151
|
Abstract
Mammalian fatty acid synthase is a large multienzyme that catalyzes all steps of fatty acid synthesis. We have determined its crystal structure at 3.2 angstrom resolution covering five catalytic domains, whereas the flexibly tethered terminal acyl carrier protein and thioesterase domains remain unresolved. The structure reveals a complex architecture of alternating linkers and enzymatic domains. Substrate shuttling is facilitated by flexible tethering of the acyl carrier protein domain and by the limited contact between the condensing and modifying portions of the multienzyme, which are mainly connected by linkers rather than direct interaction. The structure identifies two additional nonenzymatic domains: (i) a pseudo-ketoreductase and (ii) a peripheral pseudo-methyltransferase that is probably a remnant of an ancestral methyltransferase domain maintained in some related polyketide synthases. The structural comparison of mammalian fatty acid synthase with modular polyketide synthases shows how their segmental construction allows the variation of domain composition to achieve diverse product synthesis.
Collapse
Affiliation(s)
- Timm Maier
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8092 Zurich, Switzerland
| | | | | |
Collapse
|
152
|
Affiliation(s)
- Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
153
|
A ketoreductase domain in the PksJ protein of the bacillaene assembly line carries out both alpha- and beta-ketone reduction during chain growth. Proc Natl Acad Sci U S A 2008; 105:12809-14. [PMID: 18723688 DOI: 10.1073/pnas.0806305105] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The polyketide signaling metabolites bacillaene and dihydrobacillaene are biosynthesized in Bacillus subtilis on an enzymatic assembly line with both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules acting along with catalytic domains servicing the assembly line in trans. These signaling metabolites possess the unusual starter unit alpha-hydroxyisocaproate (alpha-HIC). We show here that it arises from initial activation of alpha-ketoisocaproate (alpha-KIC) by the first adenylation domain of PksJ (a hybrid PKS/NRPS) and installation on the pantetheinyl arm of the adjacent thiolation (T) domain. The alpha-KIC unit is elongated to alpha-KIC-Gly by the second NRPS module in PksJ as demonstrated by mass spectrometric analysis. The third module of PksJ uses PKS logic and contains an embedded ketoreductase (KR) domain along with two adjacent T domains. We show that this KR domain reduces canonical 3-ketobutyryl chains but also the alpha-keto group of alpha-KIC-containing intermediates on the PksJ T-domain doublet. This KR activity accounts for the alpha-HIC moiety found in the dihydrobacillaene/bacillaene pair and represents an example of an assembly-line dual-function alpha- and beta-KR acting on disparate positions of a growing chain intermediate.
Collapse
|
154
|
Castonguay R, Valenzano CR, Chen AY, Keatinge-Clay A, Khosla C, Cane DE. Stereospecificity of ketoreductase domains 1 and 2 of the tylactone modular polyketide synthase. J Am Chem Soc 2008; 130:11598-9. [PMID: 18693734 DOI: 10.1021/ja804453p] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tylactone synthase (TYLS) is a modular polyketide synthase that catalyzes the formation of tylactone (1), the parent aglycone precursor of the macrolide antibiotic tylosin. TYLS modules 1 and 2 are responsible for the generation of antidiketide and triketide intermediates, respectively, each bound to an acyl carrier protein (ACP) domain. Each module harbors a ketoreductase (KR) domain. The stereospecificity of TYLS KR1 and TYLS KR2 has been determined by incubating each of the recombinant ketoreductase domains with reconstituted ketosynthase-acyltransferase [KS][AT] and ACP domains from the 6-deoxyerythronolide B synthase (DEBS) in the presence of the N-acetylcysteamine thioester of syn-(2S,3R)-2-methyl-3-hydroxypentanoate (6), methylmalonyl-CoA, and NADPH resulting in the exclusive formation of the ACP-bound (2R,3R,4S,5R)-2,4-methyl-3,5-dihydroxyhepanoyl triketide, as established by GC-MS analysis of the TMS ether of the derived triketide lactone 7. Both TYLS KR1 and KR2 therefore catalyze the stereospecific reduction of the 2-methyl-3-ketoacyl-ACP substrate from the re-face, with specificity for the reduction of the (2R)-methyl (D) diastereomer. The dehydration that is catalyzed by the dehydratase (DH) domains of TYLS module 2 to give the unsaturated (2E,4S,5R)-2,4-dimethyl-5-hydroxyhept-2-enoyl-ACP2 is therefore a syn elimination of water.
