution of gene families and functional diversity in chordates. RESULTS We identify cDNAs representing two paralogous brd2 loci in zebrafish, brd2a on chromosome 19 and brd2b on chromosome 16. By sequence similarity, syntenic and phylogenetic analyses, we present evidence for structural divergence of brd2 after gene duplication in fishes. brd2 paralogs show potential for modular domain combinations, and exhibit distinct RNA expression patterns throughout development. RNA in situ hybridizations in oocytes and embryos implicate brd2a and brd2b as maternal effect genes involved in egg polarity and egg to embryo transition, and as zygotic genes important for development of the vertebrate nervous system and for morphogenesis and differentiation of the digestive tract. Patterns of brd2 developmental expression in zebrafish are consistent with its proposed role in Homeobox gene regulation. CONCLUSION Expression profiles of zebrafish brd2 paralogs support a role in vertebrate developmental patterning and morphogenesis. Our study uncovers both maternal and zygotic contributions of brd2, the analysis of which may provide insight into the earliest events in vertebrate development, and the etiology of some forms of epilepsy, for which zebrafish is an important model. Knockdowns of brd2 paralogs in zebrafish may now test proposed function and interaction with homeotic loci in vertebrates, and help reveal the extent to which functional novelty or partitioning has occurred after gene duplication.
Collapse
Affiliation(s)
| | - Jake B Guinto
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | - Katharine J Bee
- Center for Molecular Cardiology, Weill Medical College of Cornell University, New York, NY, USA
| | - Michael M Schmidt
- Department of Biological Engineering, Massachusetts Institute of Technology, Boston, MA, USA
| | - Todd R Jackman
- Department of Biology, Villanova University, Villanova, PA, USA
| |
Collapse
|
153
|
Blais A, van Oevelen CJC, Margueron R, Acosta-Alvear D, Dynlacht BD. Retinoblastoma tumor suppressor protein-dependent methylation of histone H3 lysine 27 is associated with irreversible cell cycle exit. ACTA ACUST UNITED AC 2008; 179:1399-412. [PMID: 18166651 PMCID: PMC2373492 DOI: 10.1083/jcb.200705051] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The retinoblastoma tumor suppressor protein (pRb) is involved in mitotic exit, promoting the arrest of myoblasts, and myogenic differentiation. However, it is unclear how permanent cell cycle exit is maintained in differentiated muscle. Using RNA interference, expression profiling, and chromatin immunoprecipitations, we show that pRb is essential for cell cycle exit and the differentiation of myoblasts and is also uniquely required to maintain this arrest in myotubes. Remarkably, we also uncover a function for the pRb-related proteins p107 and p130 as enforcers of a G2/M phase checkpoint that prevents progression into mitosis in cells that have lost pRb. We further demonstrate that pRb effects permanent cell cycle exit in part by maintaining trimethylation of histone H3 lysine 27 (H3K27) on cell cycle genes. H3K27 trimethylation silences other genes, including Cyclin D1, in a pRb-independent but polycomb-dependent manner. Thus, our data distinguish two distinct chromatin-based regulatory mechanisms that lead to terminal differentiation.
Collapse
Affiliation(s)
- Alexandre Blais
- Department of Biochemistry, Microbiology, and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
154
|
The ARID domain of the H3K4 demethylase RBP2 binds to a DNA CCGCCC motif. Nat Struct Mol Biol 2008; 15:419-21. [PMID: 18270511 DOI: 10.1038/nsmb.1400] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/06/2008] [Indexed: 11/08/2022]
Abstract
The histone H3 lysine 4 demethylase RBP2 contains a DNA binding domain, the AT-rich interaction domain (ARID). We solved the structure of ARID by NMR, identified its DNA binding motif (CCGCCC) and characterized the binding contacts. Immunofluorescence and luciferase assays indicated that ARID is required for RBP2 demethylase activity in cells and that DNA recognition is essential to regulate transcription.
Collapse
|
155
|
JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A 2007; 104:19226-31. [PMID: 18048344 DOI: 10.1073/pnas.0700735104] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Histone methylation is a dynamic process that participates in a diverse array of cellular processes and has been found to associate with cancer. Recently, several histone demethylases have been identified that catalyze the removal of methylation from histone H3 lysine residues. Through bioinformatic and biochemical analysis, we identified JARID1B as a H3K4 demethylase. Overexpression of JARID1B resulted in loss of tri-, di-, and monomethyl H3K4 but did not affect other histone lysine methylations. In vitro biochemical experiments demonstrated that JARID1B directly catalyzes the demethylation. The enzymatic activity requires the JmjC domain and uses Fe(II) and alpha-ketoglutarate as cofactors. Furthermore, we found that JARID1B is up-regulated in prostate cancer tissues, compared with benign prostate samples. We also demonstrated that JARID1B associates with androgen receptor and regulates its transcriptional activity. Thus, we identified JARID1B as a demethylase capable of removing three methyl groups from histone H3 lysine 4 and up-regulated in prostate cancer.
