151
|
Wu X, Wang S, Li M, Wang A, Zhou Y, Li P, Wang Y. Nanocarriers for TRAIL delivery: driving TRAIL back on track for cancer therapy. NANOSCALE 2017; 9:13879-13904. [PMID: 28914952 DOI: 10.1039/c7nr04959e] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since its initial identification, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has been shown to be capable of selectively inducing apoptosis in cancer cells. However, translation of the encouraging preclinical studies of this cytokine into the clinic has been restricted by its extremely short half-life, the presence of resistant cancer cell populations, and its inefficient in vivo delivery. Recently, there has been exceptional progress in developing novel formulations to increase the circulatory half-life of TRAIL and new combinations to treat cancers that are resistant to TRAIL. In particular, TRAIL-based nanotherapies offer the potential to improve the stability of TRAIL and prolong its half-life in plasma, to specifically deliver TRAIL to a particular target site, and to overcome resistance to TRAIL. The aim of this review is to provide an overview of the state-of-the art drug delivery systems that are currently being tested or developed to improve the biological attributes of TRAIL-based therapies.
Collapse
Affiliation(s)
- Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan Province, China
| | | | | | | | | | | | | |
Collapse
|
152
|
Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate. Nat Commun 2017; 8:540. [PMID: 28912471 PMCID: PMC5599586 DOI: 10.1038/s41467-017-00459-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/29/2017] [Indexed: 11/22/2022] Open
Abstract
Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA–protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA–protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA–protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour. Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.
Collapse
|
153
|
Guo L, Sun X, Hao Z, Huang J, Han X, You Y, Li Y, Shen M, Ozawa T, Kishi H, Muraguchi A, Jin A. Identification of Novel Epitopes with Agonistic Activity for the Development of Tumor Immunotherapy Targeting TRAIL-R1. J Cancer 2017; 8:2542-2553. [PMID: 28900492 PMCID: PMC5595084 DOI: 10.7150/jca.19918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-1/2 (TRAIL-R1/R2), also known as death receptors, are expressed in a wide variety of tumor cells. Although TRAIL can induce cell apoptosis by engaging its cognate TRAIL-R1/R2, some tumor cells are or become resistant to TRAIL treatment. Monoclonal antibodies (mAbs) against TRAIL-R1/R2 have been developed to use as potential antitumor therapeutic agents instead of TRAIL. However, TRAIL-R1/R2-based tumor therapy has not yet been realized. We previously generated a series of fully human monoclonal antibodies against TRAIL-R1 (TR1-mAbs) that induced tumor cell apoptosis. In this study, we identified the antigenic binding sites of these TR1-mAbs and proposed two major epitopes on the extracellular domain of TRAIL-R1. The analysis revealed that the epitopes of some TR1-mAbs partially overlaps with the beginning of TRAIL-binding sites, and other epitopes are located within the TRAIL-binding region. Among these mAbs, TR1-422 and TR1-419 mAbs have two antigenic binding sites that bound to the same binding region, but they have different essential amino acid residues and binding site sizes. Furthermore, we investigated the apoptosis activity of TR1-419 and TR1-422 mAbs in the form of IgG and IgM. In contrast to the IgG-type TR1-419 and TR1-422 mAbs, which enhanced and inhibited TRAIL-induced apoptosis, respectively, both IgM-type TR1-419 and TR1-422 mAb strongly induced cell apoptosis with or without soluble TRAIL (sTRAIL). Moreover, the results showed that IgM-type TR1-419 and TR1-422 mAbs alone can sufficiently activate the extrinsic and intrinsic apoptosis signaling pathways and suppress tumor growth in vivo. Consequently, we identified two antigenic binding sites with agonistic activity, and their specific IgM-type mAbs exhibited strong cytotoxic activity in tumor cells in vitro and in vivo. Thus, these agonistic antigenic binding sites may be useful for the development of effective Ab-based drugs or Ab-based cell immunotherapy for various human solid tumors.
Collapse
Affiliation(s)
- Lu Guo
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China.,Department of Basic Medical Sciences, Heilongjiang Nursing College, Harbin, Heilongjiang 150086, China
| | - Xin Sun
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhichao Hao
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jingjing Huang
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaojian Han
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yajie You
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yaying Li
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Meiying Shen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150000, China
| | - Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Aishun Jin
- Department of Immunology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
154
|
Shlyakhtina Y, Pavet V, Gronemeyer H. Dual role of DR5 in death and survival signaling leads to TRAIL resistance in cancer cells. Cell Death Dis 2017; 8:e3025. [PMID: 29048428 PMCID: PMC5596601 DOI: 10.1038/cddis.2017.423] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 01/24/2023]
Abstract
Besides its tumor-selective apoptotic activity, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) promotes pro-survival, proliferative or migratory signaling (NF-κB, PI3K/Akt, MAPK and JNK; referred to as 'non-apoptotic' cascades). Indeed, apoptosis and non-apoptotic signaling can be activated in clonal populations of cancer cells in response to treatment and, as a result, only a part of the initial cellular population dies while a fraction survives and develops resistance to TRAIL-induced apoptosis (referred to as 'fractional survival'). Notably, the molecular characterization of the protein platforms streaming into tumoricidal versus tumor-promoting cascades that control fractional survival remained elusive. Here we demonstrate that, in the context of DR4–DR5–DcR2 hetero-oligomeric complexes, a single death receptor (DR5) suffices to assemble composite plasma membrane-proximal pro-apoptotic/pro-survival platforms that propagate TRAIL signaling to both death and survival pathways in clonal populations of cancer cells. Moreover, we show that while all members of TRAIL-induced complexes support survival, none of them acted exclusively pro-apoptotic. Indeed, key apoptotic proteins as FADD and procaspase-8 were also involved in transducing non-apoptotic signaling in response to this cytokine. Collectively, this study reveals the Janus faces of DR5, and the contributions of other death complex components in fractional survival that foster the generation of resistance. Our data highlight a new level of complexity in TRAIL signaling and point to an improved therapeutic rationale in view of hitherto disappointing results.
Collapse
Affiliation(s)
- Yelyzaveta Shlyakhtina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
| | - Valeria Pavet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
| | - Hinrich Gronemeyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Equipe Labellisée Ligue Contre le Cancer, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, University of Strasbourg, Illkirch, France
| |
Collapse
|
155
|
Liu H, Su D, Zhang J, Ge S, Li Y, Wang F, Gravel M, Roulston A, Song Q, Xu W, Liang JG, Shore G, Wang X, Liang P. Improvement of Pharmacokinetic Profile of TRAIL via Trimer-Tag Enhances its Antitumor Activity in vivo. Sci Rep 2017; 7:8953. [PMID: 28827692 PMCID: PMC5566391 DOI: 10.1038/s41598-017-09518-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
TNF-related apoptosis-inducing ligand (TRAIL/Apo2L) has long been considered a tantalizing target for cancer therapy because it mediates activation of the extrinsic apoptosis pathway in a tumor-specific manner by binding to and trimerizing its functional receptors DR4 or DR5. Despite initial promise, both recombinant human TRAIL (native TRAIL) and dimeric DR4/DR5 agonist monoclonal antibodies (mAbs) failed in multiple human clinical trials. Here we show that in-frame fusion of human C-propeptide of α1(I) collagen (Trimer-Tag) to the C-terminus of mature human TRAIL leads to a disulfide bond-linked homotrimer which can be expressed at high levels as a secreted protein from CHO cells. The resulting TRAIL-Trimer not only retains similar bioactivity and receptor binding kinetics as native TRAIL in vitro which are 4-5 orders of magnitude superior to that of dimeric TRAIL-Fc, but also manifests more favorable pharmacokinetic and antitumor pharmacodynamic profiles in vivo than that of native TRAIL. Taken together, this work provides direct evidence for the in vivo antitumor efficacy of TRAIL being proportional to systemic drug exposure and suggests that the previous clinical failures may have been due to rapid systemic clearance of native TRAIL and poor apoptosis-inducing potency of dimeric agonist mAbs despite their long serum half-lives.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Danmei Su
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jinlong Zhang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shuaishuai Ge
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Youwei Li
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Fei Wang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China
| | - Michel Gravel
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Anne Roulston
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Qin Song
- Clover Biopharmaceuticals, Chengdu, China
| | - Wei Xu
- Clover Biopharmaceuticals, Chengdu, China
| | | | - Gordon Shore
- Laboratory for Therapeutic Development, Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal (QC), Canada
| | - Xiaodong Wang
- National Institute of Biological Sciences, Beijing, China
| | - Peng Liang
- Department of Biochemistry & Molecular Biology, College of Life Sciences, Sichuan University, Chengdu, China.