Collapse
Affiliation(s)
- Roselyne Castonguay
- Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108, USA
| | | | | | | | | | | |
Collapse
|
155
|
Tran L, Tosin M, Spencer JB, Leadlay PF, Weissman KJ. Covalent linkage mediates communication between ACP and TE domains in modular polyketide synthases. Chembiochem 2008; 9:905-15. [PMID: 18348128 DOI: 10.1002/cbic.200700738] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polyketide natural products such as erythromycin A and epothilone are assembled on multienzyme polyketide synthases (PKSs), which consist of modular sets of protein domains. Within these type I systems, the fidelity of biosynthesis depends on the programmed interaction among the multiple domains within each module, centered around the acyl carrier protein (ACP). A detailed understanding of interdomain communication will therefore be vital for attempts to reprogram these pathways by genetic engineering. We report here that the interaction between a representative ACP domain and its downstream thioesterase (TE) is mediated largely by covalent tethering through a short "linker" region, with only a minor energetic contribution from protein-protein molecular recognition. This finding helps explain in part the empirical observation that TE domains can function out of their normal context in engineered assembly lines, and supports the view that overall PKS architecture may dictate at least a subset of interdomain interactions.
Collapse
Affiliation(s)
- Lucky Tran
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | |
Collapse
|
156
|
Weissman KJ, Müller R. Protein–Protein Interactions in Multienzyme Megasynthetases. Chembiochem 2008; 9:826-48. [DOI: 10.1002/cbic.200700751] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
157
|
Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat Prod Rep 2008; 25:757-93. [DOI: 10.1039/b801747f] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
158
|
Chen AY, Cane DE, Khosla C. Structure-based dissociation of a type I polyketide synthase module. ACTA ACUST UNITED AC 2007; 14:784-92. [PMID: 17656315 PMCID: PMC1978548 DOI: 10.1016/j.chembiol.2007.05.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 05/23/2007] [Accepted: 05/31/2007] [Indexed: 11/25/2022]
Abstract
Individual modules of modular polyketide synthases (PKSs) such as 6-deoxyerythronolide B synthase (DEBS) consist of conserved, covalently linked domains separated by unconserved intervening linker sequences. To better understand the protein-protein and enzyme-substrate interactions in modular catalysis, we have exploited recent structural insights to prepare stand-alone domains of selected DEBS modules. When combined in vitro, ketosynthase (KS), acyl transferase (AT), and acyl carrier protein (ACP) domains of DEBS module 3 catalyzed methylmalonyl transfer and diketide substrate elongation. When added to a minimal PKS, ketoreductase domains from DEBS modules 1, 2, and 6 showed specificity for the beta-ketoacylthioester substrate, but not for either the ACP domain carrying the polyketide substrate or the KS domain that synthesized the substrate. With insights into catalytic efficiency and specificity of PKS modules, our results provide guidelines for constructing optimal hybrid PKS systems.
Collapse
Affiliation(s)
- Alice Y. Chen
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
| | - David E. Cane
- Department of Chemistry, Brown University, Providence RI 02912-9108
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Department of Biochemistry, Stanford University, Stanford, CA 94305
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
159
|
Pasta S, Witkowski A, Joshi AK, Smith S. Catalytic Residues Are Shared between Two Pseudosubunits of the Dehydratase Domain of the Animal Fatty Acid Synthase. ACTA ACUST UNITED AC 2007; 14:1377-85. [DOI: 10.1016/j.chembiol.2007.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/31/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
160
|
Kittendorf JD, Beck BJ, Buchholz TJ, Seufert W, Sherman DH. Interrogating the molecular basis for multiple macrolactone ring formation by the pikromycin polyketide synthase. ACTA ACUST UNITED AC 2007; 14:944-54. [PMID: 17719493 PMCID: PMC2707933 DOI: 10.1016/j.chembiol.2007.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 07/09/2007] [Accepted: 07/13/2007] [Indexed: 11/25/2022]
Abstract
The pikromycin polyketide synthase (PKS) is unique in its ability to generate both 12 and 14 membered ring macrolactones. As such, dissection of the molecular basis for controlling metabolic diversity in this system remains an important objective for understanding modular PKS function and expanding chemical diversity. Here, we describe a series of experiments designed to probe the importance of the protein-protein interaction that occurs between the final two monomodules, PikAIII (module 5) and PikAIV (module 6), for the production of the 12 membered ring macrolactone 10-deoxymethynolide. The results obtained from these in vitro studies demonstrate that PikAIII and PikAIV generate the 12 membered ring macrocycle most efficiently when engaged in their native protein-protein interaction. Accordingly, the data are consistent with PikAIV adopting an alternative conformation that enables the terminal thioesterase domain to directly off-load the PikAIII-bound hexaketide intermediate for macrocyclization.