Collapse
|
156
|
Sasai N, Kato Y, Kimura G, Takeuchi T, Yamaguchi M. The Drosophila jumonji gene encodes a JmjC-containing nuclear protein that is required for metamorphosis. FEBS J 2007; 274:6139-51. [PMID: 17970746 DOI: 10.1111/j.1742-4658.2007.06135.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Jumonji (Jmj) is a transcriptional repressor that plays important roles in the suppression of cell proliferation and development of various tissues in the mouse. To further clarify the roles of Jmj during development and gain insight into mechanisms of Jmj-mediated transcriptional regulation, we have taken advantage of Drosophila as a model organism. Drosophila Jmj (dJmj) shares high homology with mammalian Jmj in the JmjN, JmjC and AT-rich interaction domains, as well as in the N-terminal repression domain. dJmj localizes to hundreds of euchromatic sites but not to chromocenter heterochromatin on salivary gland polytene chromosomes. In addition, dJmj is excluded from regions stained with an antibody against Ser5-phosphorylated RNA polymerase II, suggesting a function of dJmj in transcriptionally inactive chromatin. Loss of djmj results in larval and pupal lethality with phenotypes similar to those observed in mutants of ecdysone-regulated genes, implying the involvement of dJmj in the repression of gene expression in the ecdysone pathway. Transgenic mouse Jmj mostly colocalizes with dJmj and partially rescues the phenotypes of djmj mutants, indicating that dJmj is a functional homolog of mammalian Jmj. Furthermore, mutation in djmj suppresses position effect variegation of the T(2;3)Sb(V) rearrangement. These findings suggest that dJmj controls expression of developmentally important genes through modification of chromatin into a transcriptionally silenced state.
Collapse
Affiliation(s)
- Nobuhiro Sasai
- Venture Laboratory, Kyoto Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
157
|
Msc1 acts through histone H2A.Z to promote chromosome stability in Schizosaccharomyces pombe. Genetics 2007; 177:1487-97. [PMID: 17947424 DOI: 10.1534/genetics.107.078691] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
As a central component of the DNA damage checkpoint pathway, the conserved protein kinase Chk1 mediates cell cycle progression when DNA damage is generated. Msc1 was identified as a multicopy suppressor capable of facilitating survival in response to DNA damage of cells mutant for chk1. We demonstrate that loss of msc1 function results in an increased rate of chromosome loss and that an msc1 null allele exhibits genetic interactions with mutants in key kinetochore components. Multicopy expression of msc1 robustly suppresses a temperature-sensitive mutant (cnp1-1) in the centromere-specific histone H3 variant CENP-A, and localization of CENP-A to the centromere is compromised in msc1 null cells. We present several lines of evidence to suggest that Msc1 carries out its function through the histone H2A variant H2A.Z, encoded by pht1 in fission yeast. Like an msc1 mutant, a pht1 mutant also exhibits chromosome instability and genetic interactions with kinetochore mutants. Suppression of cnp1-1 by multicopy msc1 requires pht1. Likewise, suppression of the DNA damage sensitivity of a chk1 mutant by multicopy msc1 also requires pht1. We present the first genetic evidence that histone H2A.Z may participate in centromere function in fission yeast and propose that Msc1 acts through H2A.Z to promote chromosome stability and cell survival following DNA damage.
Collapse
|
158
|
Deregulated E2f-2 underlies cell cycle and maturation defects in retinoblastoma null erythroblasts. Mol Cell Biol 2007; 27:8713-28. [PMID: 17923680 DOI: 10.1128/mcb.01118-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
By assessing the contribution of deregulated E2F activity to erythroid defects in Rb null mice, we have identified E2f-2 as being upregulated in end-stage red cells, where we show it is the major pRb-associated E2f and the predominant E2f detected at key target gene promoters. Consistent with its expression pattern, E2f-2 loss restored terminal erythroid maturation to Rb null red cells, including the ability to undergo enucleation. Deletion of E2f-2 also extended the life span of Rb null mice despite persistent defects in placental development, indicating that deregulated E2f-2 activity in differentiating erythroblasts contributes to the premature lethality of Rb null mice. We show that the aberrant entry of Rb null erythroblasts into S phase at times in differentiation when wild-type erythroblasts are exiting the cell cycle is inhibited by E2f-2 deletion. E2f-2 loss induced cell cycle arrest in both wild-type and Rb null erythroblasts and was associated with increased DNA double-strand breaks. These results implicate deregulated E2f-2 in the cell cycle defects observed in Rb null erythroblasts and reveal a novel role for E2f-2 during terminal red blood cell differentiation. The identification of a tissue-restricted role for E2f-2 in erythropoiesis highlights the nonredundant nature of E2f transcription factor activities in cell growth and differentiation.
Collapse
|
159
|
Dick FA. Structure-function analysis of the retinoblastoma tumor suppressor protein - is the whole a sum of its parts? Cell Div 2007; 2:26. [PMID: 17854503 PMCID: PMC2082274 DOI: 10.1186/1747-1028-2-26] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/13/2007] [Indexed: 12/28/2022] Open
Abstract
Biochemical analysis of the retinoblastoma protein's function has received considerable attention since it was cloned just over 20 years ago. During this time pRB has emerged as a key regulator of the cell division cycle and its ability to block proliferation is disrupted in the vast majority of human cancers. Much has been learned about the regulation of E2F transcription factors by pRB in the cell cycle. However, many questions remain unresolved and researchers continue to explore this multifunctional protein. In particular, understanding how its biochemical functions contribute to its role as a tumor suppressor remains to be determined. Since pRB has been shown to function as an adaptor molecule that links different proteins together, or to particular promoters, analyzing pRB by disrupting individual protein interactions holds tremendous promise in unraveling the intricacies of its function. Recently, crystal structures have reported how pRB interacts with some of its molecular partners. This information has created the possibility of rationally separating pRB functions by studying mutants that disrupt individual binding sites. This review will focus on literature that investigates pRB by isolating functions based on binding sites within the pocket domain. This article will also discuss the prospects for using this approach to further explore the unknown functions of pRB.
