151
|
Sicińska P. Di-n-butyl phthalate, butylbenzyl phthalate and their metabolites induce haemolysis and eryptosis in human erythrocytes. CHEMOSPHERE 2018; 203:44-53. [PMID: 29605748 DOI: 10.1016/j.chemosphere.2018.03.161] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Phthalates have been extensively used as plasticizers in various fields, including food, cosmetic, and pharmaceutical industry. Those compounds do not form covalent bonds to substances they are being added to, and thus they may migrate easily and penetrate various products used every day. They may reach organisms with air, food, or by a direct skin contact. Significant levels of phthalates and their metabolites are found in urine, breast milk, blood serum, venous blood, and cord blood. The purpose of this study was to assess the simple toxicity (haemolysis) and programmed death (eryptosis) caused by following phthalates: di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBP) and their metabolites: mono-n-butyl phthalate (MBP) and mono-benzyl phthalate (MBzP) in vitro in human RBCs. RBCs were incubated with the above mentioned compounds at concentrations ranging between 0.5 and 500 μg/mL for 24 h. Obtained results demonstrated that DBP and BBP possess higher haemolytic properties compared to their metabolites. The lethal concentration (LC50) was determined. The value was 126.37 ± 5.94 μg/mL for DBP, and 103.65 ± 4.03 μg/mL for BBP, and for metabolites the LC50 value was over 500 μg/mL. All compounds induced eryptosis causing translocation of phosphatidylserine, increased cytosolic calcium ions level, increased caspase-3 and calpain activation in human erythrocytes. BBP caused translocation of phosphatidylserine at a lower concentration compared to DBP. In case of other parameters, more pronounced changes were evoked by DBP at lower concentrations. Metabolites showed a significantly lower toxicity compared to parent compounds.
Collapse
Affiliation(s)
- Paulina Sicińska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz., Pomorska 141/143 St. 90-236 Lodz, Poland.
| |
Collapse
|
152
|
Pan X, Qin P, Liu R, Yu W, Dong X. Effects of Carbon Chain Length on the Perfluoroalkyl Acids-Induced Oxidative Stress of Erythrocytes in Vitro. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6414-6420. [PMID: 29860827 DOI: 10.1021/acs.jafc.8b02197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been found extensively in wildlife and human bodies by sources of drinking water and food. In this study, we investigated the effects of three PFAAs, perfluoropentanoic acid (PFPA), perfluorooctanoic acid (PFOA), and perfluorodecanoic acid (PFDA), on the antioxidative defense system and lipid peroxidation in erythrocytes separately. The results demonstrated that they could lead to significant decline trends in the glutathione (GSH) levels together with increases of malondialdehyde (MDA) content, suggesting that three PFAAs induced oxidative stress to erythrocytes. Also PFDA with a longer carbon chain length posed more of a threat than other two PFAAs. Furthermore, the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were also altered in the presence of PFAAs upon erythrocytes. The changes of oxidative stress markers and the concomitant alterations of antioxidant enzymes suggest the role of oxidative stress in PFAA-induced damage upon erythrocytes.
Collapse
Affiliation(s)
- Xingren Pan
- School of Physics and Electronic Engineering , Linyi University , Shandong Province Shuangling Road , Linyi , 276005 , P. R. China
| | - Pengfei Qin
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment , Linyi University , Shandong Province Shuangling Road , Linyi , 276005 , P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering , Shandong University , Shandong Province No. 27 Shanda South Road , Jinan 250100 , P. R. China
| | - Wanni Yu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment , Linyi University , Shandong Province Shuangling Road , Linyi , 276005 , P. R. China
| | - Xiaofei Dong
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment , Linyi University , Shandong Province Shuangling Road , Linyi , 276005 , P. R. China
| |
Collapse
|
153
|
Park JC, Lee MC, Yoon DS, Han J, Kim M, Hwang UK, Jung JH, Lee JS. Effects of bisphenol A and its analogs bisphenol F and S on life parameters, antioxidant system, and response of defensome in the marine rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:21-29. [PMID: 29604499 DOI: 10.1016/j.aquatox.2018.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
To understand the adverse outcome in response to bisphenol A and its analogs bisphenol F and S (BPA, BPF, and BPS), we examined acute toxicity, life parameter, and defensome in the marine rotifer Brachionus koreanus. Among the bisphenol analogs, BPA showed the highest acute toxicity and then BPF and BPS, accordingly in the view of descending magnitude of toxicity. In life parameters including life span and reproduction, BPA, BPF, and BPS were found to cause adverse effect. Both intracellular ROS level and GST activity were significantly increased (P < 0.05) in response to each dosage of bisphenol analogs exposures. In response to bisphenol analogs, defensomes of phase I, II, and III detoxification mechanism demonstrated inverse relationship between the lipophilicity of bisphenol analogs and the expression patterns of defensomes. BPA and BPF were found to have significant modulation (P < 0.05) in the expression of cytochrome P450 (CYP) and GST genes. In phase III, BPS with comparatively lower lipophilicity demonstrated highly diversified expressional pattern, suggesting that BPS is likely caused less toxicity compared to BPA and BPF. In this study, via phase I, II, and III detoxification mechanism, bisphenol A and its analogs F and S demonstrated specific detoxification mechanism in rotifer.
