151
|
Lu J, Su Y, Chen X, Chen Y, Luo P, Lin F, Zhang J. Rapamycin‑induced autophagy attenuates hormone‑imbalance‑induced chronic non‑bacterial prostatitis in rats via the inhibition of NLRP3 inflammasome‑mediated inflammation. Mol Med Rep 2018; 19:221-230. [PMID: 30483781 PMCID: PMC6297772 DOI: 10.3892/mmr.2018.9683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Chronic non-bacterial prostatitis (CNBP) is a common urinary disease and no standard treatments are available at present. Although autophagy serves an important role in a variety of chronic diseases, its role in CNBP is yet to be fully elucidated. Therefore, the present study aimed to investigate the effects of rapamycin-induced autophagy on CNBP by establishing a rat model. In the present study, a total of 30 male Sprague-Dawley rats were randomly divided into three groups (n=10 per group): i) Control, in which rats underwent a sham operation; ii) the model (CNBP), in which rats were castrated and administered 17β-estradiol (0.25 mg/kg via subcutaneous injection) for 30 consecutive days; and iii) rapamycin treatment, in which rats were employed in accordance with the CNBP model, but also received a daily intraperitoneal injection of rapamycin (1 mg/kg) from the 16th day post-surgery for 15 days. Alterations in histology and the levels of autophagy-associated markers, and components of the NLRP3 inflammasome, were measured in the prostate tissues of the rats. The levels of molecules located further downstream of the NLRP3 inflammasome pathway, including interleukin (IL)-1β and IL-18, were also measured. The results demonstrated that, compared with the control group, increased infiltration levels of inflammatory cells and glandular epithelial degeneration were observed in the prostate tissues of rats with CNBP. Furthermore, a significant increase in the concentration of IL-1β and IL-18 in the serum, as well as the increased expression levels of NLRP3, ASC and caspase-1 in prostate tissues were also observed. In addition, reductions in the number of autophagosomes and the expression levels of autophagy-associated, including microtubule-associated protein 1 light chain 3β (LC3B) and Beclin 1, were also detected in the CNBP group; however, treatment with rapamycin reversed these effects. Collectively, the findings of the present study indicated that the NLRP3 inflammasome-mediated inflammatory response was activated by a hormonal imbalance in the prostate glands of rats; however, these effects may be suppressed via rapamycin-induced autophagy.
Collapse
Affiliation(s)
- Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Chen
- Department of Clinical Laboratory, Children and Women Hospital of Edong Health Group, Huangshi, Hubei 435000, P.R. China
| | - Pengcheng Luo
- Department of Urology, Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, Hubei 435000, P.R. China
| | - Fangyou Lin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
152
|
Hsieh CY, Li LH, Rao YK, Ju TC, Nai YS, Chen YW, Hua KF. Mechanistic insight into the attenuation of gouty inflammation by Taiwanese green propolis via inhibition of the NLRP3 inflammasome. J Cell Physiol 2018; 234:4081-4094. [PMID: 30370562 DOI: 10.1002/jcp.27204] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
Dysregulation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is involved in many chronic inflammatory diseases, including gouty arthritis. Activation of the NLRP3 inflammasome requires priming and activation signals: the priming signal controls the expression of NLRP3 and interleukin (IL)-1β precursor (proIL-1β), while the activation signal leads to the assembly of the NLRP3 inflammasome and to caspase-1 activation. Here, we reported the effects of the alcoholic extract of Taiwanese green propolis (TGP) on the NLRP3 inflammasome in vitro and in vivo. TGP inhibited proIL-1β expression by reducing nuclear factor kappa B activation and reactive oxygen species (ROS) production in lipopolysaccharide-activated macrophages. Additionally, TGP also suppressed the activation signal by reducing mitochondrial damage, ROS production, lysosomal rupture, c-Jun N-terminal kinases 1/2 phosphorylation and apoptosis-associated speck-like protein oligomerization. Furthermore, we found that TGP inhibited the NLRP3 inflammasome partially via autophagy induction. In the in vivo mouse model of uric acid crystal-induced peritonitis, TGP attenuated the peritoneal recruitment of neutrophils, and the levels of IL-1β, active caspase-1, IL-6 and monocyte chemoattractant protein-1 in lavage fluids. As a proof of principle, in this study, we purified a known compound, propolin G, from TGP and identified this compound as a potential inhibitor of the NLRP3 inflammasome. Our results indicated that TGP might be useful for ameliorating gouty inflammation via inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Tz-Chuen Ju
- Department of Animal Science and Biotechnology, Tunghai University, Taichung, Taiwan
| | - Yu-Shin Nai
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Yue-Wen Chen
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
153
|
Sho T, Xu J. Role and mechanism of ROS scavengers in alleviating NLRP3-mediated inflammation. Biotechnol Appl Biochem 2018; 66:4-13. [PMID: 30315709 DOI: 10.1002/bab.1700] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/09/2018] [Indexed: 01/20/2023]
Abstract
Inflammation, as a common immune response to various infections or injuries, can cause many dangerous and complicated diseases. Inflammasome is a protein complex playing a vital role in an inflammation process, and the nucleotide-binding oligomerization domain (NOD)-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been the most-widely studied one. Recent evidence suggests the reactive oxygen species (ROS)-NLRP3 signaling pathway to be a possible NLRP3 inflammasome regulation model. Numerous recent preclinical reports indicate that application of antioxidants could scavenge excessive ROS and attenuate inflammatory responses through suppressing NLRP3 inflammasome activation. This article, at first, briefly overviews how ROS may mediate the regulation of NLRP3 inflammasome activation. Then, preclinical researches of various ROS scavengers for treating NLRP3 inflammasome-associated diseases are focused on and critically analyzed. Finally, the potential of antioxidant treatment as a therapy for inflammation is to be discussed, and perspectives on future research directions will be shared.
