151
|
Ahmad A, Cao X. Plant PRMTs broaden the scope of arginine methylation. J Genet Genomics 2012; 39:195-208. [PMID: 22624881 DOI: 10.1016/j.jgg.2012.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 01/22/2023]
Abstract
Post-translational methylation at arginine residues is one of the most important covalent modifications of proteins, involved in a myriad of essential cellular processes in eukaryotes, such as transcriptional regulation, RNA processing, signal transduction, and DNA repair. Methylation at arginine residues is catalyzed by a family of enzymes called protein arginine methyltransferases (PRMTs). PRMTs have been extensively studied in various taxa and there is a growing tendency to unveil their functional importance in plants. Recent studies in plants revealed that this evolutionarily conserved family of enzymes regulates essential traits including vegetative growth, flowering time, circadian cycle, and response to high medium salinity and ABA. In this review, we highlight recent advances in the field of post-translational arginine methylation with special emphasis on the roles and future prospects of this modification in plants.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road #5, Beijing 100101, China
| | | |
Collapse
|
152
|
Tissue-specific and age-dependent expression of protein arginine methyltransferases (PRMTs) in male rat tissues. Biogerontology 2012; 13:329-36. [DOI: 10.1007/s10522-012-9379-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 03/15/2012] [Indexed: 10/28/2022]
|
153
|
Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012; 5:24. [PMID: 22403528 PMCID: PMC3290832 DOI: 10.3389/fnmol.2012.00024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/12/2012] [Indexed: 12/27/2022] Open
Abstract
Neuroregenerative therapies for central nervous system (CNS) injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and re-innervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases. Although neurons' intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus, a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.
Collapse
|
154
|
Abstract
Methylation of DNA and histones in chromatin has been implicated in numerous biological processes. For many years, methylation has been recognized as static and stable modification, as compared with other covalent modifications of chromatin. Recently, however, several mechanisms have been demonstrated to be involved in demethylation of chromatin, suggesting that chromatin methylation is more dynamically regulated. One chemical reaction that mediates demethylation of both DNA and histones is hydroxylation, catalysed by Fe(II) and α-ketoglutarate (KG)-dependent hydroxylase/dioxygenase. Given that methylation of chromatin is an important epigenetic mark involved in fundamental biological processes such as cell fate determination, understanding how chromatin methylation is dynamically regulated has implications for human diseases and regenerative medicine.
Collapse
Affiliation(s)
- Yu-ichi Tsukada
- Division of Molecular Immunology, Research Center for Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan.
| |
Collapse
|
155
|
Kanade SR, Eckert RL. Protein arginine methyltransferase 5 (PRMT5) signaling suppresses protein kinase Cδ- and p38δ-dependent signaling and keratinocyte differentiation. J Biol Chem 2011; 287:7313-23. [PMID: 22199349 DOI: 10.1074/jbc.m111.331660] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PKCδ is a key regulator of keratinocyte differentiation that activates p38δ phosphorylation leading to increased differentiation as measured by an increased expression of the structural protein involucrin. Our previous studies suggest that p38δ exists in association with protein partners. A major goal is to identify these partners and understand their role in regulating keratinocyte differentiation. In this study we use affinity purification and mass spectrometry to identify protein arginine methyltransferase 5 (PRMT5) as part of the p38δ signaling complex. PRMT5 is an arginine methyltransferase that symmetrically dimethylates arginine residues on target proteins to alter target protein function. We show that PRMT5 knockdown is associated with increased p38δ phosphorylation, suggesting that PRMT5 impacts the p38δ signaling complex. At a functional level we show that PRMT5 inhibits the PKCδ- or 12-O-tetradecanoylphorbol-13-acetate-dependent increase in human involucrin expression, and PRMT5 dimethylates proteins in the p38δ complex. Moreover, PKCδ expression reduces the PRMT5 level, suggesting that PKCδ activates differentiation in part by reducing PRMT5 level. These studies indicate antagonism between the PKCδ and PRMT5 signaling in control of keratinocyte differentiation.
Collapse
Affiliation(s)
- Santosh R Kanade
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
156
|
Andrulis ED. Theory of the origin, evolution, and nature of life. Life (Basel) 2011; 2:1-105. [PMID: 25382118 PMCID: PMC4187144 DOI: 10.3390/life2010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/10/2011] [Accepted: 12/13/2011] [Indexed: 12/22/2022] Open
Abstract
Life is an inordinately complex unsolved puzzle. Despite significant theoretical progress, experimental anomalies, paradoxes, and enigmas have revealed paradigmatic limitations. Thus, the advancement of scientific understanding requires new models that resolve fundamental problems. Here, I present a theoretical framework that economically fits evidence accumulated from examinations of life. This theory is based upon a straightforward and non-mathematical core model and proposes unique yet empirically consistent explanations for major phenomena including, but not limited to, quantum gravity, phase transitions of water, why living systems are predominantly CHNOPS (carbon, hydrogen, nitrogen, oxygen, phosphorus, and sulfur), homochirality of sugars and amino acids, homeoviscous adaptation, triplet code, and DNA mutations. The theoretical framework unifies the macrocosmic and microcosmic realms, validates predicted laws of nature, and solves the puzzle of the origin and evolution of cellular life in the universe.
Collapse
Affiliation(s)
- Erik D Andrulis
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Wood Building, W212, Cleveland, OH 44106, USA.
| |
Collapse
|
157
|
Chuang JY, Chang WC, Hung JJ. Hydrogen peroxide induces Sp1 methylation and thereby suppresses cyclin B1 via recruitment of Suv39H1 and HDAC1 in cancer cells. Free Radic Biol Med 2011; 51:2309-18. [PMID: 22036763 DOI: 10.1016/j.freeradbiomed.2011.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 09/29/2011] [Accepted: 10/01/2011] [Indexed: 12/31/2022]
Abstract
Sp1 is an important transcription factor for a number of genes that regulate cell growth and survival. Sp1 is an anchor protein that recruits other factors to regulate its target genes positively or negatively, but the mechanism of its functional switch by which positive or negative coregulators are recruited is not clear. In this study, we found that Sp1 could be methylated and that methylation was maintained by treatment with pargyline, a lysine-specific demethylase 1 (LSD1) inhibitor or knock LSD1 down directly. Hydrogen peroxide treatment increased the methylation of Sp1 and repressed Sp1 transcriptional activity. Investigation of the mechanism by which methylation decreased Sp1 activity found that methylation of Sp1 increased the recruitment of Su(var) 3-9 homologue 1(Suv39H1) and histone deacetylase 1 (HDAC1) to the cyclin B1 promoter, resulting in deacetylation and methylation of histone H3 and subsequent downregulation of cyclin B1. Finally, downregulation of cyclin B1 led to cell cycle arrest at the G2 phase. These results show that methylation of Sp1 causes it to act as a negative regulator by recruiting Suv39H1 and HDAC1 to induce chromatin remodeling. This finding that methylation acts as a functional switch provides new insight into the modulation of Sp1 transcriptional activity.
