151
|
Ex vivo human HSC expansion requires coordination of cellular reprogramming with mitochondrial remodeling and p53 activation. Blood Adv 2019; 2:2766-2779. [PMID: 30348672 DOI: 10.1182/bloodadvances.2018024273] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/02/2023] Open
Abstract
The limited number of hematopoietic stem cells (HSCs) in umbilical cord blood (UCB) units restricts their use for stem cell transplantation. Ex vivo treatment of UCB-CD34+ cells with valproic acid (VPA) increases the number of transplantable HSCs. In this study, we demonstrate that HSC expansion is not merely a result of proliferation of the existing stem cells but, rather, a result of a rapid reprogramming of CD34+CD90- cells into CD34+CD90+ cells, which is accompanied by limited numbers of cell divisions. Beyond this phenotypic switch, the treated cells acquire and retain a transcriptomic and mitochondrial profile, reminiscent of primary HSCs. Single and bulk RNA-seq revealed a signature highly enriched for transcripts characteristic of primary HSCs. The acquisition of this HSC signature is linked to mitochondrial remodeling accompanied by a reduced activity and enhanced glycolytic potential. These events act in concert with a modest upregulation of p53 activity to limit the levels of reactive oxygen species (ROS). Inhibition of either glycolysis or p53 activity impairs HSC expansion. This study indicates that a complex interplay of events is required for effective ex vivo expansion of UCB-HSCs.
Collapse
|
152
|
Cho IJ, Lui PP, Obajdin J, Riccio F, Stroukov W, Willis TL, Spagnoli F, Watt FM. Mechanisms, Hallmarks, and Implications of Stem Cell Quiescence. Stem Cell Reports 2019; 12:1190-1200. [PMID: 31189093 PMCID: PMC6565921 DOI: 10.1016/j.stemcr.2019.05.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Cellular quiescence is a dormant but reversible cellular state in which cell-cycle entry and proliferation are prevented. Recent studies both in vivo and in vitro demonstrate that quiescence is actively maintained through synergistic interactions between intrinsic and extrinsic signals. Subtypes of adult mammalian stem cells can be maintained in this poised, quiescent state, and subsequently reactivated upon tissue injury to restore homeostasis. However, quiescence can become deregulated in pathological settings. In this review, we discuss the recent advances uncovering intracellular signaling pathways, transcriptional changes, and extracellular cues within the stem cell niche that control induction and exit from quiescence in tissue stem cells. We discuss the implications of quiescence as well as the pharmacological and genetic approaches that are being explored to either induce or prevent quiescence as a therapeutic strategy.
Collapse
Affiliation(s)
- Inchul J Cho
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Prudence PokWai Lui
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Jana Obajdin
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Federica Riccio
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Wladislaw Stroukov
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Thea Louise Willis
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Francesca Spagnoli
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
153
|
A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency. Blood 2019; 133:2198-2211. [DOI: 10.1182/blood-2018-10-881441] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Abstract
There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.
Collapse
|
154
|
Delás MJ, Jackson BT, Kovacevic T, Vangelisti S, Munera Maravilla E, Wild SA, Stork EM, Erard N, Knott SRV, Hannon GJ. lncRNA Spehd Regulates Hematopoietic Stem and Progenitor Cells and Is Required for Multilineage Differentiation. Cell Rep 2019; 27:719-729.e6. [PMID: 30995471 PMCID: PMC6484780 DOI: 10.1016/j.celrep.2019.03.080] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 01/02/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) show patterns of tissue- and cell type-specific expression that are very similar to those of protein coding genes and consequently have the potential to control stem and progenitor cell fate decisions along a differentiation trajectory. To understand the roles that lncRNAs may play in hematopoiesis, we selected a subset of mouse lncRNAs with potentially relevant expression patterns and refined our candidate list using evidence of conserved expression in human blood lineages. For each candidate, we assessed its possible role in hematopoietic differentiation in vivo using competitive transplantation. Our studies identified two lncRNAs that were required for hematopoiesis. One of these, Spehd, showed defective multilineage differentiation, and its silencing yielded common myeloid progenitors that are deficient in their oxidative phosphorylation pathway. This effort not only suggests that lncRNAs can contribute to differentiation decisions during hematopoiesis but also provides a path toward the identification of functional lncRNAs in other differentiation hierarchies.
Collapse
Affiliation(s)
- M Joaquina Delás
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | - Benjamin T Jackson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Tatjana Kovacevic
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Silvia Vangelisti
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Ester Munera Maravilla
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Sophia A Wild
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Eva Maria Stork
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Nicolas Erard
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - Simon R V Knott
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK; Watson School of Biological Sciences, Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; New York Genome Center, New York, NY 10013, USA.
| |
Collapse
|
155
|
Hua P, Kronsteiner B, van der Garde M, Ashley N, Hernandez D, Tarunina M, Hook L, Choo Y, Roberts I, Mead A, Watt SM. Single-cell assessment of transcriptome alterations induced by Scriptaid in early differentiated human haematopoietic progenitors during ex vivo expansion. Sci Rep 2019; 9:5300. [PMID: 30923342 PMCID: PMC6438964 DOI: 10.1038/s41598-019-41803-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/18/2019] [Indexed: 12/24/2022] Open
Abstract
Priming haematopoietic stem/progenitor cells (HSPCs) in vitro with specific chromatin modifying agents and cytokines under serum-free-conditions significantly enhances engraftable HSC numbers. We extend these studies by culturing human CD133+ HSPCs on nanofibre scaffolds to mimic the niche for 5-days with the HDAC inhibitor Scriptaid and cytokines. Scriptaid increases absolute Lin−CD34+CD38−CD45RA−CD90+CD49f+ HSPC numbers, while concomitantly decreasing the Lin−CD38−CD34+CD45RA−CD90− subset. Hypothesising that Scriptaid plus cytokines expands the CD90+ subset without differentiation and upregulates CD90 on CD90− cells, we sorted, then cultured Lin−CD34+CD38−CD45RA−CD90− cells with Scriptaid and cytokines. Within 2-days and for at least 5-days, most CD90− cells became CD90+. There was no significant difference in the transcriptomic profile, by RNAsequencing, between cytokine-expanded and purified Lin−CD34+CD38−CD45RA−CD49f+CD90+ cells in the presence or absence of Scriptaid, suggesting that Scriptaid maintains stem cell gene expression programs despite expansion in HSC numbers. Supporting this, 50 genes were significantly differentially expressed between CD90+ and CD90− Lin−CD34+CD38−CD45RA−CD49f+ subsets in Scriptaid-cytokine- and cytokine only-expansion conditions. Thus, Scriptaid treatment of CD133+ cells may be a useful approach to expanding the absolute number of CD90+ HSC, without losing their stem cell characteristics, both through direct effects on HSC and potentially also conversion of their immediate CD90− progeny into CD90+ HSC.
Collapse
Affiliation(s)
- Peng Hua
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Barbara Kronsteiner
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Mark van der Garde
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK
| | - Neil Ashley
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK
| | - Diana Hernandez
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Marina Tarunina
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Lilian Hook
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Yen Choo
- Plasticell Ltd, Stevenage Bioscience Catalyst, Stevenage, SG1 2FX, UK
| | - Irene Roberts
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Department of Paediatrics, University of Oxford, Children's Hospital, John Radcliffe Hospital, Oxford, OX3 9DU, UK.,Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Adam Mead
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.,Haematology Theme, Oxford Biomedical Research Centre, Oxford University Hospitals, Oxford, UK
| | - Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and NHS Blood and Transplant, John Radcliffe Hospital, Oxford, OX3 9BQ, UK.
| |
Collapse
|
156
|
Abstract
Stem cells can reside in a state of reversible growth arrest, or quiescence, for prolonged periods of time. Although quiescence has long been viewed as a dormant, low-activity state, increasing evidence suggests that quiescence represents states of poised potential and active restraint, as stem cells "idle" in anticipation of activation, proliferation, and differentiation. Improved understanding of quiescent stem cell dynamics is leading to novel approaches to enhance maintenance and repair of aged or diseased tissues. In this Review, we discuss recent advances in our understanding of stem cell quiescence and techniques enabling more refined analyses of quiescence in vivo.
