151
|
Chen X, Hu Y, Shan L, Yu X, Hao K, Wang GX. Magnolol and honokiol from Magnolia officinalis enhanced antiviral immune responses against grass carp reovirus in Ctenopharyngodon idella kidney cells. FISH & SHELLFISH IMMUNOLOGY 2017; 63:245-254. [PMID: 28232195 DOI: 10.1016/j.fsi.2017.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
Medicinal plants have been widely used for a long history. Exploration of pharmacologically active compounds from medicinal plants present a broad prevalent of application. By examining viral mRNA expression in GCRV-infected Ctenopharyngodon idella kidney (CIK) cells treated with thirty kinds of plant extracts, we identified Magnolia officinalis Rehd et Wils. was able to preferably suppress viral replication. Further studies demonstrated that the main ingredients of magnolia bark, namely, magnolol and honokiol presented protective pharmacological function when treated GCRV-infected CIK cells with a concentration of 2.00 μg/ml and 1.25 μg/ml, respectively. Furthermore, reverse transcript quantitative polymerase chain reaction (RT-qPCR) and western blot showed that both magnolol and honokiol were efficient to restrain the replication of GCRV in CIK cells at non-toxic concentration (2.51 ± 0.51 μg/ml for magnolol, and 3.18 ± 0.61 μg/ml for honokiol). Moreover, it was found that magnolol and honokiol promoted the expression of immune-related genes. Magnolol obviously significantly increased the expression of interferon (IFN) regulatory factor (IRF)7 rather than that of IRF3 in the GCRV-infected cells, leading to the activation of type I IFN (IFN-I). Simultaneously, magnolol drastically facilitated the expression of interleukin (IL)-1β, but failed to induce the molecules in nuclear factor (NF)-κB pathways. Differently, honokiol strikingly motivated not only the expression of IL-1β, but also those of tumor necrosis factor α (TNFα) and NF-κB. Interestingly, though honokiol motivated the expression of IFN-β promoter stimulator 1 (IPS-1), IRF3 and IRF7, it failed to up-regulate the expression of IFN-I, indicating that honokiol enhanced the host innate antiviral response to GCRV infection via NF-κB pathways. Collectively, the present study revealed that magnolol and honokiol facilitated the expression of innate immune-related genes to strengthen the innate immune signaling responses to resist GCRV infection, which contributed to understanding the mechanisms by which small-molecule drugs possessed antiviral activities. In addition, these results lay a foundation for the development of broad-spectrum antiviral compounds in aquaculture industry.
Collapse
Affiliation(s)
- Xiaohui Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yang Hu
- College of Science, Northwest A&F University, Yangling 712100, China
| | - Lipeng Shan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaobo Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Kai Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
152
|
Becerra A, Bucheli VA, Moreno PA. Prediction of virus-host protein-protein interactions mediated by short linear motifs. BMC Bioinformatics 2017; 18:163. [PMID: 28279163 PMCID: PMC5345135 DOI: 10.1186/s12859-017-1570-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 02/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short linear motifs in host organisms proteins can be mimicked by viruses to create protein-protein interactions that disable or control metabolic pathways. Given that viral linear motif instances of host motif regular expressions can be found by chance, it is necessary to develop filtering methods of functional linear motifs. We conduct a systematic comparison of linear motifs filtering methods to develop a computational approach for predicting motif-mediated protein-protein interactions between human and the human immunodeficiency virus 1 (HIV-1). RESULTS We implemented three filtering methods to obtain linear motif sets: 1) conserved in viral proteins (C), 2) located in disordered regions (D) and 3) rare or scarce in a set of randomized viral sequences (R). The sets C,D,R are united and intersected. The resulting sets are compared by the number of protein-protein interactions correctly inferred with them - with experimental validation. The comparison is done with HIV-1 sequences and interactions from the National Institute of Allergy and Infectious Diseases (NIAID). The number of correctly inferred interactions allows to rank the interactions by the sets used to deduce them: D∪R and C. The ordering of the sets is descending on the probability of capturing functional interactions. With respect to HIV-1, the sets C∪R, D∪R, C∪D∪R infer all known interactions between HIV1 and human proteins mediated by linear motifs. We found that the majority of conserved linear motifs in the virus are located in disordered regions. CONCLUSION We have developed a method for predicting protein-protein interactions mediated by linear motifs between HIV-1 and human proteins. The method only use protein sequences as inputs. We can extend the software developed to any other eukaryotic virus and host in order to find and rank candidate interactions. In future works we will use it to explore possible viral attack mechanisms based on linear motif mimicry.
Collapse
Affiliation(s)
- Andrés Becerra
- Escuela de ingeniería de sistemas y computación, Universidad del Valle, Calle 13 # 100-00, A. A. 25360, Cali, Colombia
| | - Victor A Bucheli
- Escuela de ingeniería de sistemas y computación, Universidad del Valle, Calle 13 # 100-00, A. A. 25360, Cali, Colombia
| | - Pedro A Moreno
- Escuela de ingeniería de sistemas y computación, Universidad del Valle, Calle 13 # 100-00, A. A. 25360, Cali, Colombia.
| |
Collapse
|
153
|
Zhang A, He L, Wang Y. Prediction of GCRV virus-host protein interactome based on structural motif-domain interactions. BMC Bioinformatics 2017; 18:145. [PMID: 28253857 PMCID: PMC5335770 DOI: 10.1186/s12859-017-1500-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Grass carp hemorrhagic disease, caused by grass carp reovirus (GCRV), is the most fatal causative agent in grass carp aquaculture. Protein-protein interactions between virus and host are one avenue through which GCRV can trigger infection and induce disease. Experimental approaches for the detection of host-virus interactome have many inherent limitations, and studies on protein-protein interactions between GCRV and its host remain rare. RESULTS In this study, based on known motif-domain interaction information, we systematically predicted the GCRV virus-host protein interactome by using motif-domain interaction pair searching strategy. These proteins derived from different domain families and were predicted to interact with different motif patterns in GCRV. JAM-A protein was successfully predicted to interact with motifs of GCRV Sigma1-like protein, and shared the similar binding mode compared with orthoreovirus. Differentially expressed genes during GCRV infection process were extracted and mapped to our predicted interactome, the overlapped genes displayed different tissue expression distributions on the whole, the overall expression level in intestinal is higher than that of other three tissues, which may suggest that the functions of these genes are more active in intestinal. Function annotation and pathway enrichment analysis revealed that the host targets were largely involved in signaling pathway and immune pathway, such as interferon-gamma signaling pathway, VEGF signaling pathway, EGF receptor signaling pathway, B cell activation, and T cell activation. CONCLUSIONS Although the predicted PPIs may contain some false positives due to limited data resource and poor research background in non-model species, the computational method still provide reasonable amount of interactions, which can be further validated by high throughput experiments. The findings of this work will contribute to the development of system biology for GCRV infectious diseases, and help guide the identification of novel receptors of GCRV in its host.
Collapse
Affiliation(s)
- Aidi Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Libo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
154
|
Espejo AB, Gao G, Black K, Gayatri S, Veland N, Kim J, Chen T, Sudol M, Walker C, Bedford MT. PRMT5 C-terminal Phosphorylation Modulates a 14-3-3/PDZ Interaction Switch. J Biol Chem 2017; 292:2255-2265. [PMID: 28031468 PMCID: PMC5313098 DOI: 10.1074/jbc.m116.760330] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Indexed: 11/06/2022] Open
Abstract
PRMT5 is the primary enzyme responsible for the deposition of the symmetric dimethylarginine in mammalian cells. In an effort to understand how PRMT5 is regulated, we identified a threonine phosphorylation site within a C-terminal tail motif, which is targeted by the Akt/serum- and glucocorticoid-inducible kinases. While investigating the function of this posttranslational modification, we serendipitously discovered that its free C-terminal tail binds PDZ domains (when unphosphorylated) and 14-3-3 proteins (when phosphorylated). In essence, a phosphorylation event within the last few residues of the C-terminal tail generates a posttranslational modification-dependent PDZ/14-3-3 interaction "switch." The C-terminal motif of PRMT5 is required for plasma membrane association, and loss of this switching capacity is not compatible with life. This signaling phenomenon was recently reported for the HPV E6 oncoprotein but has not yet been observed for mammalian proteins. To investigate the prevalence of PDZ/14-3-3 switching in signal transduction, we built a protein domain microarray that harbors PDZ domains and 14-3-3 proteins. We have used this microarray to interrogate the C-terminal tails of a small group of candidate proteins and identified ERBB4, PGHS2, and IRK1 (as well as E6 and PRMT5) as conforming to this signaling mode, suggesting that PDZ/14-3-3 switching may be a broad biological paradigm.
