151
|
Cohen ME, Xiao Y, Eisenberg RJ, Cohen GH, Isaacs SN. Antibody against extracellular vaccinia virus (EV) protects mice through complement and Fc receptors. PLoS One 2011; 6:e20597. [PMID: 21687676 PMCID: PMC3110783 DOI: 10.1371/journal.pone.0020597] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
Protein-based subunit smallpox vaccines have shown their potential as effective alternatives to live virus vaccines in animal model challenge studies. We vaccinated mice with combinations of three different vaccinia virus (VACV) proteins (A33, B5, L1) and examined how the combined antibody responses to these proteins cooperate to effectively neutralize the extracellular virus (EV) infectious form of VACV. Antibodies against these targets were generated in the presence or absence of CpG adjuvant so that Th1-biased antibody responses could be compared to Th2-biased responses to the proteins with aluminum hydroxide alone, specifically with interest in looking at the ability of anti-B5 and anti-A33 polyclonal antibodies (pAb) to utilize complement-mediated neutralization in vitro. We found that neutralization of EV by anti-A33 or anti-B5 pAb can be enhanced in the presence of complement if Th1-biased antibody (IgG2a) is generated. Mechanistic differences found for complement-mediated neutralization showed that anti-A33 antibodies likely result in virolysis, while anti-B5 antibodies with complement can neutralize by opsonization (coating). In vivo studies found that mice lacking the C3 protein of complement were less protected than wild-type mice after passive transfer of anti-B5 pAb or vaccination with B5. Passive transfer of anti-B5 pAb or monoclonal antibody into mice lacking Fc receptors (FcRs) found that FcRs were also important in mediating protection. These results demonstrate that both complement and FcRs are important effector mechanisms for antibody-mediated protection from VACV challenge in mice.
Collapse
Affiliation(s)
- Matthew E. Cohen
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yuhong Xiao
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roselyn J. Eisenberg
- Department of Microbiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stuart N. Isaacs
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
152
|
Chlanda P, Carbajal MA, Kolovou A, Hamasaki M, Cyrklaff M, Griffiths G, Krijnse-Locker J. Vaccinia virus lacking A17 induces complex membrane structures composed of open membrane sheets. Arch Virol 2011; 156:1647-53. [PMID: 21590268 DOI: 10.1007/s00705-011-1012-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/27/2011] [Indexed: 10/18/2022]
Abstract
The vaccinia virus (VACV) precursor membrane, the crescent, consists of an open membrane sheet and is formed by rupture of a cellular compartment. Here, we asked whether A17, a viral membrane protein, plays a role in membrane rupture. Without A17 synthesis, crescents are not formed, and instead, tubular and vesicular membranes accumulate (Rodriguez et al. in J Virol 69:4640-4648, 1). We used electron tomography (ET) to analyze whether the viral membranes lacking A17 consist of open membrane sheets. Tubular, vesicular and so far not described onion-shaped membranes, which consisted of open membrane sheets, were seen. Thus, the data show that membrane rupture occurs independently of the A17 protein.
Collapse
Affiliation(s)
- Petr Chlanda
- European Molecular Biology Laboratory, Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
153
|
The host phosphoinositide 5-phosphatase SHIP2 regulates dissemination of vaccinia virus. J Virol 2011; 85:7402-10. [PMID: 21543482 DOI: 10.1128/jvi.02391-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
After fusing with the plasma membrane, enveloped poxvirus virions form actin-filled membranous protrusions, called tails, beneath themselves and move toward adjacent uninfected cells. While much is known about the host and viral proteins that mediate formation of actin tails, much less is known about the factors controlling release. We found that the phosphoinositide 5-phosphatase SHIP2 localizes to actin tails. Localization requires phosphotyrosine, Abl and Src family tyrosine kinases, and neural Wiskott-Aldrich syndrome protein (N-WASP) but not the Arp2/Arp3 complex or actin. Cells lacking SHIP2 have normal actin tails but release more virus. Moreover, cells infected with viral strains with mutations in the release inhibitor A34 release more virus but recruit less SHIP2 to tails. Thus, the inhibitory effects of A34 on virus release are mediated by SHIP2. Together, these data suggest that SHIP2 and A34 may act as gatekeepers to regulate dissemination of poxviruses when environmental conditions are conducive.