Collapse
Affiliation(s)
- Cindy T J van Velthoven
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| |
Collapse
|
157
|
Yassin M, Aqaqe N, Yassin AA, van Galen P, Kugler E, Bernstein BE, Koren-Michowitz M, Canaani J, Nagler A, Lechman ER, Dick JE, Wienholds E, Izraeli S, Milyavsky M. A novel method for detecting the cellular stemness state in normal and leukemic human hematopoietic cells can predict disease outcome and drug sensitivity. Leukemia 2019; 33:2061-2077. [PMID: 30705411 DOI: 10.1038/s41375-019-0386-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 02/06/2023]
Abstract
Acute leukemia is an aggressive blood malignancy with low survival rates. A high expression of stem-like programs in leukemias predicts poor prognosis and is assumed to act in an aberrant fashion in the phenotypically heterogeneous leukemia stem cell (LSC) population. A lack of suitable genome engineering tools that can isolate LSCs based on their stemness precludes their comprehensive examination and full characterization. We hypothesized that tagging endogenous stemness-regulatory regions could generate a genome reporter for the putative leukemia stemness-state. Our analysis revealed that the ERG + 85 enhancer region can serve as a marker for stemness-state and a fluorescent lentiviral reporter was developed that can accurately recapitulate the endogenous activity. Using our novel reporter, we revealed cellular heterogeneity in several leukemia cell lines and patient-derived samples. Alterations in reporter activity were associated with transcriptomic and functional changes that were closely related to the hematopoietic stem cell (HSC) identity. Notably, the differentiation potential was skewed towards the erythro-megakaryocytic lineage. Moreover, an ERG + 85High fraction of AML cells could regenerate the original cellular heterogeneity and was enriched for LSCs. RNA-seq analysis coupled with in silico drug-screen analysis identified 4HPR as an effective inhibitor of ERG + 85High leukemia growth. We propose that further utilization of our novel molecular tool will identify crucial determinants of LSCs, thus providing a rationale for their therapeutic targeting.
Collapse
Affiliation(s)
- Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Nasma Aqaqe
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Abed Alkader Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Peter van Galen
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Eitan Kugler
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bradley E Bernstein
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | | - Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Eric R Lechman
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Erno Wienholds
- Princess Margaret Cancer Centre, University Health Network and Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Shai Izraeli
- Department of Pediatric Hemato-Oncology, Schneider Children Medical Center, Petah Tikva, Israel.,The Gene Development and Environment Pediatric Research Institute, Pediatric Hemato-Oncology, Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Molecular Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel.
| |
Collapse
|
158
|
CDK6 coordinates JAK2 V617F mutant MPN via NF-κB and apoptotic networks. Blood 2019; 133:1677-1690. [PMID: 30635286 DOI: 10.1182/blood-2018-08-872648] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/07/2019] [Indexed: 01/27/2023] Open
Abstract
Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.
Collapse
|
159
|
Malouf C, Ottersbach K. The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) MLL-AF4 infant leukemia. Haematologica 2018; 103:e571-e574. [PMID: 29903765 PMCID: PMC6269304 DOI: 10.3324/haematol.2018.191718] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, University of Edinburgh, UK
| | | |
Collapse
|
160
|
Belluschi S, Calderbank EF, Ciaurro V, Pijuan-Sala B, Santoro A, Mende N, Diamanti E, Sham KYC, Wang X, Lau WWY, Jawaid W, Göttgens B, Laurenti E. Myelo-lymphoid lineage restriction occurs in the human haematopoietic stem cell compartment before lymphoid-primed multipotent progenitors. Nat Commun 2018; 9:4100. [PMID: 30291229 PMCID: PMC6173731 DOI: 10.1038/s41467-018-06442-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
Capturing where and how multipotency is lost is crucial to understand how blood formation is controlled. Blood lineage specification is currently thought to occur downstream of multipotent haematopoietic stem cells (HSC). Here we show that, in human, the first lineage restriction events occur within the CD19-CD34+CD38-CD45RA-CD49f+CD90+ (49f+) HSC compartment to generate myelo-lymphoid committed cells with no erythroid differentiation capacity. At single-cell resolution, we observe a continuous but polarised organisation of the 49f+ compartment, where transcriptional programmes and lineage potential progressively change along a gradient of opposing cell surface expression of CLEC9A and CD34. CLEC9AhiCD34lo cells contain long-term repopulating multipotent HSCs with slow quiescence exit kinetics, whereas CLEC9AloCD34hi cells are restricted to myelo-lymphoid differentiation and display infrequent but durable repopulation capacity. We thus propose that human HSCs gradually transition to a discrete lymphoid-primed state, distinct from lymphoid-primed multipotent progenitors, representing the earliest entry point into lymphoid commitment.
Collapse
Affiliation(s)
- Serena Belluschi
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Emily F. Calderbank
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valerio Ciaurro
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Blanca Pijuan-Sala
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Antonella Santoro
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nicole Mende
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Evangelia Diamanti
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kendig Yen Chi Sham
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Xiaonan Wang
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Winnie W. Y. Lau
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wajid Jawaid
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Berthold Göttgens
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Elisa Laurenti
- 0000000121885934grid.5335.0Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
161
|
Thill M, Schmidt M. Management of adverse events during cyclin-dependent kinase 4/6 (CDK4/6) inhibitor-based treatment in breast cancer. Ther Adv Med Oncol 2018; 10:1758835918793326. [PMID: 30202447 PMCID: PMC6122233 DOI: 10.1177/1758835918793326] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 07/05/2018] [Indexed: 01/29/2023] Open
Abstract
Cyclin-dependent kinase (CDK) 4/6 inhibitors have shown great results in numerous clinical trials and have improved the clinical outcome for patients with hormone-receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer significantly. To date, three CDK4/6 inhibitors are approved by the US Food and Drug Administration (FDA): palbociclib, ribociclib and abemaciclib; the first two compounds are aproved by the European Medicines Agency (EMA) as well. In combination with endocrine therapy, all of them led to significantly improved progression-free survival compared with endocrine therapy alone. The aim of this article is to give an overview of the efficacy data and to describe the CDK4/6 inhibitor-based treatment-associated adverse events, including hematological and nonhematological adverse events. In addition, it describes the corrrect approach to patient monitoring and adverse event mangement and summarizes the current recommendations for dose reductions and dose interruptions regarding the key adverse events, such as neutropenia, diarrhea, QTc prolongation and hepatobiliary toxicity. Accurate patient monitoring and management of the side effects is crucial, as several clinical trials in early breast cancer are in progress and may lead to an additional approval in the neo-/adjuvant setting.
Collapse
Affiliation(s)
- Marc Thill
- Department of Gynecology and Obstetrics, Breast Center, Agaplesion Markus Hospital, Wilhelm-Epstein-Strasse 4, 60431 Frankfurt am Main, Germany
| | - Marcus Schmidt
- Department of Obstetrics and Gynecology, University Medical Center Mainz, Germany
| |
Collapse
|
162
|
Wang W, Fujii H, Kim HJ, Hermans K, Usenko T, Xie S, Luo ZJ, Ma J, Celso CL, Dick JE, Schroeder T, Krueger J, Wall D, Egeler RM, Zandstra PW. Enhanced human hematopoietic stem and progenitor cell engraftment by blocking donor T cell-mediated TNFα signaling. Sci Transl Med 2018; 9:9/421/eaag3214. [PMID: 29263228 DOI: 10.1126/scitranslmed.aag3214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/21/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a curative therapy, but the large number of HSCs required limits its widespread use. Host conditioning and donor cell composition are known to affect HSCT outcomes. However, the specific role that the posttransplantation signaling environment plays in donor HSC fate is poorly understood. To mimic clinical HSCT, we injected human umbilical cord blood (UCB) cells at different doses and compositions into immunodeficient NOD/SCID/IL-2Rgc-null (NSG) mice. Surprisingly, higher UCB cell doses inversely correlated with stem and progenitor cell engraftment. This observation was attributable to increased donor cell-derived inflammatory signals. Donor T cell-derived tumor necrosis factor-α (TNFα) was specifically found to directly impair the survival and division of transplanted HSCs and progenitor cells. Neutralizing donor T cell-derived TNFα in vivo increased short-term stem and progenitor cell engraftment, accelerated hematopoietic recovery, and altered donor immune cell compositions. This direct effect of TNFα on transplanted cells could be decoupled from the indirect effect of alleviating graft-versus-host disease (GVHD) by interleukin-6 (IL-6) blockade. Our study demonstrates that donor immune cell-derived inflammatory signals directly influence HSC fate, and provides new clinically relevant strategies to improve engraftment efficiency during HSCT.
