151
|
Abstract
During global pandemics, the spread of information needs to be faster than the spread of the virus in order to ensure the health and safety of human populations worldwide. In our current crisis, the demand for SARS-CoV-2 drugs and vaccines highlights the importance of biological targets and their three-dimensional shape. In particular, structural biology as a field was poised to quickly respond to crises due to previous experience and expertise and because of its early adoption of open access practices.
Collapse
Affiliation(s)
- Sarah Kearns
- Program of Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
152
|
Ramlaul K, Palmer CM, Nakane T, Aylett CHS. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J Struct Biol 2020; 211:107545. [PMID: 32534144 PMCID: PMC7369633 DOI: 10.1016/j.jsb.2020.107545] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 01/31/2023]
Abstract
Single particle analysis has become a key structural biology technique. Experimental images are extremely noisy, and during iterative refinement it is possible to stably incorporate noise into the reconstruction. Such "over-fitting" can lead to misinterpretation of the structure and flawed biological results. Several strategies are routinely used to prevent over-fitting, the most common being independent refinement of two sides of a split dataset. In this study, we show that over-fitting remains an issue within regions of low local signal-to-noise, despite independent refinement of half datasets. We propose a modification of the refinement process through the application of a local signal-to-noise filter: SIDESPLITTER. We show that our approach can reduce over-fitting for both idealised and experimental data while maintaining independence between the two sides of a split refinement. SIDESPLITTER refinement leads to improved density, and can also lead to improvement of the final resolution in extreme cases where datasets are prone to severe over-fitting, such as small membrane proteins.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College Road, South Kensington, London SW7 2BB, United Kingdom
| | - Colin M Palmer
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Takanori Nakane
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Christopher H S Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Faculty of Medicine, Imperial College Road, South Kensington, London SW7 2BB, United Kingdom.
| |
Collapse
|
153
|
Zhou T, Tsybovsky Y, Olia AS, Gorman J, Rapp MA, Cerutti G, Chuang GY, Katsamba PS, Nazzari A, Sampson JM, Schon A, Wang PD, Bimela J, Shi W, Teng IT, Zhang B, Boyington JC, Sastry M, Stephens T, Stuckey J, Wang S, Friesner RA, Ho DD, Mascola JR, Shapiro L, Kwong PD. Cryo-EM Structures Delineate a pH-Dependent Switch that Mediates Endosomal Positioning of SARS-CoV-2 Spike Receptor-Binding Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32637958 DOI: 10.1101/2020.07.04.187989] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 spike employs mobile receptor-binding domains (RBDs) to engage the ACE2 receptor and to facilitate virus entry. Antibodies can engage RBD but some, such as CR3022, fail to inhibit entry despite nanomolar spike affinity. Here we show the SARS-CoV-2 spike to have low unfolding enthalpy at serological pH and up to 10-times more unfolding enthalpy at endosomal pH, where we observe significantly reduced CR3022 affinity. Cryo-EM structures -at serological and endosomal pH- delineated spike recognition of up to three ACE2 molecules, revealing RBD to freely adopt the 'up' conformation. In the absence of ACE2, single-RBD-up conformations dominated at pH 5.5, resolving into a locked all-down conformation at lower pH. Notably, a pH-dependent refolding region (residues 824-858) at the spike-interdomain interface displayed dramatic structural rearrangements and mediated RBD positioning and spike shedding of antibodies like CR3022. An endosomal mechanism involving spike-conformational change can thus facilitate immune evasion from RBD-'up'-recognizing antibody.
Collapse
|
154
|
Ortiz S, Stanisic L, Rodriguez BA, Rampp M, Hummer G, Cossio P. Validation tests for cryo-EM maps using an independent particle set. J Struct Biol X 2020; 4:100032. [PMID: 32743544 PMCID: PMC7385033 DOI: 10.1016/j.yjsbx.2020.100032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cryo-electron microscopy (cryo-EM) has revolutionized structural biology by providing 3D density maps of biomolecules at near-atomic resolution. However, map validation is still an open issue. Despite several efforts from the community, it is possible to overfit 3D maps to noisy data. Here, we develop a novel methodology that uses a small independent particle set (not used during the 3D refinement) to validate the maps. The main idea is to monitor how the map probability evolves over the control set during the 3D refinement. The method is complementary to the gold-standard procedure, which generates two reconstructions at each iteration. We low-pass filter the two reconstructions for different frequency cutoffs, and we calculate the probability of each filtered map given the control set. For high-quality maps, the probability should increase as a function of the frequency cutoff and the refinement iteration. We also compute the similarity between the densities of probability distributions of the two reconstructions. As higher frequencies are included, the distributions become more dissimilar. We optimized the BioEM package to perform these calculations, and tested it over systems ranging from quality data to pure noise. Our results show that with our methodology, it possible to discriminate datasets that are constructed from noise particles. We conclude that validation against a control particle set provides a powerful tool to assess the quality of cryo-EM maps.
Collapse
Affiliation(s)
- Sebastian Ortiz
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Luka Stanisic
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Boris A Rodriguez
- Grupo de Fósica Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Markus Rampp
- Max Planck Computing and Data Facility, 85748 Garching, Germany
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University, 60438 Frankfurt am Main, Germany
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
155
|
Yu X, Yi P, Hamilton RA, Shen H, Chen M, Foulds CE, Mancini MA, Ludtke SJ, Wang Z, O'Malley BW. Structural Insights of Transcriptionally Active, Full-Length Androgen Receptor Coactivator Complexes. Mol Cell 2020; 79:812-823.e4. [PMID: 32668201 DOI: 10.1016/j.molcel.2020.06.031] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 01/15/2023]
Abstract
Steroid receptors activate gene transcription by recruiting coactivators to initiate transcription of their target genes. For most nuclear receptors, the ligand-dependent activation function domain-2 (AF-2) is a primary contributor to the nuclear receptor (NR) transcriptional activity. In contrast to other steroid receptors, such as ERα, the activation function of androgen receptor (AR) is largely dependent on its ligand-independent AF-1 located in its N-terminal domain (NTD). It remains unclear why AR utilizes a different AF domain from other receptors despite that NRs share similar domain organizations. Here, we present cryoelectron microscopy (cryo-EM) structures of DNA-bound full-length AR and its complex structure with key coactivators, SRC-3 and p300. AR dimerization follows a unique head-to-head and tail-to-tail manner. Unlike ERα, AR directly contacts a single SRC-3 and p300. The AR NTD is the primary site for coactivator recruitment. The structures provide a basis for understanding assembly of the AR:coactivator complex and its domain contributions for coactivator assembly and transcriptional regulation.
Collapse
Affiliation(s)
- Xinzhe Yu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ping Yi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ross A Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Shen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Charles E Foulds
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Wang
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
156
|
Berman HM, Vallat B, Lawson CL. The data universe of structural biology. IUCRJ 2020; 7:630-638. [PMID: 32695409 PMCID: PMC7340255 DOI: 10.1107/s205225252000562x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 04/21/2020] [Indexed: 05/05/2023]
Abstract
The Protein Data Bank (PDB) has grown from a small data resource for crystallographers to a worldwide resource serving structural biology. The history of the growth of the PDB and the role that the community has played in developing standards and policies are described. This article also illustrates how other biophysics communities are collaborating with the worldwide PDB to create a network of interoperating data resources. This network will expand the capabilities of structural biology and enable the determination and archiving of increasingly complex structures.
Collapse
Affiliation(s)
- Helen M. Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Biological Sciences and Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
157
|
Joseph AP, Lagerstedt I, Jakobi A, Burnley T, Patwardhan A, Topf M, Winn M. Comparing Cryo-EM Reconstructions and Validating Atomic Model Fit Using Difference Maps. J Chem Inf Model 2020; 60:2552-2560. [PMID: 32043355 PMCID: PMC7254831 DOI: 10.1021/acs.jcim.9b01103] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryogenic electron microscopy (cryo-EM) is a powerful technique for determining structures of multiple conformational or compositional states of macromolecular assemblies involved in cellular processes. Recent technological developments have led to a leap in the resolution of many cryo-EM data sets, making atomic model building more common for data interpretation. We present a method for calculating differences between two cryo-EM maps or a map and a fitted atomic model. The proposed approach works by scaling the maps using amplitude matching in resolution shells. To account for variability in local resolution of cryo-EM data, we include a procedure for local amplitude scaling that enables appropriate scaling of local map contrast. The approach is implemented as a user-friendly tool in the CCP-EM software package. To obtain clean and interpretable differences, we propose a protocol involving steps to process the input maps and output differences. We demonstrate the utility of the method for identifying conformational and compositional differences including ligands. We also highlight the use of difference maps for evaluating atomic model fit in cryo-EM maps.