Collapse
|
154
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA.
| |
Collapse
|
155
|
Jeshtadi A, Burgos P, Stubbs CD, Parker AW, King LA, Skinner MA, Botchway SW. Interaction of poxvirus intracellular mature virion proteins with the TPR domain of kinesin light chain in live infected cells revealed by two-photon-induced fluorescence resonance energy transfer fluorescence lifetime imaging microscopy. J Virol 2010; 84:12886-94. [PMID: 20943972 PMCID: PMC3004322 DOI: 10.1128/jvi.01395-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/24/2010] [Indexed: 11/20/2022] Open
Abstract
Using two-photon-induced fluorescence lifetime imaging microscopy, we corroborate an interaction (previously demonstrated by yeast two-hybrid domain analysis) of full-length vaccinia virus (VACV; an orthopoxvirus) A36 protein with the cellular microtubule motor protein kinesin. Quenching of enhanced green fluorescent protein (EGFP), fused to the C terminus of VACV A36, by monomeric red fluorescent protein (mDsRed), fused to the tetratricopeptide repeat (TPR) domain of kinesin, was observed in live chicken embryo fibroblasts infected with either modified vaccinia virus Ankara (MVA) or wild-type fowlpox virus (FWPV; an avipoxvirus), and the excited-state fluorescence lifetime of EGFP was reduced from 2.5 ± 0.1 ns to 2.1 ± 0.1 ns due to resonance energy transfer to mDsRed. FWPV does not encode an equivalent of intracellular enveloped virion surface protein A36, yet it is likely that this virus too must interact with kinesin to facilitate intracellular virion transport. To investigate possible interactions between innate FWPV proteins and kinesin, recombinant FWPVs expressing EGFP fused to the N termini of FWPV structural proteins Fpv140, Fpv168, Fpv191, and Fpv198 (equivalent to VACV H3, A4, p4c, and A34, respectively) were generated. EGFP fusions of intracellular mature virion (IMV) surface protein Fpv140 and type II membrane protein Fpv198 were quenched by mDsRed-TPR in recombinant FWPV-infected cells, indicating that these virion proteins are found within 10 nm of mDsRed-TPR. In contrast, and as expected, EGFP fusions of the IMV core protein Fpv168 did not show any quenching. Interestingly, the p4c-like protein Fpv191, which demonstrates late association with preassembled IMV, also did not show any quenching.
Collapse
Affiliation(s)
- Ananya Jeshtadi
- School of Life Sciences, Headington Campus, Oxford Brookes University, Oxford OX3 0BP, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
156
|
Pauli G, Blümel J, Burger R, Drosten C, Gröner A, Gürtler L, Heiden M, Hildebrandt M, Jansen B, Montag-Lessing T, Offergeld R, Seitz R, Schlenkrich U, Schottstedt V, Strobel J, Willkommen H, von König CHW. Orthopox Viruses: Infections in Humans. ACTA ACUST UNITED AC 2010; 37:351-364. [PMID: 21483466 DOI: 10.1159/000322101] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/19/2022]
Affiliation(s)
- Georg Pauli
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Vaccinia virus (VACV) is arguably the most successful live biotherapeutic agent because of its critical role in the eradication of smallpox, one of the most deadly diseases in human history. VACV has been exploited as an oncolytic therapeutic agent for cancer since 1922. This virus selectively infects and destroys tumor cells, while sparing normal cells, both in cell cultures and in animal models. A certain degree of therapeutic efficacy also has been demonstrated in patients with different types of cancer. In recent years, several strategies have been successfully developed to further improve its tumor selectivity and antitumor efficacy. Oncolytic VACVs carrying imaging genes represent a new treatment strategy that combines tumor site-specific therapeutics with diagnostics (theranostics).
Collapse
Affiliation(s)
- Nanhai G Chen
- Genelux Corporation, San Diego Science Center, San Diego, CA 92109, USA; Genelux Corporation, San Diego Science Center, 3030 Bunker Hill Street, Suite 310, San Diego, CA 92109, USA
| | - Aladar A Szalay
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Biochemistry & Institute for Molecular Infection Biology, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Department of Radiation Oncology, Rebecca & John Moores Comprehensive Cancer Center, University of California, San Diego, CA 92093, USA
| |
Collapse
|
158
|
Pollara JJ, Laster SM, Petty ITD. Inhibition of poxvirus growth by Terameprocol, a methylated derivative of nordihydroguaiaretic acid. Antiviral Res 2010; 88:287-95. [PMID: 20888364 DOI: 10.1016/j.antiviral.2010.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 08/05/2010] [Accepted: 09/23/2010] [Indexed: 11/24/2022]
Abstract
Terameprocol (TMP) is a methylated derivative of nordihydroguaiaretic acid, a phenolic antioxidant originally derived from creosote bush extracts. TMP has previously been shown to have antiviral and anti-inflammatory activities, and has been proven safe in phase I clinical trials conducted to evaluate TMP as both a topical and parenteral therapeutic. In the current study, we examined the ability of TMP to inhibit poxvirus growth in vitro, and found that TMP potently inhibited the growth of both cowpox virus and vaccinia virus in a variety of cell lines. TMP treatment was highly effective at reducing infectious virus yield in multi-step virus growth assays, but it did not substantially inhibit the synthesis of infectious progeny viruses in individual infected cells. These contrasting results showed that TMP inhibits poxvirus growth in vitro by preventing the efficient spread of virus particles from cell to cell. The canonical mechanism of poxvirus cell-to-cell spread requires morphogenesis of cell-associated, enveloped virions. The virions then trigger the formation of actin tails to project them from the cell surface. The number of actin tails present at the surface of poxvirus-infected cells was reduced dramatically by treatment with TMP. Whether TMP inhibits poxvirus morphogenesis, or subsequent events required for actin tail formation, remains to be determined. The results of this study, together with the clinical safety record of TMP, support further evaluation of TMP as a poxvirus therapeutic.
