151
|
Lemos R, Maia FR, Reis RL, Oliveira JM. Engineering of Extracellular Matrix‐Like Biomaterials at Nano‐ and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Rafael Lemos
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
- Centre of Physics (CFUM) University of Minho Campus de Gualtar 4710-057 Braga Portugal
| | - F. Raquel Maia
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805-017 Barco, Guimarães Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
152
|
Cao Z, Li C, He J, Sui X, Wu P, Pan D, Qing L, Tang J. FK506-loaded PLGA nanoparticles improve long-term survival of a vascularized composite allograft in a murine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1515. [PMID: 34790721 PMCID: PMC8576731 DOI: 10.21037/atm-21-2425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/20/2021] [Indexed: 11/06/2022]
Abstract
Background The side effects of life-long administration of FK506 limit the clinical practice of vascularized composite allografts (VCAs). This study aimed to evaluate the feasibility of FK506-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (FK506 NPs) for prolonging the long-term survival of VCAs and reducing the side effects of FK506. Methods PLGA nanoparticles loaded with FK506 were prepared by the solvent evaporation method. The characterization of FK506 NPs was evaluated by electron microscopy. To confirm the function and safety of FK506 NPs, these particles were administrated into rats by intraperitoneal injection. The survival time of the allograft, systemic concentration of FK506, anti-rejection activity, and side-effect of FK506 NPs were evaluated in a Brown Norway (BN)-to-Sprague Dawley (SD) epigastric VCA transplantation model. Results Compared with the nontreatment, PLGA control and FK506 groups, the median survival times (MST) of the FK506 NP groups were significantly prolonged. The FK506 NPs could maintain therapeutic drug concentration for 60 days. Moreover, cytokine concentrations, flow cytometry of regulatory T cells (Tregs) and histopathology of allografts revealed significantly prolonged immunosuppression by FK506 NPs. FK506 NPs also ameliorated FK506 nephrotoxicity. Conclusions FK506 NPs prolong the survival time of VCAs in a murine model with minimal nephrotoxicity, and provide a potential clinical strategy for ameliorating long-term side effects of immunosuppressive therapy.
Collapse
Affiliation(s)
- Zheming Cao
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Cheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Jiqiang He
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Xinlei Sui
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Panfeng Wu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Ding Pan
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Liming Qing
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
153
|
Cruz-Hernández C, López-Méndez LJ, Guadarrama P. Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications. Eur J Med Chem 2021; 229:113988. [PMID: 34801269 DOI: 10.1016/j.ejmech.2021.113988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023]
Abstract
Nanomedicine is an emerging area that largely influences the efficacy of various therapies through the rational design of new materials exhibiting more targeted behavior. The synthetic effort, the amount of used material, and the cost are critical parameters to bear in mind if the production of the designed material is intended to be scaled for their widespread use. Even though materials science offers diverse options for different types of therapies, it is a difficult task to meet all the parameters mentioned above. The dendronization appears as an insightful approach to incorporate all the known benefits of the dendritic architecture by the attachment of dendrons to therapeutic agents, but in a much more affordable manner in terms of synthetic effort, amount of material, and cost. As will be presented, the most common dendrons used for biomedical applications are polyamide, polyester, carbosilane, polyether, and glycol-type, which are bonded to biological active molecules (BAMs), or molecular nanoplatforms (MPs) by hydrolysable bonds. Also relevant is the fact that the incorporation of dendrons not larger than third generation (G3) is sufficient to improve essential properties of these molecular systems, such as aqueous solubility, stability, and cellular internalization, among others. The type of dendron and its location on the BAMs or MPs, similar to placing a Lego piece on a model, will be decisive for obtaining the desired properties.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Luis José López-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
154
|
Hua L, Qian H, Lei T, Liu W, He X, Zhang Y, Lei P, Hu Y. Anti-tuberculosis drug delivery for tuberculous bone defects. Expert Opin Drug Deliv 2021; 18:1815-1827. [PMID: 34758697 DOI: 10.1080/17425247.2021.2005576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Traditional therapy methods for treating tuberculous bone defects have several limitations. Furthermore, systemic toxicity and disease recurrence in tuberculosis (TB) have not been effectively addressed. AREAS COVERED This review is based on references from September 1998 to September 2021 and summarizes the classification and drug-loading methods of anti-TB drugs. The application of different types of biological scaffolds loaded with anti-TB drugs as a novel drug delivery strategy for tuberculous bone defects has been deeply analyzed. Furthermore, the limitations of the existing studies are summarized. EXPERT OPINION Loading anti-TB drugs into the scaffold through various drug-loading techniques can effectively improve the efficiency of anti-TB treatment and provide an effective means of treating tuberculous bone defects. This methodology also has good application prospects and provides directions for future research.
Collapse
Affiliation(s)
- Long Hua
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China.,Department of orthopedics,The Sixth Affiliated Hospital, Xinjiang Medical University, Urumqi, P. R. China
| | - Hu Qian
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Ting Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Wenbin Liu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Xi He
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Yu Zhang
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital Central South University, Hunan Engineering Research Center of Biomedical Metal and Ceramic Implants, Changsha, Hunan, P. R. China.,Department of Orthopedics, The First Affiliated Hospital,Medical College of Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
155
|
Tween ® Preserves Enzyme Activity and Stability in PLGA Nanoparticles. NANOMATERIALS 2021; 11:nano11112946. [PMID: 34835710 PMCID: PMC8625811 DOI: 10.3390/nano11112946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Enzymes, as natural and potentially long-term treatment options, have become one of the most sought-after pharmaceutical molecules to be delivered with nanoparticles (NPs); however, their instability during formulation often leads to underwhelming results. Various molecules, including the Tween® polysorbate series, have demonstrated enzyme activity protection but are often used uncontrolled without optimization. Here, poly(lactic-co-glycolic) acid (PLGA) NPs loaded with β-glucosidase (β-Glu) solutions containing Tween® 20, 60, or 80 were compared. Mixing the enzyme with Tween® pre-formulation had no effect on particle size or physical characteristics, but increased the amount of enzyme loaded. More importantly, NPs made with Tween® 20:enzyme solutions maintained significantly higher enzyme activity. Therefore, Tween® 20:enzyme solutions ranging from 60:1 to 2419:1 mol:mol were further analyzed. Isothermal titration calorimetry analysis demonstrated low affinity and unquantifiable binding between Tween® 20 and β-Glu. Incorporating these solutions in NPs showed no effect on size, zeta potential, or morphology. The amount of enzyme and Tween® 20 in the NPs was constant for all samples, but a trend towards higher activity with higher molar rapports of Tween® 20:β-Glu was observed. Finally, a burst release from NPs in the first hour with Tween®:β-Glu solutions was the same as free enzyme, but the enzyme remained active longer in solution. These results highlight the importance of stabilizers during NP formulation and how optimizing their use to stabilize an enzyme can help researchers design more efficient and effective enzyme loaded NPs.
Collapse
|
156
|
Luo R, Huang Y, Yuan X, Yuan Z, Zhang L, Han J, Zhao Y, Cai Q. Controlled co-delivery system of magnesium and lanthanum ions for vascularized bone regeneration. Biomed Mater 2021; 16. [PMID: 34544058 DOI: 10.1088/1748-605x/ac2886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022]
Abstract
For craniofacial bone regeneration, how to promote vascularized bone regeneration is still a significant problem, and the controlled release of trace elements vital to osteogenesis has attracted attention. In this study, an ion co-delivery system was developed to promote angiogenesis and osteogenesis. Magnesium ions (Mg2+) and lanthanum ions (La3+) were selected as biosignal molecules because Mg2+can promote angiogenesis and both of them can enhance bone formation. Microspheres made of poly(lactide-co-glycolide) were applied to load La2(CO3)3, which was embedded into a MgO/MgCO3-loaded cryogel made of photocrosslinkable gelatin methacryloyl to enable co-delivery of Mg2+and La3+. Evaluations of angiogenesis and osteogenesis were conducted via bothin vitrocell culture using human bone marrow mesenchymal stromal cells andin vivoimplantation using a rat model with calvarial defect (5 mm in diameter). Compared to systems releasing only Mg2+or La3+, the combination system demonstrated more significant effects on blood vessels formation, thereby promoting the regeneration of vascularized bone tissue. At 8 weeks post-implantation, the new bone volume/total bone volume ratio reached a value of 40.1 ± 0.9%. In summary, a properly designed scaffold system with the capacity to release ions of different bioactivities in a desired pattern can be a promising strategy to meet vascularized bone regeneration requirements.
Collapse
Affiliation(s)
- Ruochen Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yiqian Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Xiaojing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing100871, People's Republic of China
| | - Liwen Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| | - Janming Han
- Department of Dental Materials, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Beijing100081, People's Republic of China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing100029, People's Republic of China
| |
Collapse
|
157
|
Cao Y, Rewatkar P, Wang R, Hasnain SZ, Popat A, Kumeria T. Nanocarriers for oral delivery of biologics: small carriers for big payloads. Trends Pharmacol Sci 2021; 42:957-972. [PMID: 34593258 DOI: 10.1016/j.tips.2021.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Macromolecular therapeutics of biological origin, also known as biologics, have become one of the fastest-growing classes of drugs for management of a range of chronic and acute conditions. The majority of approved biologics are administered via the parenteral route and are thus expensive, have low patient compliance, and have high systemic toxicity. Therefore, tremendous efforts have been devoted to the development of carriers for oral delivery of biologics. This review evaluates key chemical (e.g. pH and enzymes) and physiological challenges to oral biologics delivery. We review the conventional formulation strategies and their limitations, followed by a detailed account of the progress on the use of nanocarriers used for oral biologics delivery, covering organic and inorganic nanocarriers. Lastly, we discuss limitations and opportunities presented by these emerging nanomaterials in oral biologics delivery.
Collapse
Affiliation(s)
- Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Prarthana Rewatkar
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ran Wang
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Sumaira Z Hasnain
- Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4102, Australia.
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; Immunopathology Group, Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD 4102, Australia.