Collapse
Affiliation(s)
- Agnel Praveen Joseph
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ingvar Lagerstedt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Arjen Jakobi
- Kavli Institute of Nanoscience Delft (KIND), Department of Bionanoscienes, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Tom Burnley
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| | - Ardan Patwardhan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, Malet Street, London WC1E 7HX, United Kingdom
| | - Martyn Winn
- Scientific Computing Department, Science and Technology Facilities Council, Research Complex at Harwell, Didcot OX11 0FA, United Kingdom
| |
Collapse
|
158
|
Capsid Structure of a Marine Algal Virus of the Order Picornavirales. J Virol 2020; 94:JVI.01855-19. [PMID: 32024776 DOI: 10.1128/jvi.01855-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
The order Picornavirales includes viruses that infect different kinds of eukaryotes and that share similar properties. The capsid proteins (CPs) of viruses in the order that infect unicellular organisms, such as algae, presumably possess certain characteristics that have changed little over the course of evolution, and thus these viruses may resemble the Picornavirales ancestor in some respects. Herein, we present the capsid structure of Chaetoceros tenuissimus RNA virus type II (CtenRNAV-II) determined using cryo-electron microscopy at a resolution of 3.1 Å, the first alga virus belonging to the family Marnaviridae of the order Picornavirales A structural comparison to related invertebrate and vertebrate viruses revealed a unique surface loop of the major CP VP1 that had not been observed previously, and further, revealed that another VP1 loop obscures the so-called canyon, which is a host-receptor binding site for many of the mammalian Picornavirales viruses. VP2 has an N-terminal tail, which has previously been reported as a primordial feature of Picornavirales viruses. The above-mentioned and other critical structural features provide new insights on three long-standing theories about Picornavirales: (i) the canyon hypothesis, (ii) the primordial VP2 domain swap, and (iii) the hypothesis that alga Picornavirales viruses could share characteristics with the Picornavirales ancestor.IMPORTANCE Identifying the acquired structural traits in virus capsids is important for elucidating what functions are essential among viruses that infect different hosts. The Picornavirales viruses infect a broad spectrum of hosts, ranging from unicellular algae to insects and mammals and include many human pathogens. Those viruses that infect unicellular protists, such as algae, are likely to have undergone fewer structural changes during the course of evolution compared to those viruses that infect multicellular eukaryotes and thus still share some characteristics with the Picornavirales ancestor. This article describes the first atomic capsid structure of an alga Marnavirus, CtenRNAV-II. A comparison to capsid structures of the related invertebrate and vertebrate viruses identified a number of structural traits that have been functionally acquired or lost during the course of evolution. These observations provide new insights on past theories on the viability and evolution of Picornavirales viruses.
Collapse
|
159
|
Fang Q, Tang WC, Tao P, Mahalingam M, Fokine A, Rossmann MG, Rao VB. Structural morphing in a symmetry-mismatched viral vertex. Nat Commun 2020; 11:1713. [PMID: 32249784 PMCID: PMC7136217 DOI: 10.1038/s41467-020-15575-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022] Open
Abstract
Large biological structures are assembled from smaller, often symmetric, sub-structures. However, asymmetry among sub-structures is fundamentally important for biological function. An extreme form of asymmetry, a 12-fold-symmetric dodecameric portal complex inserted into a 5-fold-symmetric capsid vertex, is found in numerous icosahedral viruses, including tailed bacteriophages, herpesviruses, and archaeal viruses. This vertex is critical for driving capsid assembly, DNA packaging, tail attachment, and genome ejection. Here, we report the near-atomic in situ structure of the symmetry-mismatched portal vertex from bacteriophage T4. Remarkably, the local structure of portal morphs to compensate for symmetry-mismatch, forming similar interactions in different capsid environments while maintaining strict symmetry in the rest of the structure. This creates a unique and unusually dynamic symmetry-mismatched vertex that is central to building an infectious virion. In icosahedral viruses, a symmetry-mismatched portal vertex is assembled by inserting a 12-fold-symmetric portal complex into a 5-fold-symmetric capsid environment. Here, the authors report a near-atomic-resolution in situ cryo-electron microscopy structure of this symmetrically mismatched viral vertex from bacteriophage T4.
Collapse
Affiliation(s)
- Qianglin Fang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Wei-Chun Tang
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Pan Tao
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Marthandan Mahalingam
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Venigalla B Rao
- Department of Biology, The Catholic University of America, Washington, DC, 20064, USA.
| |
Collapse
|
160
|
Chen L, He J. Outlier Profiles of Atomic Structures Derived from X-ray Crystallography and from Cryo-Electron Microscopy. Molecules 2020; 25:E1540. [PMID: 32231015 PMCID: PMC7181022 DOI: 10.3390/molecules25071540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/16/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022] Open
Abstract
Background: As more protein atomic structures are determined from cryo-electron microscopy (cryo-EM) density maps, validation of such structures is an important task. Methods: We applied a histogram-based outlier score (HBOS) to six sets of cryo-EM atomic structures and five sets of X-ray atomic structures, including one derived from X-ray data with better than 1.5 Å resolution. Cryo-EM data sets contain structures released by December 2016 and those released between 2017 and 2019, derived from resolution ranges 0-4 Å and 4-6 Å respectively. Results: The distribution of HBOS values in five sets of X-ray structures show that HBOS is sensitive distinguishing sets of X-ray structures derived from different resolution ranges-higher than 1.5 Å, 1.5-2.0 Å, 2.0-2.5 Å, 2.5-3.0 Å, and 3.0-3.5 Å. The overall quality of cryo-EM structures is likely improved, as shown in a comparison of cryo-EM structures released before the end of 2016, those between 2017 and 2018, and those between 2018 and 2019. Our investigation shows that leucine (LEU) has a significantly higher rate of HBOS outliers than that of the reference data set (X-ray-1.5) and of other residue types in the cryo-EM data sets. HBOS was able to detect outliers for those residues that are currently marked as green in PDB validation reports. Conclusions: The HBOS profile of a dataset is a potential method to characterize the overall structural quality of the set. Residue LEU deserves special attention since it has a significantly higher HBOS outlier rate in sets of cryo-EM structures and those X-ray structures derived from X-ray data of lower than 2.5 Å resolutions. Most HBOS outlier residues from the EM-0-4-2019 set are located on loops for most types of residues.
Collapse
Affiliation(s)
- Lin Chen
- Department of Computer Science, Valdosta State University, 1500 N Patterson St, Valdosta, GA 31698, USA
| | - Jing He
- Department of Computer Science, Old Dominion University, 5115 Hampton Blvd, Norfolk, VA 23529, USA;
| |
Collapse
|
161
|
Rout MP, Sali A. Principles for Integrative Structural Biology Studies. Cell 2020; 177:1384-1403. [PMID: 31150619 DOI: 10.1016/j.cell.2019.05.016] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022]
Abstract
Integrative structure determination is a powerful approach to modeling the structures of biological systems based on data produced by multiple experimental and theoretical methods, with implications for our understanding of cellular biology and drug discovery. This Primer introduces the theory and methods of integrative approaches, emphasizing the kinds of data that can be effectively included in developing models and using the nuclear pore complex as an example to illustrate the practice and challenges involved. These guidelines are intended to aid the researcher in understanding and applying integrative structural methods to systems of their interest and thus take advantage of this rapidly evolving field.
Collapse
Affiliation(s)
- Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, Byers Hall, 1700 4th Street, Suite 503B, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
162
|
Carlino E. In-Line Holography in Transmission Electron Microscopy for the Atomic Resolution Imaging of Single Particle of Radiation-Sensitive Matter. MATERIALS 2020; 13:ma13061413. [PMID: 32245011 PMCID: PMC7142924 DOI: 10.3390/ma13061413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/19/2022]
Abstract
In this paper, for the first time it is shown how in-line holography in Transmission Electron Microscopy (TEM) enables the study of radiation-sensitive nanoparticles of organic and inorganic materials providing high-contrast holograms of single nanoparticles, while illuminating specimens with a density of current as low as 1–2 e−Å−2s−1. This provides a powerful method for true single-particle atomic resolution imaging and opens up new perspectives for the study of soft matter in biology and materials science. The approach is not limited to a particular class of TEM specimens, such as homogenous samples or samples specially designed for a particular TEM experiment, but has better application in the study of those specimens with differences in shape, chemical composition, crystallography, and orientation, which cannot be currently addressed at atomic resolution.
Collapse
Affiliation(s)
- Elvio Carlino
- Istituto per la Microelettronica ed i Microsistemi, Consiglio Nazionale delle Ricerche (CNR-IMM), Sezione di Lecce, Campus Universitario, via per Monteroni, 73100 Lecce, Italy
| |
Collapse
|
163
|
Structure of a paramyxovirus polymerase complex reveals a unique methyltransferase-CTD conformation. Proc Natl Acad Sci U S A 2020; 117:4931-4941. [PMID: 32075920 PMCID: PMC7060699 DOI: 10.1073/pnas.1919837117] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paramyxoviruses are enveloped, nonsegmented, negative-strand RNA viruses that cause a wide spectrum of human and animal diseases. The viral genome, packaged by the nucleoprotein (N), serves as a template for the polymerase complex, composed of the large protein (L) and the homo-tetrameric phosphoprotein (P). The ∼250-kDa L possesses all enzymatic activities necessary for its function but requires P in vivo. Structural information is available for individual P domains from different paramyxoviruses, but how P interacts with L and how that affects the activity of L is largely unknown due to the lack of high-resolution structures of this complex in this viral family. In this study we determined the structure of the L-P complex from parainfluenza virus 5 (PIV5) at 4.3-Å resolution using cryoelectron microscopy, as well as the oligomerization domain (OD) of P at 1.4-Å resolution using X-ray crystallography. P-OD associates with the RNA-dependent RNA polymerase domain of L and protrudes away from it, while the X domain of one chain of P is bound near the L nucleotide entry site. The methyltransferase (MTase) domain and the C-terminal domain (CTD) of L adopt a unique conformation, positioning the MTase active site immediately above the poly-ribonucleotidyltransferase domain and near the likely exit site for the product RNA 5' end. Our study reveals a potential mechanism that mononegavirus polymerases may employ to switch between transcription and genome replication. This knowledge will assist in the design and development of antivirals against paramyxoviruses.