Collapse
Affiliation(s)
- Justin J Pollara
- North Carolina State University, Department of Microbiology, Raleigh, 27695-7615, United States
| | | | | |
Collapse
|
159
|
Meseda CA, Weir JP. Third-generation smallpox vaccines: challenges in the absence of clinical smallpox. Future Microbiol 2010; 5:1367-82. [DOI: 10.2217/fmb.10.98] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smallpox, a disease caused by variola virus, is estimated to have killed hundreds of millions to billions of people before it was certified as eradicated in 1980. However, there has been renewed interest in smallpox vaccine development due in part to zoonotic poxvirus infections and the possibility of a re-emergence of smallpox, as well as the fact that first-generation smallpox vaccines are associated with relatively rare, but severe, adverse reactions in some vaccinees. An understanding of the immune mechanisms of vaccine protection and the use of suitable animal models for vaccine efficacy assessment are paramount to the development of safer and effective smallpox vaccines. This article focuses on studies aimed at understanding the immune responses elicited by vaccinia virus and the various animal models that can be used to evaluate smallpox vaccine efficacy. Harnessing this information is necessary to assess the effectiveness and potential usefulness of new-generation smallpox vaccines.
Collapse
Affiliation(s)
| | - Jerry P Weir
- Division of Viral Products, Center for Biologics Evaluation & Research, USFDA, 1401 Rockville Pike, HFM-457, Rockville, MD 20852, USA
| |
Collapse
|
160
|
African swine fever virus protein p17 is essential for the progression of viral membrane precursors toward icosahedral intermediates. J Virol 2010; 84:7484-99. [PMID: 20504920 DOI: 10.1128/jvi.00600-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first morphological evidence of African swine fever virus (ASFV) assembly is the appearance of precursor viral membranes, thought to derive from the endoplasmic reticulum, within the assembly sites. We have shown previously that protein p54, a viral structural integral membrane protein, is essential for the generation of the viral precursor membranes. In this report, we study the role of protein p17, an abundant transmembrane protein localized at the viral internal envelope, in these processes. Using an inducible virus for this protein, we show that p17 is essential for virus viability and that its repression blocks the proteolytic processing of polyproteins pp220 and pp62. Electron microscopy analyses demonstrate that when the infection occurs under restrictive conditions, viral morphogenesis is blocked at an early stage, immediately posterior to the formation of the viral precursor membranes, indicating that protein p17 is required to allow their progression toward icosahedral particles. Thus, the absence of this protein leads to an accumulation of these precursors and to the delocalization of the major components of the capsid and core shell domains. The study of ultrathin serial sections from cells infected with BA71V or the inducible virus under permissive conditions revealed the presence of large helicoidal structures from which immature particles are produced, suggesting that these helicoidal structures represent a previously undetected viral intermediate.