Collapse
Affiliation(s)
| | | | | | | | - David H. Sherman
- Corresponding Author: , Telephone: (734)-615-9907, Fax: (734)-615-3641
| |
Collapse
|
161
|
Keatinge-Clay AT. A tylosin ketoreductase reveals how chirality is determined in polyketides. ACTA ACUST UNITED AC 2007; 14:898-908. [PMID: 17719489 DOI: 10.1016/j.chembiol.2007.07.009] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 06/09/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
Abstract
Because it controls the majority of polyketide stereocenters, the ketoreductase (KR) is a central target in engineering polyketide synthases (PKSs). To elucidate the mechanisms of stereocontrol, the structure of KR from the first module of the tylosin PKS was determined. A comparison with a recently solved erythromycin KR that operates on the same substrate explains why their products have opposite alpha-substituent chiralities. The structure reveals how polyketides are guided into the active site by key residues in different KR types. There are four types of reductase-competent KRs, each capable of fixing a unique combination of alpha-substituent and beta-hydroxyl group chiralities, as well as two types of reductase-incompetent KRs that control alpha-substituent chirality alone. A protocol to assign how a module will enforce substituent chirality based on its sequence is presented.
Collapse
Affiliation(s)
- Adrian T Keatinge-Clay
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
162
|
Castonguay R, He W, Chen AY, Khosla C, Cane DE. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. J Am Chem Soc 2007; 129:13758-69. [PMID: 17918944 PMCID: PMC2547127 DOI: 10.1021/ja0753290] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
6-Deoxyerythronolide B synthase (DEBS) is a modular polyketide synthase (PKS) responsible for the biosynthesis of 6-dEB (1), the parent aglycone of the broad spectrum macrolide antibiotic erythromycin. Individual DEBS modules, which contain the catalytic domains necessary for each step of polyketide chain elongation and chemical modification, can be deconstructed into constituent domains. To better understand the intrinsic stereospecificity of the ketoreductase (KR) domains, an in vitro reconstituted system has been developed involving combinations of ketosynthase (KS)-acyl transferase (AT) didomains with acyl-carrier protein (ACP) and KR domains from different DEBS modules. Incubations with (2S,3R)-2-methyl-3-hydroxypentanoic acid N-acetylcysteamine thioester (2) and methylmalonyl-CoA plus NADPH result in formation of a reduced, ACP-bound triketide that is converted to the corresponding triketide lactone 4 by either base- or enzyme-catalyzed hydrolysis/cyclization. A sensitive and robust GC-MS technique has been developed to assign the stereochemistry of the resulting triketide lactones, on the basis of direct comparison with synthetic standards of each of the four possible diasteromers 4a-4d. Using the [KS][AT] didomains from either DEBS module 3 or module 6 in combination with KR domains from modules 2 or 6 gave in all cases exclusively (2R,3S,4R,5R)-3,5-dihydroxy-2,4-dimethyl-n-heptanoic acid-delta-lactone (4a). The same product was also generated by a chimeric module in which [KS3][AT3] was fused to [KR5][ACP5] and the DEBS thioesterase [TE] domain. Reductive quenching of the ACP-bound 2-methyl-3-ketoacyl triketide intermediate with sodium borohydride confirmed that in each case the triketide intermediate carried only an unepimerized d-2-methyl group. The results confirm the predicted stereospecificity of the individual KR domains, while revealing an unexpected configurational stability of the ACP-bound 2-methyl-3-ketoacyl thioester intermediate. The methodology should be applicable to the study of any combination of heterologous [KS][AT] and [KR] domains.