Collapse
|
164
|
Han Y, Reyes AA, Malik S, He Y. Cryo-EM structure of SWI/SNF complex bound to a nucleosome. Nature 2020; 579:452-455. [PMID: 32188938 PMCID: PMC7319049 DOI: 10.1038/s41586-020-2087-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
The chromatin-remodelling complex SWI/SNF is highly conserved and has critical roles in various cellular processes, including transcription and DNA-damage repair1,2. It hydrolyses ATP to remodel chromatin structure by sliding and evicting histone octamers3-8, creating DNA regions that become accessible to other essential factors. However, our mechanistic understanding of the remodelling activity is hindered by the lack of a high-resolution structure of complexes from this family. Here we report the cryo-electron microscopy structure of Saccharomyces cerevisiae SWI/SNF bound to a nucleosome, at near-atomic resolution. In the structure, the actin-related protein (Arp) module is sandwiched between the ATPase and the rest of the complex, with the Snf2 helicase-SANT associated (HSA) domain connecting all modules. The body contains an assembly scaffold composed of conserved subunits Snf12 (also known as SMARCD or BAF60), Snf5 (also known as SMARCB1, BAF47 or INI1) and an asymmetric dimer of Swi3 (also known as SMARCC, BAF155 or BAF170). Another conserved subunit, Swi1 (also known as ARID1 or BAF250), resides in the core of SWI/SNF, acting as a molecular hub. We also observed interactions between Snf5 and the histones at the acidic patch, which could serve as an anchor during active DNA translocation. Our structure enables us to map and rationalize a subset of cancer-related mutations in the human SWI/SNF complex and to propose a model for how SWI/SNF recognizes and remodels the +1 nucleosome to generate nucleosome-depleted regions during gene activation9.
Collapse
Affiliation(s)
- Yan Han
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Alexis A Reyes
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, USA
| | - Sara Malik
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA. .,Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA. .,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
165
|
Poudyal I, Schmidt M, Schwander P. Single-particle imaging by x-ray free-electron lasers-How many snapshots are needed? STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:024102. [PMID: 32232074 PMCID: PMC7088463 DOI: 10.1063/1.5144516] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/02/2020] [Indexed: 05/19/2023]
Abstract
X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction information from a single biological macromolecule. This is because XFELs can generate extremely intense x-ray pulses that are so short that diffraction data can be collected before the sample is destroyed. By collecting a sufficient number of single-particle diffraction patterns, the three-dimensional electron density of a molecule can be reconstructed ab initio. The quality of the reconstruction depends largely on the number of patterns collected at the experiment. This paper provides an estimate of the number of diffraction patterns required to reconstruct the electron density at a targeted spatial resolution. This estimate is verified by simulations for realistic x-ray fluences, repetition rates, and experimental conditions available at modern XFELs. Employing the bacterial phytochrome as a model system, we demonstrate that sub-nanometer resolution is within reach.
Collapse
Affiliation(s)
| | | | - P. Schwander
- Author to whom correspondence should be addressed:
| |
Collapse
|
166
|
Abstract
Cross-validation is used to determine the validity of a model on unseen data by assessing if the model is overfitted to noise. It is widely used in many fields, from artificial intelligence to structural biology in X-ray crystallography and nuclear magnetic resonance. Although there are concerns of map overfitting in cryo-electron microscopy (cryo-EM), cross-validation is rarely used. The problem is that establishing a performance metric of the maps over unseen data (given by 2D-projection images) is difficult due to the low signal-to-noise ratios in the individual particles. Here, I present recent advances for cryo-EM map reconstruction. I highlight that the gold-standard procedure can fail to detect map overfitting in certain cases, showing the necessity of assessing the map quality on unbiased data. Finally, I describe the challenges and advantages of developing a robust cross-validation methodology for cryo-EM.
Collapse
Affiliation(s)
- Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.,Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
167
|
Kyrilis FL, Meister A, Kastritis PL. Integrative biology of native cell extracts: a new era for structural characterization of life processes. Biol Chem 2020; 400:831-846. [PMID: 31091193 DOI: 10.1515/hsz-2018-0445] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/29/2019] [Indexed: 01/04/2023]
Abstract
Advances in electron microscopy have provided unprecedented access to the structural characterization of large, flexible and heterogeneous complexes. Until recently, cryo-electron microscopy (cryo-EM) has been applied to understand molecular organization in either highly purified, isolated biomolecules or in situ. An emerging field is developing, bridging the gap between the two approaches, and focuses on studying molecular organization in native cell extracts. This field has demonstrated its potential by resolving the structure of fungal fatty acid synthase (FAS) at 4.7 Å [Fourier shell correlation (FSC) = 0.143]; FAS was not only less than 50% enriched, but also retained higher-order binders, previously unknown. Although controversial in the sense that the lysis step might introduce artifacts, cell extracts preserve aspects of cellular function. In addition, cell extracts are accessible, besides cryo-EM, to modern proteomic methods, chemical cross-linking, network biology and biophysical modeling. We expect that automation in imaging cell extracts, along with the integration of molecular/cell biology approaches, will provide remarkable achievements in the study of closer-to-life biomolecular states of pronounced biotechnological and medical importance. Such steps will, eventually, bring us a step closer to the biophysical description of cellular processes in an integrative, holistic approach.
Collapse
Affiliation(s)
- Fotis L Kyrilis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany
| | - Annette Meister
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3a, D-06120 Halle/Saale, Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle/Saale, Germany.,Biozentrum, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120 Halle/Saale, Germany
| |
Collapse
|
168
|
Wang Z, Hu W, Zheng H. Pathogenic siderophore ABC importer YbtPQ adopts a surprising fold of exporter. SCIENCE ADVANCES 2020; 6:eaay7997. [PMID: 32076651 PMCID: PMC7002159 DOI: 10.1126/sciadv.aay7997] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/22/2019] [Indexed: 05/05/2023]
Abstract
To fight for essential metal ions, human pathogens secrete virulence-associated siderophores and retake the metal-chelated siderophores through a subfamily of adenosine triphosphate (ATP)-binding cassette (ABC) importer, whose molecular mechanisms are completely unknown. We have determined multiple structures of the yersiniabactin importer YbtPQ from uropathogenic Escherichia coli (UPEC) at inward-open conformation in both apo and substrate-bound states by cryo-electron microscopy. YbtPQ does not adopt any known fold of ABC importers but surprisingly adopts the fold of type IV ABC exporters. To our knowledge, it is the first time an exporter fold of ABC importer has been reported. We have also observed two unique features in YbtPQ: unwinding of a transmembrane helix in YbtP upon substrate release and tightly associated nucleotide-binding domains without bound nucleotides. Together, our study suggests that siderophore ABC importers have a distinct transport mechanism and should be classified as a separate subfamily of ABC importers.
Collapse
|
169
|
Moscovich A, Halevi A, Andén J, Singer A. Cryo-EM reconstruction of continuous heterogeneity by Laplacian spectral volumes. INVERSE PROBLEMS 2020; 36:024003. [PMID: 32394996 PMCID: PMC7213598 DOI: 10.1088/1361-6420/ab4f55] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Single-particle electron cryomicroscopy is an essential tool for high-resolution 3D reconstruction of proteins and other biological macromolecules. An important challenge in cryo-EM is the reconstruction of non-rigid molecules with parts that move and deform. Traditional reconstruction methods fail in these cases, resulting in smeared reconstructions of the moving parts. This poses a major obstacle for structural biologists, who need high-resolution reconstructions of entire macromolecules, moving parts included. To address this challenge, we present a new method for the reconstruction of macromolecules exhibiting continuous heterogeneity. The proposed method uses projection images from multiple viewing directions to construct a graph Laplacian through which the manifold of three-dimensional conformations is analyzed. The 3D molecular structures are then expanded in a basis of Laplacian eigenvectors, using a novel generalized tomographic reconstruction algorithm to compute the expansion coefficients. These coefficients, which we name spectral volumes, provide a high-resolution visualization of the molecular dynamics. We provide a theoretical analysis and evaluate the method empirically on several simulated data sets.