- Clover Biopharmaceuticals, Chengdu, China.
- GenHunter Corporation, 624 Grassmere Park, Nashville, TN, 37211, USA.
| |
Collapse
|
156
|
Tang Q, Ji F, Wang J, Guo L, Li Y, Bao Y. Quercetin exerts synergetic anti-cancer activity with 10-hydroxy camptothecin. Eur J Pharm Sci 2017; 109:223-232. [PMID: 28822757 DOI: 10.1016/j.ejps.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/01/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022]
Abstract
Quercetin (Qu) is known as a dietary antioxidant with numerous bioactivities, but its function in anti-cancer has not been fully investigated. Here, we show that Qu at low doses (≤10μM) significantly enhances the inhibition of 10-hydroxy camptothecin (HCPT) on the proliferation of MCF7, BGC823 and HepG2 cells. A plasmid DNA relaxation assay indicates that the inhibition of HCPT on the catalytic activity of topoisomerase I (Topo I) is increased by Qu at 10μM. Compared to the treatment by Qu or HCPT alone, phosphorylation at Ser139 of γH2A.X in MCF7 cells starts to increase significantly (P<0.05) at 6h when treated by the combination of 10μM Qu and 0.62μM HCPT. Moreover, the combinational group successively arrests MCF7 cells at G1, S and G2/M phases from 12h to 48h via up-regulation of p21 and induces apoptosis at 24h by triggering intrinsic cell death pathways. In addition, the inhibition effects of the combinational group on the proliferation of MCF7 cells are eliminated by pretreatment with 100μM Z-VAD-FMK (a caspase inhibitor). Finally, by using nude mice xenografting assay of MCF7 cells, we demonstrate that tumor inhibition rates of combinational group are significantly higher than single-drug group. In summary, the synergic anti-cancer mechanism of Qu and HCPT in MCF7 cells is through the combined inhibitory effects of Qu and HCPT on Topo I, which synergistically induce cell cycle arrest and apoptosis by triggering DNA damage.
Collapse
Affiliation(s)
- Qin Tang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fangling Ji
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Jingyun Wang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Lianying Guo
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China
| | - Yachen Li
- Department of Occupational and Environmental Health, Dalian Medical University, Dalian 116044, China.
| | - Yongming Bao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; School of Food and Environment Science and Engineering, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
157
|
Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. Biochem J 2017; 473:2973-94. [PMID: 27679857 DOI: 10.1042/bcj20160471] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations. However, UVR also activates signaling cascades that promote the survival of these potentially cancerous cells, resulting in tumor initiation. Thus, the UVR-induced stress response in the skin is multifaceted and requires coordinated activation of numerous pathways controlling DNA damage repair, inflammation, and kinase-mediated signal transduction that lead to either cell survival or cell death. This review focuses on the central signaling mechanisms that respond to UVR and the subsequent cellular changes. Given the prevalence of NMSC and the resulting health care burden, many of these pathways provide promising targets for continued study aimed at both chemoprevention and chemotherapy.
Collapse
|
158
|
von Karstedt S, Montinaro A, Walczak H. Exploring the TRAILs less travelled: TRAIL in cancer biology and therapy. Nat Rev Cancer 2017; 17:352-366. [PMID: 28536452 DOI: 10.1038/nrc.2017.28] [Citation(s) in RCA: 390] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The discovery that the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis of cancer cells without causing toxicity in mice has led to the in-depth study of pro-apoptotic TRAIL receptor (TRAIL-R) signalling and the development of biotherapeutic drug candidates that activate TRAIL-Rs. The outcome of clinical trials with these TRAIL-R agonists has, however, been disappointing so far. Recent evidence indicates that many cancers, in addition to being TRAIL resistant, use the endogenous TRAIL-TRAIL-R system to their own advantage. However, novel insight on two fronts - how resistance of cancer cells to TRAIL-based pro-apoptotic therapies might be overcome, and how the pro-tumorigenic effects of endogenous TRAIL might be countered - gives reasonable hope that the TRAIL system can be harnessed to treat cancer. In this Review we assess the status quo of our understanding of the biology of the TRAIL-TRAIL-R system - as well as the gaps therein - and discuss the opportunities and challenges in effectively targeting this pathway.
Collapse
Affiliation(s)
- Silvia von Karstedt
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Antonella Montinaro
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| |
Collapse
|
159
|
Wajant H. TRAIL- and TNF-induced signaling complexes-so similar yet so different. EMBO J 2017; 36:1117-1119. [PMID: 28400401 DOI: 10.15252/embj.201796997] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
160
|
Yamada A, Arakaki R, Saito M, Kudo Y, Ishimaru N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front Immunol 2017; 8:403. [PMID: 28424702 PMCID: PMC5380675 DOI: 10.3389/fimmu.2017.00403] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/21/2017] [Indexed: 12/20/2022] Open
Abstract
Fas-mediated apoptosis contributes to physiological and pathological cellular processes, such as differentiation and survival. In particular, the roles of Fas in immune cells are complex and critical for the maintenance of immune tolerance. The precise pathways and unique functions associated with Fas/FasL-mediated signaling in the immune system are known. The dual character of Fas/FasL-mediated immune regulation that induces beneficial or harmful effects is associated with the onset or development of immune disorders. Studies on mutations in genes encoding Fas and FasL gene of humans and mice contributed to our understanding of the pathogenesis of autoimmune diseases. Here, we review the opposing functions of Fas/FasL-mediated signaling, bilateral effects of Fas/FasL on in immune cells, and complex pathogenesis of autoimmunity mediated by Fas/FasL.
Collapse
Affiliation(s)
- Akiko Yamada
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Rieko Arakaki
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masako Saito
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yasusei Kudo
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| |
Collapse
|
161
|
|
162
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
163
|
Zamaraev AV, Kopeina GS, Prokhorova EA, Zhivotovsky B, Lavrik IN. Post-translational Modification of Caspases: The Other Side of Apoptosis Regulation. Trends Cell Biol 2017; 27:322-339. [PMID: 28188028 DOI: 10.1016/j.tcb.2017.01.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/21/2016] [Accepted: 01/05/2017] [Indexed: 12/20/2022]
Abstract
Apoptosis is a crucial program of cell death that controls development and homeostasis of multicellular organisms. The main initiators and executors of this process are the Cysteine-dependent ASPartate proteASES - caspases. A number of regulatory circuits tightly control caspase processing and activity. One of the most important, yet, at the same time still poorly understood control mechanisms of activation of caspases involves their post-translational modifications. The addition and/or removal of chemical groups drastically alters the catalytic activity of caspases or stimulates their nonapoptotic functions. In this review, we will describe and discuss the roles of key caspase modifications such as phosphorylation, ubiquitination, nitrosylation, glutathionylation, SUMOylation, and acetylation in the regulation of apoptotic cell death and cell survival.
Collapse
Affiliation(s)
- Alexey V Zamaraev
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Gelina S Kopeina
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Evgeniia A Prokhorova
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, 17177 Stockholm, Sweden.
| | - Inna N Lavrik
- Faculty of Basic Medicine, MV Lomonosov Moscow State University, 119991 Moscow, Russia; Department of Translational Inflammation, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany.
| |
Collapse
|
164
|
Henry CM, Martin SJ. Caspase-8 Acts in a Non-enzymatic Role as a Scaffold for Assembly of a Pro-inflammatory “FADDosome” Complex upon TRAIL Stimulation. Mol Cell 2017; 65:715-729.e5. [DOI: 10.1016/j.molcel.2017.01.022] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/31/2023]
|
165
|
Park YH, Jeong MS, Jang SB. Structural insights of homotypic interaction domains in the ligand-receptor signal transduction of tumor necrosis factor (TNF). BMB Rep 2017; 49:159-66. [PMID: 26615973 PMCID: PMC4915230 DOI: 10.5483/bmbrep.2016.49.3.205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Indexed: 11/21/2022] Open
Abstract
Several members of tumor necrosis factor receptor (TNFR) superfamily that these
members activate caspase-8 from death-inducing signaling complex (DISC) in TNF
ligand-receptor signal transduction have been identified. In the extrinsic
pathway, apoptotic signal transduction is induced in death domain (DD)
superfamily; it consists of a hexahelical bundle that contains 80 amino acids.
The DD superfamily includes about 100 members that belong to four subfamilies:
death domain (DD), caspase recruitment domain (CARD), pyrin domain (PYD), and
death effector domain (DED). This superfamily contains key building blocks: with
these blocks, multimeric complexes are formed through homotypic interactions.