Collapse
Affiliation(s)
- Jian-Ying Chuang
- Department of Pharmacology, National Cheng Kung University, Tainan 701, Taiwan
| | | | | |
Collapse
|
158
|
Li H, Xu J, Bian YH, Rotllant P, Shen T, Chu W, Zhang J, Schneider M, Du SJ. Smyd1b_tv1, a key regulator of sarcomere assembly, is localized on the M-line of skeletal muscle fibers. PLoS One 2011; 6:e28524. [PMID: 22174829 PMCID: PMC3235123 DOI: 10.1371/journal.pone.0028524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022] Open
Abstract
Background Smyd1b is a member of the Smyd family that plays a key role in sarcomere assembly during myofibrillogenesis. Smyd1b encodes two alternatively spliced isoforms, smyd1b_tv1 and smyd1b_tv2, that are expressed in skeletal and cardiac muscles and play a vital role in myofibrillogenesis in skeletal muscles of zebrafish embryos. Methodology/Principal Findings To better understand Smyd1b function in myofibrillogenesis, we analyzed the subcellular localization of Smyd1b_tv1 and Smyd1b_tv2 in transgenic zebrafish expressing a myc-tagged Smyd1b_tv1 or Smyd1b_tv2. The results showed a dynamic change of their subcellular localization during muscle cell differentiation. Smyd1b_tv1 and Smyd1b_tv2 were primarily localized in the cytosol of myoblasts and myotubes at early stage zebrafish embryos. However, in mature myofibers, Smyd1b_tv1, and to a small degree of Smyd1b_tv2, exhibited a sarcomeric localization. Double staining with sarcomeric markers revealed that Smyd1b_tv1was localized on the M-lines. The sarcomeric localization was confirmed in zebrafish embryos expressing the Smyd1b_tv1-GFP or Smyd1b_tv2-GFP fusion proteins. Compared with Smyd1b_tv1, Smyd1b_tv2, however, showed a weak sarcomeric localization. Smyd1b_tv1 differs from Smyd1b_tv2 by a 13 amino acid insertion encoded by exon 5, suggesting that some residues within the 13 aa insertion may be critical for the strong sarcomeric localization of Smyd1b_tv1. Sequence comparison with Smyd1b_tv1 orthologs from other vertebrates revealed several highly conserved residues (Phe223, His224 and Gln226) and two potential phosphorylation sites (Thr221 and Ser225) within the 13 aa insertion. To determine whether these residues are involved in the increased sarcomeric localization of Smyd1b_tv1, we mutated these residues into alanine. Substitution of Phe223 or Ser225 with alanine significantly reduced the sarcomeric localization of Smyd1b_tv1. In contrast, other substitutions had no effect. Moreover, replacing Ser225 with threonine (S225T) retained the strong sarcomeric localization of Smyd1b_tv1. Conclusion/Significance Together, these data indicate that Phe223 and Ser225 are required for the M-line localization of Smyd1b_tv1.
Collapse
Affiliation(s)
- Huiqing Li
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Jin Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Yue-Hong Bian
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Pep Rotllant
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tiansheng Shen
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wuying Chu
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Jianshe Zhang
- Department of Bioengeneering and Environmental Science, Changsha University, Hunan, China
| | - Martin Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
159
|
Zhang J, Al-Eryani R, Ball HL. Mass spectrometry analysis of 2-nitrophenylhydrazine carboxy derivatized peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1958-1967. [PMID: 21952763 DOI: 10.1007/s13361-011-0220-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 05/31/2023]
Abstract
Peptides with two or more basic residues, including those with post-translational modifications (PTMs), such as methylation and phosphorylation, can be highly hydrophilic and, therefore, are often difficult to be retained on a reversed-phase (RP) column. In addition, these highly hydrophilic peptides may carry two or more positive charges, which often fragment poorly upon collisionally activated dissociation (CAD), resulting in few sequence-specific ions. C-terminal rearrangement may also occur during CAD. Furthermore, some PTMs are labile and tend to be lost when subjected to CAD as is the case with phosphorylation on serine or threonine. To overcome the difficulties of separation, detection, and fragmentation of highly hydrophilic peptides, we report here the effect of carboxy group derivatization with 2-nitrophenylhydrazine (this strategy will be called NPHylation for simplicity). NPHylation significantly increases the hydrophobicity of the peptides, eliminates C-terminal rearrangement in all cases, and offers enhanced sensitivity in some cases. In addition, the CAD spectra of the resulting NPHylated peptides carry more sequence-specific ions due to significant reduction of sequence scrambling as observed for peptide EHAGVISVL. Furthermore, the different carboxy derivatives of this peptide undergo sequence scrambling to varying degrees, which clearly demonstrates that the C-terminus has a profound effect on peptide fragmentation. Finally, sequence scrambling is a charge dependent phenomenon, which affects CAD of doubly charged peptides far more than their singly charged counterparts.
Collapse
Affiliation(s)
- Junmei Zhang
- Protein Chemistry Technology Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8816, USA
| | | | | |
Collapse
|
160
|
Ahmad A, Dong Y, Cao X. Characterization of the PRMT gene family in rice reveals conservation of arginine methylation. PLoS One 2011; 6:e22664. [PMID: 21853042 PMCID: PMC3154905 DOI: 10.1371/journal.pone.0022664] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
Post-translational methylation of arginine residues profoundly affects the structure and functions of protein and, hence, implicated in a myriad of essential cellular processes such as signal transduction, mRNA splicing and transcriptional regulation. Protein arginine methyltransferases (PRMTs), the enzymes catalyzing arginine methylation have been extensively studied in animals, yeast and, to some extent, in model plant Arabidopsis thaliana. Eight genes coding for the PRMTs were identified in Oryza sativa, previously. Here, we report that these genes show distinct expression patterns in various parts of the plant. In vivo targeting experiment demonstrated that GFP-tagged OsPRMT1, OsPRMT5 and OsPRMT10 were localized to both the cytoplasm and nucleus, whereas OsPRMT6a and OsPRMT6b were predominantly localized to the nucleus. OsPRMT1, OsPRMT4, OsPRMT5, OsPRMT6a, OsPRMT6b and OsPRMT10 exhibited in vitro arginine methyltransferase activity against myelin basic protein, glycine-arginine-rich domain of fibrillarin and calf thymus core histones. Furthermore, they depicted specificities for the arginine residues in histones H3 and H4 and were classified into type I and Type II PRMTs, based on the formation of type of dimethylarginine in the substrate proteins. The two homologs of OsPRMT6 showed direct interaction in vitro and further titrating different amounts of these proteins in the methyltransferase assay revealed that OsPRMT6a inhibits the methyltransferase activity of OsPRMT6b, probably, by the formation of heterodimer. The identification and characterization of PRMTs in rice suggests the conservation of arginine methylation in monocots and hold promise for gaining further insight into regulation of plant development.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Yuzhu Dong
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
161
|
Wlodarski T, Kutner J, Towpik J, Knizewski L, Rychlewski L, Kudlicki A, Rowicka M, Dziembowski A, Ginalski K. Comprehensive structural and substrate specificity classification of the Saccharomyces cerevisiae methyltransferome. PLoS One 2011; 6:e23168. [PMID: 21858014 PMCID: PMC3153492 DOI: 10.1371/journal.pone.0023168] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 07/13/2011] [Indexed: 01/06/2023] Open
Abstract
Methylation is one of the most common chemical modifications of biologically active molecules and it occurs in all life forms. Its functional role is very diverse and involves many essential cellular processes, such as signal transduction, transcriptional control, biosynthesis, and metabolism. Here, we provide further insight into the enzymatic methylation in S. cerevisiae by conducting a comprehensive structural and functional survey of all the methyltransferases encoded in its genome. Using distant homology detection and fold recognition, we found that the S. cerevisiae methyltransferome comprises 86 MTases (53 well-known and 33 putative with unknown substrate specificity). Structural classification of their catalytic domains shows that these enzymes may adopt nine different folds, the most common being the Rossmann-like. We also analyzed the domain architecture of these proteins and identified several new domain contexts. Interestingly, we found that the majority of MTase genes are periodically expressed during yeast metabolic cycle. This finding, together with calculated isoelectric point, fold assignment and cellular localization, was used to develop a novel approach for predicting substrate specificity. Using this approach, we predicted the general substrates for 24 of 33 putative MTases and confirmed these predictions experimentally in both cases tested. Finally, we show that, in S. cerevisiae, methylation is carried out by 34 RNA MTases, 32 protein MTases, eight small molecule MTases, three lipid MTases, and nine MTases with still unknown substrate specificity.