Collapse
Affiliation(s)
- Takami Sho
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - JianXiong Xu
- Shanghai Key Laboratory for Veterinary and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
154
|
Lee K, Roberts JS, Choi CH, Atanasova KR, Yilmaz Ö. Porphyromonas gingivalis traffics into endoplasmic reticulum-rich-autophagosomes for successful survival in human gingival epithelial cells. Virulence 2018; 9:845-859. [PMID: 29616874 PMCID: PMC5955440 DOI: 10.1080/21505594.2018.1454171] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis, an opportunistic pathogen usurps gingival epithelial cells (GECs) as primary intracellular niche for its colonization in the oral mucosa. However, the precise characterization of the intracellular trafficking and fate of P. gingivalis in GECs remains incomplete. Therefore, we employed high-resolution three-dimensional-transmission-electron-microscopy to determine the subcellular location of P. gingivalis in human primary GECs upon invasion. Serial sections of infected-GECs and their tomographic reconstruction depicted ER-rich-double-membrane autophagosomal-vacuoles harboring P. gingivalis. Western-blotting and fluorescence confocal microscopy showed that P. gingivalis significantly induces LC3-lipidation in a time-dependent-manner and co-localizes with LC3, ER-lumen-protein Bip, or ER-tracker, which are major components of the phagophore membrane. Furthermore, GECs that were infected with FMN-green-fluorescent transformant-strain (PgFbFP) and selectively permeabilized by digitonin showed rapidly increasing large numbers of double-membrane-vacuolar-P. gingivalis over 24 hours of infection with a low-ratio of cytosolically free-bacteria. Moreover, inhibition of autophagy using 3-methyladenine or ATG5 siRNA significantly reduced the viability of intracellular P. gingivalis in GECs as determined by an antibiotic-protection-assay. Lysosomal marker, LAMP-1, showed a low-degree colocalization with P. gingivalis (∼20%). PgFbFP was used to investigate the fate of vacuolar- versus cytosolic-P. gingivalis by their association with ubiquitin-binding-adaptor-proteins, NDP52 and p62. Only cytosolic-P. gingivalis had a significant association with both markers, which suggests cytosolically-free bacteria are likely destined to the lysosomal-degradation pathway whereas the vacuolar-P. gingivalis survives. Therefore, the results reveal a novel mechanism for P. gingivalis survival in GECs by harnessing host autophagy machinery to establish a successful replicative niche and persistence in the oral mucosa.
Collapse
Affiliation(s)
- Kyulim Lee
- a Department of Oral Biology , University of Florida , Gainesville , Florida , USA
| | - JoAnn S Roberts
- b Department of Oral Health Sciences , Medical University of South Carolina , Charleston , South Carolina , USA
| | - Chul Hee Choi
- c Department of Microbiology and Medical Science , Chungnam National University, School of Medicine , Daejeon , Republic of Korea
| | - Kalina R Atanasova
- d Department of Periodontology , University of Florida , Gainesville , Florida , USA
| | - Özlem Yilmaz
- b Department of Oral Health Sciences , Medical University of South Carolina , Charleston , South Carolina , USA.,e Microbiology and Immunology, Medical University of South Carolina , South Carolina , USA
| |
Collapse
|
155
|
Abstract
Toxoplasma gondii is an obligate intracellular parasitic protist that infects a wide range of warm-blooded vertebrates. Although this parasite can cause serious complications, infections are often asymptomatic, allowing T. gondii to persist in its host and possibly enhancing the chances of its transmission. T. gondii has thus evolved multiple mechanisms of host manipulation to establish chronic infection. This persistence involves a balance between host immunity and parasite evasion of this immune response. This review highlights recent investigations that have demonstrated the important role played by the autophagy machinery in this balance, both in parasite control by the host, and in host exploitation by the parasite.