Collapse
|
160
|
McGraw S, Vigneault C, Sirard MA. Temporal expression of factors involved in chromatin remodeling and in gene regulation during early bovine in vitro embryo development. Reproduction 2007; 133:597-608. [PMID: 17379654 DOI: 10.1530/rep-06-0251] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Distinct epigenetic modification events regulate gene expression and chromatin structure during the period between the immature oocyte and the blastocyst. Throughout this developmental period, important methylation fluctuations occur on genomic DNA and histones. Finding single or combinations of factors, which are at work during this period is essential to understand the entire epigenetic process. With this in mind, we assessed the precise temporal expression profile, during preimplantation embryo development, of 15 key regulators involved in RNA, DNA or histone methylation, chromatin modification or silencing and transcription regulation. To achieve this, real-time RT-PCR was used to quantify the mRNA levels of ATF7IP, DMAP1, EHMT1, EHMT2, HELLS, JARID1A, JARID1B, JMJD1A, JMJD2A, LSD1, MeCP2, METTL3, PRMT2, PRMT5 and RCOR2, in the oocyte and throughout in vitro bovine embryo development. Our results demonstrate that all the 15 key regulators were present to different degrees in the developmental stages tested, and they can be divided into three different groups depending on their respective mRNA profile.
Collapse
Affiliation(s)
- Serge McGraw
- Centre de Recherche en Biologie de la Reproduction, Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4
| | | | | |
Collapse
|
161
|
Benevolenskaya EV. Histone H3K4 demethylases are essential in development and differentiationThis paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process. Biochem Cell Biol 2007; 85:435-43. [PMID: 17713579 DOI: 10.1139/o07-057] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lysine histone methylation is one of the most robust epigenetic marks and is essential for the regulation of multiple cellular processes. The methylation of Lys4 of histone H3 seems to be of particular significance. It is associated with active regions of the genome, and in Drosophila it is catalyzed by trithorax-group proteins that have become paradigms of developmental regulators at the level of chromatin. Like other histone methylation events, H3K4 methylation was considered irreversible until the identification of a large number of histone demethylases indicated that demethylation events play an important role in histone modification dynamics. However, the described demethylases had no strictly assigned biological functions and the identity of the histone demethylases that would contribute to the epigenetic changes specifying certain biological processes was unknown. Recently, several groups presented evidence that a family of 4 JmjC domain proteins results in the global changes of histone demethylation, and in elegant studies using model organisms, they demonstrated the importance of this family of histone demethylases in cell fate determination. All 4 proteins possess the demethylase activity specific to H3K4 and belong to the poorly described JARID1 protein family.
Collapse
Affiliation(s)
- Elizaveta V Benevolenskaya
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, 900 S. Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
162
|
Hayakawa T, Ohtani Y, Hayakawa N, Shinmyozu K, Saito M, Ishikawa F, Nakayama JI. RBP2 is an MRG15 complex component and down-regulates intragenic histone H3 lysine 4 methylation. Genes Cells 2007; 12:811-26. [PMID: 17573780 DOI: 10.1111/j.1365-2443.2007.01089.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MRG15 is a conserved chromodomain protein that associates with histone deacetylases (HDACs) and Tip60-containing histone acetyltransferase (HAT) complexes. Here we further characterize MRG15-containing complexes and show a functional link between MRG15 and histone H3K4 demethylase activity in mammalian cells. MRG15 was predominantly localized to discrete nuclear subdomains enriched for Ser(2)-phosphorylated RNA polymerase II, suggesting it is involved specifically with active transcription. Protein analysis of the MRG15-containing complexes led to the identification of RBP2, a JmjC domain-containing protein. Remarkably, over-expression of RBP2 greatly reduced the H3K4 methylation in culture human cells in vivo, and recombinant RBP2 efficiently removed H3K4 methylation of histone tails in vitro. Knockdown of RBP2 resulted in increased H3K4 methylation levels within transcribed regions of active genes. Our findings demonstrate that RBP2 associated with MRG15 complex to maintain reduced H3K4 methylation at transcribed regions, which may ensure the transcriptional elongation state.
Collapse
Affiliation(s)
- Tomohiro Hayakawa
- Laboratory for Chromatin Dynamics, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Campbell PA, Perez-Iratxeta C, Andrade-Navarro MA, Rudnicki MA. Oct4 targets regulatory nodes to modulate stem cell function. PLoS One 2007; 2:e553. [PMID: 17579724 PMCID: PMC1891092 DOI: 10.1371/journal.pone.0000553] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 05/24/2007] [Indexed: 11/18/2022] Open
Abstract
Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer.
Collapse
Affiliation(s)
- Pearl A. Campbell
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Carolina Perez-Iratxeta
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
| | - Miguel A. Andrade-Navarro
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
| | - Michael A. Rudnicki
- Sprott Centre for Stem Cell Research, Ottawa Health Research Institute, Ottawa, Ontario, Canada
- University of Ottawa, Department of Cellular and Molecular Medicine, Ottawa, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
164
|
Dul BE, Walworth NC. The Plant Homeodomain Fingers of Fission Yeast Msc1 Exhibit E3 Ubiquitin Ligase Activity. J Biol Chem 2007; 282:18397-18406. [PMID: 17456468 DOI: 10.1074/jbc.m700729200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The DNA damage checkpoint pathway governs how cells regulate cell cycle progression in response to DNA damage. A screen for suppressors of a fission yeast chk1 mutant defective in the checkpoint pathway identified a novel Schizosaccharomyces pombe protein, Msc1. Msc1 contains 3 plant homeodomain (PHD) finger motifs, characteristically defined by a C4HC3 consensus similar to RING finger domains. PHD finger domains in viral proteins and in the cellular protein kinase MEKK1 (mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1) have been implicated as ubiquitin E3 protein ligases that affect protein stability. The close structural relationship of PHD fingers to RING fingers suggests that other PHD domain-containing proteins might share this activity. We show that each of the three PHD fingers of Msc1 can act as ubiquitin E3 ligases, reporting for the first time that PHD fingers from a nuclear protein exhibit E3 ubiquitin ligase activity. The function of the PHD fingers of Msc1 is needed to rescue the DNA damage sensitivity of a chk1Delta strain. Msc1 co-precipitates Rhp6, the S. pombe homologue of the human ubiquitin-conjugating enzyme Ubc2. Strikingly, deletion of msc1 confers complete suppression of the slow growth phenotype, UV and hydroxyurea sensitivities of an rhp6 deletion strain and restores deficient histone H3 methylation observed in the rhp6Delta mutant. We speculate that the target of the E3 ubiquitin ligase activity of Msc1 is likely to be a chromatin-associated protein.