Collapse
Affiliation(s)
- Alexsandra B Espejo
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Guozhen Gao
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Karynne Black
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Sitaram Gayatri
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Nicolas Veland
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
- the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030
| | - Jeesun Kim
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Taiping Chen
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957
| | - Marius Sudol
- the Department of Physiology, National University of Singapore, Mechanobiology Institute and Institute for Molecular and Cell Biology (IMCB, A*STAR), Singapore 117597, Singapore, and
| | - Cheryl Walker
- the Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas 77030
| | - Mark T Bedford
- From the Department of Epigenetics and Molecular Carcinogenesis, University of Texas M.D. Anderson Cancer Center, Smithville, Texas 78957,
| |
Collapse
|
155
|
Chiang AWT, Wu WYL, Wang T, Hwang MJ. Identification of Entry Factors Involved in Hepatitis C Virus Infection Based on Host-Mimicking Short Linear Motifs. PLoS Comput Biol 2017; 13:e1005368. [PMID: 28129350 PMCID: PMC5302801 DOI: 10.1371/journal.pcbi.1005368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 02/10/2017] [Accepted: 01/17/2017] [Indexed: 12/15/2022] Open
Abstract
Host factors that facilitate viral entry into cells can, in principle, be identified from a virus-host protein interaction network, but for most viruses information for such a network is limited. To help fill this void, we developed a bioinformatics approach and applied it to hepatitis C virus (HCV) infection, which is a current concern for global health. Using this approach, we identified short linear sequence motifs, conserved in the envelope proteins of HCV (E1/E2), that potentially can bind human proteins present on the surface of hepatocytes so as to construct an HCV (envelope)-host protein interaction network. Gene Ontology functional and KEGG pathway analyses showed that the identified host proteins are enriched in cell entry and carcinogenesis functionalities. The validity of our results is supported by much published experimental data. Our general approach should be useful when developing antiviral agents, particularly those that target virus-host interactions. Viruses recruit host proteins, called entry factors, to help gain entry to host cells. Identification of entry factors can provide targets for developing antiviral drugs. By exploring the concept that short linear peptide motifs involved in human protein-protein interactions may be mimicked by viruses to hijack certain host cellular processes and thereby assist viral infection/survival, we developed a bioinformatics strategy to computationally identify entry factors of hepatitis C virus (HCV) infection, which is a worldwide health problem. Analysis of cellular functions and biochemical pathways indicated that the human proteins we identified usually play a role in cell entry and/or carcinogenesis, and results of the analysis are generally supported by experimental studies on HCV infection, including the ~80% (15 of 19) prediction rate of known HCV hepatocyte entry factors. Because molecular mimicry is a general concept, our bioinformatics strategy is a timely approach to identify new targets for antiviral research, not only for HCV but also for other viruses.
Collapse
Affiliation(s)
| | - Walt Y. L. Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Jing Hwang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
156
|
Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 2017; 284:485-498. [PMID: 28002650 DOI: 10.1111/febs.13995] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
The intrinsically disordered regions of eukaryotic proteomes are enriched in short linear motifs (SLiMs), which are of crucial relevance for cellular signaling and protein regulation; many mediate interactions by providing binding sites for peptide-binding domains. The vast majority of SLiMs remain to be discovered highlighting the need for experimental methods for their large-scale identification. We present a novel proteomic peptide phage display (ProP-PD) library that displays peptides representing the disordered regions of the human proteome, allowing direct large-scale interrogation of most potential binding SLiMs in the proteome. The performance of the ProP-PD library was validated through selections against SLiM-binding bait domains with distinct folds and binding preferences. The vast majority of identified binding peptides contained sequences that matched the known SLiM-binding specificities of the bait proteins. For SHANK1 PDZ, we establish a novel consensus TxF motif for its non-C-terminal ligands. The binding peptides mostly represented novel target proteins, however, several previously validated protein-protein interactions (PPIs) were also discovered. We determined the affinities between the VHS domain of GGA1 and three identified ligands to 40-130 μm through isothermal titration calorimetry, and confirmed interactions through coimmunoprecipitation using full-length proteins. Taken together, we outline a general pipeline for the design and construction of ProP-PD libraries and the analysis of ProP-PD-derived, SLiM-based PPIs. We demonstrated the methods potential to identify low affinity motif-mediated interactions for modular domains with distinct binding preferences. The approach is a highly useful complement to the current toolbox of methods for PPI discovery.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | | | - Debbie Dong
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada.,Department of Molecular Genetics and Department of Computer Science, University of Toronto, Canada
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Sweden
| |
Collapse
|
157
|
Dyson HJ. Making Sense of Intrinsically Disordered Proteins. Biophys J 2016; 110:1013-6. [PMID: 26958875 DOI: 10.1016/j.bpj.2016.01.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- H Jane Dyson
- Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
158
|
Sharma N, LaRusch J, Sosnay PR, Gottschalk LB, Lopez AP, Pellicore MJ, Evans T, Davis E, Atalar M, Na CH, Rosson GD, Belchis D, Milewski M, Pandey A, Cutting GR. A sequence upstream of canonical PDZ-binding motif within CFTR COOH-terminus enhances NHERF1 interaction. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1170-L1182. [PMID: 27793802 PMCID: PMC5206395 DOI: 10.1152/ajplung.00363.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 01/10/2023] Open
Abstract
The development of cystic fibrosis transmembrane conductance regulator (CFTR) targeted therapy for cystic fibrosis has generated interest in maximizing membrane residence of mutant forms of CFTR by manipulating interactions with scaffold proteins, such as sodium/hydrogen exchange regulatory factor-1 (NHERF1). In this study, we explored whether COOH-terminal sequences in CFTR beyond the PDZ-binding motif influence its interaction with NHERF1. NHERF1 displayed minimal self-association in blot overlays (NHERF1, Kd = 1,382 ± 61.1 nM) at concentrations well above physiological levels, estimated at 240 nM from RNA-sequencing and 260 nM by liquid chromatography tandem mass spectrometry in sweat gland, a key site of CFTR function in vivo. However, NHERF1 oligomerized at considerably lower concentrations (10 nM) in the presence of the last 111 amino acids of CFTR (20 nM) in blot overlays and cross-linking assays and in coimmunoprecipitations using differently tagged versions of NHERF1. Deletion and alanine mutagenesis revealed that a six-amino acid sequence 1417EENKVR1422 and the terminal 1478TRL1480 (PDZ-binding motif) in the COOH-terminus were essential for the enhanced oligomerization of NHERF1. Full-length CFTR stably expressed in Madin-Darby canine kidney epithelial cells fostered NHERF1 oligomerization that was substantially reduced (∼5-fold) on alanine substitution of EEN, KVR, or EENKVR residues or deletion of the TRL motif. Confocal fluorescent microscopy revealed that the EENKVR and TRL sequences contribute to preferential localization of CFTR to the apical membrane. Together, these results indicate that COOH-terminal sequences mediate enhanced NHERF1 interaction and facilitate the localization of CFTR, a property that could be manipulated to stabilize mutant forms of CFTR at the apical surface to maximize the effect of CFTR-targeted therapeutics.
Collapse
Affiliation(s)
- Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica LaRusch
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- ARIEL Precision Medicine, Pittsburgh, Pennsylvania
| | - Patrick R Sosnay
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Laura B Gottschalk
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Andrea P Lopez
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Taylor Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emily Davis
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Melis Atalar
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chan-Hyun Na
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gedge D Rosson
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deborah Belchis
- Department of Surgical Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Michal Milewski
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Garry R Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
159
|
Evolution of bopA Gene in Burkholderia: A Case of Convergent Evolution as a Mechanism for Bacterial Autophagy Evasion. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6745028. [PMID: 28018913 PMCID: PMC5149610 DOI: 10.1155/2016/6745028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/13/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
Autophagy is an important defense mechanism targeting intracellular bacteria to restrict their survival and growth. On the other hand, several intracellular pathogens have developed an antiautophagy mechanism to facilitate their own replication or intracellular survival. Up to now, no information about the origin or evolution of the antiautophagic genes in bacteria is available. BopA is an effector protein secreted by Burkholderia pseudomallei via the type three secretion system, and it has been shown to play a pivotal role in their escape from autophagy. The evolutionary origin of bopA was examined in this work. Sequence similarity searches for BopA showed that no homolog of BopA was detected in eukaryotes. However, eukaryotic linear motifs were detected in BopA. The phylogenetic tree of the BopA proteins in our analysis is congruent with the species phylogeny derived from housekeeping genes. Moreover, there was no obvious difference in GC content values of bopA gene and their respective genomes. Integrated information on the taxonomic distribution, phylogenetic relationships, and GC content of the bopA gene of Burkholderia revealed that this gene was acquired via convergent evolution, not from eukaryotic host through horizontal gene transfer (HGT) event. This work has, for the first time, characterized the evolutionary mechanism of bacterial evasion of autophagy. The results of this study clearly demonstrated the role of convergent evolution in the evolution of how bacteria evade autophagy.
Collapse
|
160
|
Saha D, Podder S, Ghosh TC. Overlapping Regions in HIV-1 Genome Act as Potential Sites for Host-Virus Interaction. Front Microbiol 2016; 7:1735. [PMID: 27867372 PMCID: PMC5095123 DOI: 10.3389/fmicb.2016.01735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 01/05/2023] Open
Abstract
More than a decade, overlapping genes in RNA viruses became a subject of research which has explored various effect of gene overlapping on the evolution and function of viral genomes like genome size compaction. Additionally, overlapping regions (OVRs) are also reported to encode elevated degree of protein intrinsic disorder (PID) in unspliced RNA viruses. With the aim to explore the roles of OVRs in HIV-1 pathogenesis, we have carried out an in-depth analysis on the association of gene overlapping with PID in 35 HIV1- M subtypes. Our study reveals an over representation of PID in OVR of HIV-1 genomes. These disordered residues endure several vital, structural features like short linear motifs (SLiMs) and protein phosphorylation (PP) sites which are previously shown to be involved in massive host–virus interaction. Moreover, SLiMs in OVRs are noticed to be more functionally potential as compared to that of non-overlapping region. Although, density of experimentally verified SLiMs, resided in 9 HIV-1 genes, involved in host–virus interaction do not show any bias toward clustering into OVR, tat and rev two important proteins mediates host–pathogen interaction by their experimentally verified SLiMs, which are mostly localized in OVR. Finally, our analysis suggests that the acquisition of SLiMs in OVR is mutually exclusive of the occurrence of disordered residues, while the enrichment of PPs in OVR is solely dependent on PID and not on overlapping coding frames. Thus, OVRs of HIV-1 genomes could be demarcated as potential molecular recognition sites during host–virus interaction.