Collapse
Affiliation(s)
- Sébastien Besteiro
- a DIMNP, UMR5235 CNRS , Université de Montpellier , Montpellier , France
| |
Collapse
|
156
|
Antiochos B, Matyszewski M, Sohn J, Casciola-Rosen L, Rosen A. IFI16 filament formation in salivary epithelial cells shapes the anti-IFI16 immune response in Sjögren's syndrome. JCI Insight 2018; 3:120179. [PMID: 30232276 DOI: 10.1172/jci.insight.120179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/17/2018] [Indexed: 01/03/2023] Open
Abstract
IFN-inducible protein 16 (IFI16) is an innate immune sensor that forms filamentous oligomers when activated by double-stranded DNA (dsDNA). Anti-IFI16 autoantibodies occur in patients with Sjögren's syndrome (SS) and associate with severe phenotypic features. We undertook this study to determine whether the structural and functional properties of IFI16 play a role in its status as an SS autoantigen. IFI16 immunostaining in labial salivary glands (LSGs) yielded striking evidence of filamentous IFI16 structures in the cytoplasm of ductal epithelial cells, representing the first microscopic description of IFI16 oligomerization in human tissues, to our knowledge. Transfection of cultured epithelial cells with dsDNA triggered the formation of cytoplasmic IFI16 filaments with similar morphology to those observed in LSGs. We found that a majority of SS anti-IFI16 autoantibodies immunoprecipitate IFI16 more effectively in the oligomeric dsDNA-bound state. Epitopes in the C-terminus of IFI16 are accessible to antibodies in the DNA-bound oligomer and are preferentially targeted by SS sera. Furthermore, cytotoxic lymphocyte granule pathways (highly enriched in the SS gland) induce striking release of IFI16•dsDNA complexes from cultured cells. Our studies reveal that IFI16 is present in a filamentous state in the target tissue of SS and suggest that this property of DNA-induced filament formation contributes to its status as an autoantigen in SS. These studies highlight the role that tissue-specific modifications and immune effector pathways might play in the selection of autoantigens in rheumatic diseases.
Collapse
Affiliation(s)
| | - Mariusz Matyszewski
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
157
|
Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, Wang M, Kehrl JH. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 2018. [PMID: 30185776 DOI: 10.1038/s41419‐018‐0917‐y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation-all likely contributing to the clinical manifestations of SARS-CoV infection.
Collapse
Affiliation(s)
- Yuan Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Molecular, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden, 17165.
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xun Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
158
|
Yue Y, Nabar NR, Shi CS, Kamenyeva O, Xiao X, Hwang IY, Wang M, Kehrl JH. SARS-Coronavirus Open Reading Frame-3a drives multimodal necrotic cell death. Cell Death Dis 2018; 9:904. [PMID: 30185776 PMCID: PMC6125346 DOI: 10.1038/s41419-018-0917-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 02/05/2023]
Abstract
The molecular mechanisms underlying the severe lung pathology that occurs during SARS-CoV infections remain incompletely understood. The largest of the SARS-CoV accessory protein open reading frames (SARS 3a) oligomerizes, dynamically inserting into late endosomal, lysosomal, and trans-Golgi-network membranes. While previously implicated in a non-inflammatory apoptotic cell death pathway, here we extend the range of SARS 3a pathophysiologic targets by examining its effects on necrotic cell death pathways. We show that SARS 3a interacts with Receptor Interacting Protein 3 (Rip3), which augments the oligomerization of SARS 3a helping drive necrotic cell death. In addition, by inserting into lysosomal membranes SARS 3a triggers lysosomal damage and dysfunction. Consequently, Transcription Factor EB (TFEB) translocates to the nucleus increasing the transcription of autophagy- and lysosome-related genes. Finally, SARS 3a activates caspase-1 either directly or via an enhanced potassium efflux, which triggers NLRP3 inflammasome assembly. In summary, Rip3-mediated oligomerization of SARS 3a causes necrotic cell death, lysosomal damage, and caspase-1 activation—all likely contributing to the clinical manifestations of SARS-CoV infection.
Collapse
Affiliation(s)
- Yuan Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neel R Nabar
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. .,Department of Molecular, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden, 17165.