Collapse
Affiliation(s)
- Weijia Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Basel 4058, Switzerland
| | - Hisaki Fujii
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Hye Jin Kim
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Karin Hermans
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Tatiana Usenko
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Stephanie Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Zhi-Juan Luo
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Jennifer Ma
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Timm Schroeder
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Basel 4058, Switzerland
| | - Joerg Krueger
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Donna Wall
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - R Maarten Egeler
- Division of Haematology and Oncology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E1, Canada. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Medicine by Design-A Canada First Research Excellence Fund program, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
163
|
Kwon JS, Everetts NJ, Wang X, Wang W, Della Croce K, Xing J, Yao G. Controlling Depth of Cellular Quiescence by an Rb-E2F Network Switch. Cell Rep 2018; 20:3223-3235. [PMID: 28954237 DOI: 10.1016/j.celrep.2017.09.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 07/22/2017] [Accepted: 08/31/2017] [Indexed: 01/08/2023] Open
Abstract
Quiescence is a non-proliferative cellular state that is critical to tissue repair and regeneration. Although often described as the G0 phase, quiescence is not a single homogeneous state. As cells remain quiescent for longer durations, they move progressively deeper and display a reduced sensitivity to growth signals. Deep quiescent cells, unlike senescent cells, can still re-enter the cell cycle under physiological conditions. Mechanisms controlling quiescence depth are poorly understood, representing a currently underappreciated layer of complexity in growth control. Here, we show that the activation threshold of a Retinoblastoma (Rb)-E2F network switch controls quiescence depth. Particularly, deeper quiescent cells feature a higher E2F-switching threshold and exhibit a delayed traverse through the restriction point (R-point). We further show that different components of the Rb-E2F network can be experimentally perturbed, following computer model predictions, to coarse- or fine-tune the E2F-switching threshold and drive cells into varying quiescence depths.
Collapse
Affiliation(s)
- Jungeun Sarah Kwon
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Nicholas J Everetts
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Xia Wang
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Weikang Wang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Kimiko Della Croce
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA.
| |
Collapse
|
164
|
Bellutti F, Tigan AS, Nebenfuehr S, Dolezal M, Zojer M, Grausenburger R, Hartenberger S, Kollmann S, Doma E, Prchal-Murphy M, Uras IZ, Höllein A, Neuberg DS, Ebert BL, Ringler A, Mueller AC, Loizou JI, Hinds PW, Vogl C, Heller G, Kubicek S, Zuber J, Malumbres M, Farlik M, Villunger A, Kollmann K, Sexl V. CDK6 Antagonizes p53-Induced Responses during Tumorigenesis. Cancer Discov 2018; 8:884-897. [PMID: 29899063 DOI: 10.1158/2159-8290.cd-17-0912] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
Tumor formation is a multistep process during which cells acquire genetic and epigenetic changes until they reach a fully transformed state. We show that CDK6 contributes to tumor formation by regulating transcriptional responses in a stage-specific manner. In early stages, the CDK6 kinase induces a complex transcriptional program to block p53 in hematopoietic cells. Cells lacking CDK6 kinase function are required to mutate TP53 (encoding p53) to achieve a fully transformed immortalized state. CDK6 binds to the promoters of genes including the p53 antagonists Prmt5, Ppm1d, and Mdm4 The findings are relevant to human patients: Tumors with low levels of CDK6 have mutations in TP53 significantly more often than expected.Significance: CDK6 acts at the interface of p53 and RB by driving cell-cycle progression and antagonizing stress responses. While sensitizing cells to p53-induced cell death, specific inhibition of CDK6 kinase activity may provoke the outgrowth of p53-mutant clones from premalignant cells. Cancer Discov; 8(7); 884-97. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 781.
Collapse
Affiliation(s)
- Florian Bellutti
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Anca-Sarmiza Tigan
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Marlies Dolezal
- Platform Bioinformatics and Biostatistics, University of Veterinary Medicine, Vienna, Austria
| | - Markus Zojer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Reinhard Grausenburger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Svenja Hartenberger
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Sebastian Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Eszter Doma
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Iris Z Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | | | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Benjamin L Ebert
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Anna Ringler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andre C Mueller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Philip W Hinds
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, and Tufts Cancer Center, Boston, Massachusetts
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | | | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Matthias Farlik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
165
|
Sasine JP, Himburg HA, Termini CM, Roos M, Tran E, Zhao L, Kan J, Li M, Zhang Y, de Barros SC, Rao DS, Counter CM, Chute JP. Wild-type Kras expands and exhausts hematopoietic stem cells. JCI Insight 2018; 3:98197. [PMID: 29875320 DOI: 10.1172/jci.insight.98197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/19/2018] [Indexed: 12/14/2022] Open
Abstract
Oncogenic Kras expression specifically in hematopoietic stem cells (HSCs) induces a rapidly fatal myeloproliferative neoplasm in mice, suggesting that Kras signaling plays a dominant role in normal hematopoiesis. However, such a conclusion is based on expression of an oncogenic version of Kras. Hence, we sought to determine the effect of simply increasing the amount of endogenous wild-type Kras on HSC fate. To this end, we utilized a codon-optimized version of the murine Kras gene (Krasex3op) that we developed, in which silent mutations in exon 3 render the encoded mRNA more efficiently translated, leading to increased protein expression without disruption to the normal gene architecture. We found that Kras protein levels were significantly increased in bone marrow (BM) HSCs in Krasex3op/ex3op mice, demonstrating that the translation of Kras in HSCs is normally constrained by rare codons. Krasex3op/ex3op mice displayed expansion of BM HSCs, progenitor cells, and B lymphocytes, but no evidence of myeloproliferative disease or leukemia in mice followed for 12 months. BM HSCs from Krasex3op/ex3op mice demonstrated increased multilineage repopulating capacity in primary competitive transplantation assays, but secondary competitive transplants revealed exhaustion of long-term HSCs. Following total body irradiation, Krasex3op/ex3op mice displayed accelerated hematologic recovery and increased survival. Mechanistically, HSCs from Krasex3op/ex3op mice demonstrated increased proliferation at baseline, with a corresponding increase in Erk1/2 phosphorylation and cyclin-dependent kinase 4 and 6 (Cdk4/6) activation. Furthermore, both the enhanced colony-forming capacity and in vivo repopulating capacity of HSCs from Krasex3op/ex3op mice were dependent on Cdk4/6 activation. Finally, BM transplantation studies revealed that augmented Kras expression produced expansion of HSCs, progenitor cells, and B cells in a hematopoietic cell-autonomous manner, independent from effects on the BM microenvironment. This study provides fundamental demonstration of codon usage in a mammal having a biological consequence, which may speak to the importance of codon usage in mammalian biology.
Collapse
Affiliation(s)
- Joshua P Sasine
- Division of Hematology/Oncology, Department of Medicine.,Molecular, Cellular and Integrative Physiology.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | | | | | - Martina Roos
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| | - Evelyn Tran
- Division of Hematology/Oncology, Department of Medicine
| | - Liman Zhao
- Division of Hematology/Oncology, Department of Medicine
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine
| | - Yurun Zhang
- Division of Hematology/Oncology, Department of Medicine
| | | | - Dinesh S Rao
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and.,Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M Counter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North California, USA
| | - John P Chute
- Division of Hematology/Oncology, Department of Medicine.,Jonsson Comprehensive Cancer Center.,Eli and Edythe Broad Center for Stem Cell Research, and
| |
Collapse
|
166
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
167
|
Single-cell analysis identifies a CD33 + subset of human cord blood cells with high regenerative potential. Nat Cell Biol 2018; 20:710-720. [PMID: 29802403 DOI: 10.1038/s41556-018-0104-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/13/2018] [Indexed: 12/15/2022]
Abstract
Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33+CD34+CD38-CD45RA-CD90+CD49f+ phenotype with serially transplantable, but diverse, cell output profiles. Single-cell measurements of the mitogenic response, and the transcriptional, DNA methylation and 40-protein content of this and closely related phenotypes revealed subtle but consistent differences both within and between each subset. These results suggest that multiple regulatory mechanisms combine to maintain different cell output activities of human blood cell precursors with high regenerative potential.