Collapse
Affiliation(s)
- Barbara E Dul
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School and the Joint Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Nancy C Walworth
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey (UMDNJ)-Robert Wood Johnson Medical School and the Joint Graduate Program in Cellular and Molecular Pharmacology, UMDNJ-Graduate School of Biomedical Sciences and Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854.
| |
Collapse
|
165
|
Dorner D, Gotzmann J, Foisner R. Nucleoplasmic lamins and their interaction partners, LAP2alpha, Rb, and BAF, in transcriptional regulation. FEBS J 2007; 274:1362-73. [PMID: 17489094 DOI: 10.1111/j.1742-4658.2007.05695.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lamins are major structural components of the nuclear envelope in multicellular eukaryotes. Particularly A-type lamins are also located in the nucleoplasm, likely involving a specific binding partner, lamina-associated polypeptide 2alpha (LAP2alpha). LAP2alpha-lamins A/C complexes in the nucleoplasm have been implicated in the regulation of gene expression by various means. They bind chromatin proteins and chromatin modifying enzymes, and can thus participate in epigenetic control pathways. Furthermore, binding of lamins A/C complexes to specific transcription factors and repressors may directly affect their transcriptional activity. LAP2alpha-lamins A/C also regulate retinoblastoma protein and influence cell cycle progression and differentiation, which could have important implications for molecular mechanisms of laminopathic diseases, linked to lamins A/C mutations.
Collapse
Affiliation(s)
- Daniela Dorner
- Department of Medical Biochemistry, Max F. Perutz Laboratories, Medical University of Vienna, Dr. Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | |
Collapse
|
166
|
Adams PD. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 2007; 397:84-93. [PMID: 17544228 PMCID: PMC2755200 DOI: 10.1016/j.gene.2007.04.020] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 04/09/2007] [Indexed: 11/18/2022]
Abstract
Cellular senescence is an important tumor suppression process, and a possible contributor to tissue aging. Senescence is accompanied by extensive changes in chromatin structure. In particular, many senescent cells accumulate specialized domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), which are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. This article reviews our current understanding of the structure, assembly and function of these SAHF at a cellular level. The possible contribution of SAHF to tumor suppression and tissue aging is also critically discussed.
Collapse
Affiliation(s)
- Peter D Adams
- W446, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
167
|
Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 2007; 25:801-12. [PMID: 17363312 DOI: 10.1016/j.molcel.2007.03.001] [Citation(s) in RCA: 372] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/06/2007] [Accepted: 03/02/2007] [Indexed: 12/13/2022]
Abstract
Posttranslational modification of chromatin by histone methylation has wide-ranging effects on nuclear function, including transcriptional regulation, maintenance of genome integrity, and epigenetic inheritance. The enzymes utilized to place histone methylation marks are well characterized, but the identity of a histone demethylation system remained elusive until recently. The discovery of histone demethylase enzymes capable of directly removing methyl groups from modified lysine residues has demonstrated that histone methylation is a dynamic modification. The most extensive family of histone demethylase enzymes identified so far contains a JmjC domain and catalyzes demethylation through a hydroxylation reaction. Here, we identify PLU-1, a transcriptional repressor implicated in breast cancer, as a histone demethylase enzyme that has the ability to reverse the trimethyl H3K4 modification state. Furthermore, we reveal that PLU-1-mediated H3K4 demethylase activity plays an important role in the proliferative capacity of breast cancer cells through repression of tumor suppressor genes, including BRCA1.
Collapse
Affiliation(s)
- Kenichi Yamane
- Howard Hughes Medical Institute, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Nat Struct Mol Biol 2007; 14:341-3. [PMID: 17351631 DOI: 10.1038/nsmb1216] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 02/16/2007] [Indexed: 11/09/2022]
Abstract
Recent studies have demonstrated that histone methylation can be dynamically regulated through active demethylation. However, no demethylase specific to histone H3 trimethyl-Lys4 (H3K4me3) has been identified. Here we report that the Drosophila melanogaster protein 'little imaginal discs' (Lid), a JmjC domain-containing trithorax group protein, can demethylate H3K4me3. Consistent with its genetic classification, Lid positively regulates Hox gene expression in S2 cells.
Collapse
Affiliation(s)
- Nara Lee
- Howard Hughes Medical Institute, USA
| | | | | | | | | | | | | |
Collapse
|
169
|
Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG. The Retinoblastoma Binding Protein RBP2 Is an H3K4 Demethylase. Cell 2007; 128:889-900. [PMID: 17320163 DOI: 10.1016/j.cell.2007.02.013] [Citation(s) in RCA: 331] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 12/22/2006] [Accepted: 02/08/2007] [Indexed: 12/13/2022]
Abstract
Changes in histone methylation status regulate chromatin structure and DNA-dependent processes such as transcription. Recent studies indicate that, analogous to other histone modifications, histone methylation is reversible. Retinoblastoma binding protein 2 (RBP2), a nuclear protein implicated in the regulation of transcription and differentiation by the retinoblastoma tumor suppressor protein, contains a JmjC domain recently defined as a histone demethylase signature motif. Here we report that RBP2 is a demethylase that specifically catalyzes demethylation on H3K4, whose methylation is normally associated with transcriptionally active genes. RBP2-/- mouse cells displayed enhanced transcription of certain cytokine genes, which, in the case of SDF1, was associated with increased H3K4 trimethylation. Furthermore, RBP2 specifically demethylated H3K4 in biochemical and cell-based assays. These studies provide mechanistic insights into transcriptional regulation by RBP2 and provide the first example of a mammalian enzyme capable of erasing trimethylated H3K4.