Collapse
Affiliation(s)
- Amit Moscovich
- Program in Applied & Computational Mathematics, Princeton University, Princeton, NJ
| | - Amit Halevi
- Program in Applied & Computational Mathematics, Princeton University, Princeton, NJ
| | - Joakim Andén
- Center for Computational Mathematics, Flatiron Institute, New York, NY
| | - Amit Singer
- Program in Applied & Computational Mathematics, Princeton University, Princeton, NJ
- Department of Mathematics, Princeton University, Princeton, NJ
| |
Collapse
|
170
|
Vilas JL, Vargas J, Martinez M, Ramirez-Aportela E, Melero R, Jimenez-Moreno A, Garduño E, Conesa P, Marabini R, Maluenda D, Carazo JM, Sorzano COS. Re-examining the spectra of macromolecules. Current practice of spectral quasi B-factor flattening. J Struct Biol 2020; 209:107447. [PMID: 31911170 DOI: 10.1016/j.jsb.2020.107447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 11/24/2022]
Abstract
The analysis of structure factors in 3D cryo-EM Coulomb potential maps and their "enhancement" at the end of the reconstruction process is a well-established practice, normally referred to as sharpening. The aim is to increase contrast and, in this way, to help tracing the atomic model. The most common way to accomplish this enhancement is by means of the so-called B-factor correction, which applies a global filter to boost high frequencies with some dampening considerations related to noise amplification. The results are maps with a better visual aspect and a quasiflat spectrum at medium and high frequencies. This practice is so widespread that most map depositions in the Electron Microscopy Data Base (EMDB) only contain sharpened maps. Here, the use in cryoEM of global B-factor corrections is theoretically and experimentally analyzed. Results clearly illustrate that protein spectra present a falloff. Thus, spectral quasi-flattening may produce protein spectra with distortions when compared with experimental ones, this fact, combined with the practice of reporting only sharpened maps, generates a sub-optimal situation in terms of data preservation, reuse and reproducibility. Now that the field is more advanced, we put forward two suggestions: (1) to use methods which keep more faithfully the original experimental signal properties of macromolecules when "enhancing" the map, and (2) to further stress the need to deposit the original experimental maps without any postprocessing or sharpening, not only the enhanced maps. In the absence of access to these original maps data is lost, preventing their future analysis with new methods.
Collapse
Affiliation(s)
- J L Vilas
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J Vargas
- Dept. Anatomy and Cell Biology, McGill Univ., Montreal, Canada
| | - M Martinez
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - E Ramirez-Aportela
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - R Melero
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - A Jimenez-Moreno
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - E Garduño
- Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - P Conesa
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - R Marabini
- Escuela Politecnica Superior, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - D Maluenda
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - J M Carazo
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain
| | - C O S Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnologia (CNB-CSIC), Darwin, 3, Campus Universidad Autonoma, 28049 Cantoblanco, Madrid, Spain; Univ. San Pablo - CEU, Campus Urb. Monteprincipe, 28668 Boadilla del Monte, Madrid, Spain.
| |
Collapse
|
171
|
Lawson CL, Berman HM, Chiu W. Evolving data standards for cryo-EM structures. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:014701. [PMID: 32002441 PMCID: PMC6980868 DOI: 10.1063/1.5138589] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/07/2020] [Indexed: 05/04/2023]
Abstract
Electron cryo-microscopy (cryo-EM) is increasingly being used to determine 3D structures of a broad spectrum of biological specimens from molecules to cells. Anticipating this progress in the early 2000s, an international collaboration of scientists with expertise in both cryo-EM and structure data archiving was established (EMDataResource, previously known as EMDataBank). The major goals of the collaboration have been twofold: to develop the necessary infrastructure for archiving cryo-EM-derived density maps and models, and to promote development of cryo-EM structure validation standards. We describe how cryo-EM data archiving and validation have been developed and jointly coordinated for the Electron Microscopy Data Bank and Protein Data Bank archives over the past two decades, as well as the impact of evolving technology on data standards. Just as for X-ray crystallography and nuclear magnetic resonance, engaging the scientific community via workshops and challenging activities has played a central role in developing recommendations and requirements for the cryo-EM structure data archives.
Collapse
Affiliation(s)
- Catherine L. Lawson
- Institute for Quantitative Biomedicine and Research Collaboratory for Structural Bioinformatics, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
172
|
Ayyer K, Morgan AJ, Aquila A, DeMirci H, Hogue BG, Kirian RA, Xavier PL, Yoon CH, Chapman HN, Barty A. Low-signal limit of X-ray single particle diffractive imaging. OPTICS EXPRESS 2019; 27:37816-37833. [PMID: 31878556 DOI: 10.1364/oe.27.037816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
An outstanding question in X-ray single particle imaging experiments has been the feasibility of imaging sub 10-nm-sized biomolecules under realistic experimental conditions where very few photons are expected to be measured in a single snapshot and instrument background may be significant relative to particle scattering. While analyses of simulated data have shown that the determination of an average image should be feasible using Bayesian methods such as the EMC algorithm, this has yet to be demonstrated using experimental data containing realistic non-isotropic instrument background, sample variability and other experimental factors. In this work, we show that the orientation and phase retrieval steps work at photon counts diluted to the signal levels one expects from smaller molecules or with weaker pulses, using data from experimental measurements of 60-nm PR772 viruses. Even when the signal is reduced to a fraction as little as 1/256, the virus electron density determined using ab initio phasing is of almost the same quality as the high-signal data. However, we are still limited by the total number of patterns collected, which may soon be mitigated by the advent of high repetition-rate sources like the European XFEL and LCLS-II.
Collapse
|
173
|
Jiang D, Shi H, Tonggu L, Gamal El-Din TM, Lenaeus MJ, Zhao Y, Yoshioka C, Zheng N, Catterall WA. Structure of the Cardiac Sodium Channel. Cell 2019; 180:122-134.e10. [PMID: 31866066 DOI: 10.1016/j.cell.2019.11.041] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/18/2019] [Accepted: 11/27/2019] [Indexed: 12/19/2022]
Abstract
Voltage-gated sodium channel Nav1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of NaV1.5 at 3.2-3.5 Å resolution. NaV1.5 is distinguished from other sodium channels by a unique glycosyl moiety and loss of disulfide-bonding capability at the NaVβ subunit-interaction sites. The antiarrhythmic drug flecainide specifically targets the central cavity of the pore. The voltage sensors are partially activated, and the fast-inactivation gate is partially closed. Activation of the voltage sensor of Domain III allows binding of the isoleucine-phenylalanine-methionine (IFM) motif to the inactivation-gate receptor. Asp and Ala, in the selectivity motif DEKA, line the walls of the ion-selectivity filter, whereas Glu and Lys are in positions to accept and release Na+ ions via a charge-delocalization network. Arrhythmia mutation sites undergo large translocations during gating, providing a potential mechanism for pathogenic effects. Our results provide detailed insights into Nav1.5 structure, pharmacology, activation, inactivation, ion selectivity, and arrhythmias.
Collapse
Affiliation(s)
- Daohua Jiang
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Hui Shi
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Lenaeus
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yan Zhao
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Craig Yoshioka
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
174
|
Xu J, Cui K, Shen L, Shi J, Li L, You L, Fang C, Zhao G, Feng Y, Yang B, Zhang Y. Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor. eLife 2019; 8:50928. [PMID: 31846423 PMCID: PMC6917491 DOI: 10.7554/elife.50928] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022] Open
Abstract
σS is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of σS-mediated transcription requires a σS-specific activator, Crl. In this study, we determined a 3.80 Å cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli σS-RNA polymerase (σS-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of σS (σS2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within σS2 to promote the assembly of the σS-RNAP holoenzyme and also to facilitate formation of an RNA polymerase–promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.
Collapse
Affiliation(s)
- Juncao Xu
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Kaijie Cui
- University of Chinese Academy of Sciences, Beijing, China.,Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Liqiang Shen
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jing Shi
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingting Li
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Linlin You
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengli Fang
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China.,Department of Microbiology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, China.,State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai, China.,Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology,CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
175
|
Han H, Schubert HL, McCullough J, Monroe N, Purdy MD, Yeager M, Sundquist WI, Hill CP. Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. J Biol Chem 2019; 295:435-443. [PMID: 31767681 DOI: 10.1074/jbc.ac119.009890] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/11/2019] [Indexed: 11/06/2022] Open
Abstract
Many members of the AAA+ ATPase family function as hexamers that unfold their protein substrates. These AAA unfoldases include spastin, which plays a critical role in the architecture of eukaryotic cells by driving the remodeling and severing of microtubules, which are cytoskeletal polymers of tubulin subunits. Here, we demonstrate that a human spastin binds weakly to unmodified peptides from the C-terminal segment of human tubulin α1A/B. A peptide comprising alternating glutamate and tyrosine residues binds more tightly, which is consistent with the known importance of glutamylation for spastin microtubule severing activity. A cryo-EM structure of the spastin-peptide complex at 4.2 Å resolution revealed an asymmetric hexamer in which five spastin subunits adopt a helical, spiral staircase configuration that binds the peptide within the central pore, whereas the sixth subunit of the hexamer is displaced from the peptide/substrate, as if transitioning from one end of the helix to the other. This configuration differs from a recently published structure of spastin from Drosophila melanogaster, which forms a six-subunit spiral without a transitioning subunit. Our structure resembles other recently reported AAA unfoldases, including the meiotic clade relative Vps4, and supports a model in which spastin utilizes a hand-over-hand mechanism of tubulin translocation and microtubule remodeling.