Collapse
|
168
|
Grinenko T, Eugster A, Thielecke L, Ramasz B, Krüger A, Dietz S, Glauche I, Gerbaulet A, von Bonin M, Basak O, Clevers H, Chavakis T, Wielockx B. Hematopoietic stem cells can differentiate into restricted myeloid progenitors before cell division in mice. Nat Commun 2018; 9:1898. [PMID: 29765026 PMCID: PMC5954009 DOI: 10.1038/s41467-018-04188-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 04/10/2018] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem cells (HSCs) continuously replenish all blood cell types through a series of differentiation steps and repeated cell divisions that involve the generation of lineage-committed progenitors. However, whether cell division in HSCs precedes differentiation is unclear. To this end, we used an HSC cell-tracing approach and Ki67RFP knock-in mice, in a non-conditioned transplantation model, to assess divisional history, cell cycle progression, and differentiation of adult HSCs. Our results reveal that HSCs are able to differentiate into restricted progenitors, especially common myeloid, megakaryocyte-erythroid and pre-megakaryocyte progenitors, without undergoing cell division and even before entering the S phase of the cell cycle. Additionally, the phenotype of the undivided but differentiated progenitors correlated with the expression of lineage-specific genes and loss of multipotency. Thus HSC fate decisions can be uncoupled from physical cell division. These results facilitate a better understanding of the mechanisms that control fate decisions in hematopoietic cells. Dependence of hematopoietic stem cell (HSC) fate on the phase of the cell cycle has not been demonstrated in vivo. Here, the authors find that HSCs can differentiate into a downstream progenitor without physical division, even before progressing into the S phase of the cell cycle.
Collapse
Affiliation(s)
- Tatyana Grinenko
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
| | - Anne Eugster
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Lars Thielecke
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Beáta Ramasz
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anja Krüger
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Sevina Dietz
- DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Alexander Gerbaulet
- Institute for Immunology, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Malte von Bonin
- Medical Clinic and Policlinic I, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Consortium (DKTK), partner site Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Onur Basak
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, 3584 CG, Utrecht, Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, Netherlands.,Cancer Genomics Netherlands, UMC Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, Netherlands.,Princess Máxima Centre, Lundlaan 6, 3584, EA Utrecht, Netherlands
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany. .,DFG Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
169
|
Webster KA, Henke K, Ingalls DM, Nahrin A, Harris MP, Siegfried KR. Cyclin-dependent kinase 21 is a novel regulator of proliferation and meiosis in the male germline of zebrafish. Reproduction 2018; 157:383-398. [PMID: 30763280 PMCID: PMC6489137 DOI: 10.1530/rep-18-0386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/14/2019] [Indexed: 01/07/2023]
Abstract
Germ cell differentiation and maintenance relies on complex regulation of mitotic and meiotic progression. Cyclin-dependent kinases (CDKs) and their activating cyclin partners are known to have specialized roles in regulating cell cycle progression across tissues, including germ cells. Very little is known about CDK/cyclin function in zebrafish or the regulation of germ cell maintenance and differentiation. In a forward genetic screen for gonadogenesis defects in zebrafish, a mutation disrupting cdk21 (cyclin-dependent kinase 21) was identified, which caused gonad hypoplasia, reduced fertility and failure of female sex specification. The cdk21 gene is unique to fishes, though the encoded protein is related to the D-cyclin partners Cdk4 and Cdk6, which are known G1 cell cycle regulators. In the testis, cdk21 mutant germ cells exhibited cell cycle defects such as diminished proliferation, prolonged meiosis and delayed sperm differentiation. Furthermore, cdk21 mutants failed to maintain germ cells following breeding. Based on these findings, we propose that cdk21 regulates spermatogonial proliferation, progression through meiosis and germline stem cell activation in the testis. In addition, we investigated cdk4 and cdk6 in zebrafish development and found that each has distinct expression patterns in the gonads. Mutant analysis demonstrated that cdk6 was necessary for viability beyond larval stages. In contrast, cdk4 mutants were viable but were all male with low breeding success and sperm overabundance. Our analysis demonstrated that zebrafish harbor three genes of the cdk4/6 family, cdk4, cdk6 and cdk21, with cdk21 having an essential role in germ cell development in the testis.
Collapse
Affiliation(s)
- Kaitlyn A Webster
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Katrin Henke
- Orthopaedic Research Laboratories, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Delaney M Ingalls
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Adeeba Nahrin
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Matthew P Harris
- Orthopaedic Research Laboratories, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Kellee R Siegfried
- Biology Department, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
170
|
Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, Shi H, Bai J, Gao Y, Cheng T, Yang FC, Zhou Y. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget 2018; 7:78095-78109. [PMID: 27801668 PMCID: PMC5363646 DOI: 10.18632/oncotarget.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.
Collapse
Affiliation(s)
- Xiaohui Si
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xing Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
171
|
Zheng S, Papalexi E, Butler A, Stephenson W, Satija R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol Syst Biol 2018; 14:e8041. [PMID: 29545397 PMCID: PMC5852373 DOI: 10.15252/msb.20178041] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) give rise to diverse cell types in the blood system, yet our molecular understanding of the early trajectories that generate this enormous diversity in humans remains incomplete. Here, we leverage Drop-seq, a massively parallel single-cell RNA sequencing (scRNA-seq) approach, to individually profile 20,000 progenitor cells from human cord blood, without prior enrichment or depletion for individual lineages based on surface markers. Our data reveal a transcriptional compendium of progenitor states in human cord blood, representing four committed lineages downstream from HSC, alongside the transcriptional dynamics underlying fate commitment. We identify intermediate stages that simultaneously co-express "primed" programs for multiple downstream lineages, and also observe striking heterogeneity in the early molecular transitions between myeloid subsets. Integrating our data with a recently published scRNA-seq dataset from human bone marrow, we illustrate the molecular similarity between these two commonly used systems and further explore the chromatin dynamics of "primed" transcriptional programs based on ATAC-seq. Finally, we demonstrate that Drop-seq data can be utilized to identify new heterogeneous surface markers of cell state that correlate with functional output.
Collapse
Affiliation(s)
- Shiwei Zheng
- New York Genome Center, New York, NY, USA.,Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA.,Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Andrew Butler
- New York Genome Center, New York, NY, USA.,Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | - Rahul Satija
- New York Genome Center, New York, NY, USA .,Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
172
|
Abstract
Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment.
Collapse
|
173
|
Corona SP, Generali D. Abemaciclib: a CDK4/6 inhibitor for the treatment of HR+/HER2- advanced breast cancer. Drug Des Devel Ther 2018; 12:321-330. [PMID: 29497278 PMCID: PMC5818877 DOI: 10.2147/dddt.s137783] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although early breast cancer (BC) is highly curable, advanced or metastatic disease poses numerous challenges in terms of medical management and treatment decisions and is associated with significantly worse prognosis. Among the new targeted agents, anticancer drugs exploiting the cell-cycle machinery have shown great potential in preclinical studies. CDK4/6 inhibitors target the cyclin D/CDK/retinoblastoma signaling pathway, inducing cell-cycle arrest, reduced cell viability and tumor shrinking. As the cyclin D/CDK complex is activated downstream of estrogen signaling, the combination of CDK4/6 inhibitors with standard endocrine therapies represents a rational approach to elicit synergic antitumor activity in hormone receptor-positive BC. The results of clinical trials have indeed confirmed the superiority of the combination of CDK4/6 inhibitors plus endocrine therapies over endocrine therapy alone. Currently approved are three compounds that exhibit similar structural characteristics as well as biological and clinical activities. Abemaciclib is the latest CDK4/6 inhibitor approved by the US Food and Drug Administration (FDA) in view of the results of the MONARCH 1 and 2 trials. Further trials are ongoing as other important questions await response. In this review, we focus on abemaciclib to examine preclinical and clinical results, describing current therapeutic indications, open questions and ongoing clinical trials.
Collapse
Affiliation(s)
- Silvia Paola Corona
- Radiation Oncology Department, Peter MacCallum Cancer Centre, Bentleigh East, VIC, Australia
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
174
|
Leukemia-propagating cells demonstrate distinctive gene expression profiles compared with other cell fractions from patients with de novo Philadelphia chromosome-positive ALL. Ann Hematol 2018; 97:799-811. [PMID: 29429020 DOI: 10.1007/s00277-018-3253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/22/2018] [Indexed: 10/18/2022]
Abstract
Relapse remains one of the major obstacles in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ALL) even after allogeneic hematopoietic stem cell transplantation. The persistence of leukemia-propagating cells (LPCs) may lead to the recurrence of Ph+ALL. Using a xenograft assay, LPCs enrichment in the CD34+CD38-CD58- fraction in Ph+ALL was recently identified. A further cohort study indicated that the LPCs phenotype at diagnosis was an independent risk factor for relapse of Ph+ALL. However, little is known about the potential molecular mechanism of LPCs-mediated relapse. Therefore, the gene expression profiles of the sorted LPCs and other cell fractions from patients with de novo Ph+ALL were investigated using RNA sequencing (RNA-Seq). Most of the differentially expressed genes between the LPCs and other cell fractions were related to the regulation of the cell cycle and metabolism, as identified by the gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Consistent with the RNA-Seq results, the mRNA levels of cell cycle-related genes, such as cyclin-dependent kinase 4, were significantly lower in the LPCs fraction than in other cell fractions. Moreover, the proportion of quiescent cells in LPCs was significantly higher than in other cell fractions. In summary, distinctive gene expression profiles and clusters, which were mostly related to the regulation of the cell cycle and metabolism, were demonstrated between LPCs and other cell fractions from patients with de novo Ph+ALL. Therefore, it would be beneficial to develop novel LPCs-based therapeutic strategies for Ph+ALL patients.