Collapse
|
161
|
Sandgren KJ, Wilkinson J, Miranda-Saksena M, McInerney GM, Byth-Wilson K, Robinson PJ, Cunningham AL. A differential role for macropinocytosis in mediating entry of the two forms of vaccinia virus into dendritic cells. PLoS Pathog 2010; 6:e1000866. [PMID: 20421949 PMCID: PMC2858709 DOI: 10.1371/journal.ppat.1000866] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 03/22/2010] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus (VACV) is being developed as a recombinant viral vaccine vector for several key pathogens. Dendritic cells (DCs) are specialised antigen presenting cells that are crucial for the initiation of primary immune responses; however, the mechanisms of uptake of VACV by these cells are unclear. Therefore we examined the binding and entry of both the intracellular mature virus (MV) and extracellular enveloped virus (EV) forms of VACV into vesicular compartments of monocyte-derived DCs. Using a panel of inhibitors, flow cytometry and confocal microscopy we have shown that neither MV nor EV binds to the highly expressed C-type lectin receptors on DCs that are responsible for capturing many other viruses. We also found that both forms of VACV enter DCs via a clathrin-, caveolin-, flotillin- and dynamin-independent pathway that is dependent on actin, intracellular calcium and host-cell cholesterol. Both MV and EV entry were inhibited by the macropinocytosis inhibitors rottlerin and dimethyl amiloride and depended on phosphotidylinositol-3-kinase (PI(3)K), and both colocalised with dextran but not transferrin. VACV was not delivered to the classical endolysosomal pathway, failing to colocalise with EEA1 or Lamp2. Finally, expression of early viral genes was not affected by bafilomycin A, indicating that the virus does not depend on low pH to deliver cores to the cytoplasm. From these collective results we conclude that VACV enters DCs via macropinocytosis. However, MV was consistently less sensitive to inhibition and is likely to utilise at least one other entry pathway. Definition and future manipulation of these pathways may assist in enhancing the activity of recombinant vaccinia vectors through effects on antigen presentation. Vaccinia virus (VACV) is a relative of the smallpox virus and was used for many decades as a successful vaccine that contributed to the eradication of smallpox. Today, through genetic recombination technology, VACV shows potential as a modern vaccine for many unconquered diseases including HIV and cancer. Dendritic cells (DCs) are a specialised subset of immune cells that initiate adaptive immune responses and exploiting the interaction between VACV and DCs, which has not been well studied, may be a key to improving the efficacy of these vaccines. In this study we investigated the mechanisms by which VACV binds to and enters DCs. Here, we examined both the abundant mature virus form of VACV as well as the less common, poorly studied extracellular form. We found that VACV does not bind to the common pathogen-uptake C-type lectin receptors expressed on DCs and that the virus enters DCs via macropinocytosis—a fluid-phase uptake process. Furthermore, the virus is not delivered to the conventional endolysosomal antigen processing pathway in these cells. Our study provides new insights into VACV biology and into possible mechanisms of action of VACV as a recombinant viral vaccine vector which may assist in their rational design in the future.
Collapse
Affiliation(s)
- Kerrie J. Sandgren
- Centre for Virus Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - John Wilkinson
- Centre for Virus Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
| | - Monica Miranda-Saksena
- Centre for Virus Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
| | - Gerald M. McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Byth-Wilson
- Centre for Virus Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
| | - Phillip J. Robinson
- Children's Medical Research Institute, Westmead, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, Westmead Millennium Institute, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
162
|
Pardieu C, Vigan R, Wilson SJ, Calvi A, Zang T, Bieniasz P, Kellam P, Towers GJ, Neil SJD. The RING-CH ligase K5 antagonizes restriction of KSHV and HIV-1 particle release by mediating ubiquitin-dependent endosomal degradation of tetherin. PLoS Pathog 2010; 6:e1000843. [PMID: 20419159 PMCID: PMC2855335 DOI: 10.1371/journal.ppat.1000843] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 03/03/2010] [Indexed: 12/29/2022] Open
Abstract
Tetherin (CD317/BST2) is an interferon-induced membrane protein that inhibits the release of diverse enveloped viral particles. Several mammalian viruses have evolved countermeasures that inactivate tetherin, with the prototype being the HIV-1 Vpu protein. Here we show that the human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) is sensitive to tetherin restriction and its activity is counteracted by the KSHV encoded RING-CH E3 ubiquitin ligase K5. Tetherin expression in KSHV-infected cells inhibits viral particle release, as does depletion of K5 protein using RNA interference. K5 induces a species-specific downregulation of human tetherin from the cell surface followed by its endosomal degradation. We show that K5 targets a single lysine (K18) in the cytoplasmic tail of tetherin for ubiquitination, leading to relocalization of tetherin to CD63-positive endosomal compartments. Tetherin degradation is dependent on ESCRT-mediated endosomal sorting, but does not require a tyrosine-based sorting signal in the tetherin cytoplasmic tail. Importantly, we also show that the ability of K5 to substitute for Vpu in HIV-1 release is entirely dependent on K18 and the RING-CH domain of K5. By contrast, while Vpu induces ubiquitination of tetherin cytoplasmic tail lysine residues, mutation of these positions has no effect on its antagonism of tetherin function, and residual tetherin is associated with the trans-Golgi network (TGN) in Vpu-expressing cells. Taken together our results demonstrate that K5 is a mechanistically distinct viral countermeasure to tetherin-mediated restriction, and that herpesvirus particle release is sensitive to this mode of antiviral inhibition.