Furthermore, each DD-binding event occurs exclusively. The DD superfamily
regulates the balance between death and survival of cells. In this study, the
structures, functions, and unique features of DD superfamily members are
compared with their complexes. By elucidating structural insights of DD
superfamily members, we investigate the interaction mechanisms of DD domains;
these domains are involved in TNF ligand-receptor signaling. These DD
superfamily members play a pivotal role in the development of more specific
treatments of cancer. [BMB Reports 2016; 49(3): 159-166]
Collapse
Affiliation(s)
- Young-Hoon Park
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Mi Suk Jeong
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Korea
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University; Genetic Engineering Institute, Pusan National University, Busan 46241, Korea
| |
Collapse
|
166
|
Mert U, Sanlioglu AD. Intracellular localization of DR5 and related regulatory pathways as a mechanism of resistance to TRAIL in cancer. Cell Mol Life Sci 2017; 74:245-255. [PMID: 27510421 PMCID: PMC11107773 DOI: 10.1007/s00018-016-2321-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/19/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
TNF-related apoptosis-inducing ligand (TRAIL) is a prominent cytokine capable of inducing apoptosis. It can bind to five different cognate receptors, through which diverse intracellular pathways can be activated. TRAIL's ability to preferentially kill transformed cells makes it a promising potential weapon for targeted tumor therapy. However, recognition of several resistance mechanisms to TRAIL-induced apoptosis has indicated that a thorough understanding of the details of TRAIL biology is still essential before this weapon can be confidently unleashed. Critical to this aim is revealing the functions and regulation mechanisms of TRAIL's potent death receptor DR5. Although expression and signaling mechanisms of DR5 have been extensively studied, other aspects, such as its subcellular localization, non-signaling functions, and regulation of its membrane transport, have only recently attracted attention. Here, we discuss different aspects of TRAIL/DR5 biology, with a particular emphasis on the factors that seem to influence the cell surface expression pattern of DR5, along with factors that lead to its nuclear localization. Disturbance of this balance apparently affects the sensitivity of cancer cells to TRAIL-mediated apoptosis, thus constituting an eligible target for potential new therapeutic agents.
Collapse
Affiliation(s)
- Ufuk Mert
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey
| | - Ahter Dilsad Sanlioglu
- Department of Medical Biology and Genetics, Faculty of Medicine, Akdeniz University, 07058, Antalya, Turkey.
- Center for Gene and Cell Therapy, Akdeniz University, 07058, Antalya, Turkey.
| |
Collapse
|
167
|
Cruz AC, Ramaswamy M, Ouyang C, Klebanoff CA, Sengupta P, Yamamoto TN, Meylan F, Thomas SK, Richoz N, Eil R, Price S, Casellas R, Rao VK, Lippincott-Schwartz J, Restifo NP, Siegel RM. Fas/CD95 prevents autoimmunity independently of lipid raft localization and efficient apoptosis induction. Nat Commun 2016; 7:13895. [PMID: 28008916 PMCID: PMC5196435 DOI: 10.1038/ncomms13895] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/06/2016] [Indexed: 01/09/2023] Open
Abstract
Mutations affecting the apoptosis-inducing function of the Fas/CD95 TNF-family receptor result in autoimmune and lymphoproliferative disease. However, Fas can also costimulate T-cell activation and promote tumour cell growth and metastasis. Palmitoylation at a membrane proximal cysteine residue enables Fas to localize to lipid raft microdomains and induce apoptosis in cell lines. Here, we show that a palmitoylation-defective Fas C194V mutant is defective in inducing apoptosis in primary mouse T cells, B cells and dendritic cells, while retaining the ability to enhance naive T-cell differentiation. Despite inability to efficiently induce cell death, the Fas C194V receptor prevents the lymphoaccumulation and autoimmunity that develops in Fas-deficient mice. These findings indicate that induction of apoptosis through Fas is dependent on receptor palmitoylation in primary immune cells, and Fas may prevent autoimmunity by mechanisms other than inducing apoptosis. Fas drives apoptosis and mutations in this receptor can cause autoimmunity through failure of cell death. Here, the authors use lpr/lpr mice with palmitoylation-defective mutant Fas to provide evidence that Fas might limit spontaneous autoimmunity through a non-apoptotic mechanism.
Collapse
Affiliation(s)
- Anthony C Cruz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Madhu Ramaswamy
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Claudia Ouyang
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Center For Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland 20892, USA
| | - Prabuddha Sengupta
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland 20892, USA
| | - Tori N Yamamoto
- Center For Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland 20892, USA.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Françoise Meylan
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Stacy K Thomas
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Nathan Richoz
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | - Robert Eil
- Center For Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland 20892, USA
| | - Susan Price
- Clinical Genomics Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland 20892, USA
| | - Rafael Casellas
- Genomics and Immunity Branch, NIAMS, Bethesda, Maryland 20892, USA
| | - V Koneti Rao
- Clinical Genomics Unit, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, Maryland 20892, USA
| | - Jennifer Lippincott-Schwartz
- Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH, Bethesda, Maryland 20892, USA
| | - Nicholas P Restifo
- Center For Cancer Research, National Cancer Institute (NCI), NIH, Bethesda, Maryland 20892, USA.,Center for Cell-Based Therapy, NCI, NIH, Bethesda, Maryland 20892, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Intramural Research Program, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| |
Collapse
|
168
|
Lin JC, Tsao MF, Lin YJ. Differential Impacts of Alternative Splicing Networks on Apoptosis. Int J Mol Sci 2016; 17:ijms17122097. [PMID: 27983653 PMCID: PMC5187897 DOI: 10.3390/ijms17122097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/26/2016] [Accepted: 12/02/2016] [Indexed: 12/16/2022] Open
Abstract
Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases.
Collapse
Affiliation(s)
- Jung-Chun Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan.
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
169
|
Siegmund D, Lang I, Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J 2016; 284:1131-1159. [PMID: 27865080 DOI: 10.1111/febs.13968] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
Since their identification more than 20 years ago, the death receptors CD95, TRAILR1, and TRAILR2 have been intensively studied with respect to their cell death-inducing activities. These receptors, however, can also trigger a variety of cell death-independent cellular responses reaching from the activation of proinflammatory gene transcription programs over the stimulation of proliferation and differentiation to induction of cell migration. The cell death-inducing signaling mechanisms of CD95 and the TRAIL death receptors are well understood. In contrast, despite the increasing recognition of the biological and pathophysiological relevance of the cell death-independent activities of CD95, TRAILR1, and TRAILR2, the corresponding signaling mechanisms are less understood and give no fully coherent picture. This review is focused on the cell death-independent activities of CD95 and the TRAIL death receptors and addresses mainly three questions: (a) how are these receptors linked to noncell death pathways at the molecular level, (b) which factors determine the balance of cell death and cell death-independent activities of CD95 and the TRAIL death receptors at the cellular level, and (c) what are the consequences of the cell death-independent functions of these receptors for their role in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Siegmund
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Isabell Lang
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Medical Clinic and Polyclinic II, University Hospital Würzburg, Germany
| |
Collapse
|
170
|
Fu TM, Li Y, Lu A, Li Z, Vajjhala PR, Cruz AC, Srivastava DB, DiMaio F, Penczek PA, Siegel RM, Stacey KJ, Egelman EH, Wu H. Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol Cell 2016; 64:236-250. [PMID: 27746017 PMCID: PMC5089849 DOI: 10.1016/j.molcel.2016.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Caspase-8 activation can be triggered by death receptor-mediated formation of the death-inducing signaling complex (DISC) and by the inflammasome adaptor ASC. Caspase-8 assembles with FADD at the DISC and with ASC at the inflammasome through its tandem death effector domain (tDED), which is regulated by the tDED-containing cellular inhibitor cFLIP and the viral inhibitor MC159. Here we present the caspase-8 tDED filament structure determined by cryoelectron microscopy. Extensive assembly interfaces not predicted by the previously proposed linear DED chain model were uncovered, and were further confirmed by structure-based mutagenesis in filament formation in vitro and Fas-induced apoptosis and ASC-mediated caspase-8 recruitment in cells. Structurally, the two DEDs in caspase-8 use quasi-equivalent contacts to enable assembly. Using the tDED filament structure as a template, structural analyses reveal the interaction surfaces between FADD and caspase-8 and the distinct mechanisms of regulation by cFLIP and MC159 through comingling and capping, respectively.