Collapse
Affiliation(s)
- Deeya Saha
- Bioinformatics Centre, Bose Institute Kolkata, India
| | - Soumita Podder
- Department of Microbiology, Raiganj University Raiganj, India
| | | |
Collapse
|
161
|
Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ, Nussinov R. TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochim Biophys Acta Gen Subj 2016; 1860:2646-55. [PMID: 27208423 PMCID: PMC7117012 DOI: 10.1016/j.bbagen.2016.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The tumor necrosis factor receptor (TNFR) associated factor 3 (TRAF3) is a key node in innate and adaptive immune signaling pathways. TRAF3 negatively regulates the activation of the canonical and non-canonical NF-κB pathways and is one of the key proteins in antiviral immunity. SCOPE OF REVIEW Here we provide a structural overview of TRAF3 signaling in terms of its competitive binding and consequences to the cellular network. For completion, we also include molecular mimicry of TRAF3 physiological partners by some viral proteins. MAJOR CONCLUSIONS By out-competing host partners, viral proteins aim to subvert TRAF3 antiviral action. Mechanistically, dynamic, competitive binding by the organism's own proteins and same-site adaptive pathogen mimicry follow the same conformational selection principles. GENERAL SIGNIFICANCE Our premise is that irrespective of the eliciting event - physiological or acquired pathogenic trait - pathway activation (or suppression) may embrace similar conformational principles. However, even though here we largely focus on competitive binding at a shared site, similar to physiological signaling other pathogen subversion mechanisms can also be at play. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Emine Guven-Maiorov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702,USA.
| | - Ozlem Keskin
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Turkey; Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey.
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics, Koc University, Istanbul, Turkey; Department of Computer Engineering, Koc University, Istanbul, Turkey.
| | - Carter VanWaes
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA.
| | - Zhong Chen
- Clinical Genomic Unit, Head and Neck Surgery Branch, National Institute on Deafness and Communication Disorders, NIH, Bethesda, MD 20892, USA.
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702,USA.
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702,USA; Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
162
|
Charon J, Theil S, Nicaise V, Michon T. Protein intrinsic disorder within the Potyvirus genus: from proteome-wide analysis to functional annotation. MOLECULAR BIOSYSTEMS 2016; 12:634-52. [PMID: 26699268 DOI: 10.1039/c5mb00677e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Within proteins, intrinsically disordered regions (IDRs) are devoid of stable secondary and tertiary structures under physiological conditions and rather exist as dynamic ensembles of inter-converting conformers. Although ubiquitous in all domains of life, the intrinsic disorder content is highly variable in viral genomes. Over the years, functional annotations of disordered regions at the scale of the whole proteome have been conducted for several animal viruses. But to date, similar studies applied to plant viruses are still missing. Based on disorder prediction tools combined with annotation programs and evolutionary studies, we analyzed the intrinsic disorder content in Potyvirus, using a 10-species dataset representative of this genus diversity. In this paper, we revealed that: (i) the Potyvirus proteome displays high disorder content, (ii) disorder is conserved during Potyvirus evolution, suggesting a functional advantage of IDRs, (iii) IDRs evolve faster than ordered regions, and (iv) IDRs may be associated with major biological functions required for the Potyvirus cycle. Notably, the proteins P1, Coat protein (CP) and Viral genome-linked protein (VPg) display a high content of conserved disorder, enriched in specific motifs mimicking eukaryotic functional modules and suggesting strategies of host machinery hijacking. In these three proteins, IDRs are particularly conserved despite their high amino acid polymorphism, indicating a link to adaptive processes. Through this comprehensive study, we further investigate the biological relevance of intrinsic disorder in Potyvirus biology and we propose a functional annotation of potyviral proteome IDRs.
Collapse
Affiliation(s)
- Justine Charon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Sébastien Theil
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Valérie Nicaise
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| | - Thierry Michon
- UMR Biologie du Fruit et Pathologie, INRA, Villenave d'Ornon cedex, France. and UMR Biologie du Fruit et Pathologie, Université de Bordeaux, Villenave d'Ornon cedex, France
| |
Collapse
|
163
|
Guven-Maiorov E, Tsai CJ, Nussinov R. Pathogen mimicry of host protein-protein interfaces modulates immunity. Semin Cell Dev Biol 2016; 58:136-45. [DOI: 10.1016/j.semcdb.2016.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 12/21/2022]
|
164
|
Högfeldt T, Jaing C, Loughlin KM, Thissen J, Gardner S, Bahnassy AA, Gharizadeh B, Lundahl J, Österborg A, Porwit A, Zekri ARN, Khaled HM, Mellstedt H, Moshfegh A. Differential expression of viral agents in lymphoma tissues of patients with ABC diffuse large B-cell lymphoma from high and low endemic infectious disease regions. Oncol Lett 2016; 12:2782-2788. [PMID: 27698858 PMCID: PMC5038175 DOI: 10.3892/ol.2016.5012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of non-Hodgkin's lymphoma (NHL) in adults, accounts for approximately 30-40% of newly diagnosed lymphomas worldwide. Environmental factors, such as viruses and bacteria, may contribute to cancer development through chronic inflammation and the integration of oncogenes, and have previously been indicated in cervical cancer, hepatocellular carcinoma, gastric cancer and lymphoproliferative disorders. In the present study, the presence of microbial agents was analyzed in the lymphoma tissue of patients with activated B-cell like (ABC) DLBCL. The present study compared two groups of patients from geographically varied regions that possess a difference in the prevalence of viral and other microbial agents. The patient populations were from Sweden (a low endemic infectious disease region) and Egypt (a high endemic infectious disease region). A differential expression of several viruses in lymphoma tissues was noted when comparing Swedish and Egyptian patients. JC polyomavirus (JCV) was detected in Swedish and Egyptian patients and, uniquely, the complete hepatitis B virus (HBV) genome was detected only in Egyptian lymphoma patients. None of these viruses were detected in control lymph tissues from Sweden or Egypt. In total, 38% of the Egyptian patients were found to have HBV surface antigens (HBsAgs) in their serum; however, HBsAgs were not found in any of the Swedish patients. The percentage of serum HBsAgs in Egyptian patients with ABC DLBCL was significantly increased compared with the general Egyptian population (P<0.05). The present study may support a notion that viral agents, including JCV and HBV, may be involved in the tumorigenesis of DLBCL in regions of high infectious disease.
Collapse
Affiliation(s)
- Therese Högfeldt
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Crystal Jaing
- Chemistry, Materials, Earth and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Kevin Mc Loughlin
- Computation, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - James Thissen
- Chemistry, Materials, Earth and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Shea Gardner
- Computation, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Abeer A. Bahnassy
- Department of Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Baback Gharizadeh
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA
| | - Joachim Lundahl
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Anders Österborg
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Anna Porwit
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Abdel-Rahman N. Zekri
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Hussein M. Khaled
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Håkan Mellstedt
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Ali Moshfegh
- Department of Oncology and Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
165
|
Quistad SD, Lim YW, Silva GGZ, Nelson CE, Haas AF, Kelly LW, Edwards RA, Rohwer FL. Using viromes to predict novel immune proteins in non-model organisms. Proc Biol Sci 2016; 283:20161200. [PMID: 27581878 PMCID: PMC5013795 DOI: 10.1098/rspb.2016.1200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/04/2016] [Indexed: 12/18/2022] Open
Abstract
Immunity is mostly studied in a few model organisms, leaving the majority of immune systems on the planet unexplored. To characterize the immune systems of non-model organisms alternative approaches are required. Viruses manipulate host cell biology through the expression of proteins that modulate the immune response. We hypothesized that metagenomic sequencing of viral communities would be useful to identify both known and unknown host immune proteins. To test this hypothesis, a mock human virome was generated and compared to the human proteome using tBLASTn, resulting in 36 proteins known to be involved in immunity. This same pipeline was then applied to reef-building coral, a non-model organism that currently lacks traditional molecular tools like transgenic animals, gene-editing capabilities, and in vitro cell cultures. Viromes isolated from corals and compared with the predicted coral proteome resulted in 2503 coral proteins, including many proteins involved with pathogen sensing and apoptosis. There were also 159 coral proteins predicted to be involved with coral immunity but currently lacking any functional annotation. The pipeline described here provides a novel method to rapidly predict host immune components that can be applied to virtually any system with the potential to discover novel immune proteins.