Collapse
Affiliation(s)
- Claire Pardieu
- MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
| | - Raphaël Vigan
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Sam J. Wilson
- MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Alessandra Calvi
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
| | - Trinity Zang
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul Bieniasz
- Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center and Laboratory of Retrovirology, The Rockefeller University, New York, New York, United States of America
| | - Paul Kellam
- MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Greg J. Towers
- MRC Centre for Medical Molecular Virology, University College London, London, United Kingdom
- * E-mail: (GJT); (SJDN)
| | - Stuart J. D. Neil
- Department of Infectious Disease, King's College London School of Medicine, Guy's Hospital, London, United Kingdom
- * E-mail: (GJT); (SJDN)
| |
Collapse
|
163
|
Protein A33 responsible for antibody-resistant spread of Vaccinia virus is homologous to C-type lectin-like proteins. Virus Res 2010; 151:97-101. [PMID: 20302896 DOI: 10.1016/j.virusres.2010.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/11/2010] [Accepted: 03/11/2010] [Indexed: 11/23/2022]
Abstract
Protein A33 is a type II membrane protein present in the outer envelope of extracellular as well as cell-associated Vaccinia virus particles. A33 has been implicated in mediating cell-to-cell virus spread in an antibody-resistant manner. Here, using state-of-the-art structure prediction methods and structural modeling, we show that A33 has most likely evolved from a C-type lectin-like protein. Comparison of the three-dimensional A33 model to the X-ray structures of distant cellular homologues revealed that A33 retained the key residues required for adopting the C-type lectin-like fold. Our results provide insights into the structure and origin of protein A33.
Collapse
|
164
|
Breiman A, Smith GL. Vaccinia virus B5 protein affects the glycosylation, localization and stability of the A34 protein. J Gen Virol 2010; 91:1823-7. [PMID: 20200189 PMCID: PMC3052527 DOI: 10.1099/vir.0.020677-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vaccinia virus has two infectious forms, the intracellular mature virus, which has a single envelope, and the extracellular enveloped virus (EEV), which is surrounded by two lipid bilayers. The outer membrane of the EEV contains at least six viral proteins. Among them A34, a type II membrane glycoprotein, and B5, a type I membrane glycoprotein, form a complex and are involved in processes such as morphogenesis and EEV entry. A34 is required for normal incorporation of B5 into the EEV membrane. Here, we used a virus lacking B5 and viruses with mutations in the B5 membrane-proximal stalk region and looked at the effect of those modifications on A34. Data presented show that B5 is required for the correct glycosylation, trafficking and stability of A34, emphasizing the complex interactions and mutual dependence of these vaccinia EEV proteins.
Collapse
Affiliation(s)
- Adrien Breiman
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | | |
Collapse
|
165
|
Morgan GW, Hollinshead M, Ferguson BJ, Murphy BJ, Carpentier DCJ, Smith GL. Vaccinia protein F12 has structural similarity to kinesin light chain and contains a motor binding motif required for virion export. PLoS Pathog 2010; 6:e1000785. [PMID: 20195521 PMCID: PMC2829069 DOI: 10.1371/journal.ppat.1000785] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 01/21/2010] [Indexed: 01/16/2023] Open
Abstract
Vaccinia virus (VACV) uses microtubules for export of virions to the cell surface and this process requires the viral protein F12. Here we show that F12 has structural similarity to kinesin light chain (KLC), a subunit of the kinesin-1 motor that binds cargo. F12 and KLC share similar size, pI, hydropathy and cargo-binding tetratricopeptide repeats (TPRs). Moreover, molecular modeling of F12 TPRs upon the crystal structure of KLC2 TPRs showed a striking conservation of structure. We also identified multiple TPRs in VACV proteins E2 and A36. Data presented demonstrate that F12 is critical for recruitment of kinesin-1 to virions and that a conserved tryptophan and aspartic acid (WD) motif, which is conserved in the kinesin-1-binding sequence (KBS) of the neuronal protein calsyntenin/alcadein and several other cellular kinesin-1 binding proteins, is essential for kinesin-1 recruitment and virion transport. In contrast, mutation of WD motifs in protein A36 revealed they were not required for kinesin-1 recruitment or IEV transport. This report of a viral KLC-like protein containing a KBS that is conserved in several cellular proteins advances our understanding of how VACV recruits the kinesin motor to virions, and exemplifies how viruses use molecular mimicry of cellular components to their advantage.