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
158
|
Zhu Y, Shen L, Zhou Y. Nano-Particulated Erlotinib Compound System in Alleviation of Lung Cancer. J Biomed Nanotechnol 2021; 17:1984-1992. [PMID: 34706798 DOI: 10.1166/jbn.2021.3161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To produce an effective nanoparticle-loaded delivery system for the tumor drug erlotinib for non-small cell lung cancer (NSCLC) therapy, we loaded poly(lactic co glycolic acid) (PLGA) nanoparticles with erlotinib and used them to transport the drug to a target area. NCI-H1650 cells were cultured to test the permeability, efficiency, and anti-tumor capacity of PLGA and polyethyleneimine (PEI) drug delivery systems, and an NSCLC mouse model was prepared to further test the anti-tumor efficiency of PLGA. In tests using NCI-H1650 cells, we found that PLGA could effectively transport erlotinib into tumor cells, and release the loaded drug instantly. The infiltration efficiency was significantly higher than that of the PEI delivery system, and the same results were obtained in animal tests. PLGA-erlotinib could promote apoptosis and inhibit the migration of tumor cells more effectively than PEI-erlotinib. In the NSCLC mouse model, PLGA could more effectively reduce the tumor volume and the extent of tumor markers than the PEI delivery system. Immune function was also better rescued with the use of the PLGA system. We concluded that PLGA-erlotinib may be a good choice for lung cancer therapy in the future.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, PR China
| | - Liwei Shen
- Department of Oncoloy, The South Courtyard, Qingdao Women and Children's Hospital, Qingdao 266034, Shandong, PR China
| | - Yaozheng Zhou
- Department of Respiratory and Critical Care, Suizhou Hospital, Hubei University of Medicine, Suizhou, 441300, Hubei, PR China
| |
Collapse
|
159
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
160
|
Feng ZY, Liu TT, Sang ZT, Lin ZS, Su X, Sun XT, Yang HZ, Wang T, Guo S. Microfluidic Preparation of Janus Microparticles With Temperature and pH Triggered Degradation Properties. Front Bioeng Biotechnol 2021; 9:756758. [PMID: 34568306 PMCID: PMC8458873 DOI: 10.3389/fbioe.2021.756758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Based on the phase separation phenomenon in micro-droplets, polymer-lipid Janus particles were prepared on a microfluidic flow focusing chip. Phase separation of droplets was caused by solvent volatilization and Janus morphology was formed under the action of interfacial tension. Because phase change from solid to liquid of the lipid hemisphere could be triggered by physiological temperature, the lipid hemisphere could be used for rapid release of drugs. While the polymer we selected was pH sensitive that the polymer hemisphere could degrade under acidic conditions, making it possible to release drugs in a specific pH environment, such as tumor tissues. Janus particles with different structures were obtained by changing the experimental conditions. To widen the application range of the particles, fatty alcohol and fatty acid-based phase change materials were also employed to prepare the particles, such as 1-tetradecanol, 1-hexadecanol and lauric acid. The melting points of these substances are higher than the physiological temperature, which can be applied in fever triggered drug release or in thermotherapy. The introduction of poly (lactic-co-glycolic acid) enabled the formation of multicompartment particles with three distinct materials. With different degradation properties of each compartment, the particles generated in this work may find applications in programmed and sequential drug release triggered by multiple stimuli.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao-Tao Liu
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhen-Tao Sang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhen-Sheng Lin
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xin Su
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hua-Zhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Ting Wang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
161
|
Cao Z, Tang X, Zhang Y, Yin T, Gou J, Wang Y, He H. Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release. Int J Pharm 2021; 607:121021. [PMID: 34416333 DOI: 10.1016/j.ijpharm.2021.121021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 12/18/2022]
Abstract
Poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) have attracted considerable interest in the medical community as a sustained-release drug delivery system for localized treatment. However, it is currently a grand challenge to simultaneously achieve low-dose drugs, stable and prolonged drug release, and long-term retention circumventing uptake by macrophages. Here, we construct a solvent-exchange in-situ depot system by incorporating progesterone (PRG) loaded PLGA NPs into a sucrose acetate isobutyrate (SAIB) and PLGA matrix for the long term treatment of Assisted Reproductive Technology (ART). The results showed that different solvent and PLGA contents could affect the drug release rate of PRG NPs-SAIB-PLGA in-situ depot system (PSPIDS). When DMSO was used as solvent with the addition of 8% PLGA to the depot, PSPIDS could achieve a constant drug release with no burst for 2 weeks in vitro. After a single intramuscular injection, such PSPIDS showed higher drug concentration and AUC (6773.0 ± 348.8 μg/L·h) over the entire 7-day testing period compared with the commercial multiple-day-dosing intramuscular PRG-oil solution (1914.5 ± 180.7 μg/L·h) in vivo. Importantly, PSPIDS could be administered at a dose of 3.65 mg/kg, which was one fourth of dose required for PRG-oil solution. The results demonstrate that PRG NPs could successfully achieve both reduced administered dosage and burst release, and therefore that PSPIDS is a promising long-acting composite system for hydrophobic drugs.
Collapse
Affiliation(s)
- Zhijun Cao
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xing Tang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Zhang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tian Yin
- Department of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingxin Gou
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanjiao Wang
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haibing He
- Department of Pharmaceutics Science, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
162
|
Kim Y, Park EJ, Kim TW, Na DH. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics 2021; 13:1313. [PMID: 34452274 PMCID: PMC8399039 DOI: 10.3390/pharmaceutics13081313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Biopolymeric microparticles have been widely used for long-term release formulations of short half-life chemicals or synthetic peptides. Characterization of the drug release from microparticles is important to ensure product quality and desired pharmacological effect. However, there is no official method for long-term release parenteral dosage forms. Much work has been done to develop methods for in vitro drug release testing, generally grouped into three major categories: sample and separate, dialysis membrane, and continuous flow (flow-through cell) methods. In vitro drug release testing also plays an important role in providing insight into the in vivo performance of a product. In vitro release test with in vivo relevance can reduce the cost of conducting in vivo studies and accelerate drug product development. Therefore, investigation of the in vitro-in vivo correlation (IVIVC) is increasingly becoming an essential part of particulate formulation development. This review summarizes the principles of the in vitro release testing methods of biopolymeric particulate system with the recent research articles and discusses their characteristics including IVIVC, accelerated release testing methods, and stability of encapsulated drugs.
Collapse
Affiliation(s)
- Yejin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
- G2GBIO, Inc., Daejeon 34054, Korea
| | | | - Tae Wan Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| |
Collapse
|
163
|
Han Q, Chen K, Su C, Liu X, Luo X. Puerarin Loaded PLGA Nanoparticles: Optimization Processes of Preparation and Anti-alcohol Intoxication Effects in Mice. AAPS PharmSciTech 2021; 22:217. [PMID: 34386832 DOI: 10.1208/s12249-021-02092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/09/2021] [Indexed: 11/30/2022] Open
Abstract
To improve the bioavailability of puerarin in liver, the optimized preparation method of puerarin-PLGA nanoparticles (Pue-PLGA-nps) and the effect of Pue-PLGA-nps on alcoholism mice were studied. The preparation of Pue-PLGA-nps was optimized by the Box-Behnken design and response surface methodology (RSM). To estimate the anti-alcoholism of Pue-PLGA-nps in vivo, drunkenness incubation period and sober time of mice were detected, and Morris water maze (MWM) test was performed. AST, ALT, and SOD were used to determine the damages and oxidative stress in the liver, as well as histopathological observation of the liver. The optimal preparation conditions of Pue-PLGA-nps in RSM were as follows: the drug-material ratio was 1:1.4, the reaction temperature was 65°C, and the reaction time was 13 min. The drug entrapment efficiency of Pue-PLGA-nps was 90.6% and closely up to 98.9% of the standard prediction value. The results in vivo showed that the Pue-PLGA-nps significantly increased the drunkenness incubation period in comparison with the model group and decreased drunkenness sober time and landing time in MWM in comparison with the model group and puerarin group (P<0.05) . The contents of AST and ALT in the liver of Pue-PLGA-nps group were significantly lower than those of model group and Puerarin group (P<0.05), and the activity of SOD in the liver of Pue-PLGA-nps group was higher than that of model group (P<0.05). By histopathological observation, moreover, Pue-PLGA-nps significantly attenuated the impairment of the liver caused by alcoholism. In conclusion, through BBD and RSM, the process conditions of the Pue-PLGA-nps were successfully optimized. The Pue-PLGA-nps exerted higher bioavailability and better effect of anti-alcoholism than puerarin, indicating PLGA nanoparticles could be potential to deliver drug.
Collapse
|
164
|
Baysal I, Ozcelikay G, Yabanoglu-Ciftci S, Ucar BI, Gencer A, Arica-Yegin B. Nanoparticles and Nanostructured Films with TGF-β3: Preparation, Characterization, and Efficacy. AAPS PharmSciTech 2021; 22:213. [PMID: 34378118 DOI: 10.1208/s12249-021-02097-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
TGF-β3 has been reported to have a strong therapeutic efficacy in wound healing when externally administered, but TGF-β3's active form is rapidly metabolized and removed from the body. Therefore, a drug delivery system that can provide a new non-toxic and an effective treatment that could be locally applied and also be able to protect the stability of the protein and provide controlled release is required. The aim of the study is to prepare and characterize nanoparticles and nanostructured films with TGF-β3 and to evaluate in vitro cytotoxicity of the loaded nanoparticles. PCL-based films containing TGF-β3 or TGF-β3-loaded PLGA nanoparticles were prepared with non-toxic modified solvent displacement method. The particle size and protein loading efficiency of TGF-β3-loaded PLGA nanoparticles were 204.9 ± 10.3 nm and 42.42 ± 2.03%, respectively. In vitro release studies of TGF-β3-loaded PLGA nanoparticle formulations revealed that the protein was completely released from the nanoparticles at the end of 24 h. In vitro release profile of film formulation containing TGF-β3-loaded nanoparticles was similar. TGF-β3 released from nanoparticles do not have a significant effect on proliferation of HepG2 cells demonstrating their biocompatibility. Additionally, prepared films were tested with in vivo wound healing mouse model and showed to heal significantly faster and with improved scarring. PCL films loaded with TGF-β3 or TGF-β3 nanoparticles prepared in this study may be an effective treatment approach for wound healing therapy after injury.