Collapse
Affiliation(s)
- Steven D Quistad
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Yan Wei Lim
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Genivaldo Gueiros Z Silva
- Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Craig E Nelson
- Center for Microbial Oceanography: Research and Education, Department of Oceanography and Sea Grant College Program, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, HI 96822, USA
| | - Andreas F Haas
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Linda Wegley Kelly
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Robert A Edwards
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Computational Science Research Center, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA Department of Computer Science, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| | - Forest L Rohwer
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego 92182, USA
| |
Collapse
|
166
|
Sólyom Z, Ma P, Schwarten M, Bosco M, Polidori A, Durand G, Willbold D, Brutscher B. The Disordered Region of the HCV Protein NS5A: Conformational Dynamics, SH3 Binding, and Phosphorylation. Biophys J 2016; 109:1483-96. [PMID: 26445449 DOI: 10.1016/j.bpj.2015.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/16/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) perform their physiological role without possessing a well-defined three-dimensional structure. Still, residual structure and conformational dynamics of IDPs are crucial for the mechanisms underlying their functions. For example, regions of transient secondary structure are often involved in molecular recognition, with the structure being stabilized (or not) upon binding. Long-range interactions, on the other hand, determine the hydrodynamic radius of the IDP, and thus the distance over which the protein can catch binding partners via so-called fly-casting mechanisms. The modulation of long-range interactions also presents a convenient way of fine-tuning the protein's interaction network, by making binding sites more or less accessible. Here we studied, mainly by nuclear magnetic resonance spectroscopy, residual secondary structure and long-range interactions in nonstructural protein 5A (NS5A) from hepatitis C virus (HCV), a typical viral IDP with multiple functions during the viral life cycle. NS5A comprises an N-terminal folded domain, followed by a large (∼250-residue) disordered C-terminal part. Comparing nuclear magnetic resonance spectra of full-length NS5A with those of a protein construct composed of only the C-terminal residues 191-447 (NS5A-D2D3) allowed us to conclude that there is no significant interaction between the globular and disordered parts of NS5A. NS5A-D2D3, despite its overall high flexibility, shows a large extent of local residual (α-helical and β-turn) structure, as well as a network of electrostatic long-range interactions. Furthermore, we could demonstrate that these long-range interactions become modulated upon binding to the host protein Bin1, as well as after NS5A phosphorylation by CK2. As the charged peptide regions involved in these interactions are well conserved among the different HCV genotypes, these transient long-range interactions may be important for some of the functions of NS5A over the course of the HCV life cycle.
Collapse
Affiliation(s)
- Zsófia Sólyom
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France
| | - Peixiang Ma
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France; Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Melanie Schwarten
- Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Michaël Bosco
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Ange Polidori
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron, UMR 5247, Centre National de Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier, Université Montpellier, Montpellier, France; Equipe Chimie Bioorganique et Systèmes Amphiphiles, Avignon Université, Avignon, France
| | - Dieter Willbold
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Institute of Complex Systems-6 Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble 1, Grenoble, France; Commissariat à l'Energie Atomique et aux Energies Alternatives, Grenoble, France; Centre National de Recherche Scientifique, Grenoble, France.
| |
Collapse
|
167
|
Hošek T, Calçada EO, Nogueira MO, Salvi M, Pagani TD, Felli IC, Pierattelli R. Structural and Dynamic Characterization of the Molecular Hub Early Region 1A (E1A) from Human Adenovirus. Chemistry 2016; 22:13010-3. [PMID: 27490777 DOI: 10.1002/chem.201602510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Indexed: 12/19/2022]
Abstract
The small-DNA human adenovirus encodes one of the most versatile molecular hubs, the E1A protein. This protein is essential for productive viral infection in human cells and a vast amount of biologically relevant data are available on its interactions with host proteins. Up to now, however, no high-resolution structural and dynamic information on E1A is available despite its important biological role. Among the different spliced variants of E1A, two are expressed at high level in the early stage of infection. These are 243 and 289 residues isoforms. Herein, we present their NMR characterization, showing that they are both highly disordered, but also demonstrate a certain heterogeneous behavior in terms of structural and dynamic properties. Furthermore, we present the characterization of the isolated domain of the longer variant, known as CR3. This study opens the way to understanding at the molecular level how E1A functions.
Collapse
Affiliation(s)
- Tomáš Hošek
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Eduardo O Calçada
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Marcela Oliveira Nogueira
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Michele Salvi
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Talita Duarte Pagani
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
168
|
Kazlauskas A, Schmotz C, Kesti T, Hepojoki J, Kleino I, Kaneko T, Li SSC, Saksela K. Large-Scale Screening of Preferred Interactions of Human Src Homology-3 (SH3) Domains Using Native Target Proteins as Affinity Ligands. Mol Cell Proteomics 2016; 15:3270-3281. [PMID: 27440912 DOI: 10.1074/mcp.m116.060483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
The Src Homology-3 (SH3) domains are ubiquitous protein modules that mediate important intracellular protein interactions via binding to short proline-rich consensus motifs in their target proteins. The affinity and specificity of such core SH3 - ligand contacts are typically modest, but additional binding interfaces can give rise to stronger and more specific SH3-mediated interactions. To understand how commonly such robust SH3 interactions occur in the human protein interactome, and to identify these in an unbiased manner we have expressed 324 predicted human SH3 ligands as full-length proteins in mammalian cells, and screened for their preferred SH3 partners using a phage display-based approach. This discovery platform contains an essentially complete repertoire of the ∼300 human SH3 domains, and involves an inherent binding threshold that ensures selective identification of only SH3 interactions with relatively high affinity. Such strong and selective SH3 partners could be identified for only 19 of these 324 predicted ligand proteins, suggesting that the majority of human SH3 interactions are relatively weak, and thereby have capacity for only modest inherent selectivity. The panel of exceptionally robust SH3 interactions identified here provides a rich source of leads and hypotheses for further studies. However, a truly comprehensive characterization of the human SH3 interactome will require novel high-throughput methods based on function instead of absolute binding affinity.
Collapse
Affiliation(s)
- Arunas Kazlauskas
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Constanze Schmotz
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tapio Kesti
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jussi Hepojoki
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Iivari Kleino
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tomonori Kaneko
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Shawn S C Li
- §Department of Biochemistry and the Siebens-Drake Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kalle Saksela
- From the ‡Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland;
| |
Collapse
|
169
|
Gordley RM, Bugaj LJ, Lim WA. Modular engineering of cellular signaling proteins and networks. Curr Opin Struct Biol 2016; 39:106-114. [PMID: 27423114 DOI: 10.1016/j.sbi.2016.06.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/16/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Living cells respond to their environment using networks of signaling molecules that act as sensors, information processors, and actuators. These signaling systems are highly modular at both the molecular and network scales, and much evidence suggests that evolution has harnessed this modularity to rewire and generate new physiological behaviors. Conversely, we are now finding that, following nature's example, signaling modules can be recombined to form synthetic tools for monitoring, interrogating, and controlling the behavior of cells. Here we highlight recent progress in the modular design of synthetic receptors, optogenetic switches, and phospho-regulated proteins and circuits, and discuss the expanding role of combinatorial design in the engineering of cellular signaling proteins and networks.
Collapse
Affiliation(s)
- Russell M Gordley
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Lukasz J Bugaj
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States
| | - Wendell A Lim
- Howard Hughes Medical Institute, United States; Department of Cellular & Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, United States.
| |
Collapse
|
170
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
171
|
Tossavainen H, Aitio O, Hellman M, Saksela K, Permi P. Structural Basis of the High Affinity Interaction between the Alphavirus Nonstructural Protein-3 (nsP3) and the SH3 Domain of Amphiphysin-2. J Biol Chem 2016; 291:16307-17. [PMID: 27268056 DOI: 10.1074/jbc.m116.732412] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Indexed: 12/25/2022] Open
Abstract
We show that a peptide from Chikungunya virus nsP3 protein spanning residues 1728-1744 binds the amphiphysin-2 (BIN1) Src homology-3 (SH3) domain with an unusually high affinity (Kd 24 nm). Our NMR solution complex structure together with isothermal titration calorimetry data on several related viral and cellular peptide ligands reveal that this exceptional affinity originates from interactions between multiple basic residues in the target peptide and the extensive negatively charged binding surface of amphiphysin-2 SH3. Remarkably, these arginines show no fixed conformation in the complex structure, indicating that a transient or fluctuating polyelectrostatic interaction accounts for this affinity. Thus, via optimization of such dynamic electrostatic forces, viral peptides have evolved a superior binding affinity for amphiphysin-2 SH3 compared with typical cellular ligands, such as dynamin, thereby enabling hijacking of amphiphysin-2 SH3-regulated host cell processes by these viruses. Moreover, our data show that the previously described consensus sequence PXRPXR for amphiphysin SH3 ligands is inaccurate and instead define it as an extended Class II binding motif PXXPXRpXR, where additional positive charges between the two constant arginine residues can give rise to extraordinary high SH3 binding affinity.
Collapse
Affiliation(s)
- Helena Tossavainen
- From the Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki and
| | - Olli Aitio
- From the Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki and
| | - Maarit Hellman
- From the Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki and
| | - Kalle Saksela
- the Department of Virology, University of Helsinki and Helsinki University Hospital, FI-00014 Helsinki, Finland and
| | - Perttu Permi
- From the Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki and the Departments of Biological and Environmental Science and Chemistry, Nanoscience Center, University of Jyvaskyla, FI-40014 Jyvaskyla, Finland
| |
Collapse
|
172
|
Jain J, Mathur K, Shrinet J, Bhatnagar RK, Sunil S. Analysis of coevolution in nonstructural proteins of chikungunya virus. Virol J 2016; 13:86. [PMID: 27251040 PMCID: PMC4890524 DOI: 10.1186/s12985-016-0543-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/18/2016] [Indexed: 01/28/2023] Open
Abstract
Background RNA viruses are characterized by high rate of mutations mainly due to the lack of proofreading repair activities associated with its RNA-dependent RNA-polymerase (RdRp). In case of arboviruses, this phenomenon has lead to the existence of mixed population of genomic variants within the host called quasi-species. The stability of strains within the quasi-species lies on mutations that are positively selected which in turn depend on whether these mutations are beneficial in either or both hosts. Coevolution of amino acids (aa) is one phenomenon that leads to establishment of favorable traits in viruses and leading to their fitness. Results Fourteen CHIKV clinical samples collected over three years were subjected to RT-PCR, the four non-structural genes amplified and subjected to various genetic analyses. Coevolution analysis showed 30 aa pairs coevolving in nsP1, 23 aa pairs coevolving in nsP2, 239 in nsP3 and 46 aa coevolving pairs in nsP4 when each non-structural protein was considered independently. Further analysis showed that 705 amino acids pairs of the non-structural polyproteins coevolved together with a correlation coefficient of ≥0.5. Functional relevance of these coevolving amino acids in all the nonstructural proteins of CHIKV were predicted using Eukaryotic Linear Motifs (ELMs) of human. Conclusions The present study was undertaken to study co-evolving amino acids in the non-structural proteins of chikungunya virus (CHIKV), an important arbovirus. It was observed that several amino acids residues were coevolving and shared common functions.