Collapse
Affiliation(s)
- Gareth W. Morgan
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brian J. Ferguson
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Brendan J. Murphy
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - David C. J. Carpentier
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
166
|
Pickup DJ. Cell biology. Propelling progeny. Science 2010; 327:787-8. [PMID: 20150470 DOI: 10.1126/science.1187160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- David J Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
167
|
Doceul V, Hollinshead M, van der Linden L, Smith GL. Repulsion of superinfecting virions: a mechanism for rapid virus spread. Science 2010; 327:873-876. [PMID: 20093437 PMCID: PMC4202693 DOI: 10.1126/science.1183173] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Viruses are thought to spread across susceptible cells through an iterative process of infection, replication, and release, so that the rate of spread is limited by replication kinetics. Here, we show that vaccinia virus spreads across one cell every 75 minutes, fourfold faster than its replication cycle would permit. To explain this phenomenon, we found that newly infected cells express two surface proteins that mark cells as infected and, via exploitation of cellular machinery, induce the repulsion of superinfecting virions away toward uninfected cells. Mechanistically, early expression of proteins A33 and A36 was critical for virion repulsion and rapid spread, and cells expressing these proteins repelled exogenous virions rapidly. Additional spreading mechanisms may exist for other viruses that also spread faster than predicted by replication kinetics.
Collapse
Affiliation(s)
- Virginie Doceul
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| | | | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
168
|
Wu J, Chan R, Wenk MR, Hew CL. Lipidomic study of intracellular Singapore grouper iridovirus. Virology 2010; 399:248-56. [PMID: 20123143 PMCID: PMC7126382 DOI: 10.1016/j.virol.2010.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 12/18/2009] [Accepted: 01/11/2010] [Indexed: 01/22/2023]
Abstract
Singapore grouper iridoviruses (SGIV) infected grouper cells release few enveloped extracellular viruses by budding and many unenveloped intracellular viruses following cell lysis. The lipid composition and function of such unenveloped intracellular viruses remain unknown. Detergent treatment of the intracellular viruses triggered the loss of viral lipids, capsid proteins and infectivity. Enzymatic digestion of the viral lipids with phospholipases and sphingomyelinase retained the viral capsid proteins but reduced infectivity. Over 220 lipid species were identified and quantified from the viruses and its producer cells by electrospray ionization mass spectrometry. Ten caspid proteins that dissociated from the viruses following the detergent treatments were identified by MALDI-TOF/TOF-MS/MS. Five of them were demonstrated to be lipid-binding proteins. This is the first research detailing the lipidome and lipid–protein interactions of an unenveloped virus. The identified lipid species and lipid-binding proteins will facilitate further studies of the viral assembly, egress and entry.
Collapse
Affiliation(s)
- Jinlu Wu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| | | | | | | |
Collapse
|
169
|
Rottner K, Stradal TEB. Poxviruses taking a ride on actin: new users of known hardware. Cell Host Microbe 2010; 6:497-9. [PMID: 20006837 DOI: 10.1016/j.chom.2009.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Vaccinia virus uses A36 to recruit the actin polymerization effectors Nck and N-WASP to drive actin tail formation. Now, Dodding and Way identify functional orthologs of A36 in other vertebrate poxviruses that harbor varying numbers of Nck-binding sites and can substitute for A36 despite no sequence homology.
Collapse
Affiliation(s)
- Klemens Rottner
- Cytoskeleton Dynamics Group, Helmholtz Centre for Infection Research, Inhoffen Strasse 7, 38124 Braunschweig, Germany.
| | | |
Collapse
|
170
|
F11-mediated inhibition of RhoA signalling enhances the spread of vaccinia virus in vitro and in vivo in an intranasal mouse model of infection. PLoS One 2009; 4:e8506. [PMID: 20041165 PMCID: PMC2794559 DOI: 10.1371/journal.pone.0008506] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/04/2009] [Indexed: 11/19/2022] Open
Abstract
The cortical actin cytoskeleton beneath the plasma membrane represents a physical barrier that vaccinia virus has to overcome during its exit from an infected cell. Previous observations using overexpression and pharmacological approaches suggest that vaccinia enhances its release by modulating the cortical actin cytoskeleton by inhibiting RhoA signalling using the viral protein F11. We have now examined the role of F11 and its ability to interact with RhoA to inhibit its downstream signalling in the spread of vaccinia infection both in vitro and in vivo. Live cell imaging over 48 hours reveals that loss of F11 or its ability to bind RhoA dramatically reduces the rate of cell-to-cell spread of the virus in a cell monolayer. Cells infected with the DeltaF11L virus also maintained their cell-to-cell contacts, and did not undergo virus-induced motility as observed during wild-type infections. The DeltaF11L virus is also attenuated in intranasal mouse models of infection, as it is impaired in its ability to spread from the initial sites of infection to the lungs and spleen. Loss of the ability of F11 to bind RhoA also reduces viral spread in vivo. Our results clearly establish that viral-mediated inhibition of RhoA signalling can enhance the spread of infection not only in cell monolayers, but also in vivo.
