151
|
Synergistic effects of glycated chitosan with high-intensity focused ultrasound on suppression of metastases in a syngeneic breast tumor model. Cell Death Dis 2014; 5:e1178. [PMID: 24743733 PMCID: PMC4001313 DOI: 10.1038/cddis.2014.159] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 03/13/2014] [Accepted: 03/13/2014] [Indexed: 01/12/2023]
Abstract
Stimulation of the host immune system is crucial in cancer treatment. In particular, nonspecific immunotherapies, when combined with other traditional therapies such as radiation and chemotherapy, may induce immunity against primary and metastatic tumors. In this study, we demonstrate that a novel, non-toxic immunoadjuvant, glycated chitosan (GC), decreases the motility and invasion of mammalian breast cancer cells in vitro and in vivo. Lung metastatic ratios were reduced in 4T1 tumor-bearing mice when intratumoral GC injection was combined with local high-intensity focused ultrasound (HIFU) treatment. We postulate that this treatment modality stimulates the host immune system to combat cancer cells, as macrophage accumulation in tumor lesions was detected after GC-HIFU treatment. In addition, plasma collected from GC-HIFU-treated tumor-bearing mice exhibited tumor-specific cytotoxicity. We also investigated the effect of GC on epithelial–mesenchymal transition-related markers. Our results showed that GC decreased the expression of Twist-1 and Slug, proto-oncogenes commonly implicated in metastasis. Epithelial-cadherin, which is regulated by these genes, was also upregulated. Taken together, our current data suggest that GC alone can reduce cancer cell motility and invasion, whereas GC-HIFU treatment can induce immune responses to suppress tumor metastasis in vivo.
Collapse
|
153
|
Wu M, Swartz MA. Modeling tumor microenvironments in vitro. J Biomech Eng 2014; 136:021011. [PMID: 24402507 PMCID: PMC4023667 DOI: 10.1115/1.4026447] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/28/2013] [Accepted: 01/09/2014] [Indexed: 12/31/2022]
Abstract
Tumor progression depends critically upon the interactions between the tumor cells and their microenvironment. The tumor microenvironment is heterogeneous and dynamic; it consists of extracellular matrix, stromal cells, immune cells, progenitor cells, and blood and lymphatic vessels. The emerging fields of tissue engineering and microtechnologies have opened up new possibilities for engineering physiologically relevant and spatially well-defined microenvironments. These in vitro models allow specific manipulation of biophysical and biochemical parameters, such as chemical gradients, biomatrix stiffness, metabolic stress, and fluid flows; thus providing a means to study their roles in certain aspects of tumor progression such as cell proliferation, invasion, and crosstalk with other cell types. Challenges and perspectives for deconvolving the complexity of tumor microenvironments will be discussed. Emphasis will be given to in vitro models of tumor cell migration and invasion.
Collapse
|
154
|
Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M, Zhou J. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell 2014; 5:214-23. [PMID: 24474193 PMCID: PMC3967059 DOI: 10.1007/s13238-013-0010-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/05/2013] [Indexed: 01/01/2023] Open
Abstract
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.
Collapse
Affiliation(s)
- Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Zheng C, Fang Y, Tong W, Li G, Wu H, Zhou W, Lin Q, Yang F, Yang Z, Wang P, Peng Y, Pang X, Yi Z, Luo J, Liu M, Chen Y. Synthesis and Biological Evaluation of Novel Tetrahydro-β-carboline Derivatives as Antitumor Growth and Metastasis Agents through Inhibiting the Transforming Growth Factor-β Signaling Pathway. J Med Chem 2014; 57:600-12. [DOI: 10.1021/jm401117t] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Cong Zheng
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanzhang Fang
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguang Tong
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Guoliang Li
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Haigang Wu
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenbo Zhou
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qingxiang Lin
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Feifei Yang
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfeng Yang
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Wang
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiufeng Pang
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhengfang Yi
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jian Luo
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, United States
| | - Yihua Chen
- Shanghai
Key Laboratory of Regulatory Biology, The Institute of Biomedical
Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
157
|
Matrikine and matricellular regulators of EGF receptor signaling on cancer cell migration and invasion. J Transl Med 2014; 94:31-40. [PMID: 24247562 PMCID: PMC4038324 DOI: 10.1038/labinvest.2013.132] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 02/07/2023] Open
Abstract
Cancer invasion is a complex process requiring, among other events, extensive remodeling of the extracellular matrix including deposition of pro-migratory and pro-proliferative moieties. In recent years, it has been described that while invading through matrices cancer cells can change shape and adapt their migration strategies depending on the microenvironmental context. Although intracellular signaling pathways governing the mesenchymal to amoeboid migration shift and vice versa have been mostly elucidated, the extracellular signals promoting these shifts are largely unknown. In this review, we summarize findings that point to matrikines that bind specifically to the EGF receptor as matricellular molecules that enable cancer cell migrational plasticity and promote invasion.