Collapse
|
165
|
Garizo AR, Castro F, Martins C, Almeida A, Dias TP, Fernardes F, Barrias CC, Bernardes N, Fialho AM, Sarmento B. p28-functionalized PLGA nanoparticles loaded with gefitinib reduce tumor burden and metastases formation on lung cancer. J Control Release 2021; 337:329-342. [PMID: 34311024 DOI: 10.1016/j.jconrel.2021.07.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/18/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is still the main cause of cancer-related deaths worldwide. Its treatment generally includes surgical resection, immunotherapy, radiotherapy, and chemo-targeted therapies such as the application of tyrosine kinase inhibitors. Gefitinib (GEF) is one of them, but its poor solubility in gastric fluids weakens its bioavailability and therapeutic activity. In addition, like all other chemotherapy treatments, GEF administration can cause damage to healthy tissues. Therefore, the development of novel GEF delivery systems to increase its bioavailability and distribution in tumor site is highly demanded. Herein, an innovative strategy for GEF delivery, by functionalizing PLGA nanoparticles with p28 (p28-NPs), a cell-penetrating peptide derived from the bacterial protein azurin, was developed. Our data indicated that p28 potentiates the selective interaction of these nanosystems with A549 lung cancer cells (active targeting). Further p28-NPs delivering GEF (p28-NPs-GEF) were able to selectively reduce the metabolic activity of A549 cells, while no impact was observed in non-tumor cells (16HBE14o-). In vivo studies using A549 subcutaneous xenograft showed that p28-NPs-GEF reduced A549 primary tumor burden and lung metastases formation. Overall, the design of a p28-functionalized delivery nanosystem to effectively penetrate the membranes of cancer cells while deliver GEF could provide a new strategy to improve lung cancer therapy.
Collapse
Affiliation(s)
- Ana Rita Garizo
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Flávia Castro
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Cláudia Martins
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Andreia Almeida
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tiago P Dias
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Fábio Fernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Cristina C Barrias
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS-Instituto de Ciências Biomédicas Abel Salazar, University of Porto, R. de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Bernardes
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal
| | - Arsénio M Fialho
- iBB-Institute for Bioengineering and Biosciences, Biological Sciences Research Group, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal; Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1, 1049-001 Lisbon, Portugal.
| | - Bruno Sarmento
- i3S- Instituto de Inovação e Investigação em Saúde, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, R. Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, R. Central de Gandra, 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
166
|
Ramalho ÍMDM, Pereira DT, Galvão GBL, Freire DT, Amaral-Machado L, Alencar ÉDN, Egito ESTD. Current trends on cannabidiol delivery systems: where are we and where are we going? Expert Opin Drug Deliv 2021; 18:1577-1587. [PMID: 34253133 DOI: 10.1080/17425247.2021.1952978] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cannabidiol (CBD), a phytocannabinoid from Cannabis sativa, has several therapeutic properties. However, its high lipophilicity, metabolization, and instability impair its bioavailability and translational use in clinical settings. Several advanced drug delivery systems (ADDSs) have been evaluated as CBD carriers to overcome these drawbacks. These systems can improve the CBD dissolution profile, protect it against metabolization, and produce a site-specific release, increasing its bioavailability and making CBD administration clinically effective. AREAS COVERED This review summarizes scientific reports on cannabidiol advanced delivery systems (CBD-ADSs) that have been (i) developed, and (ii) applied therapeutically; reports published in the main scientific databases until January 2020 were included. Studies without experimental data and/or published in languages other than English were excluded. Moreover, pharmaceutical technology tools in CBD therapeutic use have been discussed, emphasizing the clinical translation of CBD carrier use. EXPERT OPINION Studies reporting CBD-ADS use for medicinal applications were reviewed and revealed multifaceted systems that can overcome the physicochemical drawbacks of CBD and improve its biological activities. Therefore, researchers concluded that the developed CBD-ADS can be used as an alternative to traditional formulations because they show comparable or superior effectiveness in treatment protocols. Although several criteria remain to be met, our findings emphasize the potential of CBD-ADSs for translational therapeutics, particularly for neurological-disorders.
Collapse
Affiliation(s)
| | - Daniel Torres Pereira
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | | | | | - Lucas Amaral-Machado
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | - Éverton do Nascimento Alencar
- Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Graduate Program in Pharmaceutical Nanotechnology (Ppgnanofarma), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| | - Eryvaldo Socrates Tabosa do Egito
- Graduate Program in Health Sciences (Ppgcsa), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Department of Pharmacy, Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil.,Graduate Program in Pharmaceutical Nanotechnology (Ppgnanofarma), Federal University of Rio Grande Do Norte (UFRN), Natal, Brazil
| |
Collapse
|
167
|
Pintado-Berninches L, Montes-Worboys A, Manguan-García C, Arias-Salgado EG, Serrano A, Fernandez-Varas B, Guerrero-López R, Iarriccio L, Planas L, Guenechea G, Egusquiaguirre SP, Hernandez RM, Igartua M, Luis Pedraz J, Cortijo J, Sastre L, Molina-Molina M, Perona R. GSE4-loaded nanoparticles a potential therapy for lung fibrosis that enhances pneumocyte growth, reduces apoptosis and DNA damage. FASEB J 2021; 35:e21422. [PMID: 33638895 DOI: 10.1096/fj.202001160rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022]
Abstract
Idiopathic pulmonary fibrosis is a lethal lung fibrotic disease, associated with aging with a mean survival of 2-5 years and no curative treatment. The GSE4 peptide is able to rescue cells from senescence, DNA and oxidative damage, inflammation, and induces telomerase activity. Here, we investigated the protective effect of GSE4 expression in vitro in rat alveolar epithelial cells (AECs), and in vivo in a bleomycin model of lung fibrosis. Bleomycin-injured rat AECs, expressing GSE4 or treated with GSE4-PLGA/PEI nanoparticles showed an increase of telomerase activity, decreased DNA damage, and decreased expression of IL6 and cleaved-caspase 3. In addition, these cells showed an inhibition in expression of fibrotic markers induced by TGF-β such as collagen-I and III among others. Furthermore, treatment with GSE4-PLGA/PEI nanoparticles in a rat model of bleomycin-induced fibrosis, increased telomerase activity and decreased DNA damage in proSP-C cells. Both in preventive and therapeutic protocols GSE4-PLGA/PEI nanoparticles prevented and attenuated lung damage monitored by SPECT-CT and inhibited collagen deposition. Lungs of rats treated with bleomycin and GSE4-PLGA/PEI nanoparticles showed reduced expression of α-SMA and pro-inflammatory cytokines, increased number of pro-SPC-multicellular structures and increased DNA synthesis in proSP-C cells, indicating therapeutic efficacy of GSE4-nanoparticles in experimental lung fibrosis and a possible curative treatment for lung fibrotic patients.
Collapse
Affiliation(s)
- Laura Pintado-Berninches
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Montes-Worboys
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Manguan-García
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Adela Serrano
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | | | - Rosa Guerrero-López
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Laura Iarriccio
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain
| | - Lurdes Planas
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain
| | - Guillermo Guenechea
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| | - Susana P Egusquiaguirre
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Rosa M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), CIBER-BBN, Vitoria-Gasteiz, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Leandro Sastre
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria Molina-Molina
- ILD Unit, Pneumology Department, University Hospital of Bellvitge, IDIBELL, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain.,CIBER of Respiratory diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
| | - Rosario Perona
- Instituto de Investigaciones Biomédicas, CSIC/UAM, IDIPaz, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| |
Collapse
|
168
|
Ghumman M, Dhamecha D, Gonsalves A, Fortier L, Sorkhdini P, Zhou Y, Menon JU. Emerging drug delivery strategies for idiopathic pulmonary fibrosis treatment. Eur J Pharm Biopharm 2021; 164:1-12. [PMID: 33882301 PMCID: PMC8154728 DOI: 10.1016/j.ejpb.2021.03.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a debilitating and fatal condition that causes severe scarring of the lungs. While the pathogenesis of IPF continues to be extensively studied and several factors have been considered, an exact cause has yet to be established. With inadequate treatment options and no cure available, overall disease prognosis is still poor. Existing oral therapies, pirfenidone and nintedanib, may attempt to improve the patients' quality of life by mitigating symptoms and slowing disease progression, however chronic doses and systemic deliveries of these drugs can lead to severe side effects. The lack of effective treatment options calls for further investigation of restorative as well as additional palliative therapies for IPF. Nanoparticle-based sustained drug delivery strategies can be utilized to ensure targeted delivery for site-specific treatment as well as long-acting therapy, improving overall patient compliance. This review provides an update on promising strategies for the delivery of anti-fibrotic agents, along with an overview of key therapeutic targets as well as relevant emerging therapies currently being evaluated for IPF treatment.