Collapse
|
175
|
Luc S, Huang J, McEldoon JL, Somuncular E, Li D, Rhodes C, Mamoor S, Hou S, Xu J, Orkin SH. Bcl11a Deficiency Leads to Hematopoietic Stem Cell Defects with an Aging-like Phenotype. Cell Rep 2018; 16:3181-3194. [PMID: 27653684 DOI: 10.1016/j.celrep.2016.08.064] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 08/18/2016] [Indexed: 11/25/2022] Open
Abstract
B cell CLL/lymphoma 11A (BCL11A) is a transcription factor and regulator of hemoglobin switching that has emerged as a promising therapeutic target for sickle cell disease and thalassemia. In the hematopoietic system, BCL11A is required for B lymphopoiesis, yet its role in other hematopoietic cells, especially hematopoietic stem cells (HSCs) remains elusive. The extensive expression of BCL11A in hematopoiesis implicates context-dependent roles, highlighting the importance of fully characterizing its function as part of ongoing efforts for stem cell therapy and regenerative medicine. Here, we demonstrate that BCL11A is indispensable for normal HSC function. Bcl11a deficiency results in HSC defects, typically observed in the aging hematopoietic system. We find that downregulation of cyclin-dependent kinase 6 (Cdk6), and the ensuing cell-cycle delay, correlate with HSC dysfunction. Our studies define a mechanism for BCL11A in regulation of HSC function and have important implications for the design of therapeutic approaches to targeting BCL11A.
Collapse
Affiliation(s)
- Sidinh Luc
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jialiang Huang
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA
| | - Jennifer L McEldoon
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ece Somuncular
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Dan Li
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Claire Rhodes
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Shahan Mamoor
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Serena Hou
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Stuart H Orkin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Stem Cell Institute, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
176
|
Lopez S, Voisset E, Tisserand JC, Mosca C, Prebet T, Santamaria D, Dubreuil P, De Sepulveda P. An essential pathway links FLT3-ITD, HCK and CDK6 in acute myeloid leukemia. Oncotarget 2018; 7:51163-51173. [PMID: 27323399 PMCID: PMC5239466 DOI: 10.18632/oncotarget.9965] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/25/2016] [Indexed: 11/25/2022] Open
Abstract
CDK4/CDK6 and RB proteins drive the progression through the G1 phase of the cell cycle. In acute myeloid leukemia (AML), the activity of the CDK/Cyclin D complex is increased. The mechanism involved is unknown, as are the respective roles played by CDK4 or CDK6 in this process. Here, we report that AML cells carrying FLT3-ITD mutations are dependent on CDK6 for cell proliferation while CDK4 is not essential. We showed that FLT3-ITD signaling is responsible for CDK6 overexpression, through a pathway involving the SRC-family kinase HCK. Accordingly, FLT3-ITD failed to transform primary hematopoietic progenitor cells from Cdk6-/- mice. Our results demonstrate that CDK6 is the primary target of CDK4/CDK6 inhibitors in FLT3-ITD positive AML. Furthermore, we delineate an essential protein kinase pathway -FLT3/HCK/CDK6- in the context of AML with FLT3-ITD mutations.
Collapse
Affiliation(s)
- Sophie Lopez
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Edwige Voisset
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France.,Present address: Department of Medical and Molecular Genetics, King's College London, Faculty of Life Sciences and Medicine, London, United Kingdom
| | - Julie C Tisserand
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Cyndie Mosca
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | | | | | - Patrice Dubreuil
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| | - Paulo De Sepulveda
- Inserm, Cancer Research Center of Marseille (CRCM), U1068, Marseille, France.,Institut Paoli-Calmettes (IPC), Marseille, France.,Aix-Marseille University, UM 105, Marseille, France.,CNRS, UMR7258, Marseille, France
| |
Collapse
|
177
|
Malouf C, Ottersbach K. Molecular processes involved in B cell acute lymphoblastic leukaemia. Cell Mol Life Sci 2018; 75:417-446. [PMID: 28819864 PMCID: PMC5765206 DOI: 10.1007/s00018-017-2620-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/19/2022]
Abstract
B cell leukaemia is one of the most frequent malignancies in the paediatric population, but also affects a significant proportion of adults in developed countries. The majority of infant and paediatric cases initiate the process of leukaemogenesis during foetal development (in utero) through the formation of a chromosomal translocation or the acquisition/deletion of genetic material (hyperdiploidy or hypodiploidy, respectively). This first genetic insult is the major determinant for the prognosis and therapeutic outcome of patients. B cell leukaemia in adults displays similar molecular features as its paediatric counterpart. However, since this disease is highly represented in the infant and paediatric population, this review will focus on this demographic group and summarise the biological, clinical and epidemiological knowledge on B cell acute lymphoblastic leukaemia of four well characterised subtypes: t(4;11) MLL-AF4, t(12;21) ETV6-RUNX1, t(1;19) E2A-PBX1 and t(9;22) BCR-ABL1.
Collapse
Affiliation(s)
- Camille Malouf
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Katrin Ottersbach
- MRC Centre for Regenerative Medicine, The University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|
178
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 496] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
179
|
Zhao K, Zheng WW, Dong XM, Yin RH, Gao R, Li X, Liu JF, Zhan YQ, Yu M, Chen H, Ge CH, Ning HM, Yang XM, Li CY. EDAG promotes the expansion and survival of human CD34+ cells. PLoS One 2018; 13:e0190794. [PMID: 29324880 PMCID: PMC5764277 DOI: 10.1371/journal.pone.0190794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
EDAG is multifunctional transcriptional regulator primarily expressed in the linloc-kit+Sca-1+ hematopoietic stem cells (HSC) and CD34+ progenitor cells. Previous studies indicate that EDAG is required for maintaining hematopoietic lineage commitment balance. Here using ex vivo culture and HSC transplantation models, we report that EDAG enhances the proliferative potential of human cord blood CD34+ cells, increases survival, prevents cell apoptosis and promotes their repopulating capacity. Moreover, EDAG overexpression induces rapid entry of CD34+ cells into the cell cycle. Gene expression profile analysis indicate that EDAG knockdown leads to down-regulation of various positive cell cycle regulators including cyclin A, B, D, and E. Together these data provides novel insights into EDAG in regulation of expansion and survival of human hematopoietic stem/progenitor cells.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei-Wei Zheng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao-Ming Dong
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
| | - Rong-Hua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Rui Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiu Li
- An Hui Medical University, Hefei, China
| | - Jin-Fang Liu
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chang-Hui Ge
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong-Mei Ning
- Department of Hematopoietic Stem Cell Transplantation, Affiliated Hospital to Academy of Military Medical Sciences, Beijing, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Tianjin University, School of Chemical Engineering and Technology, Department of Pharmaceutical Engineering, Tianjin, China
- * E-mail: (HMN); (XMY); (CYL)
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
- Guang Dong Pharmaceutical University, School of Pharmacy, Guangzhou, China
- * E-mail: (HMN); (XMY); (CYL)
| |
Collapse
|
180
|
Rossmann MP, Orkin SH, Chute JP. Hematopoietic Stem Cell Biology. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
181
|
Fischer M, Dang CV, DeCaprio JA. Control of Cell Division. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
182
|
Knapp DJHF, Hammond CA, Miller PH, Rabu GM, Beer PA, Ricicova M, Lecault V, Da Costa D, VanInsberghe M, Cheung AM, Pellacani D, Piret J, Hansen C, Eaves CJ. Dissociation of Survival, Proliferation, and State Control in Human Hematopoietic Stem Cells. Stem Cell Reports 2017; 8:152-162. [PMID: 28076756 PMCID: PMC5233451 DOI: 10.1016/j.stemcr.2016.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/01/2016] [Accepted: 12/02/2016] [Indexed: 12/28/2022] Open