Collapse
Affiliation(s)
- Tomasz Wlodarski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Jan Kutner
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Joanna Towpik
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | - Lukasz Knizewski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
| | | | - Andrzej Kudlicki
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maga Rowicka
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
- * E-mail:
| |
Collapse
|
162
|
Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics 2011; 11:184-98. [PMID: 21037856 PMCID: PMC2878983 DOI: 10.2174/138920210791110979] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/22/2010] [Accepted: 02/23/2010] [Indexed: 11/22/2022] Open
Abstract
Damage to the genetic material can affect cellular function in many ways. Therefore, maintenance of the genetic integrity is of primary importance for all cells. Upon DNA damage, cells respond immediately with proliferation arrest and repair of the lesion or apoptosis. All these consequences require recognition of the lesion and transduction of the information to effector systems. The accomplishment of DNA repair, but also of cell cycle arrest and apoptosis furthermore requires protein-protein interactions and the formation of larger protein complexes. More recent research shows that the formation of many of these aggregates depends on post-translational modifications. In this article, we have summarized the different cellular events in response to a DNA double strand break, the most severe lesion of the DNA.
Collapse
Affiliation(s)
- C Oberle
- Karlsruher Institute of Technology, Institute of Toxicology and Genetics, Karlsruhe PO-Box 3640, 76021 Karlsruhe, Germany
| | | |
Collapse
|
163
|
Towards a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough. PLoS One 2011; 6:e21470. [PMID: 21738675 PMCID: PMC3125180 DOI: 10.1371/journal.pone.0021470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 06/01/2011] [Indexed: 11/19/2022] Open
Abstract
Protein-protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study Escherichia coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio vulgaris Hildenborough, a model obligate anaerobe and sulfate reducer and the subject of this study. Here we carried out affinity purification followed by mass spectrometry to reconstruct an interaction network among 12 chromosomally encoded bait and 90 prey proteins based on 134 bait-prey interactions identified to be of high confidence. Protein-protein interaction data are often plagued by the lack of adequate controls and replication analyses necessary to assess confidence in the results, including identification of potential false positives. We addressed these issues through the use of biological replication, exponentially modified protein abundance indices, results from an experimental negative control, and a statistical test to assign confidence to each putative interacting pair applicable to small interaction data studies. We discuss the biological significance of metabolic features of D. vulgaris revealed by these protein-protein interaction data and the observed protein modifications. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.
Collapse
|
164
|
Abstract
Protozoa constitute the earliest branch of the eukaryotic lineage, and several groups of protozoans are serious parasites of humans and other animals. Better understanding of biochemical pathways that are either in common with or divergent from those of higher eukaryotes is integral in the defense against these parasites. In yeast and humans, the posttranslational methylation of arginine residues in proteins affects myriad cellular processes, including transcription, RNA processing, DNA replication and repair, and signal transduction. The protein arginine methyltransferases (PRMTs) that catalyze these reactions, which are unique to the eukaryotic kingdom of organisms, first become evident in protozoa. In this review, we focus on the current understanding of arginine methylation in multiple species of parasitic protozoa, including Trichomonas, Entamoeba, Toxoplasma, Plasmodium, and Trypanosoma spp., and discuss how arginine methylation may play important and unique roles in each type of parasite. We mine available genomic and transcriptomic data to inventory the families of PRMTs in different parasites and the changes in their abundance during the life cycle. We further review the limited functional studies on the roles of arginine methylation in parasites, including epigenetic regulation in Apicomplexa and RNA processing in trypanosomes. Interestingly, each of the parasites considered herein has significantly differing sets of PRMTs, and we speculate on the importance of this diversity in aspects of parasite biology, such as differentiation and antigenic variation.
Collapse
|
165
|
Lim Y, Hong E, Kwon D, Lee E. Proteomic identification and comparative analysis of asymmetrically arginine-methylated proteins in immortalized, young and senescent cells. Electrophoresis 2011; 31:3823-33. [PMID: 21080485 DOI: 10.1002/elps.201000361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein-arginine methylation is one of the modifications that yields mono and dimethyl (asymmetric or symmetric) arginine residues in proteins. Previously, we found that asymmetric arginine methylation is decreased proportionately with a decrease of cell proliferation potential of cells, and such arginine methylation is greatest in immortalized cells, followed by normal young cells, and lowest in replicatively senescent cells. Using an asymmetric dimethyl-arginine-specific antibody, we identified arginine-methylated proteins in these cell types by immunoprecipitation and 2-D immunoblotting followed by MS. As a result, arginine methylation of chaperone molecules and RNA-binding proteins was differentially regulated between immortalized or young cells and senescent cells. Immortalized cells had significantly higher levels of methyl-accepting proteins, such as cleavage stimulation factor 2 (CstF2) and heterogeneous nuclear ribonucleoprotein (hnRNP) R, than young cells. However, senescent cells contained hypomethylated CstF2, hnRNP K, and chaperone containing TCP1 subunit 7, as well as decreased hnRNP R level. Further, significant reduction of arginine modification in CstF2 and chaperone containing TCP1 subunit 7 was observed in prematurely senescent fibroblasts, induced by treatment with adenosine dialdehyde, a transmethylation inhibitor, or subcytotoxic concentration of H(2)O(2). These results suggest that asymmetric modification of RNA-binding proteins and molecular chaperones plays an essential role in maintaining cell proliferation capability.
Collapse
Affiliation(s)
- Yongchul Lim
- Cellular and Developmental Biology, Division of Brain Korea 21 Program for Biomedical Sciences, Korea University, Seoul, Korea
| | | | | | | |
Collapse
|
166
|
Capello M, Ferri-Borgogno S, Cappello P, Novelli F. α-Enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011; 278:1064-74. [PMID: 21261815 DOI: 10.1111/j.1742-4658.2011.08025.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
α-enolase (ENOA) is a metabolic enzyme involved in the synthesis of pyruvate. It also acts as a plasminogen receptor and thus mediates activation of plasmin and extracellular matrix degradation. In tumor cells, ΕΝΟΑ is upregulated and supports anaerobic proliferation (Warburg effect), it is expressed at the cell surface, where it promotes cancer invasion, and is subjected to a specific array of post-translational modifications, namely acetylation, methylation and phosphorylation. Both ENOA overexpression and its post-translational modifications could be of diagnostic and prognostic value in cancer. This review will discuss recent information on the biochemical, proteomics and immunological characterization of ENOA, particularly its ability to trigger a specific humoral and cellular immune response. In our opinion, this information can pave the way for effective new therapeutic and diagnostic strategies to counteract the growth of the most aggressive human disease.