Collapse
Affiliation(s)
- Moez Ghumman
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Dinesh Dhamecha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Andrea Gonsalves
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Lauren Fortier
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Parand Sorkhdini
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA
| | - Yang Zhou
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI 02912, USA.
| | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
169
|
Matsumoto S, Nakata K, Sagara A, Guan W, Ikenaga N, Ohuchida K, Nakamura M. Efficient pre-treatment for pancreatic cancer using chloroquine-loaded nanoparticles targeting pancreatic stellate cells. Oncol Lett 2021; 22:633. [PMID: 34267825 PMCID: PMC8258615 DOI: 10.3892/ol.2021.12894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic stellate cells (PSCs) play a key role in desmoplastic stroma, which is a characteristic of pancreatic ductal adenocarcinoma (PDAC), and they also enhance the malignancy of pancreatic cancer cells. Our previous study reported chloroquine's mitigating effects on PSC activation; however, the drug is known to induce adverse effects in clinical practice. The present study aimed to reduce chloroquine doses and develop a useful pre-treatment that targets PSCs using nanoparticles. Poly lactic-co-glycolic acid (PLGA) nanoparticles were used as carriers and loaded with indocyanine green (Nano-ICG) or chloroquine (Nano-CQ). Tumor accumulation of Nano-ICG was evaluated using an in vivo imaging system. The effects of chloroquine, Nano-CQ and/or chemotherapy drug gemcitabine were investigated in an orthotopic xenograft mouse model. Nano-ICG selectively accumulated in pancreatic tumors and persisted therein for over 7 days after administration. Additionally, Nano-ICG accumulated in the peritoneal metastasized regions, but not in the liver, kidney and normal pancreatic tissues. Nano-CQ reduced the density of activated PSCs at lower chloroquine doses and significantly restrained tumor progression in combination with gemcitabine. In conclusion, the PLGA nanosystem successfully delivered the drug to pancreatic tumors. Nano-CQ efficiently reduced PSC activation and may be a promising novel pre-treatment strategy for PDAC.
Collapse
Affiliation(s)
- Sokichi Matsumoto
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kohei Nakata
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akiko Sagara
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Weiyu Guan
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naoki Ikenaga
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kenoki Ohuchida
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
170
|
Hu F, Zhang R, Guo W, Yan T, He X, Hu F, Ren F, Ma X, Lei J, Zheng W. PEGylated-PLGA Nanoparticles Coated with pH-Responsive Tannic Acid-Fe(III) Complexes for Reduced Premature Doxorubicin Release and Enhanced Targeting in Breast Cancer. Mol Pharm 2021; 18:2161-2173. [PMID: 32515968 DOI: 10.1021/acs.molpharmaceut.0c00321] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biodegradable poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) have been widely used as delivery vehicles for chemotherapy drugs. However, premature drug release in PLGA NPs can damage healthy tissue and cause serious adverse effects during systemic administration. Here, we report a tannic acid-Fe(III) (FeIII-TA) complex-modified PLGA nanoparticle platform (DOX-TPLGA NPs) for the tumor-targeted delivery of doxorubicin (DOX). A PEGylated-PLGA inner core and FeIII-TA complex outer shell were simultaneously introduced to reduce premature drug release in blood circulation and increase pH-triggered drug release in tumor tissue. Compared to the unmodified NPs, the initial burst rate of DOX-TPLGA NPs was significantly reduced by nearly 2-fold at pH 7.4. Moreover, the cumulative drug release rate at pH 5.0 was 40% greater than that at pH 7.4 due to the pH-response of the FeIII-TA complex. Cellular studies revealed that the TPLGA NPs had enhanced drug uptake and superior cytotoxicity of breast cancer cells in comparison to free DOX. Additionally, the DOX-TPLGA NPs efficiently accumulated in the tumor site of 4T1-bearing nude mice due to the enhanced permeability and retention (EPR) effect and reached a tumor inhibition rate of 85.53 ± 8.77% (1.31-fold versus DOX-PLGA NPs and 3.12-fold versus free DOX). Consequently, the novel TPLGA NPs represent a promising delivery platform to enhance the safety and efficacy of chemotherapy drugs.
Collapse
Affiliation(s)
- Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ruihuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ting Yan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiujuan He
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fengzhi Hu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Fuzheng Ren
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
171
|
Gherasim O, Popescu-Pelin G, Florian P, Icriverzi M, Roseanu A, Mitran V, Cimpean A, Socol G. Bioactive Ibuprofen-Loaded PLGA Coatings for Multifunctional Surface Modification of Medical Devices. Polymers (Basel) 2021; 13:polym13091413. [PMID: 33925498 PMCID: PMC8123841 DOI: 10.3390/polym13091413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022] Open
Abstract
To modulate the biofunctionality of implantable medical devices commonly used in clinical practice, their surface modification with bioactive polymeric coatings is an attractive and successful emerging strategy. Biodegradable coatings based on poly(lactic acid-co-glycolic acid), PLGA, represent versatile and safe candidates for surface modification of implantable biomaterials and devices, providing additional tunable ability for topical delivery of desired therapeutic agents. In the present study, Ibuprofen-loaded PLGA coatings (PLGA/IBUP) were obtained by using the dip-coating and drop-casting combined protocol. The composite materials demonstrated long-term drug release under biologically simulated dynamic conditions. Reversible swelling phenomena of polymeric coatings occurred in the first two weeks of testing, accompanied by the gradual matrix degradation and slow release of the therapeutic agent. Irreversible degradation of PLGA coatings occurred after one month, due to copolymer's hydrolysis (evidenced by chemical and structural modifications). After 30 days of dynamic testing, the cumulative release of IBUP was ~250 µg/mL. Excellent cytocompatibility was revealed on human-derived macrophages, fibroblasts and keratinocytes. The results herein evidence the promising potential of PLGA/IBUP coatings to be used for surface modification of medical devices, such as metallic implants and wound dressings.
Collapse
Affiliation(s)
- Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Gheorghe Polizu Street, RO-011061 Bucharest, Romania
| | - Gianina Popescu-Pelin
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
| | - Paula Florian
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Madalina Icriverzi
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Anca Roseanu
- Ligand-Receptor Interactions Department, Institute of Biochemistry, Romanian Academy, 296 Splaiul Independentei, RO-060031 Bucharest, Romania; (P.F.); (M.I.); (A.R.)
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, RO-050095 Bucharest, Romania; (V.M.); (A.C.)
| | - Gabriel Socol
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, RO-077125 Magurele, Ilfov County, Romania; (O.G.); (G.P.-P.)
- Correspondence:
| |
Collapse
|
172
|
Zhi K, Raji B, Nookala AR, Khan MM, Nguyen XH, Sakshi S, Pourmotabbed T, Yallapu MM, Kochat H, Tadrous E, Pernell S, Kumar S. PLGA Nanoparticle-Based Formulations to Cross the Blood-Brain Barrier for Drug Delivery: From R&D to cGMP. Pharmaceutics 2021; 13:pharmaceutics13040500. [PMID: 33917577 PMCID: PMC8067506 DOI: 10.3390/pharmaceutics13040500] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/24/2022] Open
Abstract
The blood–brain barrier (BBB) is a natural obstacle for drug delivery into the human brain, hindering treatment of central nervous system (CNS) disorders such as acute ischemic stroke, brain tumors, and human immunodeficiency virus (HIV)-1-associated neurocognitive disorders. Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible polymer that is used in Food and Drug Administration (FDA)-approved pharmaceutical products and medical devices. PLGA nanoparticles (NPs) have been reported to improve drug penetration across the BBB both in vitro and in vivo. Poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), and poloxamer (Pluronic) are widely used as excipients to further improve the stability and effectiveness of PLGA formulations. Peptides and other linkers can be attached on the surface of PLGA to provide targeting delivery. With the newly published guidance from the FDA and the progress of current Good Manufacturing Practice (cGMP) technologies, manufacturing PLGA NP-based drug products can be achieved with higher efficiency, larger quantity, and better quality. The translation from bench to bed is feasible with proper research, concurrent development, quality control, and regulatory assurance.
Collapse
Affiliation(s)
- Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
- Correspondence: (K.Z.); (S.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
| | | | - Mohammad Moshahid Khan
- Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 855 Monroe Avenue, Memphis, TN 38163, USA;
| | - Xuyen H. Nguyen
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Swarna Sakshi
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Tayebeh Pourmotabbed
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN 38163, USA;
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (H.K.)
| | - Erene Tadrous
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Shelby Pernell
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (X.H.N.); (S.S.); (E.T.); (S.P.)
- Correspondence: (K.Z.); (S.K.)
| |
Collapse
|
173
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
174
|
Development of a chitosan-modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice. J Nanobiotechnology 2021; 19:69. [PMID: 33673858 PMCID: PMC7934409 DOI: 10.1186/s12951-021-00812-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background Escherichia coli K1 (E. coli K1) caused neonatal meningitis remains a problem, which rises the urgent need for an effective vaccine. Previously, we rationally designed and produced the recombinant protein OmpAVac (Vo), which elicited protective immunity against E. coli K1 infection. However, Vo has limited stability, which hinders its future industrial application. Method Chitosan-modified poly (lactic-co-glycolic acid) (PLGA) nanoparticles were prepared and used as carried for the recombinant Vo. And the safety, stability and immunogenicity of Vo delivered by chitosan-modified PLGA nanoparticles were tested in vitro and in a mouse model of bacteremia. Results We successfully generated chitosan-modified PLGA nanoparticles for the delivery of recombinant Vo (VoNP). In addition, we found that a freeze-drying procedure increases the stability of the VoNPs without changing the shape, size distribution and encapsulation of the Vo protein. Unlike aluminum adjuvant, the nanoparticles that delivered Vo were immunoprotective in mice even after storage for as long as 180 days. Conclusions We identified an effective strategy to improve the stability of Vo to maintain its immunogenicity, which will contribute to the future development of vaccines against E. coli K1.![]()
Collapse
|
175
|
Stipa P, Marano S, Galeazzi R, Minnelli C, Mobbili G, Laudadio E. Prediction of drug-carrier interactions of PLA and PLGA drug-loaded nanoparticles by molecular dynamics simulations. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
176
|
Zou Y, Mei D, Yuan J, Han J, Xu J, Sun N, He H, Yang C, Zhao L. Preparation, Characterization, Pharmacokinetic, and Therapeutic Potential of Novel 6-Mercaptopurine-Loaded Oral Nanomedicines for Acute Lymphoblastic Leukemia. Int J Nanomedicine 2021; 16:1127-1141. [PMID: 33603372 PMCID: PMC7886780 DOI: 10.2147/ijn.s290466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/07/2021] [Indexed: 01/20/2023] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is the most common hematologic malignancy in children. It requires a long and rigorous course of chemotherapy treatments. 6-Mercaptopurine (6-MP) is one of the primary drugs used in chemotherapy. Unfortunately, its efficacy has been limited due to its insolubility, poor bioavailability and serious adverse effects. To overcome these drawbacks, we constructed 6-mercaptopurine (6-MP)-loaded nanomedicines (6-MPNs) with biodegradable poly(lactide-co-glycolide) (PLGA) to enhance the anticancer efficacy of 6-MP. Methods We prepared the 6-MPNs using a double-emulsion solvent evaporation method, characterizing them for the physicochemical properties. We then investigated the plasma, intestinal region and other organs in Sprague Dawley (SD) rats for pharmacokinetics. Additionally, we evaluated its anticancer efficacy in vitro on the human T leukemia cell line Jurkat and in vivo on the ALL model mice. Results The 6-MPNs were spherical in shape with uniform particle size and high encapsulation efficiency. The in vitro release profile showed that 6-MPNs exhibited a burst release that a sustained release phase then followed. The apoptosis assay demonstrated that 6-MPNs could improve the in vitro cytotoxicity in Jurkat cells. Pharmacokinetics profiles revealed that 6-MPNs had improved oral bioavailability. Tissue distribution experiments indicated that 6-MPNs increased the duodenum absorption of 6-MP, at the same time having a low accumulation of the toxic metabolites of 6-MP. The in vivo pharmacodynamics study revealed that 6-MPNs could prolong the survival time of the ALL model mice. The prepared 6-MPNs, therefore, have superior properties in terms of anticancer efficacy against ALL with reduced systemic toxicity. Conclusion Our nanomedicines provide a promising delivery strategy for 6-MP; they offer a simple preparation method and high significance for clinical translation.