Collapse
|
171
|
Dodding MP, Way M. Nck- and N-WASP-Dependent Actin-Based Motility Is Conserved in Divergent Vertebrate Poxviruses. Cell Host Microbe 2009; 6:536-50. [DOI: 10.1016/j.chom.2009.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/29/2009] [Accepted: 10/13/2009] [Indexed: 01/21/2023]
|
172
|
Hooper JW, Ferro AM, Golden JW, Silvera P, Dudek J, Alterson K, Custer M, Rivers B, Morris J, Owens G, Smith JF, Kamrud KI. Molecular smallpox vaccine delivered by alphavirus replicons elicits protective immunity in mice and non-human primates. Vaccine 2009; 28:494-511. [PMID: 19833247 DOI: 10.1016/j.vaccine.2009.09.133] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 09/18/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
Naturally occurring smallpox was eradicated as a result of successful vaccination campaigns during the 1960s and 1970s. Because of its highly contagious nature and high mortality rate, smallpox has significant potential as a biological weapon. Unfortunately, the current vaccine for orthopoxviruses is contraindicated for large portions of the population. Thus, there is a need for new, safe, and effective orthopoxvirus vaccines. Alphavirus replicon vectors, derived from strains of Venezuelan equine encephalitis virus, are being used to develop alternatives to the current smallpox vaccine. Here, we demonstrated that virus-like replicon particles (VRPs) expressing the vaccinia virus A33R, B5R, A27L, and L1R genes elicited protective immunity in mice comparable to vaccination with live-vaccinia virus. Furthermore, cynomolgus macaques vaccinated with a combination of the four poxvirus VRPs (4pox-VRP) developed antibody responses to each antigen. These antibody responses were able to neutralize and inhibit the spread of both vaccinia virus and monkeypox virus. Macaques vaccinated with 4pox-VRP, flu HA VRP (negative control), or live-vaccinia virus (positive control) were challenged intravenously with 5 x 10(6)pfu of monkeypox virus 1 month after the second VRP vaccination. Four of the six negative control animals succumbed to monkeypox and the remaining two animals demonstrated either severe or grave disease. Importantly, all 10 macaques vaccinated with the 4pox-VRP vaccine survived without developing severe disease. These findings revealed that a single-boost VRP smallpox vaccine shows promise as a safe alternative to the currently licensed live-vaccinia virus smallpox vaccine.
Collapse
Affiliation(s)
- Jay W Hooper
- US Army Medical Research Institute of Infectious Diseases, Virology Division, 1425 Porter Street, Fort Detrick, MD 21702, United States.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
ST-246 inhibits in vivo poxvirus dissemination, virus shedding, and systemic disease manifestation. Antimicrob Agents Chemother 2009; 53:4999-5009. [PMID: 19752270 DOI: 10.1128/aac.00678-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Orthopoxvirus infections, such as smallpox, can lead to severe systemic disease and result in considerable morbidity and mortality in immunologically naïve individuals. Treatment with ST-246, a small-molecule inhibitor of virus egress, has been shown to provide protection against severe disease and death induced by several members of the poxvirus family, including vaccinia, variola, and monkeypox viruses. Here, we show that ST-246 treatment not only results in the significant inhibition of vaccinia virus dissemination from the site of inoculation to distal organs, such as the spleen and liver, but also reduces the viral load in organs targeted by the dissemination. In mice intranasally infected with vaccinia virus, virus shedding from the nasal and lung mucosa was significantly lower (approximately 22- and 528-fold, respectively) upon ST-246 treatment. Consequently, virus dissemination from the nasal site of replication to the lung also was dramatically reduced, as evidenced by a 179-fold difference in virus levels in nasal versus bronchoalveolar lavage. Furthermore, in ACAM2000-immunized mice, vaccination site swabs showed that ST-246 treatment results in a major (approximately 3,900-fold by day 21) reduction in virus detected at the outside surfaces of lesions. Taken together, these data suggest that ST-246 would play a dual protective role if used during a smallpox bioterrorist attack. First, ST-246 would provide therapeutic benefit by reducing the disease burden and lethality in infected individuals. Second, by reducing virus shedding from those prophylactically immunized with a smallpox vaccine or harboring variola virus infection, ST-246 could reduce the risk of virus transmission to susceptible contacts.