Collapse
Affiliation(s)
- Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Chul Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Moonkoo Kim
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea
| | - Un-Ki Hwang
- Marine Ecological Risk Assessment Center, West Sea Fisheries Research Institute, National Fisheries Research & Development Institute, Incheon 46083, South Korea
| | - Jee-Hyun Jung
- Oil and POPs Research Group, Korea Institute of Ocean Science and Technology, Geoje 53201, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
154
|
Nevoral J, Kolinko Y, Moravec J, Žalmanová T, Hošková K, Prokešová Š, Klein P, Ghaibour K, Hošek P, Štiavnická M, Řimnáčová H, Tonar Z, Petr J, Králíčková M. Long-term exposure to very low doses of bisphenol S affects female reproduction. Reproduction 2018; 156:47-57. [PMID: 29748175 DOI: 10.1530/rep-18-0092] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Bisphenols belong to the endocrine disruptors, affecting reproduction even in extremely low doses. Bisphenol S (BPS) has become widely used as a substitute for the earlier-used bisphenol A; however, its harmlessness is questionable. The aim of this study was to evaluate the effect of BPS on folliculogenesis and oocyte quality after in vivo exposure to low doses of BPS. Four-week-old ICR females (n = 16 in each experimental group) were exposed to vehicle control (VC), BPS1 (0.001 ng BPS.g/bw/day), BPS2 (0.1 ng.g/bw/day), BPS3 (10 ng.g/bw/day) and BPS4 (100 ng.g/bw/day) for 4 weeks. Ovaries were subjected to stereology and nano liquid chromatography-mass spectrometry (LC/MS). Simultaneously, metaphase II oocytes were obtained after pregnant mare serum gonadotrophin and human chorionic gonadotrophin administration, followed by immunostaining. In particular, mating and two-cell embryo flushing were performed. We observed that BPS decreases the amount of ovarian follicles and BPS2 (0.1 ng.g/bw/day) affects the volume of antral follicles. Accordingly, ovarian proteome is affected after BPS2 treatment. While BPS2 dosing results mainly in cytoskeletal damage in matured oocytes, the effects of BPS3 and BPS4 seem to be due instead to epigenetic alterations in oocytes. Arguably, these changes lead to observed affection of in vivo fertilization rate after BPS3 and BPS4 treatment. BPS significantly affects female reproduction astoundingly in extremely low doses. These findings underline the necessity to assess the risk of ongoing BPS exposure for public health.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic .,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiří Moravec
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | | | - Šárka Prokešová
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Faculty of AgrobiologyFood and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Klein
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kamar Ghaibour
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Université Lille1Sciences et Technologies, FR3688 CNRS, Villeneuve d'Ascq Cedex, France
| | - Petr Hošek
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriama Štiavnická
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Hedvika Řimnáčová
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Tonar
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | | | - Milena Králíčková
- Biomedical CenterFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.,Department of Histology and EmbryologyFaculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
155
|
Xiang R, Shi J, Yu Y, Zhang H, Dong C, Yang Y, Wu Z. The Effect of Bisphenol A on Growth, Morphology, Lipid Peroxidation, Antioxidant Enzyme Activity, and PS II in Cylindrospermopsis raciborskii and Scenedesmus quadricauda. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:515-526. [PMID: 29051998 DOI: 10.1007/s00244-017-0454-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/06/2017] [Indexed: 05/26/2023]
Abstract
To investigate the effect of bisphenol A (BPA) on Cylindrospermopsis raciborskii (Cyanobacteria) and Scenedesmus quadricauda (Chlorophyta), we grew the two species at BPA concentrations of 0, 0.1, 1, 2, 5, 10, and 20 mg/L and examined their growth, lipid peroxidation, antioxidant enzyme activity, and chlorophyll a fluorescence. The 96-h EC50 values (effective concentration causing 50% growth inhibition) for BPA in C. raciborskii and S. quadricauda were 9.663 ± 0.047, and 13.233 ± 0.069 mg/L, respectively. A significant reduction in chlorophyll a concentration was found in C. raciborskii and S. quadricauda when BPA concentrations were greater than 1 and 2 mg/L, respectively. Furthermore, F v/F m, ΔF/F m', and qP decreased significantly at 10 mg/L BPA in C. raciborskii but started to decrease at 10 mg/L in S. quadricauda. The changes in chlorophyll fluorescence parameters (α, rETRmax) that were obtained from the rapid light response curves of both algae species showed similar responses to F v/F m, ΔF/F m', and qP under BPA-induced stress. Values for all of the chlorophyll fluorescence parameters in S. quadricauda were higher than in C. raciborskii; however, the nonphotochemical quenching measured in C. raciborskii was considerably higher than it was in S. quadricauda. In addition, lipid peroxidation (determined as MDA content) and antioxidant enzyme activities (SOD and CAT) increased in both species as the BPA concentration increased. These results suggest that C. raciborskii is more sensitive to the effects of BPA than S. quadricauda and that photosystem II might be a target for the activity of BPA in vivo.