Collapse
Affiliation(s)
- Robert J Klose
- Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Osteosarcoma is a devastating but rare disease, whose study has illuminated both the basic biology and clinical management of cancer over the past 30 years. These contributions have included insight into the roles of key cancer genes such as the retinoblastoma tumor suppressor gene and TP53, the identification of familial cancer syndromes implicating DNA helicases, and dramatic improvements in survival by the use of adjuvant chemotherapy. This review provides a synoptic overview of our current understanding of the molecular causes of osteosarcoma, and suggests future directions for study.
Collapse
Affiliation(s)
- Maya Kansara
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine and Research Division, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | |
Collapse
|
171
|
Iwase S, Lan F, Bayliss P, de la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007; 128:1077-88. [PMID: 17320160 DOI: 10.1016/j.cell.2007.02.017] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/16/2007] [Accepted: 02/09/2007] [Indexed: 12/13/2022]
Abstract
Histone methylation regulates chromatin structure and transcription. The recently identified histone demethylase lysine-specific demethylase 1 (LSD1) is chemically restricted to demethylation of only mono- and di- but not trimethylated histone H3 lysine 4 (H3K4me3). We show that the X-linked mental retardation (XLMR) gene SMCX (JARID1C), which encodes a JmjC-domain protein, reversed H3K4me3 to di- and mono- but not unmethylated products. Other SMCX family members, including SMCY, RBP2, and PLU-1, also demethylated H3K4me3. SMCX bound H3K9me3 via its N-terminal PHD (plant homeodomain) finger, which may help coordinate H3K4 demethylation and H3K9 methylation in transcriptional repression. Significantly, several XLMR-patient point mutations reduced SMCX demethylase activity and binding to H3K9me3 peptides, respectively. Importantly, studies in zebrafish and primary mammalian neurons demonstrated a role for SMCX in neuronal survival and dendritic development and a link to the demethylase activity. Our findings thus identify a family of H3K4me3 demethylases and uncover a critical link between histone modifications and XLMR.
Collapse
Affiliation(s)
- Shigeki Iwase
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Christensen J, Agger K, Cloos PAC, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K. RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007; 128:1063-76. [PMID: 17320161 DOI: 10.1016/j.cell.2007.02.003] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 12/14/2006] [Accepted: 02/02/2007] [Indexed: 12/12/2022]
Abstract
Methylation of histones has been regarded as a stable modification defining the epigenetic program of the cell, which regulates chromatin structure and transcription. However, the recent discovery of histone demethylases has challenged the stable nature of histone methylation. Here we demonstrate that the JARID1 proteins RBP2, PLU1, and SMCX are histone demethylases specific for di- and trimethylated histone 3 lysine 4 (H3K4). Consistent with a role for the JARID1 Drosophila homolog Lid in regulating expression of homeotic genes during development, we show that RBP2 is displaced from Hox genes during embryonic stem (ES) cell differentiation correlating with an increase of their H3K4me3 levels and expression. Furthermore, we show that mutation or RNAi depletion of the C. elegans JARID1 homolog rbr-2 leads to increased levels of H3K4me3 during larval development and defects in vulva formation. Taken together, these results suggest that H3K4me3/me2 demethylation regulated by the JARID1 family plays an important role during development.
Collapse
|
173
|
Secombe J, Li L, Carlos L, Eisenman RN. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 2007; 21:537-51. [PMID: 17311883 PMCID: PMC1820896 DOI: 10.1101/gad.1523007] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Myc oncoprotein is a potent inducer of cell growth, cell cycle progression, and apoptosis. While many direct Myc target genes have been identified, the molecular determinants of Myc's transcriptional specificity remain elusive. We have carried out a genetic screen in Drosophila and identified the Trithorax group protein Little imaginal discs (Lid) as a regulator of dMyc-induced cell growth. Lid binds to dMyc and is required for dMyc-induced expression of the growth regulatory gene Nop60B. The mammalian Lid orthologs, Rbp-2 (JARID1A) and Plu-1 (JARID1B), also bind to c-Myc, indicating that Lid-Myc function is conserved. We demonstrate that Lid is a JmjC-dependent trimethyl H3K4 demethylase in vivo and that this enzymatic activity is negatively regulated by dMyc, which binds to Lid's JmjC domain. Because Myc binding is associated with high levels of trimethylated H3K4, we propose that the Lid-dMyc complex facilitates Myc binding to, or maintenance of, this chromatin context.