Collapse
Affiliation(s)
- Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yang Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alvin Lu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Zongli Li
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Anthony C Cruz
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Devendra B Srivastava
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Pawel A Penczek
- Department of Biochemistry and Molecular Biology, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Richard M Siegel
- Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Edward H Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
171
|
Zoller V, Funcke JB, Keuper M, Abd El Hay M, Debatin KM, Wabitsch M, Fischer-Posovszky P. TRAIL (TNF-related apoptosis-inducing ligand) inhibits human adipocyte differentiation via caspase-mediated downregulation of adipogenic transcription factors. Cell Death Dis 2016; 7:e2412. [PMID: 27735943 PMCID: PMC5133965 DOI: 10.1038/cddis.2016.286] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 01/20/2023]
Abstract
Tumor necrosis factor-α (TNFα) and other ligands of the TNF superfamily are potent regulators of adipose tissue metabolism and play a crucial role in the obesity-induced inflammation of adipose tissue. Adipose tissue expression levels of TRAIL (TNF-related apoptosis-inducing ligand) and its receptor were shown to be upregulated by overfeeding and decreased by fasting in mice. In the present study we aimed to elucidate the impact of TRAIL on adipogenesis. To this end, human Simpson-Golabi-Behmel syndrome (SGBS) preadipocytes as well as stromal-vascular cells isolated from human white adipose tissue were used as model systems. Human recombinant TRAIL inhibited adipogenic differentiation in a dose-dependent manner. It activated the cleavage of caspase-8 and -3, which in turn resulted in a downregulation of the key adipogenic transcription factors C/EBPα, C/EBPδ, and PPARγ. The effect was completely blocked by pharmacological or genetic inhibition of caspases. Taken together we discovered a so far unrecognized function of TRAIL in the regulation of adipogenesis. Targeting the TRAIL/TRAIL receptor system might provide a novel strategy to interfere with adipose tissue homeostasis.
Collapse
Affiliation(s)
- Verena Zoller
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Jan-Bernd Funcke
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Michaela Keuper
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Muad Abd El Hay
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatric and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
172
|
Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L, Schwabe JWR, Leverkus M, Cain K, MacFarlane M. Co-operative and Hierarchical Binding of c-FLIP and Caspase-8: A Unified Model Defines How c-FLIP Isoforms Differentially Control Cell Fate. Mol Cell 2016; 61:834-49. [PMID: 26990987 PMCID: PMC4819448 DOI: 10.1016/j.molcel.2016.02.023] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/22/2016] [Accepted: 02/17/2016] [Indexed: 12/11/2022]
Abstract
The death-inducing signaling complex (DISC) initiates death receptor-induced apoptosis. DISC assembly and activation are controlled by c-FLIP isoforms, which function as pro-apoptotic (c-FLIPL only) or anti-apoptotic (c-FLIPL/c-FLIPS) regulators of procaspase-8 activation. Current models assume that c-FLIP directly competes with procaspase-8 for recruitment to FADD. Using a functional reconstituted DISC, structure-guided mutagenesis, and quantitative LC-MS/MS, we show that c-FLIPL/S binding to the DISC is instead a co-operative procaspase-8-dependent process. FADD initially recruits procaspase-8, which in turn recruits and heterodimerizes with c-FLIPL/S via a hierarchical binding mechanism. Procaspase-8 activation is regulated by the ratio of unbound c-FLIPL/S to procaspase-8, which determines composition of the procaspase-8:c-FLIPL/S heterodimer. Thus, procaspase-8:c-FLIPL exhibits localized enzymatic activity and is preferentially an activator, promoting DED-mediated procaspase-8 oligomer assembly, whereas procaspase-8:c-FLIPS lacks activity and potently blocks procaspase-8 activation. This co-operative hierarchical binding model explains the dual role of c-FLIPL and crucially defines how c-FLIP isoforms differentially control cell fate.
Collapse
Affiliation(s)
- Michelle A Hughes
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Ian R Powley
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Rebekah Jukes-Jones
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | - Sebastian Horn
- Department of Dermatology, Venereology and Allergology, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Maria Feoktistova
- Department of Dermatology and Allergology, Medical Faculty of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - John W R Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Molecular and Cell Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | - Martin Leverkus
- Department of Dermatology and Allergology, Medical Faculty of the RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Kelvin Cain
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK.
| | - Marion MacFarlane
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
173
|
Jeong M, Lee EW, Seong D, Seo J, Kim JH, Grootjans S, Kim SY, Vandenabeele P, Song J. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIP L stability. Oncogene 2016; 36:458-470. [PMID: 27321185 DOI: 10.1038/onc.2016.215] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/08/2016] [Accepted: 05/11/2016] [Indexed: 11/09/2022]
Abstract
FLICE-like inhibitory protein (FLIP) is a critical regulator of death receptor-mediated apoptosis. Here, we found ubiquitin-specific peptidase 8 (USP8) to be a novel deubiquitylase of the long isoform of FLIP (FLIPL). USP8 directly deubiquitylates and stabilizes FLIPL, but not the short isoform. USP8 depletion induces FLIPL destabilization, promoting anti-Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and tumor necrosis factor alpha-induced extrinsic apoptosis by facilitating death-inducing signaling complex or TNFR1 complex II formation, which results in the activation of caspase-8 and caspase-3. USP8 mRNA levels are elevated in melanoma and cervical cancers, and the protein levels of USP8 and FLIPL are positively correlated in these cancer cell lines. Xenograft analyses using ME-180 cervical cancer cells showed that USP8 depletion attenuated tumor growth upon TRAIL injection. Taken together, our data indicate that USP8 functions as a novel deubiquitylase of FLIPL and inhibits extrinsic apoptosis by stabilizing FLIPL.
Collapse
Affiliation(s)
- M Jeong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - E-W Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - D Seong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - J Seo
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - J-H Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - S Grootjans
- Inflammation Research Center, VIB, Zwijnaarde-Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - S-Y Kim
- Cancer Cell and Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - P Vandenabeele
- Inflammation Research Center, VIB, Zwijnaarde-Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Zwijnaarde-Ghent, Belgium
| | - J Song
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
174
|
Peltzer N, Darding M, Walczak H. Holding RIPK1 on the Ubiquitin Leash in TNFR1 Signaling. Trends Cell Biol 2016; 26:445-461. [DOI: 10.1016/j.tcb.2016.01.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 01/13/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
|
175
|
Targeting cell death signalling in cancer: minimising 'Collateral damage'. Br J Cancer 2016; 115:5-11. [PMID: 27140313 PMCID: PMC4931361 DOI: 10.1038/bjc.2016.111] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 01/12/2023] Open
Abstract
Targeting apoptosis for the treatment of cancer has become an increasingly attractive strategy, with agents in development to trigger extrinsic apoptosis via TRAIL signalling, or to prevent the anti-apoptotic activity of BCL-2 proteins or inhibitor of apoptosis (IAP) proteins. Although the evasion of apoptosis is one of the hallmarks of cancer, many cancers have intact apoptotic signalling pathways, which if unblocked could efficiently kill cancerous cells. However, it is becoming increasing clear that without a detailed understanding of both apoptotic and non-apoptotic signalling, and the key proteins that regulate these pathways, there can be dose-limiting toxicity and adverse effects associated with their modulation. Here we review the main apoptotic pathways directly targeted for anti-cancer therapy and the unforeseen consequences of their modulation. Furthermore, we highlight the importance of an in-depth mechanistic understanding of both the apoptotic and non-apoptotic functions of those proteins under investigation as anti-cancer drug targets and outline some novel approaches to sensitise cancer cells to apoptosis, thereby improving the efficacy of existing therapies when used in combination with novel targeted agents.
Collapse
|
176
|
de Miguel D, Lemke J, Anel A, Walczak H, Martinez-Lostao L. Onto better TRAILs for cancer treatment. Cell Death Differ 2016; 23:733-47. [PMID: 26943322 PMCID: PMC4832109 DOI: 10.1038/cdd.2015.174] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/11/2015] [Accepted: 12/17/2015] [Indexed: 01/01/2023] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also known as Apo-2 ligand (Apo2L), is a member of the TNF cytokine superfamily. By cross-linking TRAIL-Receptor (TRAIL-R) 1 or TRAIL-R2, also known as death receptors 4 and 5 (DR4 and DR5), TRAIL has the capability to induce apoptosis in a wide variety of tumor cells while sparing vital normal cells. The discovery of this unique property among TNF superfamily members laid the foundation for testing the clinical potential of TRAIL-R-targeting therapies in the cancer clinic. To date, two of these therapeutic strategies have been tested clinically: (i) recombinant human TRAIL and (ii) antibodies directed against TRAIL-R1 or TRAIL-R2. Unfortunately, however, these TRAIL-R agonists have basically failed as most human tumors are resistant to apoptosis induction by them. It recently emerged that this is largely due to the poor agonistic activity of these agents. Consequently, novel TRAIL-R-targeting agents with increased bioactivity are currently being developed with the aim of rendering TRAIL-based therapies more active. This review summarizes these second-generation novel formulations of TRAIL and other TRAIL-R agonists, which exhibit enhanced cytotoxic capacity toward cancer cells, thereby providing the potential of being more effective when applied clinically than first-generation TRAIL-R agonists.