Collapse
Affiliation(s)
- Roselyne Castonguay
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Weiguo He
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| | - Alice Y. Chen
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
- Department of Chemistry, Stanford University, Stanford, California 94305
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - David E. Cane
- Contribution from the Department of Chemistry, Box H, Brown University, Providence, Rhode Island 02912-9108
| |
Collapse
|
163
|
Alekseyev VY, Liu CW, Cane DE, Puglisi JD, Khosla C. Solution structure and proposed domain domain recognition interface of an acyl carrier protein domain from a modular polyketide synthase. Protein Sci 2007; 16:2093-107. [PMID: 17893358 PMCID: PMC2204127 DOI: 10.1110/ps.073011407] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Polyketides are a medicinally important class of natural products. The architecture of modular polyketide synthases (PKSs), composed of multiple covalently linked domains grouped into modules, provides an attractive framework for engineering novel polyketide-producing assemblies. However, impaired domain-domain interactions can compromise the efficiency of engineered polyketide biosynthesis. To facilitate the study of these domain-domain interactions, we have used nuclear magnetic resonance (NMR) spectroscopy to determine the first solution structure of an acyl carrier protein (ACP) domain from a modular PKS, 6-deoxyerythronolide B synthase (DEBS). The tertiary fold of this 10-kD domain is a three-helical bundle; an additional short helix in the second loop also contributes to the core helical packing. Superposition of residues 14-94 of the ensemble on the mean structure yields an average atomic RMSD of 0.64 +/- 0.09 Angstrom for the backbone atoms (1.21 +/- 0.13 Angstrom for all non-hydrogen atoms). The three major helices superimpose with a backbone RMSD of 0.48 +/- 0.10 Angstrom (0.99 +/- 0.11 Angstrom for non-hydrogen atoms). Based on this solution structure, homology models were constructed for five other DEBS ACP domains. Comparison of their steric and electrostatic surfaces at the putative interaction interface (centered on helix II) suggests a model for protein-protein recognition of ACP domains, consistent with the previously observed specificity. Site-directed mutagenesis experiments indicate that two of the identified residues influence the specificity of ACP recognition.
Collapse
Affiliation(s)
- Viktor Y Alekseyev
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | |
Collapse
|
164
|
Gokhale RS, Sankaranarayanan R, Mohanty D. Versatility of polyketide synthases in generating metabolic diversity. Curr Opin Struct Biol 2007; 17:736-43. [PMID: 17935970 DOI: 10.1016/j.sbi.2007.08.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/20/2007] [Accepted: 08/24/2007] [Indexed: 11/25/2022]
Abstract
Polyketide synthases (PKSs) form a large family of multifunctional proteins involved in the biosynthesis of diverse classes of natural products. Architecturally at least three different types of PKSs have been discovered in the microbial world and recent years have revealed tremendous versatility of PKSs, both in terms of their structural and functional organization and in their ability to produce compounds other than typical secondary metabolites. Mycobacterium tuberculosis exploits polyketide biosynthetic enzymes to synthesize complex lipids, many of which are essential for its survival. The functional significance of the large repertoire of PKSs in Dictyostelium discoideum, perhaps in producing developmental regulating factors, is emerging. Recently determined structures of fatty acid synthases (FASs) and PKSs now provide an opportunity to delineate the mechanistic and structural basis of polyketide biosynthetic machinery.
Collapse
Affiliation(s)
- Rajesh S Gokhale
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India.
| | | | | |
Collapse
|
165
|
Abstract
This review chronicles the synergistic growth of the fields of fatty acid and polyketide synthesis over the last century. In both animal fatty acid synthases and modular polyketide synthases, similar catalytic elements are covalently linked in the same order in megasynthases. Whereas in fatty acid synthases the basic elements of the design remain immutable, guaranteeing the faithful production of saturated fatty acids, in the modular polyketide synthases, the potential of the basic design has been exploited to the full for the elaboration of a wide range of secondary metabolites of extraordinary structural diversity.
Collapse
Affiliation(s)
- Stuart Smith
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, California 94609, USA.
| | | |
Collapse
|
166
|
Abstract
6-Deoxyerythronolide B, the macrocyclic aglycone of the antibiotic erythromycin, is synthesized by a polyketide synthase (PKS) that has emerged as the prototypical modular megasynthase. A variety of molecular biological, protein chemical, and biosynthetic experiments over the past two decades have yielded insights into its mechanistic features. More recently, high-resolution structural images of portions of the 6-deoxyerythronolide B synthase have provided a platform for interpreting this wealth of biochemical data, while at the same time presenting a fundamentally new basis for the design of more detailed investigations into this remarkable enzyme. For example, the critical roles of domain-domain interactions and nonconserved linkers, as well as large interdomain movements in the structure and function of modular PKSs, have been highlighted. In turn, these insights point the way forward for more sophisticated and efficient biosynthetic engineering of complex polyketide natural products.