Collapse
Affiliation(s)
- Michela Capello
- Department of Medicine and Experimental Oncology, Center for Experimental Research and Medical Studies (CeRMS), San Giovanni Battista Hospital, University of Turin, Turin, Italy
| | | | | | | |
Collapse
|
167
|
Lee YH, Bedford MT, Stallcup MR. Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 2011; 25:176-88. [PMID: 21245169 DOI: 10.1101/gad.1975811] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tumor suppression by p53 and BRCA1 involves regulation of cell cycle, apoptosis, and DNA repair and is influenced by transcriptional coactivators and post-translational modifications. Here we show that coactivator-associated arginine methyltransferase 1 (CARM1) methylates Arg 754 in the KIX region of coactivator p300. Methylated p300 and p300 protein fragments are preferentially recognized by BRCT domains of BRCA1, identifying the BRCT domain as a novel methylarginine-binding module. CARM1 and p300 cooperate with BRCA1 and p53 to induce expression of the critical cell cycle and proliferation regulator p21(WAF1/CIP1) in response to DNA damage. This induction was severely attenuated by elimination of CARM1 or its methyltransferase activity, or by mutation of Arg 754 of p300. Absence of CARM1 methyltransferase activity led to failure of cells to arrest in the G1 phase of the cell cycle in response to DNA damage. CARM1 methyltransferase activity was required for induction of some p53 target genes (p21 and Gadd45) but not others (Bax) by DNA damage. Recruitment of BRCA1 to the p53-binding region of the p21 promoter in response to DNA damage required methylation of Arg 754 of p300 by CARM1. Thus, coactivator methylation may be crucial for fine-tuning the tumor suppressor function of BRCA1 and other BRCT domain proteins.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
168
|
Hsu JM, Chen CT, Chou CK, Kuo HP, Li LY, Lin CY, Lee HJ, Wang YN, Liu M, Liao HW, Shi B, Lai CC, Bedford MT, Tsai CH, Hung MC. Crosstalk between Arg 1175 methylation and Tyr 1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nat Cell Biol 2011; 13:174-81. [PMID: 21258366 DOI: 10.1038/ncb2158] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022]
Abstract
Epidermal growth factor receptor (EGFR) can undergo post-translational modifications, including phosphorylation, glycosylation and ubiquitylation, leading to diverse physiological consequences and modulation of its biological activity. There is increasing evidence that methylation may parallel other post-translational modifications in the regulation of various biological processes. It is still not known, however, whether EGFR is regulated by this post-translational event. Here, we show that EGFR Arg 1175 is methylated by an arginine methyltransferase, PRMT5. Arg 1175 methylation positively modulates EGF-induced EGFR trans-autophosphorylation at Tyr 1173, which governs ERK activation. Abolishment of Arg 1175 methylation enhances EGF-stimulated ERK activation by reducing SHP1 recruitment to EGFR, resulting in augmented cell proliferation, migration and invasion of EGFR-expressing cells. Therefore, we propose a model in which the regulatory crosstalk between PRMT5-mediated Arg 1175 methylation and EGF-induced Tyr 1173 phosphorylation attenuates EGFR-mediated ERK activation.
Collapse
Affiliation(s)
- Jung-Mao Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Yoo EJH, Feketeová L, Khairallah GN, O'Hair RAJ. Intercluster reactions show that (CH3)2S(+)CH2CO2H is a better methyl cation donor than (CH3)3N(+)CH2CO2H. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2011; 17:159-166. [PMID: 21719924 DOI: 10.1255/ejms.1115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The intrinsic methylating abilities of the known biological methylating zwitterionic agents, dimethylsulfonioacetate (DMSA), (CH(3))(2)S⁺CH(2)CO(2)(-) (1) and glycine betaine (GB), (CH(3))(3)N⁺CH(2)CO(2)(-) (2), have been examined via a range of gas phase experiments involving collision-induced dissociation (CID) of their proton-bound homo- and heterodimers, including those containing the amino acid arginine. The relative yields of the products of methyl cation transfer are consistent in all cases and show that protonated DMSA is a more potent methylating agent than protonated GB. Since methylation can occur at more than one site in arginine, the [M+CH(3)](+) ion of arginine, formed from the heterocluster [DMSA+Arg+H](+), was subject to an additional stage of CID. The resultant CID spectrum is virtually identical to that of an authentic sample of protonated arginine-O-methyl ester but is significantly different to that of an authentic sample of protonated N(G)-methyl arginine. This suggests that methylation has occurred within a salt bridge complex of [DMSA+Arg+H](+), in which the arginine exists in the zwitterionic form. Finally, density functional theory calculations on the model salts, (CH(3)CO(2)(-))[(CH(3))(3)S(+)] and (CH(3)CO(2)(-))[(CH(3))(4)N(+)], show that methylation of CH(3)CO(2)(-) by (CH(3))(3)S(+) is both kinetically and thermodynamically preferred over methylation by (CH(3))(4)N(+).
Collapse
|
170
|
Posttranslational arginine methylation of lamin A/C during myoblast fusion. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:308-17. [PMID: 21111849 DOI: 10.1016/j.bbapap.2010.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/31/2010] [Accepted: 11/18/2010] [Indexed: 01/21/2023]
Abstract
Protein arginine methylation is a major posttranslational modification that regulates various cellular functions, such as RNA processing and DNA repair. A recent report showed the involvement of protein arginine methyltransferase (PRMT) 4 in chromatin remodeling and gene expression during muscle differentiation in C2C12 cells. Because the fusion of myoblasts is a unique phenomenon observed in skeletal muscle differentiation, the present study focused on the expression and activities of PRMTs during myoblast fusion in primary rat skeletal muscle. N(G), N(G)-asymmetric dimethylarginines (aDMA) and N(G), N'(G)-symmetric dimethylarginines (sDMA) were both found consistently throughout myoblast fusion. However, PRMT1 exhibited the highest activity during myoblast fusion and maintained the elevated activity thereafter, whereas PRMT5 reached its highest activity only after myoblast fusion. To identify the proteins modified by such PRMTs, we conducted 2-dimensional electrophoresis (2-DE) of total proteins before and after myoblast fusion, and protein spots on the 2-DE gel immunoreactive for aDMA and sDMA were identified by mass spectrometric analysis. Among the proteins identified, lamin C2 was in particular observed to be dimethylated. Arginine methylation of lamin may therefore be important for muscle development and maintenance.
Collapse
|
171
|
Extensive lysine methylation in hyperthermophilic crenarchaea: potential implications for protein stability and recombinant enzymes. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2010; 2010. [PMID: 20811616 PMCID: PMC2929605 DOI: 10.1155/2010/106341] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022]
Abstract
In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in alpha-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.
Collapse
|
172
|
Abstract
Post-translational modification by ubiquitin is best known for its role in targeting its substrates for regulated degradation. However, non-proteolytic functions of the ubiquitin system, often involving either monoubiquitylation or polyubiquitylation through Lys63-linked chains, have emerged in various cell signalling pathways. These two forms of the ubiquitin signal contribute to three different pathways related to the maintenance of genome integrity that are responsible for the processing of DNA double-strand breaks, the repair of interstrand cross links and the bypass of lesions during DNA replication.