Abstract
The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation. However, serial transplantability was not detectably compromised by many conditions that reduced human HSC proliferation and/or survival. These results demonstrate the dissociated control of these three human HSC bio-responses, and set the stage for future improvements in strategies to modify and expand human HSCs ex vivo. Growth factors alone can maintain serially transplantable human cord blood HSCs Growth factors tunably and combinatorially control HSC survival and proliferation SCF is a critical factor for stimulating human HSC proliferation HSC regenerative activity is regulated independent of HSC survival or proliferation
Collapse
Affiliation(s)
- David J H F Knapp
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Colin A Hammond
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Paul H Miller
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Gabrielle M Rabu
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Philip A Beer
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | | | - Véronique Lecault
- AbCellera Biologics Inc, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Da Costa
- AbCellera Biologics Inc, Vancouver, BC V6T 1Z4, Canada; Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michael VanInsberghe
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Alice M Cheung
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Davide Pellacani
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada
| | - James Piret
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Carl Hansen
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, BC Cancer Research Centre, 675 West 10(th) Avenue, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
183
|
Amulic B, Knackstedt SL, Abu Abed U, Deigendesch N, Harbort CJ, Caffrey BE, Brinkmann V, Heppner FL, Hinds PW, Zychlinsky A. Cell-Cycle Proteins Control Production of Neutrophil Extracellular Traps. Dev Cell 2017; 43:449-462.e5. [DOI: 10.1016/j.devcel.2017.10.013] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 07/12/2017] [Accepted: 10/09/2017] [Indexed: 01/09/2023]
|
184
|
Dual inhibition of EZH1/2 breaks the quiescence of leukemia stem cells in acute myeloid leukemia. Leukemia 2017; 32:855-864. [PMID: 28951561 DOI: 10.1038/leu.2017.300] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/27/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive and lethal blood cancer originating from rare populations of leukemia stem cells (LSCs). AML relapse after conventional chemotherapy is caused by a remaining population of drug-resistant LSCs. Selective targeting of the chemoresistant population is a promising strategy for preventing and treating AML relapse. Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27 to maintain the stemness of LSCs. Here, we show that quiescent LSCs expressed the highest levels of enhancer of zeste (EZH) 1 and EZH2, the PRC2 catalytic subunits, in the AML hierarchy, and that dual inactivation of EZH1/2 eradicated quiescent LSCs to cure AML. Genetic deletion of Ezh1/2 in a mouse AML model induced cell cycle progression of quiescent LSCs and differentiation to LSCs, eventually eradicating AML LSCs. Quiescent LSCs showed PRC2-mediated suppression of Cyclin D, and Cyclin D-overexpressing AML was more sensitive to chemotherapy. We have developed a novel EZH1/2 dual inhibitor with potent inhibitory activity against both EZH1/2. In AML mouse models and patient-derived xenograft models, the inhibitor reduced the number of LSCs, impaired leukemia progression, and prolonged survival. Taken together, these results show that dual inhibition of EZH1/2 is an effective strategy for eliminating AML LSCs.
Collapse
|
185
|
Interleukin-6 blockade attenuates lung cancer tissue construction integrated by cancer stem cells. Sci Rep 2017; 7:12317. [PMID: 28951614 PMCID: PMC5615065 DOI: 10.1038/s41598-017-12017-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/01/2017] [Indexed: 12/23/2022] Open
Abstract
In the present study, we successfully generated lung cancer stem cell (CSC)-like cells by introducing a small set of transcription factors into a lung cancer cell line. In addition to properties that are conventionally referred to as CSC properties, the lung induced CSCs exhibited the ability to form lung cancer-like tissues in vitro with vascular cells and mesenchymal stem cells, which showed structures and immunohistological patterns that were similar to human lung cancer tissues. We named them “lung cancer organoids”. We found that interleukin-6 (IL-6), which was expressed in the lung induced CSCs, facilitates the formation of lung cancer organoids via the conversion of mesenchymal stem cells into alpha-smooth muscle actin (αSMA)-positive cells. Interestingly, the combination of anti-IL-6 antibody and cisplatin could destroy the lung cancer organoids, while cisplatin alone could not. Furthermore, IL-6 mRNA-positive cancer cells were found in clinical lung cancer samples. These results suggest that IL-6 could be a novel therapeutic target in lung cancer.
Collapse
|
186
|
CBX3 promotes colon cancer cell proliferation by CDK6 kinase-independent function during cell cycle. Oncotarget 2017; 8:19934-19946. [PMID: 28193906 PMCID: PMC5386735 DOI: 10.18632/oncotarget.15253] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/12/2016] [Indexed: 12/29/2022] Open
Abstract
Heterochromatin protein 1γ (CBX3) links histone methylation marks to transcriptional silence, DNA repair and RNA splicing, but a role for CBX3 in cancer remains largely unknown. In this study, we show that CBX3 in colon cancer cells promotes the progression of the cell cycle and proliferation in vitro and in vivo. Cell cycle (G1 phase to S phase) related gene CDK6 and p21 were further identified as targets of CBX3. In addition, we found that enhancing CDK6 suppresses cell proliferation by upregulating inhibitor p21 in the absence of CBX3, and this function is independent of the kinase activity of CDK6. Our results demonstrate a key role of CBX3 in colon carcinogenesis via suppressing the expression of CDK6/p21, which may disrupt the role of CDK6 in transcriptionally regulating p21, as part of a negative feedback loop to limit CDK6 excessive activation.
Collapse
|
187
|
Masamoto Y, Arai S, Sato T, Kubota N, Takamoto I, Kadowaki T, Kurokawa M. Adiponectin Enhances Quiescence Exit of Murine Hematopoietic Stem Cells and Hematopoietic Recovery Through mTORC1 Potentiation. Stem Cells 2017; 35:1835-1848. [PMID: 28480607 DOI: 10.1002/stem.2640] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/11/2017] [Accepted: 04/25/2017] [Indexed: 01/19/2023]
Abstract
Myelotoxic injury, such as chemotherapeutic agents and ionizing radiation, unlocks the vigorous power of hematopoietic stem cells (HSCs) to replenish the hematopoietic system, making quiescent HSCs enter the cell cycle. Considering that both HSC-intrinsic and -extrinsic mechanisms enforce quiescence of HSCs, the drastic change in bone marrow (BM) environment after injury, represented by massive expansion of BM adipocytes, might trigger HSC activation. BM adipocytes, the major cellular component in the ablated marrow, however, reportedly suppress proliferation of hematopoietic cells, which may indicate the BM adipocytogenesis is an irrational response of injured organism. Given that adipose tissue is an endocrine organ with pleiotropic functions, we hypothesized that adipocyte-derived factors, especially adiponectin, an anti-inflammatory adipokine involved in regulation of granulopoiesis, are implicated in HSC activation. Myeloablative intervention increased BM adiponectin by multiple mechanisms, including adipocyte expansion and increased diffusion from the blood. Adiponectin-null (Adipoq -/- ) mice showed delayed hematopoietic recovery after BM injury, with Adipoq-/- HSCs more quiescent and defective in mammalian target of rapamycin complex 1 (mTORC1) activation. Recombinant adiponectin promoted not only HSC activation in vivo but cytokine-induced activation in vitro, and shortened the time for exit from quiescence in an mTORC1-dependent manner. These data illustrate a scarcely-reported example of a cell-extrinsic factor, adiponectin, enhancing quiescence exit of HSCs, and subsequent hematopoietic recovery. Our findings also highlight adipocytes as a source of adiponectin to ensure the proliferative burst of hematopoietic cells in ablated marrow. Stem Cells 2017;35:1835-1848.