Collapse
Affiliation(s)
- Chaitan Khosla
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.
| | | | | | | | | |
Collapse
|
167
|
Menzella HG, Reeves CD. Combinatorial biosynthesis for drug development. Curr Opin Microbiol 2007; 10:238-45. [PMID: 17553731 DOI: 10.1016/j.mib.2007.05.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 04/09/2007] [Accepted: 05/17/2007] [Indexed: 11/17/2022]
Abstract
Combinatorial biosynthesis can refer to any strategy for the genetic engineering of natural product biosynthesis to obtain new molecules, including the use of genetics for medicinal chemistry. However, it also implies the possibility that large libraries of complex compounds might be produced to feed a modern high-throughput screening operation. This review focuses on the multi-modular enzymes that produce polyketides, nonribosomal peptides, and hybrid polyketide-peptide compounds, which are the enzymes that appear to be most amenable to truly combinatorial approaches. The recent establishment of a high-throughput strategy for testing the activity of many non-natural combinations of modules from these enzymes should help speed the advance of this technology.
Collapse
Affiliation(s)
- Hugo G Menzella
- Kosan Biosciences, Inc. 3832 Bay Center Place, Hayward, CA 94545, USA
| | | |
Collapse
|
168
|
Ma SM, Tang Y. Biochemical characterization of the minimal polyketide synthase domains in the lovastatin nonaketide synthase LovB. FEBS J 2007; 274:2854-64. [PMID: 17466016 DOI: 10.1111/j.1742-4658.2007.05818.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biosynthesis of lovastatin in Aspergillus terreus requires two megasynthases. The lovastatin nonaketide synthase, LovB, synthesizes the intermediate dihydromonacolin L using nine malonyl-coenzyme A molecules, and is a reducing, iterative type I polyketide synthase. The iterative type I polyketide synthase is mechanistically different from bacterial type I polyketide synthases and animal fatty acid synthases. We have cloned the minimal polyketide synthase domains of LovB as standalone proteins and assayed their activities and substrate specificities. The didomain proteins ketosynthase-malonyl-coenzyme A:acyl carrier protein acyltransferase (KS-MAT) and acyl carrier protein-condensation (ACP-CON) domain were expressed solubly in Escherichia coli. The monodomains MAT, ACP and CON were also obtained as soluble proteins. The MAT domain can be readily labeled by [1,2-(14)C]malonyl-coenzyme A and can transfer the acyl group to both the cognate LovB ACP and heterologous ACPs from bacterial type I and type II polyketide synthases. Using the LovB ACP-CON didomain as an acyl acceptor, LovB MAT transferred malonyl and acetyl groups with k(cat)/K(m) values of 0.62 min(-1).mum(-1) and 0.032 min(-1).mum(-1), respectively. The LovB MAT domain was able to substitute the Streptomyces coelicolor FabD in supporting product turnover in a bacterial type II minimal polyketide synthase assay. The activity of the KS domain was assayed independently using a KS-MAT (S656A) mutant in which the MAT domain was inactivated. The KS domain displayed no activity towards acetyl groups, but was able to recognize malonyl groups in the absence of cerulenin. The relevance of these finding to the priming mechanism of fungal polyketide synthase is discussed.
Collapse
Affiliation(s)
- Suzanne M Ma
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | | |
Collapse
|
169
|
Menzella HG, Carney JR, Santi DV. Rational design and assembly of synthetic trimodular polyketide synthases. ACTA ACUST UNITED AC 2007; 14:143-51. [PMID: 17317568 DOI: 10.1016/j.chembiol.2006.12.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/22/2006] [Accepted: 12/04/2006] [Indexed: 10/23/2022]
Abstract
Type I polyketide synthases (PKSs) consist of modules that add two-carbon units in polyketide backbones. Rearranging modules from different sources can yield novel enzymes that produce unnatural products, but the rules that govern module-module communication are still not well known. The construction and assay of hybrid bimodular units with synthetic PKS genes were recently reported. Here, we describe the rational design of trimodular PKSs by combining bimodular units. A cloning-expression system was developed to assemble and test 54 unnatural trimodular PKSs flanked by the loading module and the thioesterase from the erythromycin synthase. Remarkably, 96% of them produced the expected polyketide. The obtained results represent an important milestone toward the ultimate goal of making new bioactive polyketides by rational design. Additionally, these results show a path for the production of customized tetraketides by fermentation, which can be an important source of advanced intermediates to facilitate the synthesis of complex products.