Collapse
|
173
|
Kim C, Lim Y, Yoo BC, Won NH, Kim S, Kim G. Regulation of post-translational protein arginine methylation during HeLa cell cycle. Biochim Biophys Acta Gen Subj 2010; 1800:977-85. [PMID: 20541591 DOI: 10.1016/j.bbagen.2010.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/04/2010] [Accepted: 06/04/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Post-translational arginine methylation which modifies protein-arginyl residues by protein arginine methyltransferase (PRMT) was investigated during synchronized HeLa cell cycle. METHODS The lysates of cells synchronized at each stage were subjected to one and/or two dimensional electrophoresis followed by Western immunoblot using against anti-asymmetric-dimethyl-arginine (ASYM24), anti-symmetric-dimethyl-arginine (SYM10), and subclasses of PRMTs, including PRMT1, PRMT3, PRMT4 (CARM1), PRMT5, PRMT6, and PRMT7 antibodies. RESULTS Proteins with approximate molecular masses of 80 kDa, 68 kDa, and 64 kDa, containing asymmetric-dimethyl-arginine (aDMA) were increased at G0/G1 to G1, which lasted until S phase. In addition, 25 kDa protein of symmetric-dimethyl-arginine (sDMA) was also markedly up-regulated from G0/G1 to G1. The levels of PRMT3, PRMT6 and PRMT7 were concurrently increased during the cell cycle. Two-dimensional gel electrophoresis followed by MALDI-TOF-MS was identified as aDMA-80 kDa and aDMA-68 kDa proteins as heterogeneous nuclear ribonucleoprotein R (hnRNPR), aDMA-64 kDa proteins as cleavage stimulation factor 64 kDa subunit (CstF-64), and sDMA-25 kDa protein as triosephosphate isomerase (TPI). The levels of increased aDMA of hnRNPR were reduced, when HeLa cells were transfected with siRNA for PRMT1, and the aDMA of CstF-64 with siRNA for PRMT3, while depletion of PRMT5 down-regulated sDMA of TPI. CONCLUSION Protein arginine dimethylations of hnRNPR, CstF-64, and TPI were regulated during HeLa cell cycle by respective PRMTs. GENERAL SIGNIFICANCE These results suggest that regulation of arginine dimethylation of hnRNPR, CstF-64, and TPI at G0/G1 to G1 are most likely to modulate the cellular growth and proliferation in HeLa cell cycle.
Collapse
Affiliation(s)
- Chongtae Kim
- Department of Biological Engineering, Graduate School of Seokyeong University, Seoul 136-704, Republic of Korea
| | | | | | | | | | | |
Collapse
|
174
|
Wright MH, Heal WP, Mann DJ, Tate EW. Protein myristoylation in health and disease. J Chem Biol 2010; 3:19-35. [PMID: 19898886 PMCID: PMC2816741 DOI: 10.1007/s12154-009-0032-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/05/2009] [Accepted: 10/19/2009] [Indexed: 02/07/2023] Open
Abstract
N-myristoylation is the attachment of a 14-carbon fatty acid, myristate, onto the N-terminal glycine residue of target proteins, catalysed by N-myristoyltransferase (NMT), a ubiquitous and essential enzyme in eukaryotes. Many of the target proteins of NMT are crucial components of signalling pathways, and myristoylation typically promotes membrane binding that is essential for proper protein localisation or biological function. NMT is a validated therapeutic target in opportunistic infections of humans by fungi or parasitic protozoa. Additionally, NMT is implicated in carcinogenesis, particularly colon cancer, where there is evidence for its upregulation in the early stages of tumour formation. However, the study of myristoylation in all organisms has until recently been hindered by a lack of techniques for detection and identification of myristoylated proteins. Here we introduce the chemistry and biology of N-myristoylation and NMT, and discuss new developments in chemical proteomic technologies that are meeting the challenge of studying this important co-translational modification in living systems.
Collapse
Affiliation(s)
- Megan H. Wright
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - William P. Heal
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - David J. Mann
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Life Sciences, Imperial College London, Exhibition Rd., London, SW72AZ UK
| | - Edward W. Tate
- Chemical Biology Centre, Imperial College London, Exhibition Rd., London, SW72AZ UK
- Department of Chemistry, Imperial College London, Exhibition Rd., London, SW72AZ UK
| |
Collapse
|
175
|
Snijders APL, Hung ML, Wilson SA, Dickman MJ. Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2010; 21:88-96. [PMID: 19850496 DOI: 10.1016/j.jasms.2009.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 05/28/2023]
Abstract
Arginine and lysine methylation are widespread protein post-translational modifications. Peptides containing these modifications are difficult to retain using traditional reversed-phase liquid chromatography because they are intrinsically basic/hydrophilic and often fragment poorly during collision induced fragmentation (CID). Therefore, they are difficult to analyze using standard proteomic workflows. To overcome these caveats, we performed peptide separations at neutral pH, resulting in increased retention of the hydrophilic/basic methylated peptides before identification using MS/MS. Alternatively trifluoroacetic acid (TFA) was used for increased trapping of methylated peptides. Electron-transfer dissociation (ETD) mass spectrometry was then used to identify and characterize methylated residues. In contrast to previous reports utilizing ETD for arginine methylation, we observed significant amount of side-chain fragmentation. Using heavy methyl stable isotope labeling with amino acids in cell culture it was shown that, similar to CID, a loss of monomethylamine or dimethylamine from the arginine methylated side-chain during ETD can be used as a diagnostic to determine the type of arginine methylation. CID of lysine methylated peptides does not lead to significant neutral losses, but ETD is still beneficial because of the high charge states of such peptides. The developed LC MS/MS methods were successfully applied to tryptic digests of a number of methylated proteins, including splicing factor proline-glutamine-rich protein (SFPQ), RNA and export factor-binding protein 2 (REF2-I) and Sul7D, demonstrating significant advantages over traditional LC MS/MS approaches.
Collapse
Affiliation(s)
- Ambrosius P L Snijders
- Biological and Environmental Systems, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, United Kingdom
| | | | | | | |
Collapse
|
176
|
Spannhoff A, Hauser AT, Heinke R, Sippl W, Jung M. The emerging therapeutic potential of histone methyltransferase and demethylase inhibitors. ChemMedChem 2009; 4:1568-82. [PMID: 19739196 DOI: 10.1002/cmdc.200900301] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Epigenetics is defined as heritable changes to the transcriptome that are independent of changes in the genome. The biochemical modifications that govern epigenetics are DNA methylation and posttranslational histone modifications. Among the histone modifications, acetylation and deacetylation are well characterized, whereas the fields of histone methylation and especially demethylation are still in their infancy. This is particularly true with regard to drug discovery. There is strong evidence that these modifications play an important role in the maintenance of transcription as well as in the development of certain diseases. This article gives an overview of the mechanisms of action of histone methyltransferases and demethylases, their role in the formation of certain diseases, and available inhibitors. Special emphasis is placed on the strategies that led to the first inhibitors which are currently available and the screening approaches that were used in that process.
Collapse
Affiliation(s)
- Astrid Spannhoff
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
177
|
Chen G, Liu H, Wang X, Li Z. In vitro methylation by methanol: proteomic screening and prevalence investigation. Anal Chim Acta 2009; 661:67-75. [PMID: 20113717 DOI: 10.1016/j.aca.2009.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/21/2009] [Accepted: 12/10/2009] [Indexed: 11/17/2022]
Abstract
It is assumed that much more functional importance for protein activity than expected may be granted by methylation that occurs at the side-chain of aspartate or glutamate residue. In vitro methylation mainly comes from the use of methanol in sample preparation prior to MS analysis. In this study, we first performed the methylation site-directed proteomic screening of bovine serum albumin, ovalbumin and 20S proteasome for gel staining using a meaningfully indicative MS-pattern of peak tag (termed as 4P tag) and manual inspection for mass spectral data. As a result, there were 17 proteolytic peptides with 20 modified sites confirmed to be in vitro methylated. Subsequently, the prevalence investigation was performed, focusing on the reaction kinetic behavior of in vitro methylation. This study provided a simple and robust approach for confirmation of in vitro methylation by methanol, as well as the precautious guide for the use of methanol in proteomic study.