Collapse
Affiliation(s)
- Rong Xiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yi Yu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Science, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
156
|
Mu X, Huang Y, Li X, Lei Y, Teng M, Li X, Wang C, Li Y. Developmental Effects and Estrogenicity of Bisphenol A Alternatives in a Zebrafish Embryo Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3222-3231. [PMID: 29397701 DOI: 10.1021/acs.est.7b06255] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In order to understand the negative effects of bisphenol A (BPA) alternatives comprehensively, zebrafish embryos were used to assess the lethality, developmental effects, and estrogenic activity of bisphenol analogues. The in silico estrogenic activities of bisphenol analogues were assayed by binding simulation. According to our results, the lethality of bisphenol analogues decreased in order of bisphenol AF (BPAF) > BPA > bisphenol F (BPF) > bisphenol S (BPS). BPAF and BPF induced significant effects on zebrafish embryos, including decreased heart rate, hatching inhibition, and teratogenic effects. The binding potentials of bisphenol analogues toward zebrafish ERs (zfERS) decreased in the following order: BPAF > BPA > BPF > BPS. Among the three subtypes of zfERs, zfERβ2 showed the highest binding activity toward the bisphenols, followed by zfERα and zfERβ1. In vivo estrogenic activity tests showed that BPAF, BPA, and BPF significantly enhanced the protein levels of ERα along with the mRNA levels of esr1, esr2a, esr2b, and vtg1 in zebrafish embryos. Esr2b showed the strongest response to BPAF and BPA exposure among the three esrs. In contrast, BPS did not significantly regulate ER protein level or ER transcription. In conclusion, BPAF showed the highest lethality, developmental effects, and estrogenic activity (both in silico and in vivo) followed by BPA and BPF. BPS showed the weakest toxicity and estrogenic activity. zfERβ2 might act as the main target among the three ER subtypes of zebrafish after exposure to BPAF and BPA.
Collapse
Affiliation(s)
- Xiyan Mu
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Xuxing Li
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Yunlei Lei
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| | - Miaomiao Teng
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Xuefeng Li
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Chengju Wang
- College of Sciences , China Agricultural University , Beijing 100193 , People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center , Chinese Academy of Fishery Sciences , Beijing 100141 , People's Republic of China
| |
Collapse
|
157
|
Herrero Ó, Aquilino M, Sánchez-Argüello P, Planelló R. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS One 2018; 13:e0193387. [PMID: 29466445 PMCID: PMC5821402 DOI: 10.1371/journal.pone.0193387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/11/2018] [Indexed: 01/19/2023] Open
Abstract
Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled “BPA-free”. Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| |
Collapse
|
158
|
Wu LH, Zhang XM, Wang F, Gao CJ, Chen D, Palumbo JR, Guo Y, Zeng EY. Occurrence of bisphenol S in the environment and implications for human exposure: A short review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:87-98. [PMID: 28963899 DOI: 10.1016/j.scitotenv.2017.09.194] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/18/2017] [Accepted: 09/18/2017] [Indexed: 05/20/2023]
Abstract
As a substitute of bisphenol A (BPA), bisphenol S (BPS) has been applied in consumer products present in our daily lives. With a similar chemical structure as BPA, BPS has also been demonstrated as an exogenous endocrine disrupting chemical. Compared with a large number of studies on BPA, investigation on BPS has remained limited. In this study, we reviewed the literature of BPS mainly published during 2010-2017, including its environmental distributions, toxicities, and human exposure. The data demonstrated that BPS is now ubiquitous in the environment and found worldwide, but generally with concentration levels lower than BPA in various environment media, including water, sediment, sludge, indoor dust and air, consumer products, and human urine. However, we found that the concentration levels of BPS in aquatic environments, especially water samples, were almost comparable or equal to that of BPA. Our summary also indicated that process speed of substituting BPA with BPS in consumer products in the U.S. was relatively faster than other countries. In addition, we summarized the toxicities of exposure to BPS both in vivo and in vitro experiments. The current data supports that exposure to BPS may have adverse effects on reproductive systems, endocrine systems, and nervous systems in animals and humans, and may trigger oxidative stress. The occurrence of BPS was frequently reported in human urine, but rarely in other human samples. The current research indicates that food is the dominant source for human exposure to BPS, and the contribution of personal care product usage is low. The occurrence of BPS and their metabolites in the human body and the guidelines for BPS exposure merit further investigation.