Collapse
|
170
|
Frank B, Knauber J, Steinmetz H, Scharfe M, Blöcker H, Beyer S, Müller R. Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes. ACTA ACUST UNITED AC 2007; 14:221-33. [PMID: 17317575 DOI: 10.1016/j.chembiol.2006.11.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/25/2022]
Abstract
Natural products constitute important lead structures in drug discovery. In bacteria, they are often synthesized by large, modular multienzyme complexes. Detailed analysis of the biosynthetic machinery should enable its directed engineering and production of desirable analogs. The myxobacterium Sorangium cellulosum So ce90 produces the cytotoxic spiroketal polyketide spirangien, for which we describe the identification and functional analysis of the biosynthetic pathway. The gene cluster spans 88 kb and encodes 7 type I polyketide synthases and additional enzymes such as a stand-alone thioesterase and 2 methyltransferases. Inactivation of two cytochrome P(450) monooxygenase genes resulted in the production of acyclic spirangien derivatives, providing direct evidence for the involvement of these enzymes in spiroketal formation. The presence of large DNA repeats is consistent with multiple rounds of gene duplication during the evolution of the biosynthetic gene locus.
Collapse
MESH Headings
- Acetals/chemistry
- Acetals/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- Fatty Acids, Unsaturated/chemistry
- Fatty Acids, Unsaturated/metabolism
- Genes, Bacterial
- Macrolides/chemistry
- Macrolides/metabolism
- Molecular Structure
- Multigene Family
- Mutagenesis, Site-Directed
- Myxococcales/genetics
- Myxococcales/metabolism
- Nuclear Magnetic Resonance, Biomolecular
- Polyketide Synthases/genetics
- Polyketide Synthases/metabolism
- Polymerase Chain Reaction
- Spectrometry, Mass, Electrospray Ionization
- Spectrophotometry, Ultraviolet
Collapse
Affiliation(s)
- Bettina Frank
- Pharmaceutical Biotechnology, Saarland University, 66041 Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
171
|
Starcevic A, Jaspars M, Cullum J, Hranueli D, Long PF. Predicting the nature and timing of epimerisation on a modular polyketide synthase. Chembiochem 2007; 8:28-31. [PMID: 17133646 DOI: 10.1002/cbic.200600399] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
172
|
Bali S, Weissman KJ. Ketoreduction in mycolactone biosynthesis: insight into substrate specificity and stereocontrol from studies of discrete ketoreductase domains in vitro. Chembiochem 2007; 7:1935-42. [PMID: 17031885 DOI: 10.1002/cbic.200600285] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mycolactone, a polyketide toxin responsible for the extensive tissue destruction seen in Buruli ulcer, is assembled on a modular polyketide synthase (PKS). Despite operating on structurally different intermediates during synthesis, many of the ketoreductase (KR) domains of the mycolactone (MLS) PKS have identical sequences. This suggests that these enzymes might exhibit an unusually high level of substrate promiscuity. However, we show here that when recombinant mycolactone KR domains are tested with a range of surrogate substrates, their specificity closely matches that of KR domains derived from other PKS systems. In addition, our findings reinforce the role of substrate tethering for achieving stereochemical control in modular PKSs by affecting the delicate energetics of ketoreduction.