Collapse
Affiliation(s)
- Julie Secombe
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Ling Li
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Leni Carlos
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Robert N. Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
- Corresponding author.E-MAIL ; FAX (206) 667-6522
| |
Collapse
|
174
|
Ye X, Zerlanko B, Zhang R, Somaiah N, Lipinski M, Salomoni P, Adams PD. Definition of pRB- and p53-dependent and -independent steps in HIRA/ASF1a-mediated formation of senescence-associated heterochromatin foci. Mol Cell Biol 2007; 27:2452-65. [PMID: 17242198 PMCID: PMC1899904 DOI: 10.1128/mcb.01592-06] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cellular senescence is an irreversible proliferation arrest triggered by short chromosome telomeres, activated oncogenes, and cell stress and mediated by the pRB and p53 tumor suppressor pathways. One of the earliest steps in the senescence program is translocation of a histone chaperone, HIRA, into promyelocytic leukemia (PML) nuclear bodies. This relocalization precedes other markers of senescence, including the appearance of specialized domains of facultative heterochromatin called senescence-associated heterochromatin foci (SAHF) and cell cycle exit. SAHF represses expression of proliferation-promoting genes, thereby driving exit from the cell cycle. HIRA bound to another histone chaperone, ASF1a, drives formation of SAHF. Here, we show that HIRA's translocation to PML bodies occurs in response to all senescence triggers tested. Dominant negative HIRA mutants that block HIRA's localization to PML bodies prevent formation of SAHF, as does a PML-RARalpha fusion protein which disrupts PML bodies, directly supporting the idea that localization of HIRA to PML bodies is required for formation of SAHF. Significantly, translocation of HIRA to PML bodies occurs in the absence of functional pRB and p53 tumor suppressor pathways. However, our evidence indicates that downstream of HIRA's localization to PML bodies, the HIRA/ASF1a pathway cooperates with pRB and p53 to make SAHF, with the HIRA/ASF1a and pRB pathways acting in parallel. We present evidence that convergence of the HIRA/ASF1a and pRB pathways occurs through a DNAJ-domain protein, DNAJA2.
Collapse
Affiliation(s)
- Xiaofen Ye
- Department of Basic Science, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
|
176
|
Binné UK, Classon MK, Dick FA, Wei W, Rape M, Kaelin WG, Näär AM, Dyson NJ. Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol 2006; 9:225-32. [PMID: 17187060 DOI: 10.1038/ncb1532] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/17/2006] [Indexed: 11/08/2022]
Abstract
The retinoblastoma protein (pRB) negatively regulates the progression from G1 to S phase of the cell cycle, in part, by repressing E2F-dependent transcription. pRB also possesses E2F-independent functions that contribute to cell-cycle control--for example, during pRB-mediated cell-cycle arrest pRB associates with Skp2, the F-box protein of the Skp1-Cullin-F-box protein (SCF) E3 ubiquitin ligase complex, and promotes the stability of the cyclin-dependent kinase-inhibitor p27(Kip1) through an unknown mechanism. Degradation of p27(Kip1) is mediated by ubiquitin-dependent targeting of p27(Kip1) by SCF -Skp2 (ref. 4). Here, we report a novel interaction between pRB and the anaphase-promoting complex/cyclosome (APC/C) that controls p27(Kip1) stability by targeting Skp2 for ubiquitin-mediated degradation. Cdh1, an activator of APC/C, not only interacts with pRB but is also required for a pRB-induced cell-cycle arrest. The results reveal an unexpected physical convergence between the pRB tumour-suppressor protein and E3 ligase complexes, and raise the possibility that pRB may direct APC/C to additional targets during pRB-mediated cell-cycle exit.
Collapse
Affiliation(s)
- Ulrich K Binné
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, Massachusetts, MA 02129, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Cobrinik D, Francis RO, Abramson DH, Lee TC. Rb induces a proliferative arrest and curtails Brn-2 expression in retinoblastoma cells. Mol Cancer 2006; 5:72. [PMID: 17163992 PMCID: PMC1764425 DOI: 10.1186/1476-4598-5-72] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 12/12/2006] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Retinoblastoma is caused by loss of the Rb protein in early retinal cells. Although numerous Rb functions have been identified, Rb effects that specifically relate to the suppression of retinoblastoma have not been defined. RESULTS In this study, we examined the effects of restoring Rb to Y79 retinoblastoma cells, using novel retroviral and lentiviral vectors that co-express green fluorescent protein (GFP). The lentiviral vector permitted transduction with sufficient efficiency to perform biochemical analyses. Wild type Rb (RbWT) and to a lesser extent the low penetrance mutant Rb661W induced a G0/G1 arrest associated with induction of p27KIP1 and repression of cyclin E1 and cyclin E2. Microarray analyses revealed that in addition to down-regulating E2F-responsive genes, Rb repressed expression of Brn-2 (POU3F2), which is implicated as an important transcriptional regulator in retinal progenitor cells and other neuroendocrine cell types. The repression of Brn-2 was a specific Rb effect, as ectopic p27 induced a G0/G1 block, but enhanced, rather than repressed, Brn-2 expression. CONCLUSION In addition to Rb effects that occur in many cell types, Rb regulates a gene that selectively governs the behavior of late retinal progenitors and related cells.
Collapse
Affiliation(s)
- David Cobrinik
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | - Richard O Francis
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - David H Abramson
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Ophthalmic Oncology Service, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | - Thomas C Lee
- Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, NY 10021, USA
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY 10021, USA
- Division of Ophthalmology, Department of Surgery, Childrens Hospital Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
178
|
Takeuchi T, Watanabe Y, Takano-Shimizu T, Kondo S. Roles of jumonji and jumonji family genes in chromatin regulation and development. Dev Dyn 2006; 235:2449-59. [PMID: 16715513 DOI: 10.1002/dvdy.20851] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The jumonji (jmj) gene was identified by a mouse gene trap approach and has essential roles in the development of multiple tissues. The Jmj protein has a DNA binding domain, ARID, and two conserved jmj domains (jmjN and jmjC). In many diverse species including bacteria, fungi, plants, and animals, there are many jumonji family proteins that have only the jmjC domain or both jmj domains. Recently, Jmj protein was found to be a transcriptional repressor. Several proteins in the jumonji family are involved in transcriptional repression and/or chromatin regulation. Most recently, one of the human members has been shown to be a histone demethylase, and the jmjC domain is essential for the demethylase activity. Meanwhile, more and more evidence indicating that the jumonji family proteins play important roles during development is accumulating. Many proteins in the jumonji family may regulate chromatin and gene expression, and control development through various signaling pathways. Here, we highlight the roles of jmj and jumonji family proteins in chromatin regulation and development.