Collapse
|
174
|
Cryo-X-ray tomography of vaccinia virus membranes and inner compartments. J Struct Biol 2009; 168:234-9. [PMID: 19616103 DOI: 10.1016/j.jsb.2009.07.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 07/06/2009] [Accepted: 07/10/2009] [Indexed: 11/23/2022]
Abstract
Vitrified unstained purified vaccinia virus particles have been used as a test sample to evaluate the capabilities of cryo-X-ray tomography. Embedded in a thick layer of vitreous ice, the viral particles representing the mature form of the virus (MV) were visualized using full-field transmission X-ray tomography. The tomographic reconstructions reveal the viral brick-shaped characteristic structures with a size of 250x270x360nm(3). The X-ray tomograms show the presence of a clearly defined external envelope, together with an inner core surrounded by an internal envelope, including areas with clear differential density, which correlate well with those features previously described for these viral particles using electron microscopy analyses. A quantitative assessment of the resolution attained in X-ray and electron tomograms of the viral particles prepared under the same conditions yields values of 25.7 and 6.7nm half-pitch, respectively. Although the resolution of the X-ray microscope is well above the dimensions of the membranous compartments, the strong differential contrast exhibited makes it possible to precisely reveal them without any contrasting reagent within this small and complex biological sample.
Collapse
|
175
|
Roberts KL, Breiman A, Carter GC, Ewles HA, Hollinshead M, Law M, Smith GL. Acidic residues in the membrane-proximal stalk region of vaccinia virus protein B5 are required for glycosaminoglycan-mediated disruption of the extracellular enveloped virus outer membrane. J Gen Virol 2009; 90:1582-1591. [PMID: 19264647 PMCID: PMC2885056 DOI: 10.1099/vir.0.009092-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The extracellular enveloped virus (EEV) form of vaccinia virus (VACV) is surrounded by two lipid envelopes. This presents a topological problem for virus entry into cells, because a classical fusion event would only release a virion surrounded by a single envelope into the cell. Recently, we described a mechanism in which the EEV outer membrane is disrupted following interaction with glycosaminoglycans (GAGs) on the cell surface and thus allowing fusion of the inner membrane with the plasma membrane and penetration of a naked core into the cytosol. Here we show that both the B5 and A34 viral glycoproteins are required for this process. A34 is required to recruit B5 into the EEV membrane and B5 acts as a molecular switch to control EEV membrane rupture upon exposure to GAGs. Analysis of VACV strains expressing mutated B5 proteins demonstrated that the acidic stalk region between the transmembrane anchor sequence and the fourth short consensus repeat of B5 are critical for GAG-induced membrane rupture. Furthermore, the interaction between B5 and A34 can be disrupted by the addition of polyanions (GAGs) and polycations, but only the former induce membrane rupture. Based on these data we propose a revised model for EEV entry.
Collapse
Affiliation(s)
- Kim L Roberts
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Adrien Breiman
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Gemma C Carter
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Helen A Ewles
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Michael Hollinshead
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Mansun Law
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St Mary's Campus, Norfolk Place, London W2 1PG, UK
| |
Collapse
|
176
|
Dodding MP, Newsome TP, Collinson LM, Edwards C, Way M. An E2-F12 complex is required for intracellular enveloped virus morphogenesis during vaccinia infection. Cell Microbiol 2009; 11:808-24. [PMID: 19207726 PMCID: PMC2688674 DOI: 10.1111/j.1462-5822.2009.01296.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The vaccinia virus protein, F12, has been suggested to play an important role in microtubule-based transport of intracellular enveloped virus (IEV). We found that GFP-F12 is recruited to IEV moving on microtubules but is released from virus particles when they switch to actin-based motility. In the absence of F12, although the majority of IEV remain close to their peri-nuclear site of assembly, a small number of IEV still move with linear trajectories at speeds of 0.85 μm s−1, consistent with microtubule transport. Using a recombinant virus expressing GST-F12, we found that the viral protein E2 interacts directly with F12. In infected cells, GFP-E2 is observed on moving IEV as well as in the Golgi region, but is not associated with actin tails. In the absence of E2L, IEV accumulate in the peri-nuclear region and F12 is not recruited. Conversely, GFP-E2 is not observed on IEV in the absence of F12. Ultra-structural analysis of ΔE2L- and ΔF12L-infected cells reveals that loss of either protein results in defects in membrane wrapping during IEV formation. We suggest that E2 and F12 function as a complex that is necessary for IEV morphogenesis prior to their microtubule-based transport towards the plasma membrane.
Collapse
Affiliation(s)
- Mark P Dodding
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London, UK
| | | | | | | | | |
Collapse
|