Collapse
Affiliation(s)
- Yaru Zou
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Dong Mei
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jinjie Yuan
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Jiaqi Han
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Jiamin Xu
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Ning Sun
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Huan He
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, People's Republic of China
| | - Libo Zhao
- Clinical Research Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, People's Republic of China
| |
Collapse
|
177
|
Hao R, Sun B, Yang L, Ma C, Li S. RVG29-modified microRNA-loaded nanoparticles improve ischemic brain injury by nasal delivery. Drug Deliv 2021; 27:772-781. [PMID: 32400219 PMCID: PMC7269067 DOI: 10.1080/10717544.2020.1760960] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Effective nose-to-brain delivery needs to be developed to treat neurodegenerative diseases. Regulating miR-124 can effectively improve the symptoms of ischemic brain injury and provide a certain protective effect from brain damage after cerebral ischemia. We used rat models of middle cerebral artery occlusion (t-MCAO) with ischemic brain injury, and we delivered RVG29-NPs-miR124 intranasally to treat neurological damage after cerebral ischemia. Rhoa and neurological scores in rats treated by intranasal administration of RVG29-PEG-PLGA/miRNA-124 were significantly lower than those in PEG-PLGA/miRNA-124 nasal administration and RVG29-PLGA/miRNA-124 nasal administration group treated rats. These results indicate that the nose-to-brain delivery of PLGA/miRNA-124 conjugated with PEG and RVG29 alleviated the symptoms of cerebral ischemia-reperfusion injury. Thus, nasal delivery of RVG29-PEG-PLGA/miRNA-124 could be a new method for treating neurodegenerative diseases.
Collapse
Affiliation(s)
- Rubin Hao
- Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, ChangChun, Jilin, China
| | - Bixi Sun
- School of Pharmaceutical Sciences, Jilin University, ChangChun, Jilin, China
| | - Lihua Yang
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| | - Chun Ma
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| | - Shuling Li
- Affiliated Hospital of Changchun University of Chinese medicine, ChangChun, Jilin, China
| |
Collapse
|
178
|
Rivero Berti I, Islan GA, Castro GR. Enzymes and biopolymers. The opportunity for the smart design of molecular delivery systems. BIORESOURCE TECHNOLOGY 2021; 322:124546. [PMID: 33360273 DOI: 10.1016/j.biortech.2020.124546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Enzymes exhibit a tremendous potential due to the catalytic activity in response to physiological conditions and specific microenvironments. Exploiting these properties in combination with the versatility of biopolymers, a fascinating field for the rational development of a new class of "smart" delivery systems for therapeutic molecules is proposed. Many strategies have been recently developed to produce matrices with the desirable properties of molecular release, and enzymes could be playing a relevant role in modify the chemical composition of the polymers, the porosity and surface area of the matrices and modulate the kinetic of controlled release. Enzyme based computational systems have appeared as a relevant complementary tool to design novel smart bioactive matrices for programmable drug delivery. The present review is reporting the recent advances and projections of smart biopolymeric matrices activated by enzymes for sustained release of therapeutic molecules, highlighting various applications in the area of advanced drug delivery.
Collapse
Affiliation(s)
- Ignacio Rivero Berti
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - German A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET (CCT La Plata), Calle 47 y 115, (B1900AJI), La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina.
| |
Collapse
|
179
|
Gong W, Yu J, Zheng T, Liu P, Zhao F, Liu J, Hong Z, Ren H, Gu G, Wang G, Wu X, Zhao Y, Ren J. CCL4-mediated targeting of spleen tyrosine kinase (Syk) inhibitor using nanoparticles alleviates inflammatory bowel disease. Clin Transl Med 2021; 11:e339. [PMID: 33634985 PMCID: PMC7888545 DOI: 10.1002/ctm2.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) has emerged a global disease and the ascending incidence and prevalence is accompanied by elevated morbidity, mortality, and substantial healthcare system costs. However, the current typical one-size-fits-all therapeutic approach is suboptimal for a substantial proportion of patients due to the variability in the course of IBD and a considerable number of patients do not have positive response to the clinically approved drugs, so there is still a great, unmet demand for novel alternative therapeutic approaches. Spleen tyrosine kinase (Syk), a cytoplasmic nonreceptor protein tyrosine kinase, plays crucial roles in signal transduction and there are emerging data implicating that Syk participates in pathogenesis of several gut disorders, such as IBD. In this study, we observed the Syk expression in IBD patients and explored the effects of therapeutic Syk inhibition using small-molecule Syk inhibitor piceatannol in bone marrow-derived macrophages (BMDMs). In addition, due to the poor bioavailability and pharmacokinetics of small-molecule tyrosine kinase inhibitors and superiority of targeting nanoparticles-based drug delivery system, we herein prepared piceatannol-encapsulated poly(lactic-co-glycolic acid) nanoparticles that conjugated with chemokine C-C motif ligand 4 (P-NPs-C) and studied its therapeutic effects in vitro in BMDMs and in vivo in experimental colitis model. Our results indicated that in addition to alleviating colitis, oral administration of P-NPs-C promoted the restoration of intestinal barrier function and improved intestinal microflora dysbiosis, which represents a promising treatment for IBD.
Collapse
Affiliation(s)
- Wenbin Gong
- School of Medicine, Southeast University, Research Institute of General SurgeryJinling HospitalNanjingChina
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Jiafei Yu
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Tao Zheng
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Peizhao Liu
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Fan Zhao
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Juanhan Liu
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Zhiwu Hong
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Huajian Ren
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Guosheng Gu
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Gefei Wang
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Xiuwen Wu
- Research Institute of General SurgeryJinling HospitalNanjingChina
| | - Yun Zhao
- Department of General Surgery, BenQ Medical CenterThe Affiliated BenQ Hospital of Nanjing Medical UniversityNanjingChina
| | - Jianan Ren
- School of Medicine, Southeast University, Research Institute of General SurgeryJinling HospitalNanjingChina
- Research Institute of General SurgeryJinling HospitalNanjingChina
| |
Collapse
|
180
|
In Situ -Forming Microparticles for Controlled Release of Rivastigmine: In Vitro Optimization and In Vivo Evaluation. Pharmaceuticals (Basel) 2021; 14:ph14010066. [PMID: 33466880 PMCID: PMC7829814 DOI: 10.3390/ph14010066] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 11/26/2022] Open
Abstract
In this work, sucrose acetate isobutyrate (SAIB) and polylactic co-glycolic acid (PLGA) were used alone or in combination as a matrix-former (MF) to prepare long-acting injectable rivastigmine (RV) in situ-forming microparticles (ISM). RV-ISM were prepared by the emulsification of an internal phase, containing the drug and the matrix former(s), into an external oily phase containing a stabilizer. The statistical design, Central Composite Design (CCD), was adopted as a quality by design (QbD) approach to optimize the formulation of RV-ISM systems. The fabricated RV-ISM systems was designed to minimize the initial burst drug release and maximize the sustainment of RV release from the ISM and ease of injection. The influence of critical formulation variables such as the matrix-former to drug (MF/D) ratio and SAIB to PLGA (S/P) ratio in the internal phase with respect to critical quality attributes (CQAs), such as the percentage drug release within the first day (Q1), the time required for 50% drug release (T50%) and the rate of injection, were studied using the CCD. The optimal RV-ISM system with the highest desirability value (0.74) was predicted to have an MF/D ratio of 11.7:1 (w/w) and an S/P ratio of 1.64:1 (w/w). The optimal RV-ISM system was assessed for its release profile, injectability, rheological properties, morphology, effect on cell viability, tolerance to γ-sterilization and in vivo performance in male albino rabbits. In vitro release studies revealed that the optimal RV-ISM system released 100% of its drug content throughout a release period of 30 days with only 15.5% drug release within the first day (Q1) and T50% of 13.09 days. Moreover, the optimal system showed a high injection rate of 1.012 mL/min, pseudoplastic flow, uniform spherical globules with homogenous particle size, minimal cytotoxicity and high tolerability to γ-sterilization. In vivo pharmacokinetic (PK) studies revealed that the rate of absorption of RV from the optimal RV-ISM system was controlled compared to a drug solution following either intramuscular (IM) or subcutaneous (SC) injection. Furthermore, the optimal RV-ISM was found to follow flip-flop PK with poor correlation between in vitro release and in vivo findings. These findings suggest that the optimal RV-ISM is a promising tool to achieve a sustained release therapy for RV; however, further investigation is still required to optimize the in vivo performance of RV-ISM.