| | - Chong-Shan Shi
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Olena Kamenyeva
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xun Xiao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Il-Young Hwang
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - John H Kehrl
- B Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
159
|
Wong WT, Li LH, Rao YK, Yang SP, Cheng SM, Lin WY, Cheng CC, Chen A, Hua KF. Repositioning of the β-Blocker Carvedilol as a Novel Autophagy Inducer That Inhibits the NLRP3 Inflammasome. Front Immunol 2018; 9:1920. [PMID: 30186288 PMCID: PMC6113403 DOI: 10.3389/fimmu.2018.01920] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/03/2018] [Indexed: 11/24/2022] Open
Abstract
The NLRP3 inflammasome is a multiprotein complex that plays a key role in the innate immune system, and aberrant activation of this complex is involved in the pathogenesis of inflammatory diseases. Carvedilol (CVL) is an α-, β-blocker used to treat high blood pressure and congestive heart failure; however, some benefits beyond decreased blood pressure were observed clinically, suggesting the potential anti-inflammatory activity of CVL. In this report, the inhibitory potential of CVL toward the NLRP3 inflammasome and the possible underlying molecular mechanisms were studied. Our results showed that CVL attenuated NLRP3 inflammasome activation and pyroptosis in mouse macrophages, without affecting activation of the AIM2, NLRC4 and non-canonical inflammasomes. Mechanistic analysis revealed that CVL prevented lysosomal and mitochondrial damage and reduced ASC oligomerization. Additionally, CVL caused autophagic induction through a Sirt1-dependent pathway, which inhibited the NLRP3 inflammasome. In the in vivo mouse model of NLRP3-associated peritonitis, oral administration of CVL reduced (1) peritoneal recruitment of neutrophils; (2) the levels of IL-1β, IL-18, active caspase-1, ASC, IL-6, TNF-α, MCP-1, and CXCL1 in the lavage fluids; and (3) the levels of NLRP3 and HO-1 in the peritoneal cells. Our results indicated that CVL is a novel autophagy inducer that inhibits the NLRP3 inflammasome and can be repositioned for ameliorating NLRP3-associated complications.
Collapse
Affiliation(s)
- Wei-Ting Wong
- National Defense Medical Center, Graduate Institute of Life Sciences, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yerra Koteswara Rao
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan
| | - Shih-Ping Yang
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Yilan City, Taiwan.,Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
160
|
Harris J, Deen N, Zamani S, Hasnat MA. Mitophagy and the release of inflammatory cytokines. Mitochondrion 2018; 41:2-8. [DOI: 10.1016/j.mito.2017.10.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 01/06/2023]
|
161
|
Jamilloux Y, Lagrange B, Di Micco A, Bourdonnay E, Provost A, Tallant R, Henry T, Martinon F. A proximity-dependent biotinylation (BioID) approach flags the p62/sequestosome-1 protein as a caspase-1 substrate. J Biol Chem 2018; 293:12563-12575. [PMID: 29929983 DOI: 10.1074/jbc.ra117.000435] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 06/08/2018] [Indexed: 01/24/2023] Open
Abstract
The inflammasome is a major component of the innate immune system, and its main function is to activate caspase-1, a cysteine protease that promotes inflammation by inducing interleukin-1β (IL-1β) maturation and release into the extracellular milieu. To prevent uncontrolled inflammation, this complex is highly regulated. When it is assembled, the inflammasome is insoluble, which has long precluded the analysis of its interactions with other proteins. Here we used the proximity-dependent biotinylation assay (BioID) to identify proteins associated with caspase-1 during inflammasome activation. Using the BioID in a cell-free system in which the inflammasome had been activated, we found that a caspase-1-biotin ligase fusion protein selectively labeled 111 candidates, including the p62/sequestosome-1 protein (p62). Using co-immunoprecipitation experiments, we demonstrated that p62 interacts with caspase-1. This interaction promoted caspase-1-mediated cleavage of p62 at Asp-329. Mechanistic and functional analyses revealed that caspase-1-mediated cleavage of p62 leads to loss of its interaction with the autophagosomal protein microtubule-associated protein 1 light chain 3 β (LC3B). Strikingly, overexpression of a p62 N-terminal fragment generated upon caspase-1 cleavage decreased IL-1β release, whereas overexpression of p62's C-terminal portion enhanced IL-1β release, by regulating pro-IL1β levels. Overall, the overexpression of both fragments together decreased IL-1β release. Taken together, our results indicate that caspase-1-mediated p62 cleavage plays a complex role in balancing caspase-1-induced inflammation.
Collapse
Affiliation(s)
- Yvan Jamilloux
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Brice Lagrange
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Antonia Di Micco
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Emilie Bourdonnay
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Angélina Provost
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Rémy Tallant
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland.,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Thomas Henry
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland, .,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| | - Fabio Martinon
- From the Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland, .,the Centre International de Recherche en Infectiologie, INSERM U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, 69007 Lyon, France, and.,the Department of Internal Medicine, Hopital de la Croix-Rousse, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, 69004 Lyon, France
| |
Collapse
|
162
|
Yi YS. Regulatory Roles of Flavonoids on Inflammasome Activation during Inflammatory Responses. Mol Nutr Food Res 2018; 62:e1800147. [PMID: 29774640 DOI: 10.1002/mnfr.201800147] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/24/2018] [Indexed: 12/20/2022]
Abstract
Inflammation is an innate immune response to noxious stimuli to protect the body from pathogens. Inflammatory responses consist of two main steps: priming and triggering. In priming, inflammatory cells increase expressions of inflammatory molecules, while in triggering, inflammasomes are activated, resulting in cell death and pro-inflammatory cytokine secretion. Inflammasomes are protein complexes comprising intracellular pattern recognition receptors (PRRs) (e.g., nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2 (AIM2), and caspases-4/5/11) and pro-caspase-1 with or without a bipartite adaptor molecule ASC. Inflammasome activation induces pyroptosis, inflammatory cell death, and stimulates caspase-1-mediated secretion of interleukin (IL)-1b and IL-18. Flavonoids are secondary metabolites found in various plants and are considered as critical ingredients promoting health and ameliorating various disease symptoms. Anti-inflammatory activity of flavonoids and underlying mechanisms have been widely studied. This review introduces current knowledge on different types of inflammasomes and their activation during inflammatory responses and discusses recent studies regarding anti-inflammatory roles of flavonoids as suppressors of inflammasomes in inflammatory conditions. Understanding the regulatory effects of flavonoids on inflammasome activation will increase our knowledge of flavonoid-mediated anti-inflammatory activity and provide new insights into the development of flavonoid preparations to prevent and treat human inflammatory diseases.