Collapse
Affiliation(s)
- Shilpa Bali
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | |
Collapse
|
173
|
Richter CD, Stanmore DA, Miguel RN, Moncrieffe MC, Tran L, Brewerton S, Meersman F, Broadhurst RW, Weissman KJ. Autonomous folding of interdomain regions of a modular polyketide synthase. FEBS J 2007; 274:2196-209. [PMID: 17419733 DOI: 10.1111/j.1742-4658.2007.05757.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Domains within the multienzyme polyketide synthases are linked by noncatalytic sequences of variable length and unknown function. Recently, the crystal structure was reported of a portion of the linker between the acyltransferase (AT) and ketoreductase (KR) domains from module 1 of the erythromycin synthase (6-deoxyerythronolide B synthase), as a pseudodimer with the adjacent ketoreductase (KR). On the basis of this structure, the homologous linker region between the dehydratase (DH) and enoyl reductase (ER) domains in fully reducing modules has been proposed to occupy a position on the periphery of the polyketide synthases complex, as in porcine fatty acid synthase. We report here the expression and characterization of the same region of the 6-deoxyerythronolide B synthase module 1 AT-KR linker, without the adjacent KR domain (termed DeltaN AT1-KR1), as well as the corresponding section of the DH-ER linker. The linkers fold autonomously and are well structured. However, analytical gel filtration and ultracentrifugation analysis independently show that DeltaN AT1-KR1 is homodimeric in solution; site-directed mutagenesis further demonstrates that linker self-association is compatible with the formation of a linker-KR pseudodimer. Our data also strongly indicate that the DH-ER linker associates with the upstream DH domain. Both of these findings are incompatible with the proposed model for polyketide synthase architecture, suggesting that it is premature to allocate the linker regions to a position in the multienzymes based on the solved structure of animal fatty acid synthase.
Collapse
|
174
|
Choi SS, Hur YA, Sherman DH, Kim ES. Isolation of the biosynthetic gene cluster for tautomycetin, a linear polyketide T cell-specific immunomodulator from Streptomyces sp. CK4412. Microbiology (Reading) 2007; 153:1095-1102. [PMID: 17379718 DOI: 10.1099/mic.0.2006/003194-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial genus Streptomyces has long been appreciated for its ability to produce various kinds of medically important secondary metabolites, such as antibiotics, anti-tumour agents, immunosuppressants and enzyme inhibitors. Tautomycetin (TMC), which is produced by Streptomyces sp. CK4412, is a novel activated T cell-specific immunosuppressive compound with an ester bond linkage between a terminal cyclic anhydride moiety and a linear polyketide chain bearing an unusual terminal alkene. Using a Streptomyces polyketide methylmalonyl-CoA acyltransferase gene as a probe, three overlapping cosmids were isolated from the genomic library of TMC-producing Streptomyces sp. CK4412. Sequence information of an approximately 70 kb contiguous DNA region revealed two multi-modular type I polyketide synthases (PKSs), and 12 additional gene products presumably involved in TMC biosynthesis. The deduced roles for most of the TMC PKS catalytic domains were consistent with the expected functions necessary for TMC chain elongation and processing. In addition, disruption of a putative TMC acyl-CoA transferase gene, located upstream of the PKS gene locus, completely abolished TMC biosynthesis. Taken together, these data provide strong supporting evidence that the cloned gene cluster identified in this study is responsible for TMC biosynthesis in Streptomyces sp. CK4412, and set the stage for detailed genetic and biochemical studies of the biosynthesis of this important metabolite.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | - Yoon-Ah Hur
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| | - David H Sherman
- Life Sciences Institute and Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 402-751, Korea
| |
Collapse
|
175
|
Kittendorf JD, Sherman DH. Developing tools for engineering hybrid polyketide synthetic pathways. Curr Opin Biotechnol 2006; 17:597-605. [PMID: 17046237 DOI: 10.1016/j.copbio.2006.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 09/15/2006] [Accepted: 09/28/2006] [Indexed: 11/22/2022]
Abstract
Bacterial type I polyketide synthases (PKSs) are complex, multifunctional enzymes that synthesize structurally diverse and medicinally important natural products. Given their modular organization, the manipulation of type I PKSs holds tremendous promise for the generation of novel compounds that are not easily accessible by standard synthetic chemical approaches. In theory, hybrid polyketide synthetic pathways can be constructed through the rational recombination of catalytic domains or modules from a variety of PKS systems; however, the general success of this strategy has been elusive, largely due to a poor understanding of the interactions between catalytic domains, as well as PKS modules. Over the past several years, a fundamental knowledge of these issues, and others, has begun to emerge, offering refined strategies for the facile engineering of hybrid polyketide pathways.
Collapse
Affiliation(s)
- Jeffrey D Kittendorf
- University of Michigan Life Sciences Institute, Department of Medicinal Chemistry, 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, USA
| | | |
Collapse
|
176
|
Abstract
Modular polyketide synthases (PKSs) are large multifunctional proteins that synthesize complex polyketide metabolites in microbial cells. A series of recent studies confirm the close protein structural relationship between catalytic domains in the type I mammalian fatty acid synthase (FAS) and the basic synthase unit of the modular PKS. They also establish a remarkable similarity in the overall organization of the type I FAS and the PKS module. This information provides important new conclusions about catalytic domain architecture, function, and molecular recognition that are essential for future efforts to engineer useful polyketide metabolites with valuable biological activities.