Collapse
|
181
|
Gagliardi A, Paolino D, Costa N, Fresta M, Cosco D. Zein- vs PLGA-based nanoparticles containing rutin: A comparative investigation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111538. [DOI: 10.1016/j.msec.2020.111538] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/19/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
|
182
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
183
|
Fabozzi A, Della Sala F, di Gennaro M, Solimando N, Pagliuca M, Borzacchiello A. Polymer based nanoparticles for biomedical applications by microfluidic techniques: from design to biological evaluation. Polym Chem 2021. [DOI: 10.1039/d1py01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The development of microfluidic technologies represents a new strategy to produce and test drug delivery systems.
Collapse
Affiliation(s)
- Antonio Fabozzi
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Francesca Della Sala
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Mario di Gennaro
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| | - Nicola Solimando
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Maurizio Pagliuca
- ALTERGON ITALIA S.r.l., Zona Industriale ASI, 83040 Morra De Sanctis, AV, Italy
| | - Assunta Borzacchiello
- Institute for Polymers, Composites and Biomaterials, National Research Council, IPCB-CNR, Naples, Italy
| |
Collapse
|
184
|
Paulino da Silva Filho O, Ali M, Nabbefeld R, Primavessy D, Bovee-Geurts PH, Grimm S, Kirchner A, Wiesmüller KH, Schneider M, Walboomers XF, Brock R. A comparison of acyl-moieties for noncovalent functionalization of PLGA and PEG-PLGA nanoparticles with a cell-penetrating peptide. RSC Adv 2021; 11:36116-36124. [PMID: 35492790 PMCID: PMC9043423 DOI: 10.1039/d1ra05871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/09/2021] [Indexed: 11/21/2022] Open
Abstract
Noncovalent functionalization with acylated cell-penetrating peptides achieves an efficient cellular uptake of PLGA and PEG-PLGA nanoparticles.
Collapse
Affiliation(s)
- Omar Paulino da Silva Filho
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- CAPES Foundation, Ministry of Education of Brazil, DF, Brasília, 70.040-03, Brazil
| | - Muhanad Ali
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rike Nabbefeld
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Daniel Primavessy
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
- Department of Pharmaceutics and Biopharmacy, Philipps-University Marburg, 35032 Marburg, Germany
| | - Petra H. Bovee-Geurts
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Silko Grimm
- Evonik Industries, Health Care, Formulation and Polymers, Kirschenallee, 64293 Darmstadt, Germany
| | - Andreas Kirchner
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | | | - Marc Schneider
- Department of Biopharmacy and Pharmaceutic Technology, Saarland University, 66123 Saarbrücken, Germany
| | - X. Frank Walboomers
- Department of Odontology and Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Kingdom of Bahrain
| |
Collapse
|
185
|
Jiang G, Jia H, Qiu J, Mo Z, Wen Y, Zhang Y, Wen Y, Xie Q, Ban J, Lu Z, Chen Y, Wu H, Ni Q, Chen F, Lu J, Wang Z, Li H, Chen J. PLGA Nanoparticle Platform for Trans-Ocular Barrier to Enhance Drug Delivery: A Comparative Study Based on the Application of Oligosaccharides in the Outer Membrane of Carriers. Int J Nanomedicine 2020; 15:9373-9387. [PMID: 33262593 PMCID: PMC7699454 DOI: 10.2147/ijn.s272750] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/24/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose The trans-ocular barrier is a key factor limiting the therapeutic efficacy of triamcinolone acetonide. We developed a poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) surface modified respectively with 2-hydroxypropyl-β-cyclodextrin (2-HP-β-CD), chitosan oligosaccharide and trehalose. Determination of the drug/nanoparticles interactions, characterization of the nanoparticles, in vivo ocular compatibility tests, comparisons of their corneal permeability and their pharmacokinetics in aqueous humor were carried out. Methods All PLGA NPs were prepared by the single emulsion and evaporation method and the drug-nanoparticle interaction was studied. The physiochemical features and in vitro corneal permeability of NPs were characterized while the aqueous humor pharmacokinetics was performed to evaluate in vivo corneal permeability of NPs. Ocular compatibility of NPs was investigated through Draize and histopathological test. Results The PLGA NPs with lactide/glycolide ratio of 50:50 and small particle size (molecular weight 10 kDa) achieved optimal drug release and corneal permeability. Surface modification with different oligosaccharides resulted in uniform particle sizes and similar drug-nanoparticle interactions, although 2-HP-β-CD/PLGA NPs showed the highest entrapment efficiency. In vitro evaluation and aqueous humor pharmacokinetics further revealed that 2-HP-β-CD/PLGA NPs had greater trans-ocular permeation and retention compared to chitosan oligosaccharide/PLGA and trehalose/PLGA NPs. No ocular irritation in vivo was detected after applying modified/unmodified PLGA NPs to rabbit's eyes. Conclusion 2-HP-β-CD/PLGA NPs are a promising nanoplatform for localized ocular drug delivery through topical administration.
Collapse
Affiliation(s)
- Ge Jiang
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Huanhuan Jia
- Key Laboratory of Guangdong Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, People's Republic of China
| | - Jindi Qiu
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhenjie Mo
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yifeng Wen
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yan Zhang
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yuqin Wen
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Qingchun Xie
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Innovation Team for Controlled-Release Microparticle Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junfeng Ban
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Innovation Team for Controlled-Release Microparticle Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhufen Lu
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Innovation Team for Controlled-Release Microparticle Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yanzhong Chen
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.,R&D Innovation Team for Controlled-Release Microparticle Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Hao Wu
- Community Health Service Center of South China Agricultural University, Guangzhou, People's Republic of China
| | - Qingchun Ni
- Guangzhou General Pharmaceutical Research Institute Co., Ltd, Guangzhou, People's Republic of China
| | - Fohua Chen
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Jiashu Lu
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zhijiong Wang
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Haoting Li
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Junming Chen
- Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| |
Collapse
|
186
|
Zang X, Zhou J, Zhang X, Han Y, Chen X. Ischemia Reperfusion Injury: Opportunities for Nanoparticles. ACS Biomater Sci Eng 2020; 6:6528-6539. [PMID: 33320610 DOI: 10.1021/acsbiomaterials.0c01197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (IR)-induced oxidative stress, accompanied by inflammatory responses, contributes to morbidity and mortality in numerous diseases such as acute coronary syndrome, stroke, organ transplantation, and limb injury. Ischemia results in profound hypoxia and tissue dysfunction, whereas subsequent reperfusion further aggravates ischemic tissue damage through inducing cell death and activating inflammatory responses. In this review, we highlight recent studies of therapeutic strategies against IR injury. Furthermore, nanotechnology offers significant improvements in this area. Hence, we also review recent advances in nanomedicines for IR therapy, suggesting them as potent and promising strategies to improve drug delivery to IR-injured tissues and achieve protective effects.
Collapse
Affiliation(s)
- Xinlong Zang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Jingyi Zhou
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xiaoxu Zhang
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Yantao Han
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University, Ningxia Road 308, Qingdao 110016, P.R. China
| |
Collapse
|
187
|
Antifibrotic therapy by sustained release of low molecular weight heparin from poly(lactic-co-glycolic acid) microparticles on bleomycin-induced pulmonary fibrosis in mice. Sci Rep 2020; 10:19019. [PMID: 33149192 PMCID: PMC7642430 DOI: 10.1038/s41598-020-76034-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/20/2020] [Indexed: 12/01/2022] Open
Abstract
Heparin and low molecular weight heparin (LMWH) have recently been considered useful treatment tools for inflammation. Heparin has antifibrotic activity, mediated by cellular secretion of hepatocyte growth factor (HGF). HGF has antifibrotic properties demonstrated in experimental models of lung, kidney, heart, skin, and liver fibrosis. The ability of LMWH for HGF secretion is similar to that of normal heparin. Poly (lactic-co-glycolic acid) (PLGA) is widely used for sustained drug release, because of its biocompatibility and low toxicity. LMWH-loaded PLGA microparticles are prepared by a conventional water-in-oil-in-water emulsion method. Interstitial pneumonia is a life-threatening pathological condition that causes respiratory failure when it progresses. In the present study, we investigated the therapeutic effect of LMWH-loaded PLGA microparticles in a mouse model of bleomycin-induced lung fibrosis. The ratios of fibrotic area to total area were significantly lower in mice administered LMWH-loaded microparticles than in mice administered bleomycin alone. The microparticle administration did not further enhance the gene expression for inflammatory cytokines. In a cell culture study, HGF secretion by mouse and human lung fibroblasts was significantly increased by LMWH addition. We conclude that LMWH showed anti-inflammatory activity, through the effects of LMWH-loaded PLGA microparticles on cells at sites of inflammation.
Collapse
|
188
|
Qu W, Chen B, Shu W, Tian H, Ou X, Zhang X, Wang Y, Wu M. Polymer-Based Scaffold Strategies for Spinal Cord Repair and Regeneration. Front Bioeng Biotechnol 2020; 8:590549. [PMID: 33117788 PMCID: PMC7576679 DOI: 10.3389/fbioe.2020.590549] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
The injury to the spinal cord is among the most complex fields of medical development. Spinal cord injury (SCI) leads to acute loss of motor and sensory function beneath the injury level and is linked to a dismal prognosis. Currently, while a strategy that could heal the injured spinal cord remains unforeseen, the latest advancements in polymer-mediated approaches demonstrate promising treatment forms to remyelinate or regenerate the axons and to integrate new neural cells in the SCI. Moreover, they possess the capacity to locally deliver synergistic cells, growth factors (GFs) therapies and bioactive substances, which play a critical role in neuroprotection and neuroregeneration. Here, we provide an extensive overview of the SCI characteristics, the pathophysiology of SCI, and strategies and challenges for the treatment of SCI in a review. This review highlights the recent encouraging applications of polymer-based scaffolds in developing the novel SCI therapy.