Collapse
Affiliation(s)
- Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, 28503, Korea
| |
Collapse
|
163
|
Feng X, Lu J, He Z, Wang Y, Qi F, Pi R, Zhang G. Mycobacterium smegmatis Induces Neurite Outgrowth and Differentiation in an Autophagy-Independent Manner in PC12 and C17.2 Cells. Front Cell Infect Microbiol 2018; 8:201. [PMID: 29988402 PMCID: PMC6024096 DOI: 10.3389/fcimb.2018.00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/29/2018] [Indexed: 01/01/2023] Open
Abstract
Both pathogenic and non-pathogenic Mycobacteria can induce the differentiation of immune cells into dendritic cells (DC) or DC-like cells. In addition, pathogenic Mycobacteria is found to stimulate cell differentiation in the nerves system. Whether non-pathogenic Mycobacteria interacts with nerve cells remains unknown. In this study, we found that co-incubation with fast-growing Mycobacteria smegmatis induced neuron-like morphological changes of PC12 and C17.2 cells. Moreover, the M. smegmatis culture supernatant which was ultrafiltrated through a membrane with a 10 kDa cut-off, induced neurite outgrowth and differentiation in an autophagy-independent pathway in PC12 and C17.2 cells. Further analysis showed that IFN-γ production and activation of the PI3K-Akt signaling pathway were involved in the neural differentiation. In conclusion, our finding demonstrated that non-pathogenic M. smegmatis was able to promote neuronal differentiation by its extracellular proteins, which might provide a novel therapeutic strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xinwei Feng
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yidan Wang
- Department of Biotechnology, School of McCormick Engineering, Northwestern University, Evanston, IL, United States
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
164
|
The mitochondrial protease HtrA2 restricts the NLRP3 and AIM2 inflammasomes. Sci Rep 2018; 8:8446. [PMID: 29855523 PMCID: PMC5981608 DOI: 10.1038/s41598-018-26603-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Activation of the inflammasome pathway is crucial for effective intracellular host defense. The mitochondrial network plays an important role in inflammasome regulation but the mechanisms linking mitochondrial homeostasis to attenuation of inflammasome activation are not fully understood. Here, we report that the Parkinson’s disease-associated mitochondrial serine protease HtrA2 restricts the activation of ASC-dependent NLRP3 and AIM2 inflammasomes, in a protease activity-dependent manner. Consistently, disruption of the protease activity of HtrA2 results in exacerbated NLRP3 and AIM2 inflammasome responses in macrophages ex vivo and systemically in vivo. Mechanistically, we show that the HtrA2 protease activity regulates autophagy and controls the magnitude and duration of inflammasome signaling by preventing prolonged accumulation of the inflammasome adaptor ASC. Our findings identify HtrA2 as a non-redundant mitochondrial quality control effector that keeps NLRP3 and AIM2 inflammasomes in check.
Collapse
|
165
|
Wang Y, Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomedicine 2018; 13:2729-2742. [PMID: 29765216 PMCID: PMC5944465 DOI: 10.2147/ijn.s157135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
166
|
Vanegas S, Ramirez-Montaño D, Candelo E, Shinawi M, Pachajoa H. DeSanto-Shinawi Syndrome: First Case in South America. Mol Syndromol 2018; 9:154-158. [PMID: 29928181 DOI: 10.1159/000488815] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Pathogenic variants in WAC are uncommon causes of developmental delay and neurobehavioral phenotypes. The clinical features associated with WAC haploinsufficiency include recognizable dysmorphic facial features that were recently delineated as DeSanto-Shinawi syndrome (DESSH; OMIM 616708). Additional clinical features include hypotonia, hearing and vision abnormalities, gastrointestinal problems, and behavioral difficulties. Here, we report a case of a 4-year-old Colombian male patient with typical dysmorphic facial features, developmental delay, hyperactivity, and recurrent respiratory infections. His immune workup revealed hypogammaglobulinemia, and clinical exome sequencing revealed a novel intronic variant in WAC (c.1437+1G>A). To the best of our knowledge, this is the first case of DESSH in South America, underlining the accumulating evidence of the significant role of WAC haploinsufficiency in neurobehavioral phenotypes. Although this report suggested the potential involvement of WAC in immune regulation, additional reports are required to confirm our observations.