Collapse
Affiliation(s)
- D de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - J Lemke
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - A Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - H Walczak
- UCL Cancer Institute, Faculty of Medical Sciences, University College London, London, UK
| | - L Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
- Instituto de Nanociencia de Aragón, Zaragoza, Spain
| |
Collapse
|
177
|
Caspase-8 tyrosine-380 phosphorylation inhibits CD95 DISC function by preventing procaspase-8 maturation and cycling within the complex. Oncogene 2016; 35:5629-5640. [PMID: 27109099 PMCID: PMC5095593 DOI: 10.1038/onc.2016.99] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/18/2015] [Accepted: 12/25/2015] [Indexed: 12/14/2022]
Abstract
Caspase-8 is a key initiator of apoptotic cell death where it functions as the apical protease in death receptor-mediated apoptosis triggered via the death-inducing signalling complex (DISC). However, the observation that caspase-8 is upregulated in many common tumour types led to the discovery of alternative non-apoptotic, pro-survival functions, many of which are contingent on phosphorylation of a tyrosine residue (Y380) found in the linker region between the two catalytic domains of the enzyme. Furthermore, Src-mediated Y380 phosphorylation leads to increased resistance to CD95-induced apoptosis; however, the mechanism underlying this impaired response to extrinsic apoptotic stimuli has not been identified. Consequently, we have employed a number of model systems to further dissect this protective mechanism. First, using an in vitro DISC model together with recombinant procaspase-8 variants, we show that Y380 phosphorylation inhibits procaspase-8 activation at the CD95 DISC, thereby preventing downstream activation of the caspase cascade. Second, we validated this finding in a cellular context using transfected neuroblastoma cell lines deficient in caspase-8. Reconstitution of these lines with phosphomimetic-caspase-8 results in increased resistance to CD95-mediated apoptosis and enhanced cell migration. When the in vitro DISC is assembled in the presence of cell lysate, caspase-8 Y380 phosphorylation attenuates DISC activity by inhibiting procaspase-8 autoproteolytic activity but not recruitment or homodimerization of caspase-8 within the complex. Once incorporated into the DISC, phosphorylated caspase-8 is unable to be released from the complex; this inhibits further cycling and release of active catalytic subunits into the cytoplasm, thus resulting in increased apoptotic resistance. Taken together, our novel findings expand our understanding of the key mechanisms underlying the anti-apoptotic functions of caspase-8 which may act as a critical block to existing antitumour therapies. Importantly, reversal or inhibition of caspase-8 phosphorylation may prove a valuable avenue to explore for sensitization of resistant tumours to extrinsic apoptotic stimuli.
Collapse
|
178
|
The unconventional myosin CRINKLED and its mammalian orthologue MYO7A regulate caspases in their signalling roles. Nat Commun 2016; 7:10972. [PMID: 26960254 PMCID: PMC4792956 DOI: 10.1038/ncomms10972] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/05/2016] [Indexed: 12/25/2022] Open
Abstract
Caspases provide vital links in non-apoptotic regulatory networks controlling inflammation, compensatory proliferation, morphology and cell migration. How caspases are activated under non-apoptotic conditions and process a selective set of substrates without killing the cell remain enigmatic. Here we find that the Drosophila unconventional myosin CRINKLED (CK) selectively interacts with the initiator caspase DRONC and regulates some of its non-apoptotic functions. Loss of CK in the arista, border cells or proneural clusters of the wing imaginal discs affects DRONC-dependent patterning. Our data indicate that CK acts as substrate adaptor, recruiting SHAGGY46/GSK3-β to DRONC, thereby facilitating caspase-mediated cleavage and localized modulation of kinase activity. Similarly, the mammalian CK counterpart, MYO7A, binds to and impinges on CASPASE-8, revealing a new regulatory axis affecting receptor interacting protein kinase-1 (RIPK1)>CASPASE-8 signalling. Together, our results expose a conserved role for unconventional myosins in transducing caspase-dependent regulation of kinases, allowing them to take part in specific signalling events.
Collapse
|
179
|
Singh N, Senapati S, Bose K. Insights into the mechanism of human papillomavirus E2-induced procaspase-8 activation and cell death. Sci Rep 2016; 6:21408. [PMID: 26906543 PMCID: PMC4764946 DOI: 10.1038/srep21408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/22/2016] [Indexed: 01/19/2023] Open
Abstract
High-risk human papillomavirus (HR-HPV) E2 protein, the master regulator of viral life cycle, induces apoptosis of host cell that is independent of its virus-associated regulatory functions. E2 protein of HR-HPV18 has been found to be involved in novel FADD-independent activation of caspase-8, however, the molecular basis of this unique non-death-fold E2-mediated apoptosis is poorly understood. Here, with an interdisciplinary approach that involves in silico, mutational, biochemical and biophysical probes, we dissected and characterized the E2-procasapse-8 binding interface. Our data demonstrate direct non-homotypic interaction of HPV18 E2 transactivation domain (TAD) with α2/α5 helices of procaspase-8 death effector domain-B (DED-B). The observed interaction mimics the homotypic DED-DED complexes, wherein the conserved hydrophobic motif of procaspase-8 DED-B (F122/L123) occupies a groove between α2/α3 helices of E2 TAD. This interaction possibly drives DED oligomerization leading to caspase-8 activation and subsequent cell death. Furthermore, our data establish a model for E2-induced apoptosis in HR-HPV types and provide important clues for designing E2 analogs that might modulate procaspase-8 activation and hence apoptosis.
Collapse
Affiliation(s)
- Nitu Singh
- Integrated Biophysics and Structural Biology (IBSB) Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, India
| | - Sanjib Senapati
- Department of Biotechnology, Office No. 503, Lab No. 510, Indian Institute of Technology Madras, Adyar, Chennai, 600036, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology (IBSB) Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, India
| |
Collapse
|
180
|
Abstract
Necroptosis is a regulated form of necrosis, with the dying cell rupturing and releasing intracellular components that can trigger an innate immune response. Toll-like receptor 3 and 4 agonists, tumor necrosis factor, certain viral infections, or the T cell receptor can trigger necroptosis if the activity of the protease caspase-8 is compromised. Necroptosis signaling is modulated by the kinase RIPK1 and requires the kinase RIPK3 and the pseudokinase MLKL. Either RIPK3 deficiency or RIPK1 inhibition confers resistance in various animal disease models, suggesting that inflammation caused by necroptosis contributes to tissue damage and that inhibitors of these kinases could have therapeutic potential. Recent studies have revealed unexpected complexity in the regulation of cell death programs by RIPK1 and RIPK3 with the possibility that necroptosis is but one mechanism by which these kinases promote inflammation.
Collapse
Affiliation(s)
- Kim Newton
- Physiological Chemistry Department, Genentech, Inc., South San Francisco, California 94080;
| | - Gerard Manning
- Bioinformatics and Computational Biology Department, Genentech, Inc., South San Francisco, California 94080;
| |
Collapse
|
181
|
Fu Q, Fu TM, Cruz AC, Sengupta P, Thomas SK, Wang S, Siegel RM, Wu H, Chou JJ. Structural Basis and Functional Role of Intramembrane Trimerization of the Fas/CD95 Death Receptor. Mol Cell 2016; 61:602-613. [PMID: 26853147 DOI: 10.1016/j.molcel.2016.01.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 11/17/2015] [Accepted: 01/04/2016] [Indexed: 11/30/2022]
Abstract
Fas (CD95, Apo-1, or TNFRSF6) is a prototypical apoptosis-inducing death receptor in the tumor necrosis factor receptor (TNFR) superfamily. While the extracellular domains of TNFRs form trimeric complexes with their ligands and the intracellular domains engage in higher-order oligomerization, the role of the transmembrane (TM) domains is unknown. We determined the NMR structures of mouse and human Fas TM domains in bicelles that mimic lipid bilayers. Surprisingly, these domains use proline motifs to create optimal packing in homotrimer assembly distinct from classical trimeric coiled-coils in solution. Cancer-associated and structure-based mutations in Fas TM disrupt trimerization in vitro and reduce apoptosis induction in vivo, indicating the essential role of intramembrane trimerization in receptor activity. Our data suggest that the structures represent the signaling-active conformation of Fas TM, which appears to be different from the pre-ligand conformation. Analysis of other TNFR sequences suggests proline-containing sequences as common motifs for receptor TM trimerization.