Collapse
|
158
|
Hypoxia-inducible factors mediate coordinated RhoA-ROCK1 expression and signaling in breast cancer cells. Proc Natl Acad Sci U S A 2013; 111:E384-93. [PMID: 24324133 DOI: 10.1073/pnas.1321510111] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Overexpression of Rho kinase 1 (ROCK1) and the G protein RhoA is implicated in breast cancer progression, but oncogenic mutations are rare, and the molecular mechanisms that underlie increased ROCK1 and RhoA expression have not been determined. RhoA-bound ROCK1 phosphorylates myosin light chain (MLC), which is required for actin-myosin contractility. RhoA also activates focal adhesion kinase (FAK) signaling. Together, these pathways are critical determinants of the motile and invasive phenotype of cancer cells. We report that hypoxia-inducible factors coordinately activate RhoA and ROCK1 expression and signaling in breast cancer cells, leading to cell and matrix contraction, focal adhesion formation, and motility through phosphorylation of MLC and FAK. Thus, intratumoral hypoxia acts as an oncogenic stimulus by triggering hypoxia-inducible factor → RhoA → ROCK1 → MLC → FAK signaling in breast cancer cells.
Collapse
|
159
|
Li D, Sun X, Zhang L, Yan B, Xie S, Liu R, Liu M, Zhou J. Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells. Protein Cell 2013. [PMID: 24264142 DOI: 10.1007/s13238-013-3098-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/06/2013] [Indexed: 11/24/2022] Open
Abstract
Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.
Collapse
Affiliation(s)
- Dengwen Li
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Mycophenolic acid inhibits migration and invasion of gastric cancer cells via multiple molecular pathways. PLoS One 2013; 8:e81702. [PMID: 24260584 PMCID: PMC3829969 DOI: 10.1371/journal.pone.0081702] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 10/15/2013] [Indexed: 01/18/2023] Open
Abstract
Mycophenolic acid (MPA) is the metabolized product and active element of mycophenolate mofetil (MMF) that has been widely used for the prevention of acute graft rejection. MPA potently inhibits inosine monophosphate dehydrogenase (IMPDH) that is up-regulated in many tumors and MPA is known to inhibit cancer cell proliferation as well as fibroblast and endothelial cell migration. In this study, we demonstrated for the first time MPA’s antimigratory and anti-invasion abilities of MPA-sensitive AGS (gastric cancer) cells. Genome-wide expression analyses using Illumina whole genome microarrays identified 50 genes with ≥2 fold changes and 15 genes with > 4 fold alterations and multiple molecular pathways implicated in cell migration. Real-time RT-PCR analyses of selected genes also confirmed the expression differences. Furthermore, targeted proteomic analyses identified several proteins altered by MPA treatment. Our results indicate that MPA modulates gastric cancer cell migration through down-regulation of a large number of genes (PRKCA, DOCK1, INF2, HSPA5, LRP8 and PDGFRA) and proteins (PRKCA, AKT, SRC, CD147 and MMP1) with promigratory functions as well as up-regulation of a number of genes with antimigratory functions (ATF3, SMAD3, CITED2 and CEAMCAM1). However, a few genes that may promote migration (CYR61 and NOS3) were up-regulated. Therefore, MPA’s overall antimigratory role on cancer cells reflects a balance between promigratory and antimigratory signals influenced by MPA treatment.
Collapse
|