Collapse
Affiliation(s)
- Sara Vanegas
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Facultad de Ciencias de la Salud, Universidad ICESI, Colombia
| | - Diana Ramirez-Montaño
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Facultad de Ciencias de la Salud, Universidad ICESI, Colombia
| | - Estephania Candelo
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Facultad de Ciencias de la Salud, Universidad ICESI, Colombia
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry Pachajoa
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Facultad de Ciencias de la Salud, Universidad ICESI, Colombia.,Department of Genetics, Fundación Clínica Valle del Lili, Cali, Colombia
| |
Collapse
|
167
|
Estradiol mediates the long-lasting lung inflammation induced by intestinal ischemia and reperfusion. J Surg Res 2018; 221:1-7. [DOI: 10.1016/j.jss.2017.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
|
168
|
Hsieh CW, Chang CY, Chen YM, Chen HH, Hung WT, Gung NR, Wey SJ, Chen DY. Impaired autophagic flux and its related inflammation in patients with adult-onset Still's disease. Oncotarget 2017; 9:110-121. [PMID: 29416600 PMCID: PMC5787422 DOI: 10.18632/oncotarget.23098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
The pathogenic role of autophagic immune regulation in adult-onset Still’s disease (AOSD) is unclear. We investigated the relative levels of autophagy in AOSD patients and healthy controls, its association with disease activity or course, and the change in autophagy after 6 months of therapy. Autophagosome levels were determined from the mean fluorescence intensity of autophagosomotropic dye incorporated into circulating immune cells. The fluorescent signal from lymphocytes, monocytes, and granulocytes from AOSD patients was greater than from controls. Levels of p62 fluorescence measured using flow cytometry in lymphocytes and granulocytes from AOSD patients was greater than in the corresponding cells from healthy controls. Expression of Atg5 and LC3-II mRNA and protein levels of p62 and LC3-II were elevated in AOSD patients. Moreover, AOSD activity scores correlated positively with autophagosome levels in monocytes and granulocytes, p62 levels in circulating immune cells, and levels of Beclin-1, Atg5, and LC3-II mRNA. Autophagosome levels and Atg mRNA expression decreased with disease remission in AOSD patients. Elevated autophagosome formation and p62 levels suggest impaired autophagic flux in AOSD.
Collapse
Affiliation(s)
- Chia-Wei Hsieh
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chun-Yu Chang
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Ming Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hsin-Hua Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Wei-Ting Hung
- Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Ning-Rong Gung
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Shiow-Jiuan Wey
- Division of Dermatology, Chung-Shan Medical University Hospital, Taichung, Taiwan
| | - Der-Yuan Chen
- Ph.D. Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Allergy, Immunology and Rheumatology, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
169
|
Jiang P, Guo Y, Dang R, Yang M, Liao D, Li H, Sun Z, Feng Q, Xu P. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J Neuroinflammation 2017; 14:239. [PMID: 29212498 PMCID: PMC5719935 DOI: 10.1186/s12974-017-1013-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/27/2017] [Indexed: 01/01/2023] Open
Abstract
Background The NLRP3 inflammasome activation and neuroinflammation are known to be involved in the pathology of depression, whereas autophagy has multiple effects on immunity, which is partly mediated by the regulation of inflammasome and clearance of proinflammatory cytokines. Given the emerging evidence that autophagy dysfunction plays an essential role in depression, it is very likely that autophagy may interact with the inflammatory process in the development and treatment of depression. Salvianolic acid B (SalB), a naturally occurring compound extracted from Salvia miltiorrhiza, contains anti-inflammatory and antidepression properties and has recently been proven to modulate autophagy. In this study, we sought to investigate whether autophagy is involved in the inflammation-induced depression and the antidepressant effects of SalB. Methods The effects of prolonged lipopolysaccharide (LPS) treatment and SalB administration on behavioral changes, neuroinflammation, autophagic markers and NLRP3 activation in rat hippocampus were determined by using behavioral tests, real-time PCR analysis, western blot, and immunostaining. Results Our data showed that periphery immune challenge by LPS for 2 weeks successfully induced the rats to a depression-like state, accompanied with enhanced expression of pro-inflammatory cytokines and NLRP3 inflammasome activation. Interestingly, autophagic markers, including Beclin-1, and the ratio of LC3II to LC3I were suppressed following prolonged LPS exposure. Meanwhile, co-treatment with SalB showed robust antidepressant effects and ameliorated the LPS-induced neuroinflammation. Additionally, SalB restored the compromised autophagy and overactivated NLRP3 inflammasome in LPS-treated rats. Conclusions Collectively, these data suggest that autophagy may interact with NLRP3 activation to contribute to the development of depression, whereas SalB can promote autophagy and induce the clearance of NLRP3, thereby resulting in neuroprotective and antidepressant actions.