Collapse
Affiliation(s)
- Guoqiang Chen
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | | | | | | |
Collapse
|
178
|
Cao XJ, Dai J, Xu H, Nie S, Chang X, Hu BY, Sheng QH, Wang LS, Ning ZB, Li YX, Guo XK, Zhao GP, Zeng R. High-coverage proteome analysis reveals the first insight of protein modification systems in the pathogenic spirochete Leptospira interrogans. Cell Res 2009; 20:197-210. [PMID: 19918266 DOI: 10.1038/cr.2009.127] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira that infects humans and a wide range of animals. By combining computational prediction and high-accuracy tandem mass spectra, we revised the genome annotation of Leptospira interrogans serovar Lai, a free-living pathogenic spirochete responsible for leptospirosis, providing substantial peptide evidence for novel genes and new gene boundaries. Subsequently, we presented a high-coverage proteome analysis of protein expression and multiple posttranslational modifications (PTMs). Approximately 64.3% of the predicted L. interrogans proteins were cataloged by detecting 2 540 proteins. Meanwhile, a profile of multiple PTMs was concurrently established, containing in total 32 phosphorylated, 46 acetylated and 155 methylated proteins. The PTM systems in the serovar Lai show unique features. Unique eukaryotic-like features of L. interrogans protein modifications were demonstrated in both phosphorylation and arginine methylation. This systematic analysis provides not only comprehensive information of high-coverage protein expression and multiple modifications in prokaryotes but also a view suggesting that the evolutionarily primitive L. interrogans shares significant similarities in protein modification systems with eukaryotes.
Collapse
Affiliation(s)
- Xing-Jun Cao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Copray S, Huynh JL, Sher F, Casaccia-Bonnefil P, Boddeke E. Epigenetic mechanisms facilitating oligodendrocyte development, maturation, and aging. Glia 2009; 57:1579-87. [PMID: 19373939 PMCID: PMC2760733 DOI: 10.1002/glia.20881] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The process of oligodendrocyte differentiation is regulated by a dynamic interaction between a genetic and an epigenetic program. Recent studies, addressing nucleosomal histone modifications have considerably increased our knowledge regarding epigenetic regulation of gene expression during oligodendrocyte development and aging. These results have generated new hypotheses regarding the mechanisms underlying the decreased efficiency of endogenous remyelination in response to demyelinating injuries with increasing age. In this review, we present an overview of the epigenetic mechanisms regulating gene expression at specific stages of oligodendrocyte differentiation and maturation as well as the changes that occur with aging.
Collapse
Affiliation(s)
- Sjef Copray
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Jimmy Long Huynh
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Falak Sher
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| | - Patrizia Casaccia-Bonnefil
- Department of Neuroscience, and Genetics and Genomics Mount Sinai School of Medicine, New York, NY 10029
| | - Erik Boddeke
- Department of Neuroscience, University Medical Centre Groningen, Groningen, TheNetherlands
| |
Collapse
|
180
|
Simon ES, Allison J. Determination of pyridoxal-5'-phosphate (PLP)-bonding sites in proteins: a peptide mass fingerprinting approach based on diagnostic tandem mass spectral features of PLP-modified peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3401-3408. [PMID: 19810014 DOI: 10.1002/rcm.4270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peptides modified by pyridoxal-5'-phosphate (PLP), linked to a lysine residue via reductive amination, exhibit distinct spectral characteristics in the collision-induced dissociation (CID) tandem mass (MS/MS) spectra that are described here. The MS/MS spectra typically display two dominant peaks whose m/z values correspond to neutral losses of [H3PO4] (-98 Da) and the PLP moiety as [C8H10NO5P] (-231 Da) from the precursor peptide ion, respectively. Few other peaks are observed. Recognition of this distinct fragmentation behavior is imperative since determining sequences and sites of modifications relies on the formation of amide backbone cleavage products for subsequent interpretation via proteome database searching. Additionally, PLP-modified peptides exhibit suppressed precursor ionization efficiency which diminishes their detection in complex mixtures. Presented here is a protocol which describes an enrichment strategy for PLP-modified peptides combined with neutral loss screening and peptide mass fingerprinting to map the PLP-bonding site in a known PLP-dependent protein. This approach represents an efficient alternative to site-directed mutagenesis which has been the traditional method used for PLP-bonding site localization in proteins.
Collapse
Affiliation(s)
- Eric S Simon
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
181
|
Regulation of NF-kappaB activity through lysine monomethylation of p65. Proc Natl Acad Sci U S A 2009; 106:18972-7. [PMID: 19864627 DOI: 10.1073/pnas.0910439106] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
NF-kappaB is a key activator of inflammatory and immune responses with important pathological roles in cancer, heart disease, and autoimmune diseases. Transcriptional activity of NF-kappaB is regulated by different posttranslational modifications. Here, we report a novel mechanism of NF-kappaB regulation through lysine monomethylation by SET9 methyltransferase. Set9 specifically methylates p65 at lysine 37. Both TNFalpha and IL-1beta treatments induced methylation of p65. Methylated p65 is restricted to the nucleus and this modification regulates the promoter binding of p65. Moreover, Set9 mediated methylation of p65 is required for the expression of a subset of NF-kappaB target genes in response to TNFalpha stimulation.
Collapse
|
182
|
An S, Yun M, Park YG, Park GH. Proteomic identification of cytosolic proteins that undergo arginine methylation during rat liver regeneration. Electrophoresis 2009; 30:2412-21. [DOI: 10.1002/elps.200800772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
183
|
Wolf SS. The protein arginine methyltransferase family: an update about function, new perspectives and the physiological role in humans. Cell Mol Life Sci 2009; 66:2109-21. [PMID: 19300908 PMCID: PMC11115746 DOI: 10.1007/s00018-009-0010-x] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 12/12/2022]
Abstract
Information about the family of protein arginine methyltransferases (PRMTs) has been growing rapidly over the last few years and the emerging role of arginine methylation involved in cellular processes like signaling, RNA processing, gene transcription, and cellular transport function has been investigated. To date, 11 PRMTs gene transcripts have been identified in humans. Almost all PRMTs have been shown to have enzymatic activity and to catalyze arginine methylation. This review will summarize the overall function of human PRMTs and include novel highlights on each family member.
Collapse
Affiliation(s)
- S S Wolf
- Bayer Schering Pharma AG, Global Drug Discovery, TRG Women's Healthcare, Muellerstr 178, 13353, Berlin, Germany.