Collapse
Affiliation(s)
- Takashi Takeuchi
- Mitsubishi Kagaku Institute of Life Sciences (MITILS), Machida, Tokyo, Japan.
| | | | | | | |
Collapse
|
179
|
Abstract
The retinoblastoma tumor-suppressor gene (Rb1) is centrally important in cancer research. Mutational inactivation of Rb1 causes the pediatric cancer retinoblastoma, while deregulation of the pathway in which it functions is common in most types of human cancer. The Rb1-encoded protein (pRb) is well known as a general cell cycle regulator, and this activity is critical for pRb-mediated tumor suppression. The main focus of this review, however, is on more recent evidence demonstrating the existence of additional, cell type-specific pRb functions in cellular differentiation and survival. These additional functions are relevant to carcinogenesis suggesting that the net effect of Rb1 loss on the behavior of resulting tumors is highly dependent on biological context. The molecular mechanisms underlying pRb functions are based on the cellular proteins it interacts with and the functional consequences of those interactions. Better insight into pRb-mediated tumor suppression and clinical exploitation of pRb as a therapeutic target will require a global view of the complex, interdependent network of pocket protein complexes that function simultaneously within given tissues.
Collapse
Affiliation(s)
- D W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
180
|
Klose RJ, Kallin EM, Zhang Y. JmjC-domain-containing proteins and histone demethylation. Nat Rev Genet 2006; 7:715-27. [PMID: 16983801 DOI: 10.1038/nrg1945] [Citation(s) in RCA: 942] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Histone methylation has important roles in regulating gene expression and forms part of the epigenetic memory system that regulates cell fate and identity. Enzymes that directly remove methyl marks from histones have recently been identified, revealing a new level of plasticity within this epigenetic modification system. Here we analyse the evolutionary relationship between Jumonji C (JmjC)-domain-containing proteins and discuss their cellular functions in relation to their potential enzymatic activities.
Collapse
Affiliation(s)
- Robert J Klose
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599-7295, USA
| | | | | |
Collapse
|
181
|
Skapek SX, Pan YR, Lee EYHP. Regulation of cell lineage specification by the retinoblastoma tumor suppressor. Oncogene 2006; 25:5268-76. [PMID: 16936747 DOI: 10.1038/sj.onc.1209710] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early studies of the retinoblastoma gene (RB) have uncovered its critical role as a regulator of the G(1)/S cell cycle phase progression. Surprisingly, genetic approaches in mammals and nematodes have also shown RB controls cell lineage specification and aspects of differentiation. The RB gene product accomplishes this by diverse mechanisms such as by interacting with tissue-specific transcription factors, enhancing RNA interference, and modifying chromatin structure. We review recent studies uncovering novel mechanisms by which RB works in several cell lineages and we provide perspectives on how these new findings might relate to RB tumor suppression.
Collapse
Affiliation(s)
- S X Skapek
- Department of Hematology/Oncology, St Jude Children's Research Hospital, Memphis, TN, USA.
| | | | | |
Collapse
|
182
|
Thomas D, Kansara M. Epigenetic modifications in osteogenic differentiation and transformation. J Cell Biochem 2006; 98:757-69. [PMID: 16598744 DOI: 10.1002/jcb.20850] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Almost all tumors are characterized by both architectural and cellular abnormalities in differentiation. Osteoblast development is relatively well understood, making osteosarcoma a good model for understanding how tumorigenesis perturbs normal differentiation. We argue that there are two key transition points in normal cellular differentiation that are the focus of oncogenic events, in both of which epigenetic processes are critical. The first is the transition from an uncommitted pluripotent precursor (mesenchymal stem cell) to the 'transit-amplifying compartment' of the osteoblast lineage. This transition, normally exquisitely regulated in space and time, is abnormal in cancer. The second involves termination of lineage expansion, equally tightly regulated under normal circumstances. In cancer, the mechanisms that mandate eventual cessation of cell division are almost universally disrupted. This model predicts that key differentiation genes in bone, such as RUNX2, act in an oncogenic fashion to initiate entry into a proliferative phase of cell differentiation, and anti-oncogenically into the post-mitotic state, resulting in ambivalent roles in tumorigenesis. Polycomb genes exemplify epigenetic processes in the stem cell compartment and tumorigenesis, and are implicated in skeletal development in vivo. The epigenetic functions of the retinoblastoma protein, which plays a key role in tumorigenesis in bone, is discussed in the context of terminal cell cycle exit.
Collapse
Affiliation(s)
- David Thomas
- Ian Potter Foundation Centre for Cancer Genomics and Predictive Medicine, Peter MacCallum Cancer Centre, Victoria 3002, Melbourne, Australia.
| | | |
Collapse
|
183
|
Knudsen ES, Knudsen KE. Retinoblastoma tumor suppressor: where cancer meets the cell cycle. Exp Biol Med (Maywood) 2006; 231:1271-81. [PMID: 16816134 DOI: 10.1177/153537020623100713] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The retinoblastoma tumor suppressor gene, Rb, was the first tumor suppressor identified and plays a fundamental role in regulation of progression through the cell cycle. This review details facets of RB protein function in cell cycle control and focuses on specific questions that remain intensive areas of investigation.