Collapse
Affiliation(s)
- Han Han
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Nicole Monroe
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Michael D Purdy
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Mark Yeager
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22908; Department of Medicine, Division of Cardiovascular Medicine, University of Virginia School of Medicine, Charlottesville, Virginia 22908; Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia 22908; Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Wesley I Sundquist
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112.
| | - Christopher P Hill
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112.
| |
Collapse
|
176
|
Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, DiMaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, Montelione GT, Phillips GN, Prisner T, Rappsilber J, Schriemer DC, Schwede T, Seidel CAM, Strutzenberg TS, Svergun DI, Tajkhorshid E, Trewhella J, Vallat B, Velankar S, Vuister GW, Webb B, Westbrook JD, White KL, Sali A. Federating Structural Models and Data: Outcomes from A Workshop on Archiving Integrative Structures. Structure 2019; 27:1745-1759. [PMID: 31780431 DOI: 10.1016/j.str.2019.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA.
| | - Paul D Adams
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720-8235, USA; Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandre A Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5447, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Margaret J Gabanyi
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Juergen Haas
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Genji Kurisu
- Protein Data Bank Japan (PDBj), Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - John L Markley
- BioMagResBank (BMRB), Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytech Institute, Troy, NY 12180, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, Scotland
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Torsten Schwede
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Benjamin Webb
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kate L White
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
177
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
178
|
A complete data processing workflow for cryo-ET and subtomogram averaging. Nat Methods 2019; 16:1161-1168. [PMID: 31611690 PMCID: PMC6858567 DOI: 10.1038/s41592-019-0591-8] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 09/04/2019] [Indexed: 02/06/2023]
Abstract
Electron cryotomography (CryoET) is currently the only method capable of visualizing cells in 3D at nanometer resolutions. While modern instruments produce massive amounts of tomography data containing extremely rich structural information, the data processing is very labor intensive and results are often limited by the skills of the personnel rather than the data. We present an integrated workflow that covers the entire tomography data processing pipeline, from automated tilt series alignment to subnanometer resolution subtomogram averaging. Resolution enhancement is made possible through the use of per-particle per-tilt CTF correction and alignment. The workflow greatly reduces human effort and increases throughput and is capable of determining protein structures at state-of-the-art resolutions for both purified macromolecules and cells.
Collapse
|
179
|
Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy. Proc Natl Acad Sci U S A 2019; 116:21037-21046. [PMID: 31578255 DOI: 10.1073/pnas.1909645116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The large (90-nm) icosahedral capsid of bacteriophage T5 is composed of 775 copies of the major capsid protein (mcp) together with portal, protease, and decoration proteins. Its assembly is a regulated process that involves several intermediates, including a thick-walled round precursor prohead that expands as the viral DNA is packaged to yield a thin-walled and angular mature capsid. We investigated capsid maturation by comparing cryoelectron microscopy (cryo-EM) structures of the prohead, the empty expanded capsid both with and without decoration protein, and the virion capsid at a resolution of 3.8 Å for the latter. We detail the molecular structure of the mcp, its complex pattern of interactions, and their evolution during maturation. The bacteriophage T5 mcp is a variant of the canonical HK97-fold with a high level of plasticity that allows for the precise assembly of a giant macromolecule and the adaptability needed to interact with other proteins and the packaged DNA.
Collapse
|
180
|
Chen L, He J. A Histogram-based Outlier Profile for Atomic Structures Derived from Cryo-Electron Microscopy. ACM-BCB ... ... : THE ... ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE. ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND BIOMEDICINE 2019; 2019:586-591. [PMID: 35838364 PMCID: PMC9279010 DOI: 10.1145/3307339.3343865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As more atomic structures are determined from cryo-electron microscopy (cryo-EM) density maps, validation of such structures is an important task. We report findings after analyzing the change of cryo-EM structures in a comparison between those released by December 2016 and those released between 2017 and 2019. The cryo-EM models created from density maps with resolution better than 6 Å were divided into six data sets. A histogram-based outlier score (HBOS) was implemented and validation reports were collected from the Protein Data Bank. The results suggest that the overall quality of EM structures released after December 2016 is better than that of structures released before 2017. The conformation qualities of most residue types might have been improved, except for Leucine, Phenylalanine, and Serine in high-resolution datasets (higher than 4 Å). We observe that structures solved from 0-4 Å resolution density maps have an almost identical HBOS profile as that of structures derived from density maps with 4-6 Å resolution.
Collapse
Affiliation(s)
- Lin Chen
- Department of Computer Science, Valdosta State University, Valdosta, GA 31698
| | - Jing He
- Department of Computer Science, Old Dominion University, Norfolk, VA 23529
| |
Collapse
|
181
|
Lahiri I, Xu J, Han BG, Oh J, Wang D, DiMaio F, Leschziner AE. 3.1 Å structure of yeast RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion solved using streptavidin affinity grids. J Struct Biol 2019; 207:270-278. [PMID: 31200019 PMCID: PMC6711803 DOI: 10.1016/j.jsb.2019.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023]
Abstract
Despite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface. Recently, this approach was successfully used to solve a high-resolution structure of a test sample, a bacterial ribosome. However, whether this method can be used for samples where interaction with the air-water interface has been shown to be problematic remains to be determined. Here we report a 3.1 Å structure of an RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion (Pol II EC(CPD)) solved using streptavidin grids. Our previous attempt to solve this structure using conventional sample preparation methods resulted in a poor quality cryo-EM map due to Pol II EC(CPD)'s adopting a strong preferred orientation. Imaging the same sample on streptavidin grids improved the angular distribution of its view, resulting in a high-resolution structure. This work shows that streptavidin affinity grids can be used to address known challenges posed by the interaction with the air-water interface.
Collapse
Affiliation(s)
- Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Bong Gyoon Han
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | - Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA; Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
182
|
Wisedchaisri G, Tonggu L, McCord E, Gamal El-Din TM, Wang L, Zheng N, Catterall WA. Resting-State Structure and Gating Mechanism of a Voltage-Gated Sodium Channel. Cell 2019; 178:993-1003.e12. [PMID: 31353218 PMCID: PMC6688928 DOI: 10.1016/j.cell.2019.06.031] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/06/2019] [Accepted: 06/21/2019] [Indexed: 11/25/2022]
Abstract
Voltage-gated sodium (NaV) channels initiate action potentials in nerve, muscle, and other electrically excitable cells. The structural basis of voltage gating is uncertain because the resting state exists only at deeply negative membrane potentials. To stabilize the resting conformation, we inserted voltage-shifting mutations and introduced a disulfide crosslink in the VS of the ancestral bacterial sodium channel NaVAb. Here, we present a cryo-EM structure of the resting state and a complete voltage-dependent gating mechanism. The S4 segment of the VS is drawn intracellularly, with three gating charges passing through the transmembrane electric field. This movement forms an elbow connecting S4 to the S4-S5 linker, tightens the collar around the S6 activation gate, and prevents its opening. Our structure supports the classical "sliding helix" mechanism of voltage sensing and provides a complete gating mechanism for voltage sensor function, pore opening, and activation-gate closure based on high-resolution structures of a single sodium channel protein.
Collapse
Affiliation(s)
| | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Eedann McCord
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | | | - Liguo Wang
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - William A Catterall
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
183
|
Chen L, Baker B, Santos E, Sheep M, Daftarian D. A Visualization Tool for Cryo-EM Protein Validation with an Unsupervised Machine Learning Model in Chimera Platform. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E86. [PMID: 31390767 PMCID: PMC6789601 DOI: 10.3390/medicines6030086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 11/22/2022]
Abstract
Background: Cryo-electron microscopy (cryo-EM) has become a major technique for protein structure determination. However, due to the low quality of cryo-EM density maps, many protein structures derived from cryo-EM contain outliers introduced during the modeling process. The current protein model validation system lacks identification features for cryo-EM proteins making it not enough to identify outliers in cryo-EM proteins. Methods: This study introduces an efficient unsupervised outlier detection model for validating protein models built from cryo-EM technique. The current model uses a high-resolution X-ray dataset (<1.5 Å) as the reference dataset. The distal block distance, side-chain length, phi, psi, and first chi angle of the residues in the reference dataset are collected and saved as a database of the histogram-based outlier score (HBOS). The HBOS value of the residues in target cryo-EM proteins can be read from this HBOS database. Results: Protein residues with a HBOS value greater than ten are labeled as outliers by default. Four datasets containing proteins derived from cryo-EM density maps were tested with this probabilistic anomaly detection model. Conclusions: According to the proposed model, a visualization assistant tool was designed for Chimera, a protein visualization platform.