Collapse
Affiliation(s)
- Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bingpeng Chen
- The Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| | - Wentao Shu
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xiaolan Ou
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yinan Wang
- Department of Biobank, Division of Clinical Research, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- The Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
189
|
Montazersaheb S, Avci ÇB, Bagca BG, Ay NPO, Tarhriz V, Nielsen PE, Charoudeh HN, Hejazi MS. Targeting TdT gene expression in Molt-4 cells by PNA-octaarginine conjugates. Int J Biol Macromol 2020; 164:4583-4590. [PMID: 32941907 DOI: 10.1016/j.ijbiomac.2020.09.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
Peptide nucleic acid (PNA) is an amide based structural nucleic acid mimic with potential applications in gene therapeutic drug discovery. In the present study, we evaluated and compared the effects on gene expression, cell viability and apoptosis of two antisense PNA-d-octaarginine conjugates, targeting sequences at the AUG translation start site or the 5'-UTR of the TdT (terminal deoxynucleotidyl transferase) gene, as well as a sense oligomer corresponding to the 5'-UTR-antisense, in Molt-4 cells. The protein level of TdT was determined by flow cytometry, and qPCR was used for mRNA expression analysis. Mismatch PNAs were used as control to address the sequence/target spcifity of the biological effects. The results showed that treatment with the AUG- and to slightly lesser extent with the 5'-UTR-antisense PNAs reduced the TdT mRNA as wel as the protein level, whereas only very low effect was observed for the 5'-UTR-sense PNA. A parallel effect was observed on reduced cell survival and increased rate of apoptosis. Our findings suggest that antisense PNAs can inhibit expression of the TdT gene and induce apoptosis in Molt-4 cells.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | - Bakiye Goker Bagca
- Faculty of Medicine, Department of Medical Biology, Ege University, Izmir, Turkey
| | | | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peter E Nielsen
- Department of Cellular and Molecular Medicine, The Panum Institute, University of Copenhagen, Faculty of Health and Medical Sciences, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
190
|
Yuan J, Hou Q, Zhong L, Dai X, Lu Q, Li M, Fu X. Sustained release of inhibitor from bionic scaffolds for wound healing and functional regeneration. Biomater Sci 2020; 8:5647-5655. [PMID: 33049013 DOI: 10.1039/d0bm00929f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Small molecules play remarkable roles in promoting tissue regeneration, but are limited by their burst release. Small molecules such as deferoxamine (DFO) have been released slowly from silk hydrogels and stimulated angiogenesis and wound healing, but failed to achieve functional recovery of skin. Various bioactive molecules are required to create a suitable niche for better skin regeneration by controlling their release behaviors. Herein, a small molecule SB216763, a GSK-3 inhibitor, was loaded on silk fibroin nanofibers (SNF), and then mixed with chitosan (CS) to prepare the small molecule-loaded composite bionic scaffolds (CSNF-SB). Given the interaction of SNF and SB216763, the sustained release of SB216763 for more than 21 days was achieved for SNF and CSNF-SB composite scaffolds. Compared to drug-free CSNF scaffolds, CSNF-SB showed better cell adhesion and proliferation capacity, suggesting bioactivity. The upregulated expression of β-catenin in fibroblasts in vitro revealed that the released small molecules maintained their function in composite scaffolds. Quicker and better wound healing was realized with the drug-loaded scaffolds, which was significantly superior to that treated with drug-free scaffolds. Unlike the DFO-loaded silk hydrogel system, hair follicle neogenesis was also found in the drug-loaded-scaffold treatment wounds, demonstrating functional recovery. Therefore, silk nanofibers as versatile carriers for different small bioactive molecules could be used to fabricate scaffolds with optimized niches and then achieve functional recovery of tissues. The small molecule-loaded bionic scaffolds have a promising future in skin tissue regeneration.
Collapse
Affiliation(s)
- Jifang Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
191
|
Liu P, Yang X, Han J, Zhao M, Guo J, Si R, Zhang Z, Wang A, Zhang J. Tazarotene-loaded PLGA nanoparticles potentiate deep tissue pressure injury healing via VEGF-Notch signaling. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111027. [PMID: 32994012 DOI: 10.1016/j.msec.2020.111027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE New capillaries are essential for deep tissue pressure injury wound healing. Tazarotene is a recently discovered small molecule drug and functions to promote neovascularization and tissue repair. At present, the application of tazarotene in the repair of pressure injuries has not previously been investigated. This study used poly (lactic-co-glycolic acid) (PLGA) as nanoparticle carriers loaded with tazarotene (Ta/PLGA NPs) for drug delivery and to overcome shortcomings associated with the low water solubility, short half-life, easy photolysis and low bioavailability of tazarotene itself. METHODS The physicochemical properties, drug release and bioactivity of Ta/PLGA NPs were examined in vitro by transmission electron microscope, spectrophotometry and cell assays. Mouse models of deep tissue pressure injuries (DTPI) were established and the therapeutic effects and mechanisms of Ta/PLGA NPs in local wound repair were studied. RESULTS The results showed that Ta/PLGA NPs were of uniform size and distribution and were non-toxic both in vitro and in vivo. In vivo experiments suggested that Ta/PLGA NPs significantly promoted DTPI wound repair through activation of the VEGF/VEGFR-Notch1/DLL4 signaling pathway. CONCLUSION This study highlights the potential clinical significance of implementation of tazarotene small molecule drugs in combination with effective biomaterial carriers for the treatment of chronic refractory wounds, such as DTPI.
Collapse
Affiliation(s)
- Panpan Liu
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Xu Yang
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Jing Han
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Meng Zhao
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Jinglin Guo
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Ruijuan Si
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Zirui Zhang
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Aimin Wang
- College of Nursing, Qingdao University, Qingdao, Shandong, China
| | - Ju Zhang
- College of Nursing, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
192
|
Intracellular delivery of cytochrome C using hypoxia-responsive polypeptide micelles for efficient cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111069. [DOI: 10.1016/j.msec.2020.111069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/13/2023]
|
193
|
Haider M, Elsherbeny A, Jagal J, Hubatová-Vacková A, Saad Ahmed I. Optimization and Evaluation of Poly(lactide- co-glycolide) Nanoparticles for Enhanced Cellular Uptake and Efficacy of Paclitaxel in the Treatment of Head and Neck Cancer. Pharmaceutics 2020; 12:E828. [PMID: 32872639 PMCID: PMC7559439 DOI: 10.3390/pharmaceutics12090828] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size (PS) and encapsulation efficiency (EE%) of drug-loaded nanoparticles (NPs) may inhibit their cellular uptake and lead to possible leakage of the drug into the systemic circulation at the tumor site. In this work, ultra-high paclitaxel-loaded poly(lactide-co-glycolide) NPs (PTX-PLGA-NPs) with ultra-small sizes were prepared and optimized by adopting the principles of quality by design (QbD) approach. The optimized PTX-PLGA-NPs showed ultra-small spherical particles of about 53 nm with EE% exceeding 90%, a relatively low polydispersity index (PDI) of 0.221, an effective surface charge of -10.1 mV, and a 10-fold increase in the in vitro drug release over 72 h relative to free drug. The cellular viability of pharynx carcinoma cells decreased by almost 50% in 24 h following treatment with optimized PTX-PLGA-NPs, compared to only 20% from the free drug. The intracellular uptake of PTX-PLGA-NPs was highly favored, and the antitumor activity of PTX was remarkably improved with a reduction in its half maximal inhibitory concentration (IC50), by almost 50% relative to free drug solution. These results suggest that the optimal critical formulation parameters, guided by QbD principles, could produce PLGA-NPs with remarkably high EE% and ultra-small PS, resulting in enhanced cellular uptake and efficacy of PTX.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Elsherbeny
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| | - Anna Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628 Prague, Czech Republic;
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| |
Collapse
|
194
|
Essa D, Choonara YE, Kondiah PPD, Pillay V. Comparative Nanofabrication of PLGA-Chitosan-PEG Systems Employing Microfluidics and Emulsification Solvent Evaporation Techniques. Polymers (Basel) 2020; 12:polym12091882. [PMID: 32825546 PMCID: PMC7564778 DOI: 10.3390/polym12091882] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022] Open
Abstract
Poor circulation stability and inadequate cell membrane penetration are significant impediments in the implementation of nanocarriers as delivery systems for therapeutic agents with low bioavailability. This research discusses the fabrication of a biocompatible poly(lactide-co-glycolide) (PLGA) based nanocarrier with cationic and hydrophilic surface properties provided by natural polymer chitosan and coating polymer polyethylene glycol (PEG) for the entrapment of the hydrophobic drug disulfiram. The traditional emulsification solvent evaporation method was compared to a microfluidics-based method of fabrication, with the optimisation of the parameters for each method, and the PEGylation densities on the experimental nanoparticle formulations were varied. The size and surface properties of the intermediates and products were characterised and compared by dynamic light scattering, scanning electron microscopy and X-ray diffraction, while the thermal properties were investigated using thermogravimetric analysis and differential scanning calorimetry. Results showed optimal particle properties with an intermediate PEG density and a positive surface charge for greater biocompatibility, with nanoparticle surface characteristics shielding physical interaction of the entrapped drug with the exterior. The formulations prepared using the microfluidic method displayed superior surface charge, entrapment and drug release properties. The final system shows potential as a component of a biocompatible nanocarrier for poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | - Viness Pillay
- Correspondence: (Y.E.C.); (V.P.); Tel.: +27-11-717-2274 (V.P.)
| |
Collapse
|
195
|
Lee MS, Raig RM, Gupta MK, Lux MW. Lyophilized Cell-Free Systems Display Tolerance to Organic Solvent Exposure. ACS Synth Biol 2020; 9:1951-1957. [PMID: 32646213 DOI: 10.1021/acssynbio.0c00267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell-free systems offer a powerful way to deliver biochemical activity to the field without cold chain storage. These systems are capable of sensing as well as biosynthesis of useful molecules at the point of need. So far, cell-free protein synthesis (CFPS) reactions have been studied as aqueous solutions in test tubes or absorbed into paper or cloth. Embedding biological functionality into broadly used materials, such as plastic polymers, represents an attractive goal. Unfortunately, this goal has for the most part remained out of reach, presumably due to the fragility of biological systems outside of aqueous environments. Here, we describe a surprising and useful feature of lyophilized cell-free lysate systems: tolerance to a variety of organic solvents. Screens of individual CFPS reagents and different CFPS methods reveal that solvent tolerance varies by CFPS reagent composition. Tolerance to suspension in organic solvents may facilitate the use of polymers to deliver dry cell-free reactions in the form of coatings or fibers, or allow dosing of analytes or substrates dissolved in nonaqueous solvents, among other processing possibilities.