Collapse
Affiliation(s)
- Erik S Knudsen
- Department of Cell Biology and University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio 45267-0521, USA.
| | | |
Collapse
|
184
|
Brookes PS, Freeman RS, Barone MC. A shortcut to mitochondrial signaling and pathology: a commentary on "Nonenzymatic formation of succinate in mitochondria under oxidative stress". Free Radic Biol Med 2006; 41:41-5. [PMID: 16781451 DOI: 10.1016/j.freeradbiomed.2006.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 03/22/2006] [Indexed: 01/06/2023]
Affiliation(s)
- Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Box 604, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | |
Collapse
|
185
|
Berthet C, Kaldis P. Cdk2 and Cdk4 cooperatively control the expression of Cdc2. Cell Div 2006; 1:10. [PMID: 16759374 PMCID: PMC1524953 DOI: 10.1186/1747-1028-1-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 06/06/2006] [Indexed: 11/10/2022] Open
Abstract
Progression through the mammalian cell cycle is associated with the activity of four cyclin dependent kinases (Cdc2/Cdk1, Cdk2, Cdk4, and Cdk6). Knockout mouse models have provided insight into the interplay of these Cdks. Most of these models do not exhibit major cell cycle defects revealing redundancies, and suggesting that a single Cdk might be sufficient to drive the cell cycle, similar as in yeast. Recent work on Cdk2/Cdk4 double knockouts has indicated that these two Cdks are required to phosphorylate Rb during late embryogenesis. The lack of Rb phosphorylation is progressive and associated with reduced E2F-inducible gene expression. Cdk2 and Cdk4 share the essential function of coupling the G1/S transition with mitosis. However, proliferation in early embryogenesis appears to be independent of Cdk2 and Cdk4. We discuss these observations and propose molecular mechanisms that establish the requirement for Cdk2 and Cdk4 at the G1/S transition. We are considering that the balance between proliferation and differentiation is disturbed, which affects especially heart development and leads to embryonic lethality in Cdk2-/- Cdk4-/- mutants. We also discuss the specific functions of Cdk4 and Cdk6, which ironically do not compensate for each other.
Collapse
Affiliation(s)
- Cyril Berthet
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Bldg.560/22-56, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| | - Philipp Kaldis
- National Cancer Institute, Mouse Cancer Genetics Program, NCI-Frederick, Bldg.560/22-56, 1050 Boyles Street, Frederick, MD 21702-1201, USA
| |
Collapse
|
186
|
Sun H, Chang Y, Schweers B, Dyer MA, Zhang X, Hayward SW, Goodrich DW. An E2F binding-deficient Rb1 protein partially rescues developmental defects associated with Rb1 nullizygosity. Mol Cell Biol 2006; 26:1527-37. [PMID: 16449662 PMCID: PMC1367194 DOI: 10.1128/mcb.26.4.1527-1537.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rb1 is essential for normal embryonic development, as null mice die in midgestation with widespread unscheduled cell proliferation. Rb1 protein (pRb) mediates cell cycle control by binding E2F transcription factors and repressing expression from E2F-dependent promoters. An increasing amount of evidence suggests that pRb loss also compromises cellular differentiation. Since differentiation is often dependent on cell cycle exit, it is currently unclear whether the effects of pRb on differentiation are an indirect consequence of pRb/E2F-mediated cell cycle control or whether they reflect direct cell-type-specific pRb functions. We have mutated Rb1 in the mouse to express a protein (R654W) specifically deficient in binding E2F1, E2F2, and E2F3. R654W mutant embryos exhibit cell cycle defects the same as those of Rb1 null embryos, reinforcing the importance of the interactions of pRb with E2F1, E2F2, and E2F3 for cell cycle control. However, R654W embryos survive at least 2 days longer than Rb1 null embryos, and increased life span is associated with improved erythrocyte and fetal liver macrophage differentiation. In contrast, R654W pRb does not rescue differentiation defects associated with pRb-deficient retinae. These data indicate that Rb1 makes important cell-type-specific contributions to cellular differentiation that are genetically separable from its general ability to stably bind E2F1, E2F2, and E2F3 and regulate the cell cycle.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Pharmacology & Therapeutics, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Korenjak M, Brehm A. E2F-Rb complexes regulating transcription of genes important for differentiation and development. Curr Opin Genet Dev 2006; 15:520-7. [PMID: 16081278 DOI: 10.1016/j.gde.2005.07.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Accepted: 07/21/2005] [Indexed: 01/22/2023]
Abstract
Inactivation of the retinoblastoma tumour suppressor protein (pRb) is a hallmark of most human cancers. Accordingly, pRb is serving as a paradigm in our quest to understand tumour suppressor function. The role played by pRb and the related 'pocket proteins', p107 and p130, in regulating cell cycle progression has been extensively studied over the past two decades. The function of pRb in regulating transcriptional programmes in differentiating cells is less well understood. Recently, the use of a variety of different cell, animal and plant model systems has allowed us a first glimpse at some of the molecular mechanisms underlying pRb-mediated transcriptional regulation during differentiation and development.
Collapse
Affiliation(s)
- Michael Korenjak
- Lehrstuhl für Molekularbiologie, Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität, Schillerstrasse 44, 80336 München, Germany
| | | |
Collapse
|
188
|
Abstract
The retinoblastoma protein or its regulators are altered in most human cancers. Although commonly thought of as solely a repressor of E2F-dependent transcription and cell cycle progression, pRb has gained notoriety in recent years as a key actor in cellular differentiation programs. In the June issue of Molecular Cell, Benevolenskaya et al. report that a long-known but poorly understood pRb interactor, RBP2, acts as an inhibitor of differentiation contributing to pRb's role as a coordinator of differentiation and cell cycle exit. Loss of pRb may unleash RBP2, maintaining cells in a poorly differentiated progenitor state that is prerequisite to tumor formation.
Collapse
Affiliation(s)
- Gabriel M Gutierrez
- Molecular Oncology Research Institute, Department of Radiation Oncology, Tufts-New England Medical Center, Boston, MA 02115, USA
| | | | | |
Collapse
|