Collapse
Affiliation(s)
- Liu-Hong Wu
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Xue-Mei Zhang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Fei Wang
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Chong-Jing Gao
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Da Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| | - Jillian R Palumbo
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, University Place, Rensselaer, NY 12144, United States
| | - Ying Guo
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China.
| | - Eddy Y Zeng
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
159
|
Qiu W, Yang M, Liu S, Lei P, Hu L, Chen B, Wu M, Wang KJ. Toxic Effects of Bisphenol S Showing Immunomodulation in Fish Macrophages. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:831-838. [PMID: 29261303 DOI: 10.1021/acs.est.7b04226] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Bisphenol S (BPS), a structural analogue of bisphenol A (BPA), has been increasingly used as a common replacement of BPA due to health concerns regarding the former. However, mounting evidence suggests that BPS has similar endocrine-disrupting effects as BPA, and likewise, its presence in the environment may pose considerable risks to ecosystems and human health. Using fish primary macrophages (fpMQs), we here evaluated the immunomodulatory effects of BPS and its mechanisms of action associated with estrogen receptors (ERs). Following BPS exposure at environmentally relevant concentrations from 0.1 to 1000 μg/L, we observed approximate concentration-dependent increases in nitric oxide and reactive oxygen species generation and total antioxidant capacity as well as the gene expression of inflammatory cytokines in fpMQs. BPS impaired phagocytic capability but enhanced fpMQ activation levels in response to lipopolysaccharide stimulation and promoted apoptosis, indicating an impact on cell functions. At a concentration of 100 μg/L, BPS and BPA showed comparable pro-inflammatory potential with both up-regulating the production of free radicals and cytokine expression; however, BPS had no significant potency with regards to inducing lipid peroxidation and apoptosis, different from BPA's effects. Moreover, BPS induced both erα and erβ2 expression in fpMQs, whereas BPA induced only erα expression. This study demonstrates that, similarly to BPA, exposure to low doses of BPS significantly disturbs the immune response of fpMQs in vitro and first reveals overlapping but different roles of ERs in response to BPS and BPA.
Collapse
Affiliation(s)
- Wenhui Qiu
- State Key Laboratory of Marine Environmental Science, Xiamen University , Xiamen, Fujian 361005, China
- School of Environmental Science and Engineering, Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology , Shenzhen, Guangdong 518055, China
| | | | | | | | | | - Bei Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University , Xiamen, Fujian 361005, China
| | | | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University , Xiamen, Fujian 361005, China
| |
Collapse
|
160
|
Ma L, Hu J, Li J, Yang Y, Zhang L, Zou L, Gao R, Peng C, Wang Y, Luo T, Xiang X, Qing H, Xiao X, Wu C, Wang Z, He JC, Li Q, Yang S. Bisphenol A promotes hyperuricemia
via
activating xanthine oxidase. FASEB J 2018; 32:1007-1016. [DOI: 10.1096/fj.201700755r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Linqiang Ma
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jinbo Hu
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Jiayu Li
- Laboratory of Lipid and Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yi Yang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Linkun Zhang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Lingyun Zou
- Department of MicrobiologyBioinformatics CenterThe Third Military Medical UniversityChongqingChina
| | - Rufei Gao
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chuan Peng
- Laboratory of Lipid and Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yue Wang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ting Luo
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaojiao Xiang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hua Qing
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiaoqiu Xiao
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Laboratory of Lipid and Glucose MetabolismThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Chaodong Wu
- Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Zhihong Wang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Division of NephrologyDepartment of MedicineIcahn School of Medicine at Mount Sinai, New YorkNew YorkUSA
- Department of Pharmacological SciencesIcahn School of Medicine at Mount Sinai, New YorkNew YorkUSA
| | - John Cijiang He
- Division of NephrologyDepartment of MedicineIcahn School of Medicine at Mount Sinai, New YorkNew YorkUSA
| | - Qifu Li
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Shumin Yang
- Department of Endocrinology andThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
161
|
Ding ZