151
|
Boggio EM, Lonetti G, Pizzorusso T, Giustetto M. Synaptic determinants of rett syndrome. Front Synaptic Neurosci 2010; 2:28. [PMID: 21423514 PMCID: PMC3059682 DOI: 10.3389/fnsyn.2010.00028] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 06/16/2010] [Indexed: 01/09/2023] Open
Abstract
There is mounting evidence showing that the structural and molecular organization of synaptic connections is affected both in human patients and in animal models of neurological and psychiatric diseases. As a consequence of these experimental observations, it has been introduced the concept of synapsopathies, a notion describing brain disorders of synaptic function and plasticity. A close correlation between neurological diseases and synaptic abnormalities is especially relevant for those syndromes including also mental retardation in their symptomatology, such as Rett syndrome (RS). RS (MIM312750) is an X-linked dominant neurological disorder that is caused in the majority of cases by mutations in methyl-CpG-binding protein 2 (MeCP2). This review will focus on the current knowledge of the synaptic alterations produced by mutations of the gene MeCP2 in mouse models of RS and will highlight prospects experimental therapies currently in use. Different experimental approaches have revealed that RS could be the consequence of an impairment in the homeostasis of synaptic transmission in specific brain regions. Indeed, several forms of experience-induced neuronal plasticity are impaired in the absence of MeCP2. Based on the results presented in this review, it is reasonable to propose that understanding how the brain is affected by diseases such as RS is at reach. This effort will bring us closer to identify the neurobiological bases of human cognition.
Collapse
|
152
|
Grafodatskaya D, Chung B, Szatmari P, Weksberg R. Autism spectrum disorders and epigenetics. J Am Acad Child Adolesc Psychiatry 2010; 49:794-809. [PMID: 20643313 DOI: 10.1016/j.jaac.2010.05.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 05/05/2010] [Accepted: 05/10/2010] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate neurodevelopmental processes. The objective of this review is to illustrate how epigenetic modifications that are known to alter gene expression without changing primary DNA sequence may play a role in the etiology of ASD. METHOD In this review, we summarize current knowledge about epigenetic modifications to genes and genomic regions possibly involved in the etiology of ASD. RESULTS Several genetic syndromes comorbid with ASD, which include Rett, Fragile X, Prader-Willi, Angelman, and CHARGE (Coloboma of the eye, Heart defects, Atresia of the nasal choanae, Retardation of growth and/or development, Genital and/or urinary abnormalities, and Ear abnormalities and deafness), all demonstrate dysregulation of epigenetic marks or epigenetic mechanisms. We report also on genes or genomic regions exhibiting abnormal epigenetic regulation in association with either syndromic (15q11-13 maternal duplication) or nonsyndromic forms of ASD. Finally, we discuss the state of current knowledge regarding the etiologic role of environmental factors linked to both the development of ASD and epigenetic dysregulation. CONCLUSION Data reviewed in this article highlight a variety of situations in which epigenetic dysregulation is associated with the development of ASD, thereby supporting a role for epigenetics in the multifactorial etiologies of ASD.
Collapse
|
153
|
Smrt RD, Zhao X. Epigenetic regulation of neuronal dendrite and dendritic spine development. FRONTIERS IN BIOLOGY 2010; 5:304-323. [PMID: 25635180 PMCID: PMC4307848 DOI: 10.1007/s11515-010-0650-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dendrites and the dendritic spines of neurons play key roles in the connectivity of the brain and have been recognized as the locus of long-term synaptic plasticity, which is correlated with learning and memory. The development of dendrites and spines in the mammalian central nervous system is a complex process that requires specific molecular events over a period of time. It has been shown that specific molecules are needed not only at the spine's point of contact, but also at a distance, providing signals that initiate a cascade of events leading to synapse formation. The specific molecules that act to signal neuronal differentiation, dendritic morphology, and synaptogenesis are tightly regulated by genetic and epigenetic programs. It has been shown that the dendritic spine structure and distribution are altered in many diseases, including many forms of mental retardation (MR), and can also be potentiated by neuronal activities and an enriched environment. Because dendritic spine pathologies are found in many types of MR, it has been proposed that an inability to form normal spines leads to the cognitive and motor deficits that are characteristic of MR. Epigenetic mechanisms, including DNA methylation, chromatin remodeling, and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. The study of epigenetics focuses on cellular effects that result in a heritable pattern of gene expression without changes to genomic encoding. Despite extensive efforts to understand the molecular regulation of dendrite and spine development, epigenetic mechanisms have only recently been considered. In this review, we will focus on epigenetic mechanisms that regulate the development and maturation of dendrites and spines. We will discuss how epigenetic alterations could result in spine abnormalities that lead to MR, such as is seen in fragile X and Rett syndromes. We will also discuss both general methodology and recent technological advances in the study of neuronal dendrites and spines.
Collapse
Affiliation(s)
- Richard D. Smrt
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | - Xinyu Zhao
- Department of Neuroscience, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
154
|
Szulwach KE, Li X, Smrt RD, Li Y, Luo Y, Lin L, Santistevan NJ, Li W, Zhao X, Jin P. Cross talk between microRNA and epigenetic regulation in adult neurogenesis. ACTA ACUST UNITED AC 2010; 189:127-41. [PMID: 20368621 PMCID: PMC2854370 DOI: 10.1083/jcb.200908151] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The microRNA miR-137 represses expression of Ezh2, a histone methyltransferase, which in turn alters the epigenetic architecture of chromatin that is important for regulation of miR-137 levels. Both microRNAs (miRNAs) and epigenetic regulation have important functions in stem cell biology, although the interactions between these two pathways are not well understood. Here, we show that MeCP2, a DNA methyl-CpG–binding protein, can epigenetically regulate specific miRNAs in adult neural stem cells (aNSCs). MeCP2-mediated epigenetic regulation of one such miRNA, miR-137, involves coregulation by Sox2, a core transcription factor in stem cells. miR-137 modulates the proliferation and differentiation of aNSCs in vitro and in vivo. Overexpression of miR-137 promotes the proliferation of aNSCs, whereas a reduction of miR-137 enhances aNSC differentiation. We further show that miR-137 post-transcriptionally represses the expression of Ezh2, a histone methyltransferase and Polycomb group (PcG) protein. The miR-137–mediated repression of Ezh2 feeds back to chromatin, resulting in a global decrease in histone H3 trimethyl lysine 27. Coexpression of Ezh2 can rescue phenotypes associated with miR-137 overexpression. These results demonstrate that cross talk between miRNA and epigenetic regulation contributes to the modulation of adult neurogenesis.
Collapse
Affiliation(s)
- Keith E Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Nectoux J, Fichou Y, Rosas-Vargas H, Cagnard N, Bahi-Buisson N, Nusbaum P, Letourneur F, Chelly J, Bienvenu T. Cell cloning-based transcriptome analysis in Rett patients: relevance to the pathogenesis of Rett syndrome of new human MeCP2 target genes. J Cell Mol Med 2010; 14:1962-74. [PMID: 20569274 PMCID: PMC3823278 DOI: 10.1111/j.1582-4934.2010.01107.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
More than 90% of Rett syndrome (RTT) patients have heterozygous mutations in the X-linked methyl-CpG binding protein 2 (MECP2) gene that encodes the methyl-CpG-binding protein 2, a transcriptional modulator. Because MECP2 is subjected to X chromosome inactivation (XCI), girls with RTT either express the wild-type or mutant allele in each individual cell. To test the consequences of MECP2 mutations resulting from a genome-wide transcriptional dysregulation and to identify its target genes in a system that circumvents the functional mosaicism resulting from XCI, we carried out gene expression profiling of clonal populations derived from fibroblast primary cultures expressing exclusively either the wild-type or the mutant MECP2 allele. Clonal cultures were obtained from skin biopsy of three RTT patients carrying either a non-sense or a frameshift MECP2 mutation. For each patient, gene expression profiles of wild-type and mutant clones were compared by oligonucleotide expression microarray analysis. Firstly, clustering analysis classified the RTT patients according to their genetic background and MECP2 mutation. Secondly, expression profiling by microarray analysis and quantitative RT-PCR indicated four up-regulated genes and five down-regulated genes significantly dysregulated in all our statistical analysis, including excellent potential candidate genes for the understanding of the pathophysiology of this neurodevelopmental disease. Thirdly, chromatin immunoprecipitation analysis confirmed MeCP2 binding to respective CpG islands in three out of four up-regulated candidate genes and sequencing of bisulphite-converted DNA indicated that MeCP2 preferentially binds to methylated-DNA sequences. Most importantly, the finding that at least two of these genes (BMCC1 and RNF182) were shown to be involved in cell survival and/or apoptosis may suggest that impaired MeCP2 function could alter the survival of neurons thus compromising brain function without inducing cell death.
Collapse
Affiliation(s)
- J Nectoux
- Genetics and Pathophysiology of Neurodevelopmental and Nueromuscular Disorders Department, Cochin Institute, Paris Descartes University, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Mu Y, Lee SW, Gage FH. Signaling in adult neurogenesis. Curr Opin Neurobiol 2010; 20:416-23. [PMID: 20471243 DOI: 10.1016/j.conb.2010.04.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/15/2010] [Indexed: 12/13/2022]
Abstract
Neural stem cells (NSCs) in the adult brain continuously supply new neurons to the hippocampal dentate gyrus (DG) and the olfactory bulb (OB). Recent studies indicate that the progression from neural precursor cells (NPCs) to mature neurons is tightly controlled by coordinate cell-intrinsic programs and external signals within the neurogenic niche. In this review, we summarize both classes of regulatory factors involved in distinct stages of adult neurogenesis, including proliferation and lineage differentiation of NSCs, migration of neuroblasts and integration of newborn neurons. A full understanding of the wide variety of signaling pathways will ultimately provide precise targets for therapeutic applications.
Collapse
Affiliation(s)
- Yangling Mu
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
157
|
MacDonald JL, Verster A, Berndt A, Roskams AJ. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci 2010; 44:55-67. [DOI: 10.1016/j.mcn.2010.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 01/12/2010] [Accepted: 02/15/2010] [Indexed: 12/31/2022] Open
|
158
|
Luo Y, Shan G, Guo W, Smrt RD, Johnson EB, Li X, Pfeiffer RL, Szulwach KE, Duan R, Barkho BZ, Li W, Liu C, Jin P, Zhao X. Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 2010; 6:e1000898. [PMID: 20386739 PMCID: PMC2851565 DOI: 10.1371/journal.pgen.1000898] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 03/05/2010] [Indexed: 12/31/2022] Open
Abstract
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of functional fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein that can regulate the translation of specific mRNAs. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. In this study, we investigated whether Fmrp deficiency affects adult neurogenesis. We show that in a mouse model of fragile X syndrome, adult neurogenesis is indeed altered. The loss of Fmrp increases the proliferation and alters the fate specification of adult neural progenitor/stem cells (aNPCs). We demonstrate that Fmrp regulates the protein expression of several components critical for aNPC function, including CDK4 and GSK3β. Dysregulation of GSK3β led to reduced Wnt signaling pathway activity, which altered the expression of neurogenin1 and the fate specification of aNPCs. These data unveil a novel regulatory role for Fmrp and translational regulation in adult neurogenesis. Fragile X syndrome, the most common cause of inherited mental retardation, results from the loss of functional Fragile X mental retardation protein (FMRP). FMRP is an RNA–binding protein and is known to bind to specific mRNAs and to regulate their translation both in vitro and in vivo. Adult neurogenesis, a process considered important for neuroplasticity and memory, is regulated at multiple molecular levels. Here we show that Fmrp could regulate the proliferation and fate specification of adult neural progenitor/stem cells (aNPCs). These data unveil a novel regulatory role for Fmrp in adult neurogenesis.
Collapse
Affiliation(s)
- Yuping Luo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Ge Shan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Weixiang Guo
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Richard D. Smrt
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Eric B. Johnson
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Xuekun Li
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Rebecca L. Pfeiffer
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Keith E. Szulwach
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ranhui Duan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Basam Z. Barkho
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Wendi Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Changmei Liu
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (XZ); (PJ)
| | - Xinyu Zhao
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail: (XZ); (PJ)
| |
Collapse
|
159
|
Alvarez-Saavedra M, Carrasco L, Sura-Trueba S, Demarchi Aiello V, Walz K, Neto JX, Young JI. Elevated expression of MeCP2 in cardiac and skeletal tissues is detrimental for normal development. Hum Mol Genet 2010; 19:2177-90. [PMID: 20203171 DOI: 10.1093/hmg/ddq096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MeCP2 plays a critical role in interpreting epigenetic signatures that command chromatin conformation and regulation of gene transcription. In spite of MeCP2's ubiquitous expression, its functions have always been considered in the context of brain physiology. In this study, we demonstrate that alterations of the normal pattern of expression of MeCP2 in cardiac and skeletal tissues are detrimental for normal development. Overexpression of MeCP2 in the mouse heart leads to embryonic lethality with cardiac septum hypertrophy and dysregulated expression of MeCP2 in skeletal tissue produces severe malformations. We further show that MeCP2's expression in the heart is developmentally regulated; further suggesting that it plays a key role in regulating transcriptional programs in non-neural tissues.
Collapse
|
160
|
Hsieh J, Eisch AJ. Epigenetics, hippocampal neurogenesis, and neuropsychiatric disorders: unraveling the genome to understand the mind. Neurobiol Dis 2010; 39:73-84. [PMID: 20114075 DOI: 10.1016/j.nbd.2010.01.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 01/16/2023] Open
Abstract
In mature, differentiated neurons in the central nervous system (CNS), epigenetic mechanisms--including DNA methylation, histone modification, and regulatory noncoding RNAs--play critical roles in encoding experience and environmental stimuli into stable, behaviorally meaningful changes in gene expression. For example, epigenetic changes in mature hippocampal neurons have been implicated in learning and memory and in a variety of neuropsychiatric disorders, including depression. With all the recent (and warranted) attention given to epigenetic modifications in mature neurons, it is easy to forget that epigenetic mechanisms were initially described for their ability to promote differentiation and drive cell fate in embryonic and early postnatal development, including neurogenesis. Given the discovery of ongoing neurogenesis in the adult brain and the intriguing links among adult hippocampal neurogenesis, hippocampal function, and neuropsychiatric disorders, it is timely to complement the ongoing discussions on the role of epigenetics in mature neurons with a review on what is currently known about the role of epigenetics in adult hippocampal neurogenesis. The process of adult hippocampal neurogenesis is complex, with neural stem cells (NSCs) giving rise to fate-restricted progenitors and eventually mature dentate gyrus granule cells. Notably, neurogenesis occurs within an increasingly well-defined "neurogenic niche", where mature cellular elements like vasculature, astrocytes, and neurons release signals that can dynamically regulate neurogenesis. Here we review the evidence that key stages and aspects of adult neurogenesis are driven by epigenetic mechanisms. We discuss the intrinsic changes occurring within NSCs and their progeny that are critical for neurogenesis. We also discuss how extrinsic changes occurring in cellular components in the niche can result in altered neurogenesis. Finally we describe the potential relevance of epigenetics for understanding the relationship between hippocampal neurogenesis in neuropsychiatric disorders. We propose that a more thorough understanding of the molecular and genetic mechanisms that control the complex process of neurogenesis, including the proliferation and differentiation of NSCs, will lead to novel therapeutics for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, TX 75390, USA.
| | | |
Collapse
|
161
|
Abstract
The identification of neural stem cells (NSCs) and their contribution to continuous neurogenesis has shown that the hippocampus and olfactory bulb are plastic. Brain plasticity, achieved at the level of cell genesis, has an essential role in the maintenance of brain homeostasis. Via combinatorial functions of extrinsic signals and intrinsic programs, adult neurogenesis is tightly regulated in a specialized microenvironment, a niche. Misregulated neurogenesis is detrimental to normal brain functions and, in extreme cases, pathogenic. Hence, understanding signaling in adult neurogenesis is not only important to understand the physiological roles of neurogenesis, but also to provide knowledge that is essential for developing therapeutic applications using NSCs to intervene in the progression of brain diseases.
Collapse
Affiliation(s)
- Hoonkyo Suh
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
162
|
Zhang X, Cui N, Wu Z, Su J, Tadepalli JS, Sekizar S, Jiang C. Intrinsic membrane properties of locus coeruleus neurons in Mecp2-null mice. Am J Physiol Cell Physiol 2009; 298:C635-46. [PMID: 20042730 DOI: 10.1152/ajpcell.00442.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rett syndrome caused by mutations in methyl-CpG-binding protein 2 (Mecp2) gene shows abnormalities in autonomic functions in which brain stem norepinephrinergic systems play an important role. Here we present systematic comparisons of intrinsic membrane properties of locus coeruleus (LC) neurons between Mecp2(-/Y) and wild-type (WT) mice. Whole cell current clamp was performed in brain slices of 3- to 4-wk-old mice. Mecp2(-/Y) neurons showed stronger inward rectification and had shorter time constant than WT cells. The former was likely due to overexpression of inward rectifier K(+) (K(ir))4.1 channel, and the latter was attributable to the smaller cell surface area. The action potential duration was prolonged in Mecp2(-/Y) cells with an extended rise time. This was associated with a significant reduction in the voltage-activated Na(+) current density. After action potentials, >60% Mecp2(-/Y) neurons displayed fast and medium afterhyperpolarizations (fAHP and mAHP), while nearly 90% WT neurons showed only mAHP. The mAHP amplitude was smaller in Mecp2(-/Y) neurons. The firing frequency was higher in neurons with mAHP, and the frequency variation was greater in cells with both fAHP and mAHP in Mecp2(-/Y) mice. Small but significant differences in spike frequency adaptation and delayed excitation were found in Mecp2(-/Y) neurons. These results indicate that there are several electrophysiological abnormalities in LC neurons of Mecp2(-/Y) mice, which may contribute to the dysfunction of the norepinephrine system in Rett syndrome.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Dept. of Biology, Georgia State Univ., 24 Peachtree Center Ave., Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Kishi N, Macklis JD. MeCP2 functions largely cell-autonomously, but also non-cell-autonomously, in neuronal maturation and dendritic arborization of cortical pyramidal neurons. Exp Neurol 2009; 222:51-8. [PMID: 20025874 DOI: 10.1016/j.expneurol.2009.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 12/02/2009] [Accepted: 12/05/2009] [Indexed: 12/21/2022]
Abstract
Rett syndrome is a human neurodevelopmental disorder presenting almost exclusively in female infants; it is the second most common cause of mental retardation in girls, after Down's syndrome. The identification in 1999 that mutation of the methyl-CpG-binding protein 2 (MECP2) gene on the X chromosome causes Rett syndrome has led to a rapid increase in understanding of the neurobiological basis of the disorder. However, much about the functional role of MeCP2, and the cellular phenotype of both patients with Rett syndrome and mutant Mecp2 mouse models, remains unclear. Building on prior work in which we demonstrated that cortical layer 2/3 pyramidal neurons (primarily interhemispheric "callosal projection neurons" (CPN)) have reduced dendritic complexity and smaller somata in Mecp2-null mice, here we investigate whether Mecp2 loss-of-function affects neuronal maturation cell-autonomously and/or non-cell-autonomously by creating physical chimeras. We transplanted Mecp2-null or wild-type (wt) E17-18 cortical neuroblasts and immature neurons from mice constitutively expressing enhanced green fluorescent protein (eGFP) into wt P2-3 mouse cortices to generate chimeric cortices. Mecp2-null layer 2/3 pyramidal neurons in both Mecp2-null and wt neonatal cortices exhibit equivalent reduction in dendritic complexity, and are smaller than transplanted wt neurons, independent of recipient environment. These results indicate that the phenotype of Mecp2-null pyramidal neurons results largely from cell-autonomous mechanisms, with additional non-cell-autonomous effects. Dysregulation of MeCP2 target genes in individual neuronal populations such as CPN is likely centrally involved in Rett syndrome pathogenesis. Our results indicating MeCP2 function in the centrally affected projection neuron population of CPN themselves provide a foundation and motivation for identification of transcriptionally regulated MeCP2 target genes in developing CPN.
Collapse
Affiliation(s)
- Noriyuki Kishi
- MGH-HMS Center for Nervous System Repair, Departments of Neurosurgery and Neurology, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
164
|
MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mamm Genome 2009; 20:581-603. [PMID: 19876605 DOI: 10.1007/s00335-009-9230-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 09/30/2009] [Indexed: 01/19/2023]
Abstract
Sensorineural hearing loss is the most common sensory disorder in humans and derives, in most cases, from inner-ear defects or degeneration of the cochlear sensory neuroepithelial hair cells. Genetic factors make a significant contribution to hearing impairment. While mutations in 51 genes have been associated with hereditary sensorineural nonsyndromic hearing loss (NSHL) in humans, the responsible mutations in many other chromosomal loci linked with NSHL have not been identified yet. Recently, mutations in a noncoding microRNA (miRNA) gene, MIR96, which is expressed specifically in the inner-ear hair cells, were linked with progressive hearing loss in humans and mice. Furthermore, additional miRNAs were found to have essential roles in the development and survival of inner-ear hair cells. Epigenetic mechanisms, in particular, DNA methylation and histone modifications, have also been implicated in human deafness, suggesting that several layers of noncoding genes that have never been studied systematically in the inner-ear sensory epithelia are required for normal hearing. This review aims to summarize the current knowledge about the roles of miRNAs and epigenetic regulatory mechanisms in the development, survival, and function of the inner ear, specifically in the sensory epithelia, tectorial membrane, and innervation, and their contribution to hearing.
Collapse
|
165
|
MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 2009; 88:170-83. [PMID: 19554713 DOI: 10.1016/j.pneurobio.2009.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Alterations in the epigenetic modulation of gene expression have been implicated in several developmental disorders, cancer, and recently, in a variety of mental retardation and complex psychiatric disorders. A great deal of effort is now being focused on why the nervous system may be susceptible to shifts in activity of epigenetic modifiers. The answer may simply be that the mammalian nervous system must first produce the most complex degree of developmental patterning in biology and hardwire cells functionally in place postnatally, while still allowing for significant plasticity in order for the brain to respond to a rapidly changing environment. DNA methylation and histone deacetylation are two major epigenetic modifications that contribute to the stability of gene expression states. Perturbing DNA methylation, or disrupting the downstream response to DNA methylation - methyl-CpG-binding domain proteins (MBDs) and histone deacetylases (HDACs) - by genetic or pharmacological means, has revealed a critical requirement for epigenetic regulation in brain development, learning, and mature nervous system stability, and has identified the first distinct gene sets that are epigenetically regulated within the nervous system. Epigenetically modifying chromatin structure in response to different stimuli appears to be an ideal mechanism to generate continuous cellular diversity and coordinate shifts in gene expression at successive stages of brain development - all the way from deciding which kind of a neuron to generate, through to how many synapses a neuron can support. Here, we review the evidence supporting a role for DNA methylation and histone deacetylation in nervous system development and mature function, and present a basis from which to understand how the clinical use of HDAC inhibitors may impact nervous system function.
Collapse
Affiliation(s)
- Jessica L MacDonald
- Life Sciences Institute, Department of Zoology, University of British Columbia, BC, V6T 1Z3, Vancouver, Canada
| | | |
Collapse
|
166
|
MECP2 isoform-specific vectors with regulated expression for Rett syndrome gene therapy. PLoS One 2009; 4:e6810. [PMID: 19710912 PMCID: PMC2728539 DOI: 10.1371/journal.pone.0006810] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/30/2009] [Indexed: 12/19/2022] Open
Abstract
Background Rett Syndrome (RTT) is an Autism Spectrum Disorder and the leading cause of mental retardation in females. RTT is caused by mutations in the Methyl CpG-Binding Protein-2 (MECP2) gene and has no treatment. Our objective is to develop viral vectors for MECP2 gene transfer into Neural Stem Cells (NSC) and neurons suitable for gene therapy of Rett Syndrome. Methodology/Principal Findings We generated self-inactivating (SIN) retroviral vectors with the ubiquitous EF1α promoter avoiding known silencer elements to escape stem-cell-specific viral silencing. High efficiency NSC infection resulted in long-term EGFP expression in transduced NSC and after differentiation into neurons. Infection with Myc-tagged MECP2-isoform-specific (E1 and E2) vectors directed MeCP2 to heterochromatin of transduced NSC and neurons. In contrast, vectors with an internal mouse Mecp2 promoter (MeP) directed restricted expression only in neurons and glia and not NSC, recapitulating the endogenous expression pattern required to avoid detrimental consequences of MECP2 ectopic expression. In differentiated NSC from adult heterozygous Mecp2tm1.1Bird+/− female mice, 48% of neurons expressed endogenous MeCP2 due to random inactivation of the X-linked Mecp2 gene. Retroviral MECP2 transduction with EF1α and MeP vectors rescued expression in 95–100% of neurons resulting in increased dendrite branching function in vitro. Insulated MECP2 isoform-specific lentiviral vectors show long-term expression in NSC and their differentiated neuronal progeny, and directly infect dissociated murine cortical neurons with high efficiency. Conclusions/Significance MeP vectors recapitulate the endogenous expression pattern of MeCP2 in neurons and glia. They have utility to study MeCP2 isoform-specific functions in vitro, and are effective gene therapy vectors for rescuing dendritic maturation of neurons in an ex vivo model of RTT.
Collapse
|
167
|
Chapleau CA, Calfa GD, Lane MC, Albertson AJ, Larimore JL, Kudo S, Armstrong DL, Percy AK, Pozzo-Miller L. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations. Neurobiol Dis 2009; 35:219-33. [PMID: 19442733 PMCID: PMC2722110 DOI: 10.1016/j.nbd.2009.05.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 05/01/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an X chromosome-linked neurodevelopmental disorder associated with the characteristic neuropathology of dendritic spines common in diseases presenting with mental retardation (MR). Here, we present the first quantitative analyses of dendritic spine density in postmortem brain tissue from female RTT individuals, which revealed that hippocampal CA1 pyramidal neurons have lower spine density than age-matched non-MR female control individuals. The majority of RTT individuals carry mutations in MECP2, the gene coding for a methylated DNA-binding transcriptional regulator. While altered synaptic transmission and plasticity has been demonstrated in Mecp2-deficient mouse models of RTT, observations regarding dendritic spine density and morphology have produced varied results. We investigated the consequences of MeCP2 dysfunction on dendritic spine structure by overexpressing ( approximately twofold) MeCP2-GFP constructs encoding either the wildtype (WT) protein, or missense mutations commonly found in RTT individuals. Pyramidal neurons within hippocampal slice cultures transfected with either WT or mutant MECP2 (either R106W or T158M) showed a significant reduction in total spine density after 48 h of expression. Interestingly, spine density in neurons expressing WT MECP2 for 96 h was comparable to that in control neurons, while neurons expressing mutant MECP2 continued to have lower spine density than controls after 96 h of expression. Knockdown of endogenous Mecp2 with a specific small hairpin interference RNA (shRNA) also reduced dendritic spine density, but only after 96 h of expression. On the other hand, the consequences of manipulating MeCP2 levels for dendritic complexity in CA3 pyramidal neurons were only minor. Together, these results demonstrate reduced dendritic spine density in hippocampal pyramidal neurons from RTT patients, a distinct dendritic phenotype also found in neurons expressing RTT-associated MECP2 mutations or after shRNA-mediated endogenous Mecp2 knockdown, suggesting that this phenotype represent a cell-autonomous consequence of MeCP2 dysfunction.
Collapse
Affiliation(s)
- Christopher A. Chapleau
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Gaston D. Calfa
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Meredith C. Lane
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Asher J. Albertson
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Jennifer L. Larimore
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| | - Shinichi Kudo
- Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo 060-0819, Japan
| | - Dawna L. Armstrong
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030
| | - Alan K. Percy
- Department of Pediatrics, UAB, Birmingham, AL 35294-2182, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Evelyn McKnight Brain Institute, Civitan International Research Center, The University of Alabama at Birmingham (UAB), Birmingham, AL 35294-2182, USA
| |
Collapse
|
168
|
Degano AL, Pasterkamp RJ, Ronnett GV. MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Mol Cell Neurosci 2009; 42:243-54. [PMID: 19628041 DOI: 10.1016/j.mcn.2009.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/24/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022] Open
Abstract
Rett syndrome (RTT) is an autism spectrum disorder that results from mutations in the transcriptional regulator methyl-CpG binding protein 2 (MECP2). In the present work, we demonstrate that MeCP2 deficiency disrupts the establishment of neural connections before synaptogenesis. Using both in vitro and in vivo approaches, we identify dynamic alterations in the expression of class 3 semaphorins that are accompanied by defects in axonal fasciculation, guidance, and targeting with MeCP2 deficiency. Olfactory axons from Mecp2 mutant mice display aberrant repulsion when co-cultured with mutant olfactory bulb explants. This defect is restored when mutant olfactory axons are co-cultured with wild type olfactory bulbs. Thus, a non-cell autonomous mechanism involving Semaphorin 3F function may underlie abnormalities in the establishment of connectivity with Mecp2 mutation. These findings have broad implications for the role of MECP2 in neurodevelopment and RTT, given the critical role of the semaphorins in the formation of neural circuits.
Collapse
Affiliation(s)
- Alicia L Degano
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
169
|
Abstract
Epigenetic mechanisms are not only essential for biological functions requiring stable molecular changes such as the establishment of cell identity and tissue formation, they also constitute dynamic intracellular processes for translating environmental stimuli into modifications in gene expression. Over the past decade it has become increasingly clear that both aspects of epigenetic mechanisms play a pivotal role in complex brain functions. Evidence from patients with neurodegenerative and neurodevelopmental disorders such as Alzheimer's disease and Rett syndrome indicated that epigenetic mechanisms and chromatin remodeling need to be tightly controlled for proper cognitive functions, and their dysregulation can have devastating consequences. However, because they are dynamic, epigenetic mechanisms are also potentially reversible and may provide powerful means for pharmacological intervention. This review outlines major cognitive disorders known to be associated with epigenetic dysregulation, and discusses the potential of 'epigenetic medicine' as a promising cure.
Collapse
Affiliation(s)
- Johannes Gräff
- Brain Research Institute, Medical Faculty of the University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
170
|
Belichenko PV, Wright EE, Belichenko NP, Masliah E, Li HH, Mobley WC, Francke U. Widespread changes in dendritic and axonal morphology in Mecp2-mutant mouse models of Rett syndrome: evidence for disruption of neuronal networks. J Comp Neurol 2009; 514:240-58. [PMID: 19296534 DOI: 10.1002/cne.22009] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the X-linked gene MECP2. Girls with RTT show dramatic changes in brain function, but relatively few studies have explored the structure of neural circuits. Examining two mouse models of RTT (Mecp2B and Mecp2J), we previously documented changes in brain anatomy. Herein, we use confocal microscopy to study the effects of MeCP2 deficiency on the morphology of dendrites and axons in the fascia dentata (FD), CA1 area of hippocampus, and motor cortex following Lucifer yellow microinjection or carbocyanine dye tracing. At 3 weeks of age, most (33 of 41) morphological parameters were significantly altered in Mecp2B mice; fewer (23 of 39) were abnormal in Mecp2J mice. There were striking changes in the density and size of the dendritic spines and density and orientation of axons. In Mecp2B mice, dendritic spine density was decreased in the FD (approximately 11%), CA1 (14-22%), and motor cortex (approximately 16%). A decreased spine head size (approximately 9%) and an increased spine neck length (approximately 12%) were found in Mecp2B FD. In addition, axons in the motor cortex were disorganized. In Mecp2J mice, spine density was significantly decreased in CA1 (14-26%). In both models, dendritic swelling and elongated spine necks were seen in all areas studied. Marked variation in the type and extent of changes was noted in dendrites of adjacent neurons. Electron microscopy confirmed abnormalities in dendrites and axons and showed abnormal mitochondria. Our findings document widespread abnormalities of dendrites and axons that recapitulate those seen in RTT.
Collapse
Affiliation(s)
- Pavel V Belichenko
- Neuroscience Institute at Stanford University, Stanford, CA 94305-5489, USA.
| | | | | | | | | | | | | |
Collapse
|
171
|
Ogier M, Katz DM. Breathing dysfunction in Rett syndrome: understanding epigenetic regulation of the respiratory network. Respir Physiol Neurobiol 2009; 164:55-63. [PMID: 18534925 DOI: 10.1016/j.resp.2008.04.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/09/2008] [Accepted: 04/10/2008] [Indexed: 11/17/2022]
Abstract
Severely arrhythmic breathing is a hallmark of Rett syndrome (RTT) and profoundly affects quality of life for patients and their families. The last decade has seen the identification of the disease-causing gene, methyl-CpG-binding protein 2 (Mecp2) and the development of mouse models that phenocopy many aspects of the human syndrome, including breathing dysfunction. Recent studies have begun to characterize the breathing phenotype of Mecp2 mutant mice and to define underlying electrophysiological and neurochemical deficits. The picture that is emerging is one of defects in synaptic transmission throughout the brainstem respiratory network associated with abnormal expression in several neurochemical signaling systems, including brain-derived neurotrophic factor (BDNF), biogenic amines and gamma-amino-butyric acid (GABA). Based on such findings, potential therapeutic strategies aimed at improving breathing by targeting deficits in neurochemical signaling are being explored. This review details our current understanding of respiratory dysfunction and underlying mechanisms in RTT with a particular focus on insights gained from mouse models.
Collapse
Affiliation(s)
- Michael Ogier
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106-4975, USA
| | | |
Collapse
|
172
|
Partial reversal of Rett Syndrome-like symptoms in MeCP2 mutant mice. Proc Natl Acad Sci U S A 2009; 106:2029-34. [PMID: 19208815 DOI: 10.1073/pnas.0812394106] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rett Syndrome (RTT) is a severe form of X-linked mental retardation caused by mutations in the gene coding for methyl CpG-binding protein 2 (MECP2). Mice deficient in MeCP2 have a range of physiological and neurological abnormalities that mimic the human syndrome. Here we show that systemic treatment of MeCP2 mutant mice with an active peptide fragment of Insulin-like Growth Factor 1 (IGF-1) extends the life span of the mice, improves locomotor function, ameliorates breathing patterns, and reduces irregularity in heart rate. In addition, treatment with IGF-1 peptide increases brain weight of the mutant mice. Multiple measurements support the hypothesis that RTT results from a deficit in synaptic maturation in the brain: MeCP2 mutant mice have sparse dendritic spines and reduced PSD-95 in motor cortex pyramidal neurons, reduced synaptic amplitude in the same neurons, and protracted cortical plasticity in vivo. Treatment with IGF-1 peptide partially restores spine density and synaptic amplitude, increases PSD-95, and stabilizes cortical plasticity to wild-type levels. Our results thus strongly suggest IGF-1 as a candidate for pharmacological treatment of RTT and potentially of other CNS disorders caused by delayed synapse maturation.
Collapse
|
173
|
Abstract
Two critical properties of stem cells are self-renewal and multipotency. The maintenance of their "stemness" state and commitment to differentiation are therefore tightly controlled by intricate molecular networks. Epigenetic mechanisms, including DNA methylation, chromatin remodeling and the noncoding RNA-mediated process, have profound regulatory roles in mammalian gene expression. Recent studies have shown that epigenetic regulators are key players in stem cell biology and their dysfunction can result in human diseases such as cancer and neurodevelopmental disorders. Here, we review the recent evidences that advance our knowledge in epigenetic regulations of mammalian stem cells, with focus on embryonic stem cells and neural stem cells.
Collapse
Affiliation(s)
- Xuekun Li
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
174
|
Johnston MV, Ishida A, Ishida WN, Matsushita HB, Nishimura A, Tsuji M. Plasticity and injury in the developing brain. Brain Dev 2009; 31:1-10. [PMID: 18490122 PMCID: PMC2660856 DOI: 10.1016/j.braindev.2008.03.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 03/31/2008] [Indexed: 11/18/2022]
Abstract
The child's brain is more malleable or plastic than that of adults and this accounts for the ability of children to learn new skills quickly or recovery from brain injuries. Several mechanisms contribute to this ability including overproduction and deletion of neurons and synapses, and activity-dependent stabilization of synapses. The molecular mechanisms for activity-dependent synaptic plasticity are being discovered and this is leading to a better understanding of the pathogenesis of several disorders including neurofibromatosis, tuberous sclerosis, Fragile X syndrome and Rett syndrome. Many of the same pathways involved in synaptic plasticity, such as glutamate-mediated excitation, can also mediate brain injury when the brain is exposed to stress or energy failure such as hypoxia-ischemia. Recent evidence indicates that cell death pathways activated by injury differ between males and females. This new information about the molecular pathways involved in brain plasticity and injury are leading to insights that will provide better therapies for pediatric neurological disorders.