Collapse
Affiliation(s)
- Qingshan Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anthony C Cruz
- Immunoregulation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Prabuddha Sengupta
- Section on Organelle Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stacy K Thomas
- Immunoregulation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Shuqing Wang
- School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Richard M Siegel
- Immunoregulation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD 20892, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| | - James J Chou
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
182
|
Zheng Y, You F, Li Q, Chen J, Yang H. The effect of geniste on Aβ25–35-induced PC12 cell apoptosis through the JNK-dependent Fas pathway. Food Funct 2016; 7:4702-4708. [DOI: 10.1039/c6fo00071a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β-amyloid protein (Aβ) is considered to be the key factor for inducing Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Yaojie Zheng
- Institute of Basic Medical Sciences
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Fuling You
- Institute of Basic Medical Sciences
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Qiao Li
- Institute of Basic Medical Sciences
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Jingrong Chen
- Institute of Basic Medical Sciences
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Hong Yang
- Institute of Basic Medical Sciences
- Guangdong Pharmaceutical University
- Guangzhou
- China
| |
Collapse
|
183
|
Tsuchiya Y, Nakabayashi O, Nakano H. FLIP the Switch: Regulation of Apoptosis and Necroptosis by cFLIP. Int J Mol Sci 2015; 16:30321-41. [PMID: 26694384 PMCID: PMC4691174 DOI: 10.3390/ijms161226232] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 12/11/2022] Open
Abstract
cFLIP (cellular FLICE-like inhibitory protein) is structurally related to caspase-8 but lacks proteolytic activity due to multiple amino acid substitutions of catalytically important residues. cFLIP protein is evolutionarily conserved and expressed as three functionally different isoforms in humans (cFLIPL, cFLIPS, and cFLIPR). cFLIP controls not only the classical death receptor-mediated extrinsic apoptosis pathway, but also the non-conventional pattern recognition receptor-dependent apoptotic pathway. In addition, cFLIP regulates the formation of the death receptor-independent apoptotic platform named the ripoptosome. Moreover, recent studies have revealed that cFLIP is also involved in a non-apoptotic cell death pathway known as programmed necrosis or necroptosis. These functions of cFLIP are strictly controlled in an isoform-, concentration- and tissue-specific manner, and the ubiquitin-proteasome system plays an important role in regulating the stability of cFLIP. In this review, we summarize the current scientific findings from biochemical analyses, cell biological studies, mathematical modeling, and gene-manipulated mice models to illustrate the critical role of cFLIP as a switch to determine the destiny of cells among survival, apoptosis, and necroptosis.
Collapse
Affiliation(s)
- Yuichi Tsuchiya
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Osamu Nakabayashi
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| | - Hiroyasu Nakano
- Department of Biochemistry, Toho University School of Medicine, Tokyo 143-8540, Japan.
| |
Collapse
|
184
|
Hughes MA, Langlais C, Cain K, MacFarlane M. Activation, Isolation, and Analysis of the Death-Inducing Signaling Complex. Cold Spring Harb Protoc 2015; 2015:pdb.prot087098. [PMID: 26631122 DOI: 10.1101/pdb.prot087098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This protocol describes activation, isolation, and analysis of the CD95 (APO-1/Fas) death-inducing signaling complex (DISC) using affinity purification. Activation is achieved using a biotin-labeled anti-CD95 antibody and the native DISC complex is captured using streptavidin beads. This approach minimizes both the number of steps involved and any potential nonspecific interactions or cross-reactivity of antibodies commonly seen in immunoprecipitations using unlabeled antibodies and protein A/G beads. Composition of the isolated complex is analyzed via western blot to identify known DISC components, and dimerization-induced autocatalytic processing of procaspase-8 at the DISC can be confirmed by detection of caspase-8 cleavage products. The potential for DISC-associated caspase-8 to activate the caspase cascade can be determined by measuring caspase-8-dependent cleavage of the fluorigenic substrate Ac-IETD.AFC, or by performing a bioassay using exogenous protein substrates.
Collapse
Affiliation(s)
- Michelle A Hughes
- MRC Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| | - Claudia Langlais
- MRC Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| | - Kelvin Cain
- MRC Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| | - Marion MacFarlane
- MRC Toxicology Unit, Hodgkin Building, Leicester, LE1 9HN, United Kingdom
| |
Collapse
|
185
|
Langlais C, Hughes MA, Cain K, MacFarlane M. Biochemical Analysis of Initiator Caspase-Activating Complexes: The Apoptosome and the Death-Inducing Signaling Complex. Cold Spring Harb Protoc 2015; 2015:pdb.top070326. [PMID: 26631130 DOI: 10.1101/pdb.top070326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptosis is a highly regulated process that can be initiated by activation of death receptors or perturbation of mitochondria causing the release of apoptogenic proteins. This results in the activation of caspases, which are responsible for many of the biochemical and morphological changes associated with apoptosis. Caspases are normally inactive and require activation in a cascade emanating from an "initiator" or activating caspase, which in turn activates a downstream or "effector" caspase. Activation of initiator caspases is tightly regulated and requires the assembly of caspase-9 (via mitochondrial perturbation) or caspase-8/10 (via death receptor ligation) activating complexes, which are termed the apoptosome and the death-inducing signaling complex (DISC), respectively. These large multiprotein complexes can initially be separated according to size by gel filtration chromatography and subsequently analyzed by affinity purification or immunoprecipitation. The advantage of combining these techniques is one can first assess the assembly of individual components into a multiprotein complex, and then assess the size and composition of the native functional signaling platform within a particular cell type alongside a biochemical analysis of the enriched/purified complex. Here, we describe various methods currently used for characterization of the apoptosome and DISC.
Collapse
Affiliation(s)
- Claudia Langlais
- MRC Toxicology Unit, Hodgkin Building, Leicester LE1 9HN, United Kingdom
| | - Michelle A Hughes
- MRC Toxicology Unit, Hodgkin Building, Leicester LE1 9HN, United Kingdom
| | - Kelvin Cain
- MRC Toxicology Unit, Hodgkin Building, Leicester LE1 9HN, United Kingdom
| | - Marion MacFarlane
- MRC Toxicology Unit, Hodgkin Building, Leicester LE1 9HN, United Kingdom
| |
Collapse
|
186
|
Partial equilibrium approximations in apoptosis. II. The death-inducing signaling complex subsystem. Math Biosci 2015; 270:126-34. [DOI: 10.1016/j.mbs.2015.10.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 10/01/2015] [Accepted: 10/16/2015] [Indexed: 12/28/2022]
|
187
|
Schulte K, Ehmcke J, Schlatt S, Boiani M, Nordhoff V. Lower total cell numbers in mouse preimplantation embryos cultured in human assisted reproductive technique (ART) media are not induced by apoptosis. Theriogenology 2015; 84:1620-30. [DOI: 10.1016/j.theriogenology.2015.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 08/10/2015] [Accepted: 08/21/2015] [Indexed: 12/23/2022]
|
188
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
189
|
Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J 2015; 283:2701-19. [PMID: 26499289 DOI: 10.1111/febs.13575] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/23/2015] [Accepted: 10/21/2015] [Indexed: 12/25/2022]
Abstract
The intestinal epithelium represents the largest epithelial surface in our body. This single-cell-layer epithelium mediates important functions in the absorption of nutrients and in the maintenance of barrier function, preventing luminal microorganisms from invading the body. Due to its constant regeneration the intestinal epithelium is a tissue not only with very high proliferation rates but also with very prominent physiological and pathophysiological cell death induction. The normal physiological differentiation and maturation of intestinal epithelial cells leads to their shedding and apoptotic cell death within a few days, without disturbing the epithelial barrier integrity. In contrast excessive intestinal epithelial cell death induced by irradiation, drugs and inflammation severely impairs the vital functions of this tissue. In this review we discuss cell death processes in the intestinal epithelium in health and disease, with special emphasis on cell death triggered by the tumour necrosis factor receptor family.