Collapse
Affiliation(s)
- Pei Jiang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Ruili Dang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| | - Mengqi Yang
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Huande Li
- Institute of Clinical Pharmacy & Pharmacology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Sun
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingyan Feng
- Department of Neurology, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Pengfei Xu
- Institute of Clinical Pharmacy & Pharmacology, Jining First People's Hospital, Jining Medical University, Jining, China.
| |
Collapse
|
170
|
Sepehri Z, Kiani Z, Afshari M, Kohan F, Dalvand A, Ghavami S. Inflammasomes and type 2 diabetes: An updated systematic review. Immunol Lett 2017; 192:97-103. [DOI: 10.1016/j.imlet.2017.10.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022]
|
171
|
Bah A, Vergne I. Macrophage Autophagy and Bacterial Infections. Front Immunol 2017; 8:1483. [PMID: 29163544 PMCID: PMC5681717 DOI: 10.3389/fimmu.2017.01483] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a well-conserved lysosomal degradation pathway that plays key roles in bacterial infections. One of the most studied is probably xenophagy, the selective capture and degradation of intracellular bacteria by lysosomes. However, the impact of autophagy goes beyond xenophagy and involves intensive cross-talks with other host defense mechanisms. In addition, autophagy machinery can have non-canonical functions such as LC3-associated phagocytosis. In this review, we intend to summarize the current knowledge on the many functions of autophagy proteins in cell defenses with a focus on bacteria–macrophage interaction. We also present the strategies developed by pathogens to evade or to exploit this machinery in order to establish a successful infection. Finally, we discuss the opportunities and challenges of autophagy manipulation in improving therapeutics and vaccines against bacterial pathogens.
Collapse
Affiliation(s)
- Aïcha Bah
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| | - Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089 CNRS-Université de Toulouse, Toulouse, France
| |
Collapse
|
172
|
X-11-5-27, a daidzein derivative, inhibits NLRP3 inflammasome activity via promoting autophagy. Exp Cell Res 2017; 360:320-327. [DOI: 10.1016/j.yexcr.2017.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/22/2022]
|
173
|
Li JR, Xu HZ, Nie S, Peng YC, Fan LF, Wang ZJ, Wu C, Yan F, Chen JY, Gu C, Wang C, Chen JS, Wang L, Chen G. Fluoxetine-enhanced autophagy ameliorates early brain injury via inhibition of NLRP3 inflammasome activation following subrachnoid hemorrhage in rats. J Neuroinflammation 2017; 14:186. [PMID: 28903766 PMCID: PMC5598033 DOI: 10.1186/s12974-017-0959-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022] Open
Abstract
Background The NLRP3 inflammasome is a multiprotein complex that regulates the innate immune inflammatory response by activating caspase-1 and subsequent IL-1β and IL-18. Fluoxetine has been shown to have the anti-inflammatory properties in many disease models. However, the effects and mechanisms of these effects of fluoxetine in early brain injury after subarachnoid hemorrhage (SAH) have not been defined. Methods The SAH model was induced by an endovascular perforation in adult male Sprague-Dawley (SD) rats weighing 300–320 g. N-Ac-Tyr-Val-Ala-Asp-chloromethyl ketone (AC-YVAD-CMK) was injected intraperitoneally (5 mg/kg) 1 h after SAH. Fluoxetine was administered via intravenous route 6 h after SAH. 3-Methyladenine (3-MA) was intracerebroventricularly injected 20 min before SAH. SAH grade, neurological function, brain water content, propidium iodide (PI) staining, western blot, double immunostaining, and transmission electron microscopy were performed. Results Expression of caspase-1 increased and peaked at 24 h after SAH. Caspase activation was along with the increased necrotic cells, which occurred mainly in neurons. Necrotic cell death of microglia and astrocyte were also found. Administration of AC-YVAD-CMK, a caspase-1 inhibitor, reduced the expression of IL-1β and IL-18 and the number of PI-positive cells, attenuated brain edema, and improved neurological function, which was also observed in fluoxetine-treated rats. Furthermore, fluoxetine treatment significantly decreased the expression of NLRP3 and cleaved caspase-1 and upregulated the expression of beclin-1, a marker for autophagy. Finally, the effects of fluoxetine in NLRP3 inflammasome activation were reversed by additional 3-MA administration. Conclusions Together, our present study indicated that NLRP3 inflammasome and caspase-1 activation play a deleterious role in early brain injury and fluoxetine mitigates NLRP3 inflammasome and caspase-1 activation through autophagy activation after SAH, providing a potential therapeutic agent for SAH treatment. Electronic supplementary material The online version of this article (10.1186/s12974-017-0959-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Ru Li
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hang-Zhe Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Nie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Cong Peng
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin-Feng Fan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Jiang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Yin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chi Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chun Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing-Sen Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
174
|
Weis S, Rubio I, Ludwig K, Weigel C, Jentho E. Hormesis and Defense of Infectious Disease. Int J Mol Sci 2017; 18:E1273. [PMID: 28617331 PMCID: PMC5486095 DOI: 10.3390/ijms18061273] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases are a global health burden and remain associated with high social and economic impact. Treatment of affected patients largely relies on antimicrobial agents that act by directly targeting microbial replication. Despite the utility of host specific therapies having been assessed in previous clinical trials, such as targeting the immune response via modulating the cytokine release in sepsis, results have largely been frustrating and did not lead to the introduction of new therapeutic tools. In this article, we will discuss current evidence arguing that, by applying the concept of hormesis, already approved pharmacological agents could be used therapeutically to increase survival of patients with infectious disease via improving disease tolerance, a defense mechanism that decreases the extent of infection-associated tissue damage without directly targeting pathogenic microorganisms.