Collapse
Affiliation(s)
- Jaspreet Jain
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kalika Mathur
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Jatin Shrinet
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Raj K Bhatnagar
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sujatha Sunil
- Insect Resistance Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
173
|
Brandes N, Linial M. Gene overlapping and size constraints in the viral world. Biol Direct 2016; 11:26. [PMID: 27209091 PMCID: PMC4875738 DOI: 10.1186/s13062-016-0128-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Background Viruses are the simplest replicating units, characterized by a limited number of coding genes and an exceptionally high rate of overlapping genes. We sought a unified evolutionary explanation that accounts for their genome sizes, gene overlapping and capsid properties. Results We performed an unbiased statistical analysis of ~100 families within ~400 genera that comprise the currently known viral world. We found that the volume utilization of capsids is often low, and greatly varies among viral families. Furthermore, although viruses span three orders of magnitude in genome length, they almost never have over 1500 overlapping nucleotides, or over four significantly overlapping genes per virus. Conclusions Our findings undermine the generality of the compression theory, which emphasizes optimal packing and length dependency to explain overlapping genes and capsid size in viral genomes. Instead, we propose that gene novelty and evolution exploration offer better explanations to size constraints and gene overlapping in all viruses. Reviewers This article was reviewed by Arne Elofsson and David Kreil. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0128-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nadav Brandes
- Einstein Institute of Mathematics, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Linial
- Department of Biological Chemistry, Room A-530, Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| |
Collapse
|
174
|
Noval MG, Esperante SA, Molina IG, Chemes LB, Prat-Gay GD. Intrinsic Disorder to Order Transitions in the Scaffold Phosphoprotein P from the Respiratory Syncytial Virus RNA Polymerase Complex. Biochemistry 2016; 55:1441-54. [PMID: 26901160 DOI: 10.1021/acs.biochem.5b01332] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intrinsic disorder is at the center of biochemical regulation and is particularly overrepresented among the often multifunctional viral proteins. Replication and transcription of the respiratory syncytial virus (RSV) relies on a RNA polymerase complex with a phosphoprotein cofactor P as the structural scaffold, which consists of a four-helix bundle tetramerization domain flanked by two domains predicted to be intrinsically disordered. Because intrinsic disorder cannot be reduced to a defined atomic structure, we tackled the experimental dissection of the disorder-order transitions of P by a domain fragmentation approach. P remains as a tetramer above 70 °C but shows a pronounced reversible secondary structure transition between 10 and 60 °C. While the N-terminal module behaves as a random coil-like IDP in a manner independent of tetramerization, the isolated C-terminal module displays a cooperative and reversible metastable transition. When linked to the tetramerization domain, the C-terminal module becomes markedly more structured and stable, with strong ANS binding. Therefore, the tertiary structure in the C-terminal module is not compact, conferring "late" molten globule-like IDP properties, stabilized by interactions favored by tetramerization. The presence of a folded structure highly sensitive to temperature, reversibly and almost instantly formed and broken, suggests a temperature sensing activity. The marginal stability allows for exposure of protein binding sites, offering a thermodynamic and kinetic fine-tuning in order-disorder transitions, essential for the assembly and function of the RSV RNA polymerase complex.
Collapse
Affiliation(s)
- María G Noval
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Sebastian A Esperante
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Ivana G Molina
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Lucía B Chemes
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET , Av. Patricias Argentinas 435, 1405 Buenos Aires, Argentina.,CNPq, Laboratório de Genômica Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro , Rio de Janeiro, RJ, Brazil
| |
Collapse
|
175
|
Corbi-Verge C, Kim PM. Motif mediated protein-protein interactions as drug targets. Cell Commun Signal 2016; 14:8. [PMID: 26936767 PMCID: PMC4776425 DOI: 10.1186/s12964-016-0131-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 12/17/2022] Open
Abstract
Protein-protein interactions (PPI) are involved in virtually every cellular process and thus represent an attractive target for therapeutic interventions. A significant number of protein interactions are frequently formed between globular domains and short linear peptide motifs (DMI). Targeting these DMIs has proven challenging and classical approaches to inhibiting such interactions with small molecules have had limited success. However, recent new approaches have led to the discovery of potent inhibitors, some of them, such as Obatoclax, ABT-199, AEG-40826 and SAH-p53-8 are likely to become approved drugs. These novel inhibitors belong to a wide range of different molecule classes, ranging from small molecules to peptidomimetics and biologicals. This article reviews the main reasons for limited success in targeting PPIs, discusses how successful approaches overcome these obstacles to discovery promising inhibitors for human protein double minute 2 (HDM2), B-cell lymphoma 2 (Bcl-2), X-linked inhibitor of apoptosis protein (XIAP), and provides a summary of the promising approaches currently in development that indicate the future potential of PPI inhibitors in drug discovery.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 3E1, Canada.
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 3E1, Canada.
| |
Collapse
|
176
|
Dyson HJ, Wright PE. Role of Intrinsic Protein Disorder in the Function and Interactions of the Transcriptional Coactivators CREB-binding Protein (CBP) and p300. J Biol Chem 2016; 291:6714-22. [PMID: 26851278 DOI: 10.1074/jbc.r115.692020] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The transcriptional coactivators CREB-binding protein (CBP) and p300 undergo a particularly rich set of interactions with disordered and partly ordered partners, as a part of their ubiquitous role in facilitating transcription of genes. CBP and p300 contain a number of small structured domains that provide scaffolds for the interaction of disordered transactivation domains from a wide variety of partners, including p53, hypoxia-inducible factor 1α (HIF-1α), NF-κB, and STAT proteins, and are the targets for the interactions of disordered viral proteins that compete with cellular factors to disrupt signaling and subvert the cell cycle. The functional diversity of the CBP/p300 interactome provides an excellent example of the power of intrinsic disorder to facilitate the complexity of living systems.
Collapse
Affiliation(s)
- H Jane Dyson
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| | - Peter E Wright
- From the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037-1000
| |
Collapse
|
177
|
Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, Cousido-Siah A, Masson M, Vande Pol S, Podjarny A, Travé G, Zanier K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature 2016; 529:541-5. [PMID: 26789255 PMCID: PMC4853763 DOI: 10.1038/nature16481] [Citation(s) in RCA: 309] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 02/06/2023]
Abstract
The p53 pro-apoptotic tumor suppressor is mutated or functionally altered in most cancers. In epithelial tumors induced by “high-risk” mucosal Human Papillomaviruses (hrm-HPVs), including human cervical carcinoma and a growing number of head-and-neck cancers 1, p53 is degraded by the viral oncoprotein E6 2. In this process, E6 binds to a short LxxLL consensus sequence within the cellular ubiquitin ligase E6AP 3. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 4. Neither E6 nor E6AP are separately able to recruit p53 3,5, and the precise mode of assembly of E6, E6AP and p53 is unknown. Here, we solved the crystal structure of a ternary complex comprising full-length HPV16 E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumor suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against HPV-mediated oncogenesis.
Collapse
Affiliation(s)
- Denise Martinez-Zapien
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Francesc Xavier Ruiz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Juline Poirson
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - André Mitschler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Juan Ramirez
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Anne Forster
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Alexandra Cousido-Siah
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Murielle Masson
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Scott Vande Pol
- Department of Pathology, University of Virginia, PO Box 800904, Charlottesville, Virginia 22908-0904, USA
| | - Alberto Podjarny
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/INSERM U964/CNRS UMR 7104/Université de Strasbourg, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch, France
| | - Gilles Travé
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| | - Katia Zanier
- Equipe labellisée Ligue, Biotechnologie et signalisation cellulaire UMR 7242, Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, BP 10413, F-67412 Illkirch, France
| |
Collapse
|
178
|
Martínez-Bonet M, Palladino C, Briz V, Rudolph JM, Fackler OT, Relloso M, Muñoz-Fernandez MA, Madrid R. A Conserved GPG-Motif in the HIV-1 Nef Core Is Required for Principal Nef-Activities. PLoS One 2015; 10:e0145239. [PMID: 26700863 PMCID: PMC4689412 DOI: 10.1371/journal.pone.0145239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022] Open
Abstract
To find out new determinants required for Nef activity we performed a functional alanine scanning analysis along a discrete but highly conserved region at the core of HIV-1 Nef. We identified the GPG-motif, located at the 121–137 region of HIV-1 NL4.3 Nef, as a novel protein signature strictly required for the p56Lck dependent Nef-induced CD4-downregulation in T-cells. Since the Nef-GPG motif was dispensable for CD4-downregulation in HeLa-CD4 cells, Nef/AP-1 interaction and Nef-dependent effects on Tf-R trafficking, the observed effects on CD4 downregulation cannot be attributed to structure constraints or to alterations on general protein trafficking. Besides, we found that the GPG-motif was also required for Nef-dependent inhibition of ring actin re-organization upon TCR triggering and MHCI downregulation, suggesting that the GPG-motif could actively cooperate with the Nef PxxP motif for these HIV-1 Nef-related effects. Finally, we observed that the Nef-GPG motif was required for optimal infectivity of those viruses produced in T-cells. According to these findings, we propose the conserved GPG-motif in HIV-1 Nef as functional region required for HIV-1 infectivity and therefore with a potential interest for the interference of Nef activity during HIV-1 infection.