Collapse
Affiliation(s)
- Maria Eugenia Delgado
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Grabinger
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Thomas Brunner
- Chair of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| |
Collapse
|
190
|
Molecular architecture of the DED chains at the DISC: regulation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8 prodomain. Cell Death Differ 2015; 23:681-94. [PMID: 26494467 DOI: 10.1038/cdd.2015.137] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
The CD95/Fas/APO-1 death-inducing signaling complex (DISC), comprising CD95, FADD, procaspase-8, procaspase-10, and c-FLIP, has a key role in apoptosis induction. Recently, it was demonstrated that procaspase-8 activation is driven by death effector domain (DED) chains at the DISC. Here, we analyzed the molecular architecture of the chains and the role of the short DED proteins in regulating procaspase-8 activation in the chain model. We demonstrate that the DED chains are largely composed of procaspase-8 cleavage products and, in particular, of its prodomain. The DED chain also comprises c-FLIP and procaspase-10 that are present in 10 times lower amounts compared with procaspase-8. We show that short c-FLIP isoforms can inhibit CD95-induced cell death upon overexpression, likely by forming inactive heterodimers with procaspase-8. Furthermore, we have addressed mechanisms of the termination of chain elongation using experimental and mathematical modeling approaches. We show that neither c-FLIP nor procaspase-8 prodomain terminates the DED chain, but rather the dissociation/association rates of procaspase-8 define the stability of the chain and thereby its length. In addition, we provide evidence that procaspase-8 prodomain generated at the DISC constitutes a negative feedback loop in procaspase-8 activation. Overall, these findings provide new insights into caspase-8 activation in DED chains and apoptosis initiation.
Collapse
|
191
|
Vajjhala PR, Lu A, Brown DL, Pang SW, Sagulenko V, Sester DP, Cridland SO, Hill JM, Schroder K, Stow JL, Wu H, Stacey KJ. The Inflammasome Adaptor ASC Induces Procaspase-8 Death Effector Domain Filaments. J Biol Chem 2015; 290:29217-30. [PMID: 26468282 DOI: 10.1074/jbc.m115.687731] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 01/19/2023] Open
Abstract
Inflammasomes mediate inflammatory and cell death responses to pathogens and cellular stress signals via activation of procaspases-1 and -8. During inflammasome assembly, activated receptors of the NLR or PYHIN family recruit the adaptor protein ASC and initiate polymerization of its pyrin domain (PYD) into filaments. We show that ASC filaments in turn nucleate procaspase-8 death effector domain (DED) filaments in vitro and in vivo. Interaction between ASC PYD and procaspase-8 tandem DEDs optimally required both DEDs and represents an unusual heterotypic interaction between domains of the death fold superfamily. Analysis of ASC PYD mutants showed that interaction surfaces that mediate procaspase-8 interaction overlap with those required for ASC self-association and interaction with the PYDs of inflammasome initiators. Our data indicate that multiple types of death fold domain filaments form at inflammasomes and that PYD/DED and homotypic PYD interaction modes are similar. Interestingly, we observed condensation of procaspase-8 filaments containing the catalytic domain, suggesting that procaspase-8 interactions within and/or between filaments may be involved in caspase-8 activation. Procaspase-8 filaments may also be relevant to apoptosis induced by death receptors.
Collapse
Affiliation(s)
| | - Alvin Lu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Darren L Brown
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Siew Wai Pang
- From the School of Chemistry and Molecular Biosciences and
| | | | - David P Sester
- From the School of Chemistry and Molecular Biosciences and
| | | | - Justine M Hill
- From the School of Chemistry and Molecular Biosciences and
| | - Kate Schroder
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jennifer L Stow
- the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hao Wu
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, and the Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Katryn J Stacey
- From the School of Chemistry and Molecular Biosciences and the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia,
| |
Collapse
|
192
|
Pietkiewicz S, Eils R, Krammer PH, Giese N, Lavrik IN. Combinatorial treatment of CD95L and gemcitabine in pancreatic cancer cells induces apoptotic and RIP1-mediated necroptotic cell death network. Exp Cell Res 2015; 339:1-9. [PMID: 26453936 DOI: 10.1016/j.yexcr.2015.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022]
Abstract
Combination therapy of cancer is based on the cumulative effects mediated by several drugs. Although molecular mechanisms of action of each particular drug are partially elucidated, understanding of the dynamic cross-talk between different cell death pathways at the quantitative level induced by combination therapy is still missing. Here, we exemplified this question for the death receptor (DR) networks in pancreatic cancer cells. We demonstrate that the combined action of CD95L and gemcitabine in pancreatic cancer cells leads to the simultaneous induction of caspase-dependent and caspase-independent cell death. The pro-apoptotic effects are mediated through down-regulation of the anti-apoptotic proteins c-FLIP and Mcl-1, while caspase-independent cell death was blocked by inhibition of the kinase activity of RIP1. Furthermore, gemcitabine co-treatment strongly increased the amount of cells undergoing CD95-induced RIP1-regulated necrosis. Imaging flow cytometry has enabled us to get the quantitative insights into the apoptosis-necroptosis network and reveal that the majority of the cells upon the CD95L/gemcitabine co-treatment undergoes necroptosis. Our data underlie the importance of the quantitative understanding of the interplay between different cell death modalities, which is essential for the development of anti-cancer therapies. Taken together, our results are important for combination therapy of pancreatic cancer comprising chemotherapeutics and DR-agonists and offer a possibility to sensitize cells with defects in the apoptotic machinery towards necroptosis-type-mediated death.
Collapse
Affiliation(s)
- Sabine Pietkiewicz
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Roland Eils
- Bioquant, Heidelberg University, 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany; Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Natalia Giese
- Department of General Surgery, University of Heidelberg, Germany (g)Federal Research Center Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Inna N Lavrik
- Department of Translational Inflammation Research, Institute of Experimental Internal Medicine, Otto von Guericke University, Magdeburg, Germany; Federal Research Center Institute of Cytology and Genetics, Novosibirsk, Russia.
| |
Collapse
|
193
|
The NAE inhibitor pevonedistat (MLN4924) synergizes with TNF-α to activate apoptosis. Cell Death Discov 2015; 1:15034. [PMID: 27551465 PMCID: PMC4979425 DOI: 10.1038/cddiscovery.2015.34] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 12/12/2022] Open
Abstract
Predicting and understanding the mechanism of drug-induced toxicity is one of the primary goals of drug development. It has been hypothesized that inflammation may have a synergistic role in this process. Cell-based models provide an easily manipulated system to investigate this type of drug toxicity. Several groups have attempted to reproduce in vivo toxicity with combination treatment of pharmacological agents and inflammatory cytokines. Through this approach, synergistic cytotoxicity between the investigational agent pevonedistat (MLN4924) and TNF-α was identified. Pevonedistat is an inhibitor of the NEDD8-activating enzyme (NAE). Inhibition of NAE prevents activation of cullin-RING ligases, which are critical for proteasome-mediated protein degradation. TNF-α is a cytokine that is involved in inflammatory responses and cell death, among other biological functions. Treatment of cultured cells with the combination of pevonedistat and TNF-α, but not as single agents, resulted in rapid cell death. This cell death was determined to be mediated by caspase-8. Interestingly, the combination treatment of pevonedistat and TNF-α also caused an accumulation of the p10 protease subunit of caspase-8 that was not observed with cytotoxic doses of TNF-α. Under conditions where apoptosis was blocked, the mechanism of death switched to necroptosis. Trimerized MLKL was verified as a biomarker of necroptotic cell death. The synergistic toxicity of pevonedistat and elevated TNF-α was also demonstrated by in vivo rat studies. Only the combination treatment resulted in elevated serum markers of liver damage and single-cell hepatocyte necrosis. Taken together, the results of this work have characterized a novel synergistic toxicity driven by pevonedistat and TNF-α.
Collapse
|
194
|
Deegan S, Saveljeva S, Logue SE, Pakos-Zebrucka K, Gupta S, Vandenabeele P, Bertrand MJM, Samali A. Deficiency in the mitochondrial apoptotic pathway reveals the toxic potential of autophagy under ER stress conditions. Autophagy 2015; 10:1921-36. [PMID: 25470234 PMCID: PMC4502706 DOI: 10.4161/15548627.2014.981790] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Endoplasmic reticulum (ER) stress-induced cell death is normally associated with activation of the mitochondrial apoptotic pathway, which is characterized by CYCS (cytochrome c, somatic) release, apoptosome formation, and caspase activation, resulting in cell death. In this study, we demonstrate that under conditions of ER stress cells devoid of CASP9/caspase-9 or BAX and BAK1, and therefore defective in the mitochondrial apoptotic pathway, still undergo a delayed form of cell death associated with the activation of caspases, therefore revealing the existence of an alternative stress-induced caspase activation pathway. We identified CASP8/caspase-8 as the apical protease in this caspase cascade, and found that knockdown of either of the key autophagic genes, ATG5 or ATG7, impacted on CASP8 activation and cell death induction, highlighting the crucial role of autophagy in the activation of this novel ER stress-induced death pathway. In line with this, we identified a protein complex composed of ATG5, FADD, and pro-CASP8 whose assembly coincides with caspase activation and cell death induction. Together, our results reveal the toxic potential of autophagy in cells undergoing ER stress that are defective in the mitochondrial apoptotic pathway, and suggest a model in which the autophagosome functions as a platform facilitating pro-CASP8 activation. Chemoresistance, a common problem in the treatment of cancer, is frequently caused by the downregulation of key mitochondrial death effector proteins. Alternate stress-induced apoptotic pathways, such as the one described here, may become of particular relevance for tackling the problem of chemoresistance in cancer cells.