Collapse
Affiliation(s)
- Marilyn S. Lee
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - Rebecca M. Raig
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
- UES Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Maneesh K. Gupta
- US Air Force Research Laboratory, 2179 12th Street, B652/R122 Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical and Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, Maryland 21010, United States
| |
Collapse
|
196
|
Chaplin A, Gao H, Asase C, Rengasamy P, Park B, Skander D, Bebek G, Rajagopalan S, Maiseyeu A. Systemically-delivered biodegradable PLGA alters gut microbiota and induces transcriptomic reprogramming in the liver in an obesity mouse model. Sci Rep 2020; 10:13786. [PMID: 32796856 PMCID: PMC7429827 DOI: 10.1038/s41598-020-69745-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Biodegradable materials, including the widely used poly (lactic-co-glycolic acid) (PLGA) nanoparticles contained in slow-release drug formulations, scaffolds and implants, are ubiquitous in modern biomedicine and are considered inert or capable of being metabolized through intermediates such as lactate. However, in the presence of metabolic stress, such as in obesity, the resulting degradation products may play a detrimental role, which is still not well understood. We evaluated the effect of intravenously-administered PLGA nanoparticles on the gut-liver axis under conditions of caloric excess in C57BL/6 mice. Our results show that PLGA nanoparticles accumulate and cause gut acidification in the cecum, accompanied by significant changes in the microbiome, with a marked decrease of Firmicutes and Bacteroidetes. This was associated with transcriptomic reprogramming in the liver, with a downregulation of mitochondrial function, and an increase in key enzymatic, inflammation and cell activation pathways. No changes were observed in systemic inflammation. Metagenome analysis coupled with publicly available microarray data suggested a mechanism of impaired PLGA degradation and intestinal acidification confirming an important enterohepatic axis of metabolite-microbiome interaction resulting in maintenance of metabolic homeostasis. Thus, our results have important implications for the investigation of PLGA use in metabolically-compromised clinical and experimental settings.
Collapse
Affiliation(s)
- Alice Chaplin
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Huiyun Gao
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Courteney Asase
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Palanivel Rengasamy
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Bongsoo Park
- Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Danielle Skander
- Department of Nutrition, Department of Electrical Engineering and Computer Science, Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Gürkan Bebek
- Department of Nutrition, Department of Electrical Engineering and Computer Science, Center for Proteomics and Bioinformatics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA
| | - Andrei Maiseyeu
- School of Medicine, Cardiovascular Research Institute, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106, USA.
| |
Collapse
|
197
|
Wang P, Li A, Yu L, Chen Y, Xu D. Energy Conversion-Based Nanotherapy for Rheumatoid Arthritis Treatment. Front Bioeng Biotechnol 2020; 8:652. [PMID: 32754578 PMCID: PMC7366901 DOI: 10.3389/fbioe.2020.00652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by synovial hyperplasia and cartilage/bone destruction, which results in a high disability rate on human health and a huge burden on social economy. At present, traditional therapies based on drug therapy still cannot cure RA, in accompany with the potential serious side effects. Based on the development of nanobiotechnology and nanomedicine, energy conversion-based nanotherapy has demonstrated distinctive potential and performance in RA treatment. This strategy employs specific nanoparticles with intrinsic physiochemical properties to target lesions with the following activation by diverse external stimuli, such as light, ultrasound, microwave, and radiation. These nanoagents subsequently produce therapeutic effects or release therapeutic factors to promote necrotic apoptosis of RA inflammatory cells, reduce the concentration of related inflammatory factors, relieve the symptoms of RA, which are expected to ultimately improve the life quality of RA patients. This review highlights and discusses the versatile biomedical applications of energy conversion-based nanotherapy in efficient RA treatment, in together with the deep clarification of the facing challenges and further prospects on the final clinical translations of these energy conversion-based nanotherapies against RA.
Collapse
Affiliation(s)
- Pingping Wang
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ao Li
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luodan Yu
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Di Xu
- Department of Ultrasound, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
198
|
Phạm TL, Kim DW. Poly(lactic-co-glycolic acid) nanomaterial-based treatment options for pain management: a review. Nanomedicine (Lond) 2020; 15:1897-1913. [PMID: 32757701 DOI: 10.2217/nnm-2020-0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain is one of the most intense types of chronic pain; it constitutes a pervasive complaint throughout the public health system. With few effective treatments, it remains a significant challenge. Commercially available drugs for neuropathic pain are still limited and have disappointing efficacy. Therefore, chronic neuropathic pain imposes a tremendous burden on patients' quality of life. Recently, the introduction and application of nanotechnology in multiple fields has accelerated the development of new drugs. This review highlights the application of poly(lactic-co-glycolic acid) nanomaterial-based vehicles for drug delivery and how they improve the therapeutic outcomes for neuropathic pain treatment. Finally, future developments for pain research and effective management are presented.
Collapse
Affiliation(s)
- Thuỳ Linh Phạm
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Histology & Embryology, Hai Phong University of Medicine & Pharmacy Hospital, Hai Phong, 042-12, Vietnam
| | - Dong Woon Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Anatomy, Brain Research Institute, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| |
Collapse
|
199
|
Jalal AR, Dixon JE. Efficient Delivery of Transducing Polymer Nanoparticles for Gene-Mediated Induction of Osteogenesis for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:849. [PMID: 32850720 PMCID: PMC7419434 DOI: 10.3389/fbioe.2020.00849] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
Developing non-viral gene therapy vectors that both protect and functionally deliver nucleic acid cargoes will be vital if gene augmentation and editing strategies are to be effectively combined with advanced regenerative medicine approaches. Currently such methodologies utilize high concentrations of recombinant growth factors, which result in toxicity and off-target effects. Herein we demonstrate the use of modified cell penetrating peptides (CPPs), termed Glycosaminoglycan (GAG)-binding Enhanced Transduction (GET) peptides with plasmid DNA (pDNA) encapsulated poly (lactic-co-glycolic acid) PLGA nanoparticles (pDNA-encapsulated PLGA NPs). In order to encapsulate the pDNA, it was first condensed with a cationic low molecular weight Poly L-Lysine (PLL) into 30-60 nm NPs followed by encapsulation in PLGA NPs by double emulsion; yielding encapsulation efficiencies (EE) of ∼30%. PLGA NPs complexed with GET peptides show enhanced intracellular delivery (up to sevenfold) and transfection efficiencies (up to five orders of magnitude). Moreover, the pDNA cargo has enhanced protection from nucleases (such as DNase I) promoting their translatability. As an example, we show these NPs efficiently deliver pBMP2 which can promote osteogenic differentiation in vitro. Gene delivery to human Mesenchymal Stromal Cells (hMSCs) inducing their osteogenic programming was confirmed by Alizarin red calcium staining and bone lineage specific gene expression (Q RT-PCR). By combining simplistic and FDA-approved PLGA polymer nanotechnology with the GET delivery system, therapeutic non-viral vectors could have significant impact in future cellular therapy and regenerative medicine applications.
Collapse
Affiliation(s)
| | - James E. Dixon
- Regenerative Medicine and Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
200
|
Chen HY, Deng J, Wang Y, Wu CQ, Li X, Dai HW. Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy. Acta Biomater 2020; 112:1-13. [PMID: 32470527 DOI: 10.1016/j.actbio.2020.05.028] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/06/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Biomimetic nanotechnology through camouflaging synthetic nanoparticles (NPs) with natural cell membranes, which bestows with immune evasion and superior targeting capacity, has been extensively used in drug delivery systems (DDS) over the last decades. These biomimetic NPs not only retain the physicochemical features of the synthetic vehicles but also inherit the cell membranes' intrinsic functionalities. Combined with these benefits, optimized nano-biomimetic DDS allow maximum delivery efficacy. Compared to erythrocyte/cancer single cell membrane, the hybrid cell membrane expressing CD47 membrane protein and self-recognition molecules, from erythrocytes and cancer cells, provides remarkable features to the synthetic vehicles, such as immune evasion, long-term circulation, and homotypic targeting. In this review, we describe the preparation strategies, the camouflaging mechanism, and the antitumor applications of hybrid cell membrane-camouflaged NPs. Moreover, we discuss further modification of the hybrid cell membrane and the surface properties of fusion cellular membranes. Finally, we summarize the primary challenges and opportunities associated with these NPs. STATEMENT OF SIGNIFICANCE: Camouflaging synthetic nanoparticles with hybrid cell membrane has been extensively highlighted in recent years. The resultant biomimetic nanoparticles not only reserve the physicochemical properties of the synthetic nanoparticles but also inherit the biological functions of source cells. Compared with single cell membrane, hybrid cell membrane can endow synthetic nanoparticles with multiple biofunctions derived from the original source cells. To provide a timely review of this rapidly developing subject of research, this paper summarized recent progress on the hybrid cell membrane-camouflaged nanoparticles as drug delivery systems for cancer diagnosis and treatment. In this review, we focused primarily on five different types of hybrid cell membrane-camouflaged nanoparticles with the preparation strategies, the camouflaging mechanism, and the antitumor applications. Moreover, further modification of the hybrid cell membrane was also discussed for isolating effectively circulating tumor cells.
Collapse
|