Collapse
Affiliation(s)
- Marta Martínez-Bonet
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Biomédica Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Claudia Palladino
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Biomédica Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Veronica Briz
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Biomédica Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Jochen M. Rudolph
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Miguel Relloso
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Biomédica Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Maria Angeles Muñoz-Fernandez
- Laboratorio de Inmunobiología Molecular, Instituto de Investigación Biomédica Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Ricardo Madrid
- Departament of Virology. Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- * E-mail:
| |
Collapse
|
179
|
Zhou W, Zeng C, Liu R, Chen J, Li R, Wang X, Bai W, Liu X, Xiang T, Zhang L, Wan Y. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro. Appl Microbiol Biotechnol 2015; 100:3979-88. [DOI: 10.1007/s00253-015-7242-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/02/2015] [Accepted: 12/07/2015] [Indexed: 04/25/2023]
|
180
|
Olorin E, O'Brien KT, Palopoli N, Pérez-Bercoff Å, Shields DC, Edwards RJ. SLiMScape 3.x: a Cytoscape 3 app for discovery of Short Linear Motifs in protein interaction networks. F1000Res 2015; 4:477. [PMID: 26674271 PMCID: PMC4670012 DOI: 10.12688/f1000research.6773.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2015] [Indexed: 11/30/2022] Open
Abstract
Short linear motifs (SLiMs) are small protein sequence patterns that mediate a large number of critical protein-protein interactions, involved in processes such as complex formation, signal transduction, localisation and stabilisation. SLiMs show rapid evolutionary dynamics and are frequently the targets of molecular mimicry by pathogens. Identifying enriched sequence patterns due to convergent evolution in non-homologous proteins has proven to be a successful strategy for computational SLiM prediction. Tools of the SLiMSuite package use this strategy, using a statistical model to identify SLiM enrichment based on the evolutionary relationships, amino acid composition and predicted disorder of the input proteins. The quality of input data is critical for successful SLiM prediction. Cytoscape provides a user-friendly, interactive environment to explore interaction networks and select proteins based on common features, such as shared interaction partners. SLiMScape embeds tools of the SLiMSuite package for
de novo SLiM discovery (SLiMFinder and QSLiMFinder) and identifying occurrences/enrichment of known SLiMs (SLiMProb) within this interactive framework. SLiMScape makes it easier to (1) generate high quality hypothesis-driven datasets for these tools, and (2) visualise predicted SLiM occurrences within the context of the network. To generate new predictions, users can select nodes from a protein network or provide a set of Uniprot identifiers. SLiMProb also requires additional query motif input. Jobs are then run remotely on the SLiMSuite server (
http://rest.slimsuite.unsw.edu.au) for subsequent retrieval and visualisation. SLiMScape can also be used to retrieve and visualise results from jobs run directly on the server. SLiMScape and SLiMSuite are open source and freely available via GitHub under GNU licenses.
Collapse
Affiliation(s)
- Emily Olorin
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Kevin T O'Brien
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Nicolas Palopoli
- Centre for Biological Sciences, University of Southampton, Southampton, UK ; Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina ; Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Åsa Pérez-Bercoff
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Denis C Shields
- UCD Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia ; Centre for Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
181
|
Eid FE, ElHefnawi M, Heath LS. DeNovo: virus-host sequence-based protein–protein interaction prediction. Bioinformatics 2015; 32:1144-50. [DOI: 10.1093/bioinformatics/btv737] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/12/2015] [Indexed: 01/02/2023] Open
|
182
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
183
|
Abstract
We surveyed the "dark" proteome-that is, regions of proteins never observed by experimental structure determination and inaccessible to homology modeling. For 546,000 Swiss-Prot proteins, we found that 44-54% of the proteome in eukaryotes and viruses was dark, compared with only ∼14% in archaea and bacteria. Surprisingly, most of the dark proteome could not be accounted for by conventional explanations, such as intrinsic disorder or transmembrane regions. Nearly half of the dark proteome comprised dark proteins, in which the entire sequence lacked similarity to any known structure. Dark proteins fulfill a wide variety of functions, but a subset showed distinct and largely unexpected features, such as association with secretion, specific tissues, the endoplasmic reticulum, disulfide bonding, and proteolytic cleavage. Dark proteins also had short sequence length, low evolutionary reuse, and few known interactions with other proteins. These results suggest new research directions in structural and computational biology.
Collapse
|
184
|
Pierce WK, Grace CR, Lee J, Nourse A, Marzahn MR, Watson ER, High AA, Peng J, Schulman BA, Mittag T. Multiple Weak Linear Motifs Enhance Recruitment and Processivity in SPOP-Mediated Substrate Ubiquitination. J Mol Biol 2015; 428:1256-1271. [PMID: 26475525 DOI: 10.1016/j.jmb.2015.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/29/2022]
Abstract
Primary sequence motifs, with millimolar affinities for binding partners, are abundant in disordered protein regions. In multivalent interactions, such weak linear motifs can cooperate to recruit binding partners via avidity effects. If linear motifs recruit modifying enzymes, optimal placement of weak motifs may regulate access to modification sites. Weak motifs may thus exert physiological relevance stronger than that suggested by their affinities, but molecular mechanisms of their function are still poorly understood. Herein, we use the N-terminal disordered region of the Hedgehog transcriptional regulator Gli3 (Gli3(1-90)) to determine the role of weak motifs encoded in its primary sequence for the recruitment of its ubiquitin ligase CRL3(SPOP) and the subsequent effect on ubiquitination efficiency. The substrate adaptor SPOP binds linear motifs through its MATH (meprin and TRAF homology) domain and forms higher-order oligomers through its oligomerization domains, rendering SPOP multivalent for its substrates. Gli3 has multiple weak SPOP binding motifs. We map three such motifs in Gli3(1-90), the weakest of which has a millimolar dissociation constant. Multivalency of ligase and substrate for each other facilitates enhanced ligase recruitment and stimulates Gli3(1-90) ubiquitination in in vitro ubiquitination assays. We speculate that the weak motifs enable processivity through avidity effects and by providing steric access to lysine residues that are otherwise not prioritized for polyubiquitination. Weak motifs may generally be employed in multivalent systems to act as gatekeepers regulating post-translational modification.
Collapse
Affiliation(s)
- Wendy K Pierce
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Christy R Grace
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jihun Lee
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Amanda Nourse
- Molecular Interactions Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Melissa R Marzahn
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Edmond R Watson
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN 38105, USA
| | - Anthony A High
- St. Jude Proteomics Facility, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; St. Jude Proteomics Facility, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Brenda A Schulman
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Howard Hughes Medical Institute, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
185
|
Tompa P, Schad E, Tantos A, Kalmar L. Intrinsically disordered proteins: emerging interaction specialists. Curr Opin Struct Biol 2015; 35:49-59. [PMID: 26402567 DOI: 10.1016/j.sbi.2015.08.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/23/2015] [Accepted: 08/28/2015] [Indexed: 12/22/2022]
Abstract
Intrinsically disordered proteins or regions of proteins (IDPs/IDRs) most often function through protein-protein interactions, when they permanently or transiently bind partner molecules with diverse functional consequences. There is a rapid advance in our understanding of the ensuing functional modes, obtained from describing atomic details of individual complexes, proteome-wide studies of interactomes and characterizing loosely assembled hydrogels and tightly packed amyloids. Here we briefly survey the most important recent methodological developments and structural-functional observations, with the aim of increasing the general appreciation of IDPs/IDRs as 'interaction specialists'.
Collapse
Affiliation(s)
- Peter Tompa
- VIB Structural Biology Research Center (SBRC), Brussels, Belgium; Vrije Universiteit Brussel, Brussels, Belgium; Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Eva Schad
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
186
|
Decoding protein networks during virus entry by quantitative proteomics. Virus Res 2015; 218:25-39. [PMID: 26365680 PMCID: PMC4914609 DOI: 10.1016/j.virusres.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
Abstract
Virus entry into host cells relies on interactions between viral and host structures including lipids, carbohydrates and proteins. Particularly, protein–protein interactions between viral surface proteins and host proteins as well as secondary host protein–protein interactions play a pivotal role in coordinating virus binding and uptake. These interactions are dynamic and frequently involve multiprotein complexes. In the past decade mass spectrometry based proteomics methods have reached sensitivities and high throughput compatibilities of genomics methods and now allow the reliable quantitation of proteins in complex samples from limited material. As proteomics provides essential information on the biologically active entity namely the protein, including its posttranslational modifications and its interactions with other proteins, it is an indispensable method in the virologist's toolbox. Here we review protein interactions during virus entry and compare classical biochemical methods to study entry with novel technically advanced quantitative proteomics techniques. We highlight the value of quantitative proteomics in mapping functional virus entry networks, discuss the benefits and limitations and illustrate how the methodology will help resolve unsettled questions in virus entry research in the future.
Collapse
|
187
|
Habchi J, Longhi S. Structural Disorder within Paramyxoviral Nucleoproteins and Phosphoproteins in Their Free and Bound Forms: From Predictions to Experimental Assessment. Int J Mol Sci 2015; 16:15688-726. [PMID: 26184170 PMCID: PMC4519920 DOI: 10.3390/ijms160715688] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/26/2015] [Accepted: 06/29/2015] [Indexed: 01/10/2023] Open
Abstract
We herein review available computational and experimental data pointing to the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed molecular description of the mechanisms governing the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (PXD) of the homologous P proteins. We also show that NTAIL-PXD complexes are "fuzzy", i.e., they possess a significant residual disorder, and discuss the possible functional significance of this fuzziness. Finally, we emphasize the relevance of N-P interactions involving intrinsically disordered proteins as promising targets for new antiviral approaches, and end up summarizing the general functional advantages of disorder for viruses.