Collapse
Affiliation(s)
- Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Center for Infectious Diseases and Infection Control, University Hospital Jena, Jena 07747, Germany.
- Center for Sepsis Control and Care, University Hospital Jena, Jena 07747, Germany.
| | - Ignacio Rubio
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Kristin Ludwig
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital Jena, Jena 07745, Germany.
| | - Cynthia Weigel
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
- Fritz Lipmann Institute, Leibniz Institute on Aging, Jena 07745, Germany.
| | - Elisa Jentho
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Jena, Jena 07747, Germany.
| |
Collapse
|
175
|
Bodas M, Vij N. Augmenting autophagy for prognosis based intervention of COPD-pathophysiology. Respir Res 2017; 18:83. [PMID: 28472967 PMCID: PMC5418861 DOI: 10.1186/s12931-017-0560-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/20/2017] [Indexed: 12/15/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is foremost among the non-reversible fatal ailments where exposure to tobacco/biomass-smoke and aging are the major risk factors for the initiation and progression of the obstructive lung disease. The role of smoke-induced inflammatory-oxidative stress, apoptosis and cellular senescence in driving the alveolar damage that mediates the emphysema progression and severe lung function decline is apparent, although the central mechanism that regulates these processes was unknown. To fill in this gap in knowledge, the central role of proteostasis and autophagy in regulating chronic lung disease causing mechanisms has been recently described. Recent studies demonstrate that cigarette/nicotine exposure induces proteostasis/autophagy-impairment that leads to perinuclear accumulation of polyubiquitinated proteins as aggresome-bodies, indicative of emphysema severity. In support of this concept, autophagy inducing FDA-approved anti-oxidant drugs control tobacco-smoke induced inflammatory-oxidative stress, apoptosis, cellular senescence and COPD-emphysema progression in variety of preclinical models. Hence, we propose that precise and early detection of aggresome-pathology can allow the timely assessment of disease severity in COPD-emphysema subjects for prognosis-based intervention. While intervention with autophagy-inducing drugs is anticipated to reduce alveolar damage and lung function decline, resulting in a decrease in the current mortality rates in COPD-emphysema subjects.
Collapse
Affiliation(s)
- Manish Bodas
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
| | - Neeraj Vij
- Molecular & Cell Biology, College of Medicine, Central Michigan University, Mt Pleasant, 2630 Denison Drive, Room# 120 (Office) & 126-127 (Lab), College of Medicine Research Building, Mt. Pleasant, MI 48859 USA
- Department of Pediatrics and Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland USA
| |
Collapse
|
176
|
Chirumbolo S, Bjørklund G, Sboarina A, Vella A. The Role of Vitamin D in the Immune System as a Pro-survival Molecule. Clin Ther 2017; 39:894-916. [PMID: 28438353 DOI: 10.1016/j.clinthera.2017.03.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Vitamin D is a fascinating and attractive molecule that has gained particular attention in medicine in recent years. Its immunomodulatory and anti-inflammatory potential might resemble the activity of many nature-derived molecules (eg, flavonoids), but its role in biology was selected during a long evolutionary pathway to dampen the damaging effect of cell stress response and of the immune reaction. In this sense, this molecule can be considered an ancient hormone that serves, in its primary role, as a pro-survival agent. The goal of this review was to elucidate this topic. METHODS The article reviews current literature on the field, focusing on issues regarding the role of vitamin D in immunity. FINDINGS Vitamin D participates in the survival machinery used by the cell, and in particular it plays a major role in synchronizing calcium oscillatory signaling to allow cell autophagy or apoptosis during a stress response. IMPLICATIONS Vitamin D should be better highlighted in its molecular action and vitamin D receptor genomics to conceive a more suited therapeutic supplementation protocol in clinics.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy.
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Andrea Sboarina
- Department of Surgery, Dentistry, Gynaecology and Paediatrics, University of Verona, Verona, Italy
| | - Antonio Vella
- Department of Medicine-University of Verona, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| |
Collapse
|