Collapse
Key Words
- ATG, autophagy related
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2
- DDIT3, DNA-damage-inducible transcript 3
- DISC, death inducing signaling complex
- DTT, dithiothreitol
- ER, endoplasmic reticulum
- FADD, Fas (TNFRSF6)-associated via death domain
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- HSPA5, heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa)
- MAP1LC3 (LC3), microtubule-associated protein 1 light chain 3
- MEFs, mouse embryonic fibroblasts
- MOMP, mitochondrial outer membrane permeabilization
- PARP, poly (ADP-ribose) polymerase
- PBS, phosphate-buffered saline
- PI, propidium iodide
- TNF, tumor necrosis factor
- TNFSF10, tumor necrosis factor (ligand) superfamily, member 10
- Tg, thapsigargin
- Tm, tunicamycin
- apoptosis
- autophagic cell death
- autophagy
- caspase
- endoplasmic reticulum stress
- unfolded protein response
Collapse
Affiliation(s)
- Shane Deegan
- a Apoptosis Research Center; NUI Galway ; Galway , Ireland
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Singh N, Hassan A, Bose K. Molecular basis of death effector domain chain assembly and its role in caspase-8 activation. FASEB J 2015; 30:186-200. [PMID: 26370846 DOI: 10.1096/fj.15-272997] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/31/2015] [Indexed: 12/20/2022]
Abstract
Assembly of a death-inducing signaling complex is a key event in the extrinsic apoptotic pathway, enabling activation of the caspase cascade and subsequent cell death. However, the molecular events governing DISC assembly have remained largely elusive because of the lack of information on mechanism and specificity regulating the death effector domain (DED)-DED interaction network. Using molecular modeling, mutagenesis, and biochemical and ex vivo experiments, we identified the precise binding interface and hot spots crucial for intermolecular DED chain assembly. Mutation of key interface residues (Leu42/Phe45) in procaspase-8 DED-A completely abrogated DED chain formation in HEK293 cells and prevented its association with FADD. A significant 2.6-3.6-fold reduction in procaspase-8 activation was observed in functional cell-death assays after substitution of the interfacial residues. Based on our results we propose a new model for DISC formation that refines the current understanding of the activation mechanism. Upon stimulation, FADD self-associates weakly via reciprocal interaction between helices α1/α4 and α2/α3 of the DED to form an oligomeric signaling platform that provides a stage for the initial recruitment of procaspase-8 through direct interaction with α1/α4 of DED-A, followed by sequential interaction mediated by helices α2/α5 of DED-B, to form the procaspase-8 DED chain that is crucial for its activation and subsequent cell death.
Collapse
Affiliation(s)
- Nitu Singh
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Ali Hassan
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Laboratory, Advanced Centre for Treatment, Research, and Education in Cancer, Navi Mumbai, India
| |
Collapse
|
196
|
Abstract
Death-inducing signaling complex (DISC) is a platform for the activation of initiator caspase in extrinsic apoptosis. Assembly of DISC is accomplished by two different types of homotypic interaction: one is between death domains (DDs) of a death receptor and FADD, and the other is between death effecter domains (DEDs) of FADD, procaspase-8/-10 and cFLIP. Recent biochemical investigations on the stoichiometry of DISC have revealed that single-DED-containing FADD exists in DISC in a substantially lower abundance than the sum of tandem-DEDs-containing components that are procaspase-8 and cFLIP. In addition, the homology models of the tandem DEDs in procaspase-8 and cFLIP show that two different interaction faces, H1-H4 face and H2-H5 face, are exposed for possible inter-molecular DED-DED interactions. These recent findings led to a proposal of the DED chain model for the interactions between FADD, procaspase-8 and cFLIP in DISC. This emerging view provides new insights on the topology of DED-DED network in DISC and furthermore on how procaspase-8 and cFLIP cluster for dimerization and proteolytic activation.
Collapse
Affiliation(s)
- Jin Kuk Yang
- Department of Chemistry, School of Natural Sciences, Soongsil University, Seoul, 156-743, Korea,
| |
Collapse
|
197
|
Abstract
The tumor necrosis factor receptors (TNFRs) play essential roles in innate and adaptive immunity. Depending on conditions, TNFR induces multiple cell fates including cell survival, cell apoptosis, and cell programmed necrosis. Here, we review recent progress in structural studies of the TNFR signaling pathway. The structural basis for the high order signal complexes, including the DISC, ripoptosome, necrosome, and RIP3/MLKL complex, may provide novel insights for understanding the biophysical principles of cell signaling cascades.
Collapse
|
198
|
Martinez-Lostao L, de Miguel D, Al-Wasaby S, Gallego-Lleyda A, Anel A. Death ligands and granulysin: mechanisms of tumor cell death induction and therapeutic opportunities. Immunotherapy 2015; 7:883-2. [PMID: 26314314 DOI: 10.2217/imt.15.56] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The immune system plays a key role in cancer immune surveillance to control tumor development. The final goal is recognizing and killing transformed cells and consequently the elimination of the tumor. The main effector cell types exerting cytotoxicity against tumors are natural killer (NK) cells and cytotoxic T lymphocytes (CTLs). Although the mechanism of activation of NK cells and CTLs are quite different, both cell types share common antitumor effector mechanisms of cytotoxicity which lead to induction of cell death of tumor cells by apoptosis. Among these mechanisms are the death ligand- and granulysin-mediated cell deaths. In this review, we summarize the main concepts of these effector cytotoxic mechanisms against cancer cells, how NK cells and CTLs use them to control tumor development and the therapeutic approaches currently developed based on these molecules.
Collapse
Affiliation(s)
- Luis Martinez-Lostao
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain.,Instituto de Nanociencia de Aragón, Zaragoza Spain
| | - Diego de Miguel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Sameer Al-Wasaby
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Ana Gallego-Lleyda
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| | - Alberto Anel
- Departamento de Bioquímica, Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna 12, Zaragoza, 50009, Spain
| |
Collapse
|
199
|
DED or alive: assembly and regulation of the death effector domain complexes. Cell Death Dis 2015; 6:e1866. [PMID: 26313917 PMCID: PMC4558505 DOI: 10.1038/cddis.2015.213] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/21/2022]
Abstract
Death effector domains (DEDs) are protein–protein interaction domains initially identified in proteins such as FADD, FLIP and caspase-8 involved in regulating apoptosis. Subsequently, these proteins have been shown to have important roles in regulating other forms of cell death, including necroptosis, and in regulating other important cellular processes, including autophagy and inflammation. Moreover, these proteins also have prominent roles in innate and adaptive immunity and during embryonic development. In this article, we review the various roles of DED-containing proteins and discuss recent developments in our understanding of DED complex formation and regulation. We also briefly discuss opportunities to therapeutically target DED complex formation in diseases such as cancer.
Collapse
|
200
|
Wajant H. Principles of antibody-mediated TNF receptor activation. Cell Death Differ 2015; 22:1727-41. [PMID: 26292758 PMCID: PMC4648319 DOI: 10.1038/cdd.2015.109] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
From the beginning of research on receptors of the tumor necrosis factor (TNF) receptor superfamily (TNFRSF), agonistic antibodies have been used to stimulate TNFRSF receptors in vitro and in vivo. Indeed, CD95, one of the first cloned TNFRSF receptors, was solely identified as the target of cell death-inducing antibodies. Early on, it became evident from in vitro studies that valency and Fcγ receptor (FcγR) binding of antibodies targeting TNFRSF receptors can be of crucial relevance for agonistic activity. TNFRSF receptor-specific antibodies of the IgM subclass and secondary cross-linked or aggregation prone dimeric antibodies typically display superior agonistic activity compared with dimeric antibodies. Likewise, anchoring of antibodies to cell surface-expressed FcγRs potentiate their ability to trigger TNFRSF receptor signaling. However, only recently has the relevance of oligomerization and FcγR binding for the in vivo activity of antibody-induced TNFRSF receptor activation been straightforwardly demonstrated in vivo. This review discusses the crucial role of oligomerization and/or FcγR binding for antibody-mediated TNFRSF receptor stimulation in light of current models of TNFRSF receptor activation and especially the overwhelming relevance of these issues for the rational development of therapeutic TNFRSF receptor-targeting antibodies.
Collapse
Affiliation(s)
- H Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|