Collapse
Affiliation(s)
- Michael V Johnston
- Department of Neurology, Kennedy Krieger Institute and Johns Hopkins University, School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
175
|
Lu Y, Wang F, Li Y, Ferris J, Lee JA, Gao FB. The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 2008; 18:454-62. [PMID: 18996915 DOI: 10.1093/hmg/ddn373] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Angelman syndrome is a severe neurodevelopmental disorder mostly caused by loss-of-function mutations in the maternal allele of UBE3A, a gene that encodes an E3 ubiquitin ligase. Drosophila UBE3A (dUBE3A) is highly homologous to human UBE3A (hUBE3A) at the amino acid sequence level, suggesting their functional conservation. We generated dUBE3A-null mutant fly lines and found that dUBE3A is not essential for viability. However, loss of dUBE3A activity reduced dendritic branching of sensory neurons in the peripheral nervous system and slowed the growth of terminal dendritic fine processes. Several lines of evidence indicated that dUBE3A regulates dendritic morphogenesis in a cell autonomous manner. Moreover, overexpression of dUBE3A also decreased dendritic branching, suggesting that the proper level of dUBE3A is critically important for the normal dendritic patterning. These findings suggest that dendritic pathology may contribute to neurological deficits in patients with Angelman syndrome.
Collapse
Affiliation(s)
- Yubing Lu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | | | | | | | | | | |
Collapse
|
176
|
Alter MD, Rubin DB, Ramsey K, Halpern R, Stephan DA, Abbott LF, Hen R. Variation in the large-scale organization of gene expression levels in the hippocampus relates to stable epigenetic variability in behavior. PLoS One 2008; 3:e3344. [PMID: 18836535 PMCID: PMC2556388 DOI: 10.1371/journal.pone.0003344] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/11/2008] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Despite sharing the same genes, identical twins demonstrate substantial variability in behavioral traits and in their risk for disease. Epigenetic factors-DNA and chromatin modifications that affect levels of gene expression without affecting the DNA sequence-are thought to be important in establishing this variability. Epigenetically-mediated differences in the levels of gene expression that are associated with individual variability traditionally are thought to occur only in a gene-specific manner. We challenge this idea by exploring the large-scale organizational patterns of gene expression in an epigenetic model of behavioral variability. METHODOLOGY/FINDINGS To study the effects of epigenetic influences on behavioral variability, we examine gene expression in genetically identical mice. Using a novel approach to microarray analysis, we show that variability in the large-scale organization of gene expression levels, rather than differences in the expression levels of specific genes, is associated with individual differences in behavior. Specifically, increased activity in the open field is associated with increased variance of log-transformed measures of gene expression in the hippocampus, a brain region involved in open field activity. Early life experience that increases adult activity in the open field also similarly modifies the variance of gene expression levels. The same association of the variance of gene expression levels with behavioral variability is found with levels of gene expression in the hippocampus of genetically heterogeneous outbred populations of mice, suggesting that variation in the large-scale organization of gene expression levels may also be relevant to phenotypic differences in outbred populations such as humans. We find that the increased variance in gene expression levels is attributable to an increasing separation of several large, log-normally distributed families of gene expression levels. We also show that the presence of these multiple log-normal distributions of gene expression levels is a universal characteristic of gene expression in eurkaryotes. We use data from the MicroArray Quality Control Project (MAQC) to demonstrate that our method is robust and that it reliably detects biological differences in the large-scale organization of gene expression levels. CONCLUSIONS Our results contrast with the traditional belief that epigenetic effects on gene expression occur only at the level of specific genes and suggest instead that the large-scale organization of gene expression levels provides important insights into the relationship of gene expression with behavioral variability. Understanding the epigenetic, genetic, and environmental factors that regulate the large-scale organization of gene expression levels, and how changes in this large-scale organization influences brain development and behavior will be a major future challenge in the field of behavioral genomics.
Collapse
Affiliation(s)
- Mark D. Alter
- Department of Psychiatry, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail: (MDA); (RH)
| | - Daniel B. Rubin
- Department of Neuroscience and Division of Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Keri Ramsey
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Rebecca Halpern
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - Dietrich A. Stephan
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, Arizona, United States of America
| | - L. F. Abbott
- Department of Neuroscience and Division of Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Rene Hen
- Department of Psychiatry, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University, New York, New York, United States of America
- * E-mail: (MDA); (RH)
| |
Collapse
|
177
|
Singh J, Saxena A, Christodoulou J, Ravine D. MECP2 genomic structure and function: insights from ENCODE. Nucleic Acids Res 2008; 36:6035-47. [PMID: 18820302 PMCID: PMC2577328 DOI: 10.1093/nar/gkn591] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
MECP2, a relatively small gene located in the human X chromosome, was initially described with three exons transcribing RNA from which the protein MeCP2 was translated. It is now known to have four exons from which two isoforms are translated; however, there is also evidence of additional functional genomic structures within MECP2, including exons potentially transcribing non-coding RNAs. Accompanying the recognition of a higher level of intricacy within MECP2 has been a recent surge of knowledge about the structure and function of human genes more generally, to the extent that the definition of a gene is being revisited. It is timely now to review the published and novel functional elements within MECP2, which is proving to have a complexity far greater than was previously thought.
Collapse
Affiliation(s)
- Jasmine Singh
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Australia
| | | | | | | |
Collapse
|