Collapse
Affiliation(s)
- Yosuke Masamoto
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Shunya Arai
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Transfusion Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoto Kubota
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iseki Takamoto
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes & Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology & Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
188
|
Dickler MN, Tolaney SM, Rugo HS, Cortés J, Diéras V, Patt D, Wildiers H, Hudis CA, O'Shaughnessy J, Zamora E, Yardley DA, Frenzel M, Koustenis A, Baselga J. MONARCH 1, A Phase II Study of Abemaciclib, a CDK4 and CDK6 Inhibitor, as a Single Agent, in Patients with Refractory HR +/HER2 - Metastatic Breast Cancer. Clin Cancer Res 2017; 23:5218-5224. [PMID: 28533223 DOI: 10.1158/1078-0432.ccr-17-0754] [Citation(s) in RCA: 465] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/04/2017] [Accepted: 05/17/2017] [Indexed: 01/19/2023]
Abstract
Purpose: The phase II MONARCH 1 study was designed to evaluate the single-agent activity and adverse event (AE) profile of abemaciclib, a selective inhibitor of CDK4 and CDK6, in women with refractory hormone receptor-positive (HR+), HER2- metastatic breast cancer (MBC).Experimental Design: MONARCH 1 was a phase II single-arm open-label study. Women with HR+/HER2- MBC who had progressed on or after prior endocrine therapy and had 1 or 2 chemotherapy regimens in the metastatic setting were eligible. Abemaciclib 200 mg was administered orally on a continuous schedule every 12 hours until disease progression or unacceptable toxicity. The primary objective of MONARCH 1 was investigator-assessed objective response rate (ORR). Other endpoints included clinical benefit rate, progression-free survival (PFS), and overall survival (OS).Results: Patients (n = 132) had a median of 3 (range, 1-8) lines of prior systemic therapy in the metastatic setting, 90.2% had visceral disease, and 50.8% had ≥3 metastatic sites. At the 12-month final analysis, the primary objective of confirmed objective response rate was 19.7% (95% CI, 13.3-27.5; 15% not excluded); clinical benefit rate (CR+PR+SD≥6 months) was 42.4%, median progression-free survival was 6.0 months, and median overall survival was 17.7 months. The most common treatment-emergent AEs of any grade were diarrhea, fatigue, and nausea; discontinuations due to AEs were infrequent (7.6%).Conclusions: In this poor-prognosis, heavily pretreated population with refractory HR+/HER2- metastatic breast cancer, continuous dosing of single-agent abemaciciclib was well tolerated and exhibited promising clinical activity. Clin Cancer Res; 23(17); 5218-24. ©2017 AACR.
Collapse
Affiliation(s)
| | | | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, San Francisco, California
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Ramón y Cajal University Hospital, Madrid, Spain
| | | | - Debra Patt
- Texas Oncology, Austin, Texas
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | - Hans Wildiers
- Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| | | | - Joyce O'Shaughnessy
- Baylor University Medical Center, Texas Oncology, US Oncology, Dallas, Texas
| | - Esther Zamora
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Denise A Yardley
- Sarah Cannon Research Institute, Tennessee Oncology PLLC, Nashville, Tennessee
| | | | | | - José Baselga
- Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
189
|
HGFA Is an Injury-Regulated Systemic Factor that Induces the Transition of Stem Cells into G Alert. Cell Rep 2017; 19:479-486. [PMID: 28423312 DOI: 10.1016/j.celrep.2017.03.066] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 01/01/2023] Open
Abstract
The activation of quiescent stem cells into the cell cycle is a key step in initiating the process of tissue repair. We recently reported that quiescent stem cells can transition into GAlert, a cellular state in which they have an increased functional ability to activate and participate in tissue repair. However, the precise molecular signals that induce GAlert in stem cells have remained elusive. Here, we show that the injury-induced regulation of hepatocyte growth factor (HGF) proteolytic processing via the systemic protease, hepatocyte growth factor activator (HGFA), stimulates GAlert in skeletal muscle stem cells (MuSCs) and fibro-adipogenic progenitors (FAPs). We demonstrate that administering active HGFA to animals is sufficient to induce GAlert in stem cells throughout the body and to significantly accelerate the processes of stem cell activation and tissue repair. Our data suggest that factors that induce GAlert will have broad therapeutic applications for regenerative medicine and wound healing.
Collapse
|
190
|
Cabezas-Wallscheid N, Buettner F, Sommerkamp P, Klimmeck D, Ladel L, Thalheimer FB, Pastor-Flores D, Roma LP, Renders S, Zeisberger P, Przybylla A, Schönberger K, Scognamiglio R, Altamura S, Florian CM, Fawaz M, Vonficht D, Tesio M, Collier P, Pavlinic D, Geiger H, Schroeder T, Benes V, Dick TP, Rieger MA, Stegle O, Trumpp A. Vitamin A-Retinoic Acid Signaling Regulates Hematopoietic Stem Cell Dormancy. Cell 2017; 169:807-823.e19. [PMID: 28479188 DOI: 10.1016/j.cell.2017.04.018] [Citation(s) in RCA: 310] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 02/07/2023]
Abstract
Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.
| | - Florian Buettner
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Pia Sommerkamp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Luisa Ladel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Frederic B Thalheimer
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Daniel Pastor-Flores
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Leticia P Roma
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Katharina Schönberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Roberta Scognamiglio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Sandro Altamura
- Department of Pediatric Hematology, Oncology and Immunology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Carolina M Florian
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Malak Fawaz
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dominik Vonficht
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Melania Tesio
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Hartmut Geiger
- Institute for Molecular Medicine, Stem Cells and Aging, Ulm University, 89081 Ulm, Germany
| | - Timm Schroeder
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zurich, 4058 Basel, Switzerland
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael A Rieger
- LOEWE Center for Cell and Gene Therapy and Department of Medicine, Hematology/Oncology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute (EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
191
|
Galloway A, Turner M. Cell cycle RNA regulons coordinating early lymphocyte development. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28231639 PMCID: PMC5574005 DOI: 10.1002/wrna.1419] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/19/2023]
Abstract
Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. WIREs RNA 2017, 8:e1419. doi: 10.1002/wrna.1419 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| |
Collapse
|
192
|
Isolating subpopulations of human epidermal basal cells based on polyclonal serum against trypsin-resistant CSPG4 epitopes. Exp Cell Res 2016; 350:368-379. [PMID: 28011196 DOI: 10.1016/j.yexcr.2016.12.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/13/2016] [Accepted: 12/20/2016] [Indexed: 12/17/2022]
Abstract
Chondroitin sulfate proteoglycan 4 (CSPG4) is highly expressed by human epidermal keratinocytes located at the tip of the dermal papilla where keratinocytes show characteristics of stem cells. However, since available antibodies to CSPG4 are directed against trypsin-sensitive epitopes we have been unable to study these keratinocytes isolated directly from skin samples by flow cytometry. By choosing epitopes of CSPG4 relatively close to the cell membrane we were able to generate a polyclonal antibody that successfully detects CSPG4 on keratinocytes after trypsinization. Although CSPG4-positive basal cells express higher levels of Itgβ1 the colony-forming efficiency is slightly lower than CSPG4-negative basal cells. Sorting the directly isolated keratinocytes based on Itgβ1 did not reveal differences in colony-forming efficiency between keratinocytes expressing high or low levels of Itgβ1. However, after the first passage Itgβ1 could be used to predict colony-forming efficiency whether the culture was established from CSPG4-positive or CSPG4-negative basal cell keratinocytes. Although we were unable to detect differences in the colony-forming assay, global gene expression profiling showed that CSPG4-positive basal cell keratinocytes are distinct from CSPG4-negative basal cell keratinocytes. Our study demonstrates that it is possible to generate antibodies against trypsin-resistant epitopes of CSPG4. Our study also documents a marked change in behaviour upon cell culturing and challenges the way we assess for stemness within the human epidermal basal layer.
Collapse
|
193
|
Lee LCY, Gadegaard N, de Andrés MC, Turner LA, Burgess KV, Yarwood SJ, Wells J, Salmeron-Sanchez M, Meek D, Oreffo ROC, Dalby MJ. Nanotopography controls cell cycle changes involved with skeletal stem cell self-renewal and multipotency. Biomaterials 2016; 116:10-20. [PMID: 27914982 PMCID: PMC5226065 DOI: 10.1016/j.biomaterials.2016.11.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/31/2023]
Abstract
In culture isolated bone marrow mesenchymal stem cells (more precisely termed skeletal stem cells, SSCs) spontaneously differentiate into fibroblasts, preventing the growth of large numbers of multipotent SSCs for use in regenerative medicine. However, the mechanisms that regulate the expansion of SSCs, while maintaining multipotency and preventing fibroblastic differentiation are poorly understood. Major hurdles to understanding how the maintenance of SSCs is regulated are (a) SSCs isolated from bone marrow are heterogeneous populations with different proliferative characteristics and (b) a lack of tools to investigate SSC number expansion and multipotency. Here, a nanotopographical surface is used as a tool that permits SSC proliferation while maintaining multipotency. It is demonstrated that retention of SSC phenotype in culture requires adjustments to the cell cycle that are linked to changes in the activation of the mitogen activated protein kinases. This demonstrates that biomaterials can offer cross-SSC culture tools and that the biological processes that determine whether SSCs retain multipotency or differentiate into fibroblasts are subtle, in terms of biochemical control, but are profound in terms of determining cell fate.