Collapse
Affiliation(s)
- Lin Chen
- Department of Computer Science, Valdosta State University, Valdosta, GA 31693, USA.
| | - Brandon Baker
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Eduardo Santos
- Department of Natural Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Michell Sheep
- Department of Mathematics & Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| | - Darius Daftarian
- Department of Mathematics & Computer Science, Elizabeth City State University, Elizabeth City, NC 27909, USA
| |
Collapse
|
184
|
Structural basis for transcription antitermination at bacterial intrinsic terminator. Nat Commun 2019; 10:3048. [PMID: 31296855 PMCID: PMC6624301 DOI: 10.1038/s41467-019-10955-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/29/2019] [Indexed: 01/25/2023] Open
Abstract
Bacteriophages typically hijack the host bacterial transcriptional machinery to regulate their own gene expression and that of the host bacteria. The structural basis for bacteriophage protein-mediated transcription regulation—in particular transcription antitermination—is largely unknown. Here we report the 3.4 Å and 4.0 Å cryo-EM structures of two bacterial transcription elongation complexes (P7-NusA-TEC and P7-TEC) comprising the bacteriophage protein P7, a master host-transcription regulator encoded by bacteriophage Xp10 of the rice pathogen Xanthomonas oryzae pv. Oryzae (Xoo) and discuss the mechanisms by which P7 modulates the host bacterial RNAP. The structures together with biochemical evidence demonstrate that P7 prevents transcription termination by plugging up the RNAP RNA-exit channel and impeding RNA-hairpin formation at the intrinsic terminator. Moreover, P7 inhibits transcription initiation by restraining RNAP-clamp motions. Our study reveals the structural basis for transcription antitermination by phage proteins and provides insights into bacterial transcription regulation. Bacteriophages reprogram the host transcriptional machinery. Here the authors provide insights into the mechanism of how bacteriophages regulate host transcription by determining the cryo-EM structures of two bacterial transcription elongation complexes bound with the bacteriophage master host-transcription regulator protein P7.
Collapse
|
185
|
Thomas WC, Brooks FP, Burnim AA, Bacik JP, Stubbe J, Kaelber JT, Chen JZ, Ando N. Convergent allostery in ribonucleotide reductase. Nat Commun 2019; 10:2653. [PMID: 31201319 PMCID: PMC6572854 DOI: 10.1038/s41467-019-10568-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/20/2019] [Indexed: 02/04/2023] Open
Abstract
Ribonucleotide reductases (RNRs) use a conserved radical-based mechanism to catalyze the conversion of ribonucleotides to deoxyribonucleotides. Within the RNR family, class Ib RNRs are notable for being largely restricted to bacteria, including many pathogens, and for lacking an evolutionarily mobile ATP-cone domain that allosterically controls overall activity. In this study, we report the emergence of a distinct and unexpected mechanism of activity regulation in the sole RNR of the model organism Bacillus subtilis. Using a hypothesis-driven structural approach that combines the strengths of small-angle X-ray scattering (SAXS), crystallography, and cryo-electron microscopy (cryo-EM), we describe the reversible interconversion of six unique structures, including a flexible active tetramer and two inhibited helical filaments. These structures reveal the conformational gymnastics necessary for RNR activity and the molecular basis for its control via an evolutionarily convergent form of allostery. Ribonucleotide reductase (RNR) catalyzes the conversion of ribonucleotides to deoxyribonucleotides, which is an essential step in DNA synthesis. Here the authors use small-angle X-ray scattering, X-ray crystallography, and cryo-electron microscopy to capture active and inactive forms of the Bacillus subtilis RNR and provide mechanistic insights into a convergent form of allosteric regulation.
Collapse
Affiliation(s)
- William C Thomas
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - F Phil Brooks
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Audrey A Burnim
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - John-Paul Bacik
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA.,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - JoAnne Stubbe
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jason T Kaelber
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - James Z Chen
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nozomi Ando
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA. .,Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
186
|
Kandiah E, Giraud T, de Maria Antolinos A, Dobias F, Effantin G, Flot D, Hons M, Schoehn G, Susini J, Svensson O, Leonard GA, Mueller-Dieckmann C. CM01: a facility for cryo-electron microscopy at the European Synchrotron. Acta Crystallogr D Struct Biol 2019; 75:528-535. [PMID: 31205015 PMCID: PMC6580229 DOI: 10.1107/s2059798319006880] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/13/2019] [Indexed: 12/31/2022] Open
Abstract
Recent improvements in direct electron detectors, microscope technology and software provided the stimulus for a `quantum leap' in the application of cryo-electron microscopy in structural biology, and many national and international centres have since been created in order to exploit this. Here, a new facility for cryo-electron microscopy focused on single-particle reconstruction of biological macromolecules that has been commissioned at the European Synchrotron Radiation Facility (ESRF) is presented. The facility is operated by a consortium of institutes co-located on the European Photon and Neutron Campus and is managed in a similar fashion to a synchrotron X-ray beamline. It has been open to the ESRF structural biology user community since November 2017 and will remain open during the 2019 ESRF-EBS shutdown.
Collapse
Affiliation(s)
- Eaazhisai Kandiah
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Thierry Giraud
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | | - Fabien Dobias
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Gregory Effantin
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - David Flot
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Michael Hons
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Guy Schoehn
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CNRS, CEA, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Jean Susini
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Olof Svensson
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | - Gordon A. Leonard
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38042 Grenoble, France
| | | |
Collapse
|
187
|
Bu W, Joyce MG, Nguyen H, Banh DV, Aguilar F, Tariq Z, Yap ML, Tsujimura Y, Gillespie RA, Tsybovsky Y, Andrews SF, Narpala SR, McDermott AB, Rossmann MG, Yasutomi Y, Nabel GJ, Kanekiyo M, Cohen JI. Immunization with Components of the Viral Fusion Apparatus Elicits Antibodies That Neutralize Epstein-Barr Virus in B Cells and Epithelial Cells. Immunity 2019; 50:1305-1316.e6. [PMID: 30979688 PMCID: PMC6660903 DOI: 10.1016/j.immuni.2019.03.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/16/2019] [Accepted: 03/12/2019] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with epithelial-cell cancers and B cell lymphomas. An effective EBV vaccine is not available. We found that antibodies to the EBV glycoprotein gH/gL complex were the principal components in human plasma that neutralized infection of epithelial cells and that antibodies to gH/gL and gp42 contributed to B cell neutralization. Immunization of mice and nonhuman primates with nanoparticle vaccines that displayed components of the viral-fusion machinery EBV gH/gL or gH/gL/gp42 elicited antibodies that potently neutralized both epithelial-cell and B cell infection. Immune serum from nonhuman primates inhibited EBV-glycoprotein-mediated fusion of epithelial cells and B cells and targeted an epitope critical for virus-cell fusion. Therefore, unlike the leading EBV gp350 vaccine candidate, which only protects B cells from infection, these EBV nanoparticle vaccines elicit antibodies that inhibit the virus-fusion apparatus and provide cell-type-independent protection from virus infection.
Collapse
Affiliation(s)
- Wei Bu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - M Gordon Joyce
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hanh Nguyen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dalton V Banh
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fiona Aguilar
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zeshan Tariq
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Moh Lan Yap
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Present address: Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Rebecca A Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Advanced Research Technology Facility, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Sarah F Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandeep R Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Adrian B McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Gary J Nabel
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
188
|
Eng ET, Kopylov M, Negro CJ, Dallaykan S, Rice WJ, Jordan KD, Kelley K, Carragher B, Potter CS. Reducing cryoEM file storage using lossy image formats. J Struct Biol 2019; 207:49-55. [PMID: 31121317 DOI: 10.1016/j.jsb.2019.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 10/26/2022]
Abstract
Recent advances in instrumentation and software for cryoEM have increased the applicability and utility of this method. High levels of automation and faster data acquisition rates require hard decisions to be made regarding data retention. Here we investigate the efficacy of data compression applied to aligned summed movie files. Surprisingly, these images can be compressed using a standard lossy method that reduces file storage by 90-95% and yet can still be processed to provide sub-2 Å reconstructed maps. We do not advocate this as an archival method, but it may provide a useful means for retaining images as an historical record, especially at large facilities.
Collapse
Affiliation(s)
- Edward T Eng
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Mykhailo Kopylov
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Carl J Negro
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Sarkis Dallaykan
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - William J Rice
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Kelsey D Jordan
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Kotaro Kelley
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, 89 Convent Ave, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
189
|
Serna M. Hands on Methods for High Resolution Cryo-Electron Microscopy Structures of Heterogeneous Macromolecular Complexes. Front Mol Biosci 2019; 6:33. [PMID: 31157234 PMCID: PMC6529575 DOI: 10.3389/fmolb.2019.00033] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 01/23/2023] Open
Abstract
Electron microscopy of frozen hydrated samples (cryo-EM) is a powerful structural technique that allows the direct study of functional macromolecular complexes in an almost physiological environment. Protein macromolecular complexes are dynamic structures that usually hold together by an intricate network of protein-protein interactions that can be weak and transient. Moreover, a standard feature of many of these complexes is that they behave as nanomachines able to undergo functionally relevant conformational changes in one or several complex components. Among all the other main structural biology techniques, only cryo-EM has the potential of successfully dealing at the same time with both sample heterogeneity and inherent flexibility. The cryo-EM field is currently undergoing a revolution thanks to groundbreaking technical developments that have brought within our reach the possibility of solving the structure of biological complexes at atomic resolution. These technical developments have been mostly focused on new direct electron detector technology and improved sample preparation methods leading to better image quality. This fact has in turn required the development of new and better image processing algorithms to make the most of the higher quality data. The aim of this review is to provide a brief overview of some reported examples of single particle analysis strategies designed to find different conformational and compositional states within target macromolecular complex and specifically to deal with it to reach higher resolution information. Different image processing methodologies specifically aimed to symmetric or pseudo-symmetric protein complexes will also be discussed.