Collapse
Affiliation(s)
- Johnny Habchi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| | - Sonia Longhi
- Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
- Centre National pour la Recherche Scientifique (CNRS), AFMB UMR 7257, 163, Avenue de Luminy, Case 932, 13288 Marseille, France.
| |
Collapse
|
188
|
Longhi S. Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 2015; 589:2649-59. [PMID: 26071376 DOI: 10.1016/j.febslet.2015.05.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 05/28/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022]
Abstract
In this review I summarize available data pointing to the abundance of structural disorder within the nucleoprotein (N) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. I provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous phosphoproteins. I also show that a significant flexibility persists within NTAIL-XD complexes, which makes them illustrative examples of "fuzziness". Finally, I discuss the functional implications of structural disorder for viral transcription and replication in light of the promiscuity of disordered regions and of the considerable reach they confer to the components of the replicative machinery.
Collapse
Affiliation(s)
- Sonia Longhi
- Aix-Marseille Université, AFMB UMR 7257, 13288 Marseille, France; CNRS, AFMB UMR 7257, 13288 Marseille, France.
| |
Collapse
|
189
|
Convergent evolution and mimicry of protein linear motifs in host–pathogen interactions. Curr Opin Struct Biol 2015; 32:91-101. [DOI: 10.1016/j.sbi.2015.03.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/09/2015] [Accepted: 03/15/2015] [Indexed: 12/21/2022]
|
190
|
Hong JS, Kim NH, Choi CY, Lee JS, Na D, Chun T, Lee YS. Changes in cellular microRNA expression induced by porcine circovirus type 2-encoded proteins. Vet Res 2015; 46:39. [PMID: 25885539 PMCID: PMC4391141 DOI: 10.1186/s13567-015-0172-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/17/2015] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of postweaning multisystemic wasting syndrome, which leads to serious economic losses in the pig industry worldwide. While the molecular basis of PCV2 replication and pathogenicity remains elusive, it is increasingly apparent that the microRNA (miRNA) pathway plays a key role in controlling virus-host interactions, in addition to a wide range of cellular processes. Here, we employed Solexa deep sequencing technology to determine which cellular miRNAs were differentially regulated after expression of each of three PCV2-encoded open reading frames (ORFs) in porcine kidney epithelial (PK15) cells. We identified 51 ORF1-regulated miRNAs, 74 ORF2-regulated miRNAs, and 32 ORF3-regulated miRNAs that differed in abundance compared to the control. Gene ontology analysis of the putative targets of these miRNAs identified transcriptional regulation as the most significantly enriched biological process, while KEGG pathway analysis revealed significant enrichment for several pathways including MAPK signaling, which is activated during PCV2 infection. Among the potential target genes of ORF-regulated miRNAs, two genes encoding proteins that are known to interact with PCV2-encoded proteins, zinc finger protein 265 (ZNF265) and regulator of G protein signaling 16 (RGS16), were selected for further analysis. We provide evidence that ZNF265 and RGS16 are direct targets of miR-139-5p and let-7e, respectively, which are both down-regulated by ORF2. Our data will initiate further studies to elucidate the roles of ORF-regulated cellular miRNAs in PCV2-host interactions.
Collapse
Affiliation(s)
- Jae-Sang Hong
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Nam-Hoon Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Chang-Yong Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Jun-Seong Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea. .,Present address: Institut de Recherches Cliniques de Montréal, Montréal, Québec, H2W1R7, Canada.
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 156-756, Korea.
| | - Taehoon Chun
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| | - Young Sik Lee
- College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea.
| |
Collapse
|
191
|
Yao D, Ruan L, Xu X, Shi H. Identification of a c-Jun homolog from Litopenaeus vannamei as a downstream substrate of JNK in response to WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:282-289. [PMID: 25530093 DOI: 10.1016/j.dci.2014.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
c-Jun, a major substrate of c-Jun N-terminal kinase (JNK), participates in regulating gene transcription in response to various stimuli, including cytokines, stress signals, bacterial and viral infection. Results from our previous studies suggested that Litopenaeus vannamei JNK (LvJNK) could be utilized by white spot syndrome virus (WSSV) to facilitate viral replication and gene expression. In this article, a c-Jun homolog from Litopenaeus vannamei (designated as Lvc-Jun) was cloned and its role in WSSV infection was studied. Sequence analysis displayed that Lvc-Jun was a novel homolog of c-Jun family, which contained characteristic Jun and basic leucine zipper (bZIP) domains, and two conserved serine phosphorylation sites (Ser49/59). Semi-quantitative RT-PCR analysis showed that Lvc-Jun mRNAs were expressed in all examined tissues. Further investigation determined that Lvc-Jun was located in the nucleus through self-interaction and its phosphorylation levels could be reduced by JNK inhibitor, suggesting that Lvc-Jun could be regulated by LvJNK through phosphorylation and function as a transcription regulator in a homodimer. During the process of WSSV infection, the transcription levels of Lvc-Jun were up-regulated associating with the raising expression and phosphorylation levels of its protein. Moreover, TPA (12-O-tetradecanoylphorbol-13-acetate), a potent inducer of c-Jun, could remarkably promote viral immediate-early gene wsv069 transcription in crayfish hemocytes. Conclusively, our results provided experimental evidences that Lvc-Jun was engaged in WSSV infection and further implied that JNK-c-Jun signaling pathway might be important for WSSV replication and viral gene expression.
Collapse
Affiliation(s)
- Defu Yao
- School of Life Science, Xiamen University, Xiamen 361005, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Lingwei Ruan
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Xun Xu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China
| | - Hong Shi
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, Fujian, China.
| |
Collapse
|
192
|
Palopoli N, Lythgow KT, Edwards RJ. QSLiMFinder: improved short linear motif prediction using specific query protein data. Bioinformatics 2015; 31:2284-93. [PMID: 25792551 PMCID: PMC4495300 DOI: 10.1093/bioinformatics/btv155] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 03/16/2015] [Indexed: 12/16/2022] Open
Abstract
Motivation: The sensitivity of de novo short linear motif (SLiM) prediction is limited by the number of patterns (the motif space) being assessed for enrichment. QSLiMFinder uses specific query protein information to restrict the motif space and thereby increase the sensitivity and specificity of predictions. Results: QSLiMFinder was extensively benchmarked using known SLiM-containing proteins and simulated protein interaction datasets of real human proteins. Exploiting prior knowledge of a query protein likely to be involved in a SLiM-mediated interaction increased the proportion of true positives correctly returned and reduced the proportion of datasets returning a false positive prediction. The biggest improvement was seen if a short region of the query protein flanking the interaction site was known. Availability and implementation: All the tools and data used in this study, including QSLiMFinder and the SLiMBench benchmarking software, are freely available under a GNU license as part of SLiMSuite, at: http://bioware.soton.ac.uk. Contact:richard.edwards@unsw.edu.au Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nicolas Palopoli
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Kieren T Lythgow
- Centre for Biological Sciences, University of Southampton, Southampton, UK, Public Health England, London, UK
| | - Richard J Edwards
- Centre for Biological Sciences, University of Southampton, Southampton, UK, Institute for Life Sciences, University of Southampton, Southampton, UK and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
193
|
Abstract
Intrinsically disordered proteins (IDPs) are important components of the cellular signalling machinery, allowing the same polypeptide to undertake different interactions with different consequences. IDPs are subject to combinatorial post-translational modifications and alternative splicing, adding complexity to regulatory networks and providing a mechanism for tissue-specific signalling. These proteins participate in the assembly of signalling complexes and in the dynamic self-assembly of membrane-less nuclear and cytoplasmic organelles. Experimental, computational and bioinformatic analyses combine to identify and characterize disordered regions of proteins, leading to a greater appreciation of their widespread roles in biological processes.
Collapse
|
194
|
Caillet-Saguy C, Maisonneuve P, Delhommel F, Terrien E, Babault N, Lafon M, Cordier F, Wolff N. Strategies to interfere with PDZ-mediated interactions in neurons: What we can learn from the rabies virus. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 119:53-9. [PMID: 25748547 DOI: 10.1016/j.pbiomolbio.2015.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 02/24/2015] [Indexed: 11/29/2022]
Abstract
PDZ (PSD-95/Dlg/ZO-1) domains play a major role in neuronal homeostasis in which they act as scaffold domains regulating cellular trafficking, self-association and catalytic activity of essential proteins such as kinases and phosphatases. Because of their central role in cell signaling, cellular PDZ-containing proteins are preferential targets of viruses to hijack cellular function to their advantage. Here, we describe how the viral G protein of the rabies virus specifically targets the PDZ domain of neuronal enzymes during viral infection. By disrupting the complexes formed by cellular enzymes and their ligands, the virus triggers drastic effect on cell signaling and commitment of the cell to either survival (virulent strains) or death (vaccinal strains). We provide structural and biological evidences that the viral proteins act as competitors endowed with specificity and affinity in an essential cellular process by mimicking PDZ binding motif of cellular partners. Disruption of critical endogenous protein-protein interactions by viral protein drastically alters intracellular protein trafficking and catalytic activity of cellular proteins that control cell homeostasis. This work opens up many perspectives to mimic viral sequences and developing innovative therapies to manipulate cellular homeostasis.