Collapse
Affiliation(s)
- Louisa C Y Lee
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8LT, UK
| | - María C de Andrés
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Lesley-Anne Turner
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Karl V Burgess
- Glasgow Polyomics Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garsube Campus, Bearsden, G61 1QH, UK
| | - Stephen J Yarwood
- Institute of Biological Chemistry, Biophysics and Bioengineering, William Perkin Building, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Julia Wells
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Manuel Salmeron-Sanchez
- Division of Biomedical Engineering, School of Engineering, Rankine Building, University of Glasgow, Glasgow, G12 8LT, UK
| | - Dominic Meek
- Department of Orthopaedics, Queen Elizabeth University Hospital, Glasgow, G51 4TF, UK
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Dalby
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
194
|
Yokoyama A. Transcriptional activation by MLL fusion proteins in leukemogenesis. Exp Hematol 2016; 46:21-30. [PMID: 27865805 DOI: 10.1016/j.exphem.2016.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/14/2016] [Accepted: 10/29/2016] [Indexed: 12/16/2022]
Abstract
Chromosomal translocations involving the mixed lineage leukemia (MLL) gene cause aggressive leukemia. Fusion proteins of MLL and a component of the AF4 family/ENL family/P-TEFb complex (AEP) are responsible for two-thirds of MLL-associated leukemia cases. MLL-AEP fusion proteins trigger aberrant self-renewal of hematopoietic progenitors by constitutively activating self-renewal-related genes. MLL-AEP fusion proteins activate transcription initiation by loading the TATA-binding protein (TBP) to the TATA element via selectivity factor 1. Although AEP retains transcription elongation and mediator recruiting activities, the rate-limiting step activated by MLL-AEP fusion proteins appears to be the TBP-loading step. This is contrary to prevailing views, in which the recruitment of transcription elongation activities are emphasized. Here, I review recent advances towards elucidating the mechanisms underlying gene activation by MLL-AEP fusion proteins in leukemogenesis.
Collapse
Affiliation(s)
- Akihiko Yokoyama
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Division of Hematological Malignancy, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
195
|
Höfer T, Rodewald HR. Output without input: the lifelong productivity of hematopoietic stem cells. Curr Opin Cell Biol 2016; 43:69-77. [PMID: 27620508 DOI: 10.1016/j.ceb.2016.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/07/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022]
Abstract
The hematopoietic stem cell (HSC) compartment must be maintained life-long, while being replenishable only from within. HSC proliferation can compensate for cell loss by differentiation, by cell death, or by mobilization from the bone marrow niches, but the relative use of proliferation to compensate for these distinct depletion sources is unclear. Classifications of HSC states (e.g., as active, dormant, quiescent or parsimonious) have mostly been based on HSC proliferation rather than on actual differentiation arising from HSC. New in vivo fate mapping experiments have shed light on HSC output. The kinetics of label emergence from HSC to progenitor stages uncovered steady, infrequent and low output from large numbers of HSC during normal adult hematopoiesis. Here, we discuss the relative contribution of proliferation to differentiation and self-renewal in hematopoietic stem and progenitor compartments, and propose that kinetic data on HSC output also yield insights into the structure of the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany.
| |
Collapse
|
196
|
Okuda H, Takahashi S, Takaori-Kondo A, Yokoyama A. TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription. Cell Cycle 2016; 15:2712-22. [PMID: 27564129 DOI: 10.1080/15384101.2016.1222337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Gene rearrangement of the mixed lineage leukemia (MLL) gene causes leukemia by inducing the constitutive expression of a gene subset normally expressed only in the immature haematopoietic progenitor cells. MLL gene rearrangements often generate fusion products of MLL and a component of the AF4 family/ENL family/P-TEFb (AEP) complex. MLL-AEP fusion proteins have the potential of constitutively recruiting the P-TEFb elongation complex. Thus, it is hypothesized that relieving the promoter proximal pausing of RNA polymerase II is the rate-limiting step of MLL fusion-dependent transcription. AEP also has the potential to recruit the mediator complex via MED26. We recently showed that AEP activates transcription initiation by facilitating TBP loading to the TATA element through the SL1 complex. In the present study, we show that the key activity responsible for the oncogenic property of MLL-AEP fusion proteins is the TBP loading activity, and not the mediator recruitment or transcriptional elongation activities. Thus, we propose that TBP loading by AF4 through SL1 is the major rate-limiting step in MLL fusion-dependent transcription.
Collapse
Affiliation(s)
- Hiroshi Okuda
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Satoshi Takahashi
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akifumi Takaori-Kondo
- b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| | - Akihiko Yokoyama
- a Laboratory for Malignancy Control Research , Kyoto University Graduate School of Medicine , Kyoto , Japan.,b Department of Hematology and Oncology , Graduate School of Medicine , Kyoto , Japan
| |
Collapse
|
197
|
Chen P, Lee NV, Hu W, Xu M, Ferre RA, Lam H, Bergqvist S, Solowiej J, Diehl W, He YA, Yu X, Nagata A, VanArsdale T, Murray BW. Spectrum and Degree of CDK Drug Interactions Predicts Clinical Performance. Mol Cancer Ther 2016; 15:2273-2281. [DOI: 10.1158/1535-7163.mct-16-0300] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/22/2016] [Indexed: 11/16/2022]
|
198
|
Abstract
Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges.
Collapse
Affiliation(s)
- Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, IMSS National Medical Center, Mexico City, Mexico
| |
Collapse
|
199
|
Linking the Cell Cycle to Cell Fate Decisions. Trends Cell Biol 2016; 25:592-600. [PMID: 26410405 DOI: 10.1016/j.tcb.2015.07.007] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/20/2015] [Accepted: 07/17/2015] [Indexed: 12/25/2022]
Abstract
Pluripotent stem cells (PSCs) retain the ability to differentiate into a wide range of cell types while undergoing self-renewal. They also exhibit an unusual mode of cell cycle regulation, reflected by a cell cycle structure where G1 and G2 phases are truncated. When individual PSCs are exposed to specification cues, they activate developmental programs and remodel the cell cycle so that the length of G1 and overall cell division times increase. The response of individual stem cells to pro-differentiation signals is strikingly heterogeneous, resulting in asynchronous differentiation. Recent evidence indicates that this phenomenon is due to cell cycle-dependent mechanisms that restrict the initial activation of developmental genes to the G1 phase. This suggests a broad biological mechanism where multipotent cells are 'primed' to initiate cell fate decisions during their transition through G1. Here, I discuss mechanisms underpinning the commitment towards the differentiated state and its relation to the cell cycle.
Collapse
|
200
|
Alterations of circulating lymphoid committed progenitor cellular metabolism after allogeneic stem cell transplantation in humans. Exp Hematol 2016; 44:811-816.e3. [PMID: 27321893 DOI: 10.1016/j.exphem.2016.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/13/2016] [Accepted: 05/17/2016] [Indexed: 02/01/2023]
Abstract
Lymphoid-committed CD34(+)lin(-)CD10(+)CD24(-) progenitors undergo a rebound at month 3 after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in the absence of acute graft-versus-host disease (aGVHD). Here, we analyzed transcriptional programs of cell-sorted circulating lymphoid-committed progenitors and CD34(+)Lin(-)CD10(-) nonlymphoid progenitors in 11 allo-HSCT patients who had (n = 5) or had not (n = 6) developed grade 2 or 3 aGVHD and in 7 age-matched healthy donors. Major upregulated pathways include protein synthesis, energy production, cell cycle regulation, and cytoskeleton organization. Notably, genes from protein biogenesis, translation machinery, and cell cycle (CDK6) were overexpressed in progenitors from patients in the absence of aGVHD compared with healthy donors and patients affected by aGVHD. Expression of many genes from the mitochondrial oxidative phosphorylation metabolic pathway leading to ATP production were more specifically increased in lymphoid-committed progenitors in the absence of aGVHD. This was also the case for genes involved in cell mobilization such as those regulating Rho GTPase activity. In all, we found that circulating lymphoid-committed progenitors undergo profound changes in metabolism, favoring cell proliferation, energy production, and cell mobilization after allo-HSCT in humans. These mechanisms are abolished in the case of aGVHD or its treatment, indicating a persistent cell-intrinsic defect after exit from the bone marrow.
Collapse
|