Collapse
Affiliation(s)
- Marina Serna
- Structural Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
190
|
Newcomer RL, Schrad JR, Gilcrease EB, Casjens SR, Feig M, Teschke CM, Alexandrescu AT, Parent KN. The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy. eLife 2019; 8:e45345. [PMID: 30945633 PMCID: PMC6449081 DOI: 10.7554/elife.45345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/20/2019] [Indexed: 12/15/2022] Open
Abstract
The major coat proteins of dsDNA tailed phages (order Caudovirales) and herpesviruses form capsids by a mechanism that includes active packaging of the dsDNA genome into a precursor procapsid, followed by expansion and stabilization of the capsid. These viruses have evolved diverse strategies to fortify their capsids, such as non-covalent binding of auxiliary 'decoration' (Dec) proteins. The Dec protein from the P22-like phage L has a highly unusual binding strategy that distinguishes between nearly identical three-fold and quasi-three-fold sites of the icosahedral capsid. Cryo-electron microscopy and three-dimensional image reconstruction were employed to determine the structure of native phage L particles. NMR was used to determine the structure/dynamics of Dec in solution. The NMR structure and the cryo-EM density envelope were combined to build a model of the capsid-bound Dec trimer. Key regions that modulate the binding interface were verified by site-directed mutagenesis.
Collapse
Affiliation(s)
- Rebecca L Newcomer
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Jason R Schrad
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUnited States
| | - Michael Feig
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| | - Carolyn M Teschke
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Andrei T Alexandrescu
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsUnited States
| | - Kristin N Parent
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingUnited States
| |
Collapse
|
191
|
McNulty R, Cardone G, Gilcrease EB, Baker TS, Casjens SR, Johnson JE. Cryo-EM Elucidation of the Structure of Bacteriophage P22 Virions after Genome Release. Biophys J 2019; 114:1295-1301. [PMID: 29590587 DOI: 10.1016/j.bpj.2018.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/24/2017] [Accepted: 01/17/2018] [Indexed: 11/19/2022] Open
Abstract
Genome ejection proteins are required to facilitate transport of bacteriophage P22 double-stranded DNA safely through membranes of Salmonella. The structures and locations of all proteins in the context of the mature virion are known, with the exception of three ejection proteins. Furthermore, the changes that occur to the proteins residing in the mature virion upon DNA release are not fully understood. We used cryogenic electron microscopy to obtain what is, to our knowledge, the first asymmetric reconstruction of mature bacteriophage P22 after double-stranded DNA has been extruded from the capsid-a state representative of one step during viral infection. Results of icosahedral and asymmetric reconstructions at estimated resolutions of 7.8 and 12.5 Å resolutions, respectively, are presented. The reconstruction shows tube-like protein density extending from the center of the tail assembly. The portal protein does not revert to the more contracted, procapsid state, but instead maintains an extended and splayed barrel structure. These structural details contribute to our understanding of the molecular mechanism of P22 phage infection and also set the foundation for future exploitation serving engineering purposes.
Collapse
Affiliation(s)
- Reginald McNulty
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California.
| | - Giovanni Cardone
- Department of Chemistry and BiochemistryUniversity of California, San Diego, La Jolla, California
| | - Eddie B Gilcrease
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - Timothy S Baker
- Department of Chemistry and BiochemistryUniversity of California, San Diego, La Jolla, California; Division of Biological Sciences, University of California, San Diego, La Jolla, California
| | - Sherwood R Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
192
|
Abstract
Cryogenic electron microscopy (cryo-EM) enables structure determination of macromolecular objects and their assemblies. Although the techniques have been developing for nearly four decades, they have gained widespread attention in recent years due to technical advances on numerous fronts, enabling traditional microscopists to break into the world of molecular structural biology. Many samples can now be routinely analyzed at near-atomic resolution using standard imaging and image analysis techniques. However, numerous challenges to conventional workflows remain, and continued technical advances open entirely novel opportunities for discovery and exploration. Here, I will review some of the main methods surrounding cryo-EM with an emphasis specifically on single-particle analysis, and I will highlight challenges, open questions, and opportunities for methodology development.
Collapse
Affiliation(s)
- Dmitry Lyumkis
- From the Laboratory of Genetics and Helmsley Center for Genomic Medicine, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
193
|
Cryo-electron Microscopy Structures of Novel Viruses from Mud Crab Scylla paramamosain with Multiple Infections. J Virol 2019; 93:JVI.02255-18. [PMID: 30651355 DOI: 10.1128/jvi.02255-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Viruses associated with sleeping disease (SD) in crabs cause great economic losses to aquaculture, and no effective measures are available for their prevention. In this study, to help develop novel antiviral strategies, single-particle cryo-electron microscopy was applied to investigate viruses associated with SD. The results not only revealed the structure of mud crab dicistrovirus (MCDV) but also identified a novel mud crab tombus-like virus (MCTV) not previously detected using molecular biology methods. The structure of MCDV at a 3.5-Å resolution reveals three major capsid proteins (VP1 to VP3) organized into a pseudo-T=3 icosahedral capsid, and affirms the existence of VP4. Unusually, MCDV VP3 contains a long C-terminal region and forms a novel protrusion that has not been observed in other dicistrovirus. Our results also reveal that MCDV can release its genome via conformation changes of the protrusions when viral mixtures are heated. The structure of MCTV at a 3.3-Å resolution reveals a T= 3 icosahedral capsid with common features of both tombusviruses and nodaviruses. Furthermore, MCTV has a novel hydrophobic tunnel beneath the 5-fold vertex and 30 dimeric protrusions composed of the P-domains of the capsid protein at the 2-fold axes that are exposed on the virion surface. The structural features of MCTV are consistent with a novel type of virus.IMPORTANCE Pathogen identification is vital for unknown infectious outbreaks, especially for dual or multiple infections. Sleeping disease (SD) in crabs causes great economic losses to aquaculture worldwide. Here we report the discovery and identification of a novel virus in mud crabs with multiple infections that was not previously detected by molecular, immune, or traditional electron microscopy (EM) methods. High-resolution structures of pathogenic viruses are essential for a molecular understanding and developing new disease prevention methods. The three-dimensional (3D) structure of the mud crab tombus-like virus (MCTV) and mud crab dicistrovirus (MCDV) determined in this study could assist the development of antiviral inhibitors. The identification of a novel virus in multiple infections previously missed using other methods demonstrates the usefulness of this strategy for investigating multiple infectious outbreaks, even in humans and other animals.
Collapse
|
194
|
de Ruiter MV, Klem R, Luque D, Cornelissen JJLM, Castón JR. Structural nanotechnology: three-dimensional cryo-EM and its use in the development of nanoplatforms for in vitro catalysis. NANOSCALE 2019; 11:4130-4146. [PMID: 30793729 DOI: 10.1039/c8nr09204d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The organization of enzymes into different subcellular compartments is essential for correct cell function. Protein-based cages are a relatively recently discovered subclass of structurally dynamic cellular compartments that can be mimicked in the laboratory to encapsulate enzymes. These synthetic structures can then be used to improve our understanding of natural protein-based cages, or as nanoreactors in industrial catalysis, metabolic engineering, and medicine. Since the function of natural protein-based cages is related to their three-dimensional structure, it is important to determine this at the highest possible resolution if viable nanoreactors are to be engineered. Cryo-electron microscopy (cryo-EM) is ideal for undertaking such analyses within a feasible time frame and at near-native conditions. This review describes how three-dimensional cryo-EM is used in this field and discusses its advantages. An overview is also given of the nanoreactors produced so far, their structure, function, and applications.