Collapse
Affiliation(s)
- David H Sherman
- Department of Medicinal Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
177
|
Giraldes JW, Akey DL, Kittendorf JD, Sherman DH, Smith JL, Fecik RA. Structural and mechanistic insights into polyketide macrolactonization from polyketide-based affinity labels. Nat Chem Biol 2006; 2:531-6. [PMID: 16969373 DOI: 10.1038/nchembio822] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 08/14/2006] [Indexed: 11/08/2022]
Abstract
Polyketides are a diverse class of natural products having important clinical properties, including antibiotic, immunosuppressive and anticancer activities. They are biosynthesized by polyketide synthases (PKSs), which are modular, multienzyme complexes that sequentially condense simple carboxylic acid derivatives. The final reaction in many PKSs involves thioesterase-catalyzed cyclization of linear chain elongation intermediates. As the substrate in PKSs is presented by a tethered acyl carrier protein, introduction of substrate by diffusion is problematic, and no substrate-bound type I PKS domain structure has been reported so far. We describe the chemical synthesis of polyketide-based affinity labels that covalently modify the active site serine of excised pikromycin thioesterase from Streptomyces venezuelae. Crystal structures reported here of the affinity label-pikromycin thioesterase adducts provide important mechanistic insights. These results suggest that affinity labels can be valuable tools for understanding the mechanisms of individual steps within multifunctional PKSs and for directing rational engineering of PKS domains for combinatorial biosynthesis.
Collapse
Affiliation(s)
- John W Giraldes
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street S.E., 8-101 Weaver-Densford Hall, Minneapolis, Minnesota 55455-0353, USA
| | | | | | | | | | | |
Collapse
|
178
|
Tang Y, Kim CY, Mathews II, Cane DE, Khosla C. The 2.7-Angstrom crystal structure of a 194-kDa homodimeric fragment of the 6-deoxyerythronolide B synthase. Proc Natl Acad Sci U S A 2006; 103:11124-9. [PMID: 16844787 PMCID: PMC1636687 DOI: 10.1073/pnas.0601924103] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The x-ray crystal structure of a 194-kDa fragment from module 5 of the 6-deoxyerythronolide B synthase has been solved at 2.7 Angstrom resolution. Each subunit of the homodimeric protein contains a full-length ketosynthase (KS) and acyl transferase (AT) domain as well as three flanking "linkers." The linkers are structurally well defined and contribute extensively to intersubunit or interdomain interactions, frequently by means of multiple highly conserved residues. The crystal structure also reveals that the active site residue Cys-199 of the KS domain is separated from the active site residue Ser-642 of the AT domain by approximately 80 Angstrom. This distance is too large to be covered simply by alternative positioning of a statically anchored, fully extended phosphopantetheine arm of the acyl carrier protein domain from module 5. Thus, substantial domain reorganization appears necessary for the acyl carrier protein to interact successively with both the AT and the KS domains of this prototypical polyketide synthase module. The 2.7-Angstrom KS-AT structure is fully consistent with a recently reported lower resolution, 4.5-Angstrom model of fatty acid synthase structure, and emphasizes the close biochemical and structural similarity between polyketide synthase and fatty acid synthase enzymology.
Collapse
Affiliation(s)
- Yinyan Tang
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Chu-Young Kim
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
| | - Irimpan I. Mathews
- Stanford Synchrotron Radiation Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025; and
| | - David E. Cane
- Department of Chemistry, Brown University, Providence, RI 02912
| | - Chaitan Khosla
- *Departments of Chemistry and Chemical Engineering, Stanford University, Stanford, CA 94305
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
179
|
Kohler JJ. A century at the chemistry-biology interface. Nat Chem Biol 2006; 2:288-92. [PMID: 16710331 DOI: 10.1038/nchembio0606-288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The field of chemical biology is now hitting its stride. Chemical biologists have developed essential tools that are being used to illuminate complex cellular events. The application of chemical principles to biological phenomena has revealed new opportunities for drug discovery. This report highlights recent progress and exciting new directions in chemical genetics and drug discovery.
Collapse
Affiliation(s)
- Jennifer J Kohler
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
| |
Collapse
|