| |
Collapse
|
184
|
Pahlich S, Zakaryan RP, Gehring H. Identification of proteins interacting with protein arginine methyltransferase 8: the Ewing sarcoma (EWS) protein binds independent of its methylation state. Proteins 2009; 72:1125-37. [PMID: 18320585 DOI: 10.1002/prot.22004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Protein arginine methylation is a eukaryotic posttranslational modification that plays a role in transcription, mRNA splicing and transport, in protein-protein interaction, and cell signaling. The type I protein arginine methyltransferase (PRMT) 8 is the only member of the human PRMT family that is localized at the cell membrane and its endogenous substrates have remained unknown as yet. Although PRMT8 was supposed to be expressed only in brain tissue, its presence in HEK 293 (T) cells could be demonstrated. We identified more than 20 PRMT8-binding partners in pull-down experiments using recombinant PRMT8 as bait followed by mass spectrometric identification of the bound proteins. Among the extracted proteins were several heterogeneous nuclear ribonucleoproteins (hnRNP), RNA-helicases (DEAD box proteins), the TET-family proteins TLS, Ewing's sarcoma (EWS), and TAF(II)68, and caprin, which all contain RGG methylation motifs and are potential substrates of PRMT8. Additionally, actin, tubulin, and heat shock proteins belong to the identified proteins. The interaction between PRMT8 and the EWS protein was characterized in more detail. Although binding of endogenous and recombinant EWS protein to PRMT8 as well as colocalization in HEK cells was observed, in vitro methylation assays revealed a rather poor methyltransferase activity of PRMT8 towards the EWS protein and a synthetic RGG-rich reference peptide (K(m), 1.3 microM; k(cat)/K(m), 2.8 x 10(-4) microM(-1) s(-1)) in comparison to PRMT1 (K(m), 0.8 microM; k(cat)/K(m), 8.1 x 10(-3) microM(-1) s(-1)). In contrast, substrate proteins within a cell extract could be methylated by PRMT8 as efficient as by PRMT1. The main interaction site of the EWS protein with PRMT8 was determined to be the C-terminal RGG box 3. Remarkably, complete methylation of the EWS protein did not abrogate the binding to PRMT8, pointing to an adapter role of PRMT8 for nuclear proteins at the cell membrane in addition to its methyltransferase activity.
Collapse
Affiliation(s)
- Steffen Pahlich
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | | | | |
Collapse
|
185
|
Lee YH, Stallcup MR. Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 2009; 23:425-33. [PMID: 19164444 DOI: 10.1210/me.2008-0380] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocrine regulation frequently culminates in altered transcription of specific genes. The signal transduction pathways, which transmit the endocrine signal from cell surface to the transcription machinery, often involve posttranslational modifications of proteins. Although phosphorylation has been by far the most widely studied protein modification, recent studies have indicated important roles for other types of modification, including protein arginine methylation. Ten different protein arginine methyltransferase (PRMT) family members have been identified in mammalian cells, and numerous substrates are being identified for these PRMTs. Whereas major attention has been focused on the methylation of histones and its role in chromatin remodeling and transcriptional regulation, there are many nonhistone substrates methylated by PRMTs. This review primarily focuses on recent progress on the roles of the nonhistone protein methylation in transcription. Protein methylation of coactivators, transcription factors, and signal transducers, among other proteins, plays important roles in transcriptional regulation. Protein methylation may affect protein-protein interaction, protein-DNA or protein-RNA interaction, protein stability, subcellular localization, or enzymatic activity. Thus, protein arginine methylation is critical for regulation of transcription and potentially for various physiological/pathological processes.
Collapse
Affiliation(s)
- Young-Ho Lee
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Los Angeles, California 90089-9176, USA
| | | |
Collapse
|
186
|
Rathert P, Dhayalan A, Ma H, Jeltsch A. Specificity of protein lysine methyltransferases and methods for detection of lysine methylation of non-histone proteins. MOLECULAR BIOSYSTEMS 2008; 4:1186-90. [PMID: 19396382 DOI: 10.1039/b811673c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post translational modification of histone proteins including lysine methylation is an important epigenetic mark, essential for gene regulation and development. Recently, several examples of lysine methylation of non-histone proteins have been discovered suggesting that this is a common post-translational modification for regulation of protein activity. Here, we review assays for the detection of protein methylation based on mass spectrometry, radiolabel and immunological approaches using protein and peptide substrates including application of SPOT peptide arrays. Candidates for new methylation targets of protein methyltransferases can be predicted using the specificity of the enzyme and protein interaction data.
Collapse
Affiliation(s)
- Philipp Rathert
- Biochemistry Laboratory, School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | | | | | | |
Collapse
|
187
|
Tang WHW, Tong W, Shrestha K, Wang Z, Levison BS, Delfraino B, Hu B, Troughton RW, Klein AL, Hazen SL. Differential effects of arginine methylation on diastolic dysfunction and disease progression in patients with chronic systolic heart failure. Eur Heart J 2008; 29:2506-13. [PMID: 18687662 PMCID: PMC2567021 DOI: 10.1093/eurheartj/ehn360] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 12/20/2022] Open
Abstract
AIMS To investigate the association of arginine methylation with myocardial function and prognosis in chronic systolic heart failure patients. METHODS AND RESULTS Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), as well as N-mono-methylarginine (MMA) and methyl-lysine, were simultaneously measured by tandem mass spectrometry in 132 patients with chronic systolic heart failure with echocardiographic evaluation and follow-up. Increasing ADMA and SDMA levels were associated with elevated natriuretic peptide levels (both P < 0.001), and increasing SDMA levels were associated with worsening renal function (P < 0.001). Higher plasma levels of methylated arginine metabolites (but not methyl-lysine) were associated with the presence of left ventricular (LV) diastolic dysfunction (E/septal E', Spearman's r = 0.31-0.36, P < 0.001). Patients taking beta-blockers had lower ADMA levels than those not taking beta-blockers [0.42 (0.33, 0.50) vs. 0.51 (0.40, 0.58), P < 0.001]. Only increasing ADMA levels were associated with advanced right ventricular (RV) systolic dysfunction. Elevated ADMA levels remained a consistent independent predictor of adverse clinical events (hazard ratio = 1.64, 95% CI: 1.20-2.22, P = 0.002). CONCLUSION In chronic systolic heart failure, accumulation of methylated arginine metabolites is associated with the presence of LV diastolic dysfunction. Among the methylated derivatives of arginine, ADMA provides the strongest independent prediction of disease progression and adverse long-term outcomes.
Collapse
Affiliation(s)
- Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Rigbers O, Li SM. Ergot alkaloid biosynthesis in Aspergillus fumigatus. Overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 2008; 283:26859-68. [PMID: 18678866 DOI: 10.1074/jbc.m804979200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The putative gene fgaMT was identified in the biosynthetic gene cluster of fumigaclavines in Aspergillus fumigatus. The coding region of fgaMT was amplified by PCR from a cDNA library, cloned into pQE60, and overexpressed in Escherichia coli. FgaMT comprises 339 amino acids with a molecular mass of about 38.1 kDa. The soluble dimeric His(6)-FgaMT was purified to near homogeneity and characterized biochemically. FgaMT was found to catalyze the N-methylation of 4-dimethylallyltryptophan in the presence of S-adenosylmethionine, resulting in the formation of 4-dimethylallyl-l-abrine, which was identified by NMR and mass spectrometry analysis. Therefore, FgaMT represents the second pathway-specific enzyme in the biosynthesis of ergot alkaloids. The enzyme did not require metal ions for its enzymatic reaction and showed a relatively high specificity toward the prenyl moiety at position C-4 of the indole ring. 4-Dimethylallyltryptophan derivatives with modification at the indole ring were also accepted by FgaMT as substrates. K(m) values for 4-dimethylallyltryptophan and S-adenosylmethionine were determined at 0.12 and 2.4 mm, respectively. The turnover number was 2.0 s(-1).