Collapse
Affiliation(s)
- Mark V de Ruiter
- Department of Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands.
| | | | | | | | | |
Collapse
|
195
|
Herzik MA, Wu M, Lander GC. High-resolution structure determination of sub-100 kDa complexes using conventional cryo-EM. Nat Commun 2019; 10:1032. [PMID: 30833564 PMCID: PMC6399227 DOI: 10.1038/s41467-019-08991-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
Determining high-resolution structures of biological macromolecules amassing less than 100 kilodaltons (kDa) has been a longstanding goal of the cryo-electron microscopy (cryo-EM) community. While the Volta phase plate has enabled visualization of specimens in this size range, this instrumentation is not yet fully automated and can present technical challenges. Here, we show that conventional defocus-based cryo-EM methodologies can be used to determine high-resolution structures of specimens amassing less than 100 kDa using a transmission electron microscope operating at 200 keV coupled with a direct electron detector. Our ~2.7 Å structure of alcohol dehydrogenase (82 kDa) proves that bound ligands can be resolved with high fidelity to enable investigation of drug-target interactions. Our ~2.8 Å and ~3.2 Å structures of methemoglobin demonstrate that distinct conformational states can be identified within a dataset for proteins as small as 64 kDa. Furthermore, we provide the sub-nanometer cryo-EM structure of a sub-50 kDa protein.
Collapse
Affiliation(s)
- Mark A Herzik
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mengyu Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Gabriel C Lander
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
196
|
Bhakta S, Akbar S, Sengupta J. Cryo-EM Structures Reveal Relocalization of MetAP in the Presence of Other Protein Biogenesis Factors at the Ribosomal Tunnel Exit. J Mol Biol 2019; 431:1426-1439. [DOI: 10.1016/j.jmb.2019.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/30/2022]
|
197
|
wwPDB consortium, Burley SK, Berman HM, Bhikadiya C, Bi C, Chen L, Costanzo LD, Christie C, Duarte JM, Dutta S, Feng Z, Ghosh S, Goodsell DS, Green RK, Guranovic V, Guzenko D, Hudson BP, Liang Y, Lowe R, Peisach E, Periskova I, Randle C, Rose A, Sekharan M, Shao C, Tao YP, Valasatava Y, Voigt M, Westbrook J, Young J, Zardecki C, Zhuravleva M, Kurisu G, Nakamura H, Kengaku Y, Cho H, Sato J, Kim JY, Ikegawa Y, Nakagawa A, Yamashita R, Kudou T, Bekker GJ, Suzuki H, Iwata T, Yokochi M, Kobayashi N, Fujiwara T, Velankar S, Kleywegt GJ, Anyango S, Armstrong DR, Berrisford JM, Conroy MJ, Dana JM, Deshpande M, Gane P, Gáborová R, Gupta D, Gutmanas A, Koča J, Mak L, Mir S, Mukhopadhyay A, Nadzirin N, Nair S, Patwardhan A, Paysan-Lafosse T, Pravda L, Salih O, Sehnal D, Varadi M, Vařeková R, Markley JL, Hoch JC, Romero PR, Baskaran K, Maziuk D, Ulrich EL, Wedell JR, Yao H, Livny M, Ioannidis YE. Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 2019; 47:D520-D528. [PMID: 30357364 PMCID: PMC6324056 DOI: 10.1093/nar/gky949] [Citation(s) in RCA: 654] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 09/28/2018] [Accepted: 10/05/2018] [Indexed: 01/10/2023] Open
Abstract
The Protein Data Bank (PDB) is the single global archive of experimentally determined three-dimensional (3D) structure data of biological macromolecules. Since 2003, the PDB has been managed by the Worldwide Protein Data Bank (wwPDB; wwpdb.org), an international consortium that collaboratively oversees deposition, validation, biocuration, and open access dissemination of 3D macromolecular structure data. The PDB Core Archive houses 3D atomic coordinates of more than 144 000 structural models of proteins, DNA/RNA, and their complexes with metals and small molecules and related experimental data and metadata. Structure and experimental data/metadata are also stored in the PDB Core Archive using the readily extensible wwPDB PDBx/mmCIF master data format, which will continue to evolve as data/metadata from new experimental techniques and structure determination methods are incorporated by the wwPDB. Impacts of the recently developed universal wwPDB OneDep deposition/validation/biocuration system and various methods-specific wwPDB Validation Task Forces on improving the quality of structures and data housed in the PDB Core Archive are described together with current challenges and future plans.
Collapse
|
198
|
Natesh R. Single-Particle cryo-EM as a Pipeline for Obtaining Atomic Resolution Structures of Druggable Targets in Preclinical Structure-Based Drug Design. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2019. [PMCID: PMC7121590 DOI: 10.1007/978-3-030-05282-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) and three-dimensional (3D) image processing have gained importance in the last few years to obtain atomic structures of drug targets. Obtaining atomic-resolution 3D structure better than ~2.5 Å is a standard approach in pharma companies to design and optimize therapeutic compounds against drug targets like proteins. Protein crystallography is the main technique in solving the structures of drug targets at atomic resolution. However, this technique requires protein crystals which in turn is a major bottleneck. It was not possible to obtain the structure of proteins better than 2.5 Å resolution by any other methods apart from protein crystallography until 2015. Recent advances in single-particle cryo-EM and 3D image processing have led to a resolution revolution in the field of structural biology that has led to high-resolution protein structures, thus breaking the cryo-EM resolution barriers to facilitate drug discovery. There are 24 structures solved by single-particle cryo-EM with resolution 2.5 Å or better in the EMDataBank (EMDB) till date. Among these, five cryo-EM 3D reconstructions of proteins in the EMDB have their associated coordinates deposited in Protein Data Bank (PDB), with bound inhibitor/ ligand. Thus, for the first time, single-particle cryo-EM was included in the structure-based drug design (SBDD) pipeline for solving protein structures independently or where crystallography has failed to crystallize the protein. Further, this technique can be complementary and supplementary to protein crystallography field in solving 3D structures. Thus, single-particle cryo-EM can become a standard approach in pharmaceutical industry in the design, validation, and optimization of therapeutic compounds targeting therapeutically important protein molecules during preclinical drug discovery research. The present chapter will describe briefly the history and the principles of single-particle cryo-EM and 3D image processing to obtain atomic-resolution structure of proteins and their complex with their drug targets/ligands.
Collapse
|
199
|
Structures of TRPV2 in distinct conformations provide insight into role of the pore turret. Nat Struct Mol Biol 2018; 26:40-49. [PMID: 30598551 PMCID: PMC6458597 DOI: 10.1038/s41594-018-0168-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022]
Abstract
Cation channels of the TRP family serve important physiological roles by opening in response to diverse intra-and extra-cellular stimuli which regulate their lower or upper gates. Despite extensive studies, the mechanism coupling these gates has remained obscure. Previous structures have failed to resolve extracellular loops, known in the TRPV subfamily as “pore turrets,” which are proximal to the upper gates. We establish the importance of the pore turret through activity assays and by solving structures of rat TRPV2 both with and without an intact turret at resolutions of 4.0 Å and 3.6 Å respectively. These structures resolve the full-length pore turret and reveal fully open and partially open states of TRPV2, both with unoccupied vanilloid pockets. Our results suggest a mechanism by which physiological signals, such as lipid binding, can regulate the lower gate and couple to the upper gate through a pore turret-facilitated mechanism.
Collapse
|
200
|
Chase J, Catalano A, Noble AJ, Eng ET, Olinares PD, Molloy K, Pakotiprapha D, Samuels M, Chait B, des Georges A, Jeruzalmi D. Mechanisms of opening and closing of the bacterial replicative helicase. eLife 2018; 7:41140. [PMID: 30582519 PMCID: PMC6391071 DOI: 10.7554/elife.41140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Assembly of bacterial ring-shaped hexameric replicative helicases on single-stranded (ss) DNA requires specialized loading factors. However, mechanisms implemented by these factors during opening and closing of the helicase, which enable and restrict access to an internal chamber, are not known. Here, we investigate these mechanisms in the Escherichia coli DnaB helicase•bacteriophage λ helicase loader (λP) complex. We show that five copies of λP bind at DnaB subunit interfaces and reconfigure the helicase into an open spiral conformation that is intermediate to previously observed closed ring and closed spiral forms; reconfiguration also produces openings large enough to admit ssDNA into the inner chamber. The helicase is also observed in a restrained inactive configuration that poises it to close on activating signal, and transition to the translocation state. Our findings provide insights into helicase opening, delivery to the origin and ssDNA entry, and closing in preparation for translocation.
Collapse
Affiliation(s)
- Jillian Chase
- Department of Chemistry and Biochemistry, City College of New York, New York, United States.,PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, United States
| | - Andrew Catalano
- Department of Chemistry and Biochemistry, City College of New York, New York, United States
| | - Alex J Noble
- Simons Electron Microscopy Center, The New York Structural Biology Center, New York, United States
| | - Edward T Eng
- Simons Electron Microscopy Center, The New York Structural Biology Center, New York, United States
| | - Paul Db Olinares
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Kelly Molloy
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Danaya Pakotiprapha
- Department of Biochemistry, Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Martin Samuels
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Brian Chait
- Laboratory for Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Amedee des Georges
- Department of Chemistry and Biochemistry, City College of New York, New York, United States.,PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, United States.,Structural Biology Initiative, CUNY Advanced Science Research Center, New York, United States.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, United States
| | - David Jeruzalmi
- Department of Chemistry and Biochemistry, City College of New York, New York, United States.,PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, United States.,PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, United States.,PhD Program in Biology, The Graduate Center of the City University of New York, New York, United States
| |
Collapse
|