Collapse
Affiliation(s)
- Célia Caillet-Saguy
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Pierre Maisonneuve
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Florent Delhommel
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Docteur Roux, 75015 Paris, France
| | - Elouan Terrien
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Babault
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Monique Lafon
- Unité de Neuroimmunologie Virale, Département de Virologie, Institut Pasteur, Paris, France
| | - Florence Cordier
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France
| | - Nicolas Wolff
- Unité de RMN des Biomolécules (CNRS UMR 3528), Département de Biologie Structurale et Chimie, Institut Pasteur, Paris, France.
| |
Collapse
|
195
|
Leite F, Way M. The role of signalling and the cytoskeleton during Vaccinia Virus egress. Virus Res 2015; 209:87-99. [PMID: 25681743 DOI: 10.1016/j.virusres.2015.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 01/26/2015] [Indexed: 01/25/2023]
Abstract
Viruses are obligate intracellular parasites that are critically dependent on their hosts to replicate and generate new progeny. To achieve this goal, viruses have evolved numerous elegant strategies to subvert and utilise the different cellular machineries and processes of their unwilling hosts. Moreover, they often accomplish this feat with a surprisingly limited number of proteins. Among the different systems of the cell, the cytoskeleton is often one of the first to be hijacked as it provides a convenient transport system for viruses to reach their site of replication with relative ease. At the latter stages of their replication cycle, the cytoskeleton also provides an efficient means for newly assembled viral progeny to reach the plasma membrane and leave the infected cell. In this review we discuss how Vaccinia virus takes advantage of the microtubule and actin cytoskeletons of its host to promote the spread of infection into neighboring cells. In particular, we highlight how analysis of actin-based motility of Vaccinia has provided unprecedented insights into how a phosphotyrosine-based signalling network is assembled and functions to stimulate Arp2/3 complex-dependent actin polymerization. We also suggest that the formin FHOD1 promotes actin-based motility of the virus by capping the fast growing ends of actin filaments rather than directly promoting filament assembly. We have come a long way since 1976, when electron micrographs of vaccinia-infected cells implicated the actin cytoskeleton in promoting viral spread. Nevertheless, there are still many unanswered questions concerning the role of signalling and the host cytoskeleton in promoting viral spread and pathogenesis.
Collapse
Affiliation(s)
- Flavia Leite
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK
| | - Michael Way
- Cell Motility Laboratory, London Research Institute, Cancer Research UK, 44 Lincoln's Inn Fields, London, WC2A 3LY, UK.
| |
Collapse
|
196
|
Subramanian N, Torabi-Parizi P, Gottschalk RA, Germain RN, Dutta B. Network representations of immune system complexity. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:13-38. [PMID: 25625853 PMCID: PMC4339634 DOI: 10.1002/wsbm.1288] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 12/25/2022]
Abstract
The mammalian immune system is a dynamic multiscale system composed of a hierarchically organized set of molecular, cellular, and organismal networks that act in concert to promote effective host defense. These networks range from those involving gene regulatory and protein–protein interactions underlying intracellular signaling pathways and single‐cell responses to increasingly complex networks of in vivo cellular interaction, positioning, and migration that determine the overall immune response of an organism. Immunity is thus not the product of simple signaling events but rather nonlinear behaviors arising from dynamic, feedback‐regulated interactions among many components. One of the major goals of systems immunology is to quantitatively measure these complex multiscale spatial and temporal interactions, permitting development of computational models that can be used to predict responses to perturbation. Recent technological advances permit collection of comprehensive datasets at multiple molecular and cellular levels, while advances in network biology support representation of the relationships of components at each level as physical or functional interaction networks. The latter facilitate effective visualization of patterns and recognition of emergent properties arising from the many interactions of genes, molecules, and cells of the immune system. We illustrate the power of integrating ‘omics’ and network modeling approaches for unbiased reconstruction of signaling and transcriptional networks with a focus on applications involving the innate immune system. We further discuss future possibilities for reconstruction of increasingly complex cellular‐ and organism‐level networks and development of sophisticated computational tools for prediction of emergent immune behavior arising from the concerted action of these networks. WIREs Syst Biol Med 2015, 7:13–38. doi: 10.1002/wsbm.1288 This article is categorized under:
Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Macromolecular Interactions, Methods
Collapse
Affiliation(s)
- Naeha Subramanian
- Institute for Systems Biology, Seattle, WA, USA; Laboratory of Systems Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
197
|
Schneider R, Maurin D, Communie G, Kragelj J, Hansen DF, Ruigrok RWH, Jensen MR, Blackledge M. Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 2015; 137:1220-9. [PMID: 25551399 DOI: 10.1021/ja511066q] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite playing important roles throughout biology, molecular recognition mechanisms in intrinsically disordered proteins remain poorly understood. We present a combination of (1)H(N), (13)C', and (15)N relaxation dispersion NMR, measured at multiple titration points, to map the interaction between the disordered domain of Sendai virus nucleoprotein (NT) and the C-terminal domain of the phosphoprotein (PX). Interaction with PX funnels the free-state equilibrium of NT by stabilizing one of the previously identified helical substates present in the prerecognition ensemble in a nonspecific and dynamic encounter complex on the surface of PX. This helix then locates into the binding site at a rate coincident with intrinsic breathing motions of the helical groove on the surface of PX. The binding kinetics of complex formation are thus regulated by the intrinsic free-state conformational dynamics of both proteins. This approach, providing high-resolution structural and kinetic information about a complex folding and binding interaction trajectory, can be applied to a number of experimental systems to provide a general framework for understanding conformational disorder in biomolecular function.
Collapse
|
198
|
Bhowmick P, Guharoy M, Tompa P. Bioinformatics Approaches for Predicting Disordered Protein Motifs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:291-318. [PMID: 26387106 DOI: 10.1007/978-3-319-20164-1_9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Short, linear motifs (SLiMs) in proteins are functional microdomains consisting of contiguous residue segments along the protein sequence, typically not more than 10 consecutive amino acids in length with less than 5 defined positions. Many positions are 'degenerate' thus offering flexibility in terms of the amino acid types allowed at those positions. Their short length and degenerate nature confers evolutionary plasticity meaning that SLiMs often evolve convergently. Further, SLiMs have a propensity to occur within intrinsically unstructured protein segments and this confers versatile functionality to unstructured regions of the proteome. SLiMs mediate multiple types of protein interactions based on domain-peptide recognition and guide functions including posttranslational modifications, subcellular localization of proteins, and ligand binding. SLiMs thus behave as modular interaction units that confer versatility to protein function and SLiM-mediated interactions are increasingly being recognized as therapeutic targets. In this chapter we start with a brief description about the properties of SLiMs and their interactions and then move on to discuss algorithms and tools including several web-based methods that enable the discovery of novel SLiMs (de novo motif discovery) as well as the prediction of novel occurrences of known SLiMs. Both individual amino acid sequences as well as sets of protein sequences can be scanned using these methods to obtain statistically overrepresented sequence patterns. Lists of putatively functional SLiMs are then assembled based on parameters such as evolutionary sequence conservation, disorder scores, structural data, gene ontology terms and other contextual information that helps to assess the functional credibility or significance of these motifs. These bioinformatics methods should certainly guide experiments aimed at motif discovery.
Collapse
Affiliation(s)
- Pallab Bhowmick
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium
| | - Mainak Guharoy
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Peter Tompa
- VIB Department of Structural Biology, Vrije Universiteit Brussel (VUB), Building E, Pleinlaan 2, 1050, Brussels, Belgium. .,Institute of Enzymology, Research Center of Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
199
|
Order and Disorder in the Replicative Complex of Paramyxoviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:351-81. [PMID: 26387109 DOI: 10.1007/978-3-319-20164-1_12] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we summarize available data showing the abundance of structural disorder within the nucleoprotein (N) and phosphoprotein (P) from three paramyxoviruses, namely the measles (MeV), Nipah (NiV) and Hendra (HeV) viruses. We provide a detailed description of the molecular mechanisms that govern the disorder-to-order transition that the intrinsically disordered C-terminal domain (NTAIL) of their N proteins undergoes upon binding to the C-terminal X domain (XD) of the homologous P proteins. We also show that a significant flexibility persists within NTAIL-XD complexes, which therefore provide illustrative examples of "fuzziness". The functional implications of structural disorder for viral transcription and replication are discussed in light of the ability of disordered regions to establish a complex molecular partnership and to confer a considerable reach to the elements of the replicative machinery.
Collapse
|
200
|
Duro N, Miskei M, Fuxreiter M. Fuzziness endows viral motif-mimicry. MOLECULAR BIOSYSTEMS 2015; 11:2821-9. [DOI: 10.1039/c5mb00301f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The local dynamics of host and viral peptide motifs suggests a different scenario for partner recognition. Host peptide motifs serve as molecular recognition elements, while viral motifs preserve the structural heterogeneity and remain fuzzy when bound to the host.
Collapse
Affiliation(s)
- Norbert Duro
- MTA-DE Momentum
- Laboratory of Protein Dynamics
- Department of Biochemistry and Molecular Biology
- University of Debrecen
- Hungary
| | - Marton Miskei
- MTA-DE Momentum
- Laboratory of Protein Dynamics
- Department of Biochemistry and Molecular Biology
- University of Debrecen
- Hungary
| | - Monika Fuxreiter
- MTA-DE Momentum
- Laboratory of Protein Dynamics
- Department of Biochemistry and Molecular Biology
- University of Debrecen
- Hungary
| |
Collapse
|