Collapse
Affiliation(s)
- Ole Rigbers
- Heinrich-Heine-Universität Düsseldorf, Institut für Pharmazeutische Biologie und Biotechnologie, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
189
|
Muñoz J, Fernández-Irigoyen J, Santamaría E, Parbel A, Obeso J, Corrales FJ. Mass spectrometric characterization of mitochondrial complex I NDUFA10 variants. Proteomics 2008; 8:1898-908. [DOI: 10.1002/pmic.200701085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
190
|
LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Trends Biochem Sci 2008; 33:181-9. [PMID: 18343668 DOI: 10.1016/j.tibs.2008.01.003] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 01/06/2008] [Accepted: 01/11/2008] [Indexed: 11/22/2022]
Abstract
Three years after its discovery, lysine-specific demethylase 1 remains at the forefront of chromatin research. Its demethylase activity on Lys4 of histone H3 supports its role in gene repression. By contrast, the biochemical mechanisms underlying lysine-specific demethylase 1 involvement in transcriptional activation are not firmly established. Structural studies highlight a specific binding site for the histone H3 N-terminal tail and a catalytic machinery that is closely related to that of other flavin-dependent amine oxidases. These insights are crucial for the development of demethylation inhibitors. Furthermore, the exploration of putative non-histone substrates and potential signaling roles of hydrogen peroxide produced by the demethylation reaction could lead to new paradigms in chromatin biology.
Collapse
|
191
|
Abstract
Protein arginine methylation is a rapidly growing field of biomedical research that holds great promise for extending our understanding of developmental and pathological processes. Less than ten years ago, fewer than two dozen proteins were verified to contain methylarginine. Currently, however, hundreds of methylarginine proteins have been detected and many have been confirmed by mass spectrometry and other proteomic and molecular techniques. Several of these proteins are products of disease genes or are implicated in disease processes by recent experimental or clinical observations. The purpose of this chapter is twofold; (1) to re-examine the role of protein arginine methylation placed within the context of cell growth and differentiation, as well as within the rich variety of cellular metabolic methylation pathways and (2) to review the implications of recent advances in protein methylarginine detection and the analysis of protein methylarginine function for our understanding of human disease.
Collapse
|
192
|
Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 2007; 14:1008-16. [PMID: 17984963 DOI: 10.1038/nsmb1337] [Citation(s) in RCA: 487] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent modifications of histones are central to the regulation of chromatin dynamics, and, therefore, many biological processes involving chromatin, such as replication, repair, transcription and genome stability, are regulated by chromatin and its modifications. In this review, we discuss the biochemical, molecular and genetic properties of the enzymatic machinery involved in four different types of histone modification: acetylation, ubiquitination, phosphorylation and methylation. We also discuss how perturbation of the activity of this enzymatic machinery can cause developmental defects and disease.
Collapse
|
193
|
Chin HG, Estève PO, Pradhan M, Benner J, Patnaik D, Carey MF, Pradhan S. Automethylation of G9a and its implication in wider substrate specificity and HP1 binding. Nucleic Acids Res 2007; 35:7313-23. [PMID: 17962312 PMCID: PMC2175347 DOI: 10.1093/nar/gkm726] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Methylation of lysine residues on histones participates in transcriptional gene regulation. Lysine 9 methylation of histone H3 is a transcriptional repression signal, mediated by a family of SET domain containing AdoMet-dependent enzymes. G9a methyltransferase is a euchromatic histone H3 lysine 9 methyltransferase. Here, G9a is shown to methylate other cellular proteins, apart from histone H3, including automethylation of K239 residue. Automethylation of G9a did not impair or activate the enzymatic activity in vitro. The automethylation motif of G9a flanking target K239 (ARKT) has similarity with histone H3 lysine 9 regions (ARKS), and is identical to amino acids residues in EuHMT (ARKT) and mAM (ARKT). Under steady-state kinetic assay conditions, full-length G9a methylates peptides representing ARKS/T motif of H3, G9a, mAM and EuHMT efficiently. Automethylation of G9a at ARKT motif creates a binding site for HP1 class of protein and mutation of lysine in the motif impairs this binding. In COS-7 cells GFP fusion of the wild-type G9a co-localized with HP1α and HP1γ isoforms whereas the G9a mutant with K239A displayed poor co-localization. Thus, apart from transcriptional repression and regulatory roles of lysine methylation, the non-histone protein methylation may create binding sites for cellular protein–protein interactions.
Collapse
Affiliation(s)
- Hang Gyeong Chin
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | | | | | | | | | | |
Collapse
|
194
|
Lipson RS, Clarke SG. S-adenosylmethionine-dependent protein methylation in mammalian cytosol via tyrphostin modification by catechol-O-methyltransferase. J Biol Chem 2007; 282:31094-102. [PMID: 17724020 DOI: 10.1074/jbc.m705456200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been shown that incubation of mammalian cell cytosolic extracts with the protein kinase inhibitor tyrphostin A25 results in enhanced transfer of methyl groups from S-adenosyl-[methyl-3H]methionine to proteins. These findings were interpreted as demonstrating tyrphostin stimulation of a novel type of protein carboxyl methyltransferase. We find here, however, that tyrphostin A25 addition to mouse heart cytosol incubated with S-adenosyl-[methyl-3H]methionine or S-adenosyl-[methyl-14C]methionine stimulates the labeling of small molecules in addition to proteins. Base treatment of both protein and small molecule fractions releases volatile radioactivity, suggesting labile ester-like linkages of the labeled methyl group. Production of both the base-volatile product and labeled protein occurs with tyrphostins A25, A47, and A51, but not with thirteen other tyrphostin family members. These active tyrphostins all contain a catechol moiety and are good substrates for recombinant and endogenous catechol-O-methyltransferase. Inhibition of catechol-O-methyltransferase activity with tyrphostin AG1288 prevents both base-volatile product formation and protein labeling from methyl-labeled S-adenosylmethionine in heart, kidney, and liver, but not in testes or brain extracts. These results suggest that the incorporation of methyl groups into protein follows a complex pathway initiated by the methylation of select tyrphostins by endogenous catechol-O-methyltransferase. We suggest that the methylated tyrphostins are further modified in the cell extract and covalently attached to cellular proteins. The presence of endogenous catechols in cells suggests that similar reactions can also occur in vivo.
Collapse
Affiliation(s)
- Rebecca S Lipson
- Department of Chemistry, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
195
|
Kowluru A. Bridging the gap between protein carboxyl methylation and phospholipid methylation to understand glucose-stimulated insulin secretion from the pancreatic beta cell. Biochem Pharmacol 2007; 75:335-45. [PMID: 17662254 PMCID: PMC2278024 DOI: 10.1016/j.bcp.2007.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 06/19/2007] [Accepted: 06/21/2007] [Indexed: 10/23/2022]
Abstract
Recent findings have implicated post-translational modifications at C-terminal cysteines [e.g., methylation] of specific proteins [e.g., G-proteins] in glucose-stimulated insulin secretion [GSIS]. Furthermore, methylation at the C-terminal leucine of the catalytic subunit of protein phosphatase 2A [PP2Ac] has also been shown to be relevant for GSIS. In addition to these two classes of protein methyl transferases, a novel class of glucose-activated phospholipid methyl transferases have also been identified in the beta cell. These enzymes catalyze three successive methylations of phosphatidylethanolamine to yield phosphatidylcholine. The "newly formed" phosphatidylcholine is felt to induce alterations in the membrane fluidity, which might favor vesicular fusion with the plasma membrane for the exocytosis of insulin. The objectives of this commentary are to: (i) review the existing evidence on the regulation, by glucose and other insulin secretagogues, of post-translational carboxylmethylation [CML] of specific proteins in the beta cell; (ii) discuss the experimental evidence, which implicates regulation, by glucose and other insulin secretagogues, of phosphatidylethanolamine methylation in the islet beta cell; (iii) propose a model for potential cross-talk between the protein and lipid methylation pathways in the regulation of GSIS and (iv) highlight potential avenues for future research, including the development of specific pharmacological inhibitors to further decipher regulatory roles for these methylation reactions in islet beta cell function.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University and beta Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, United States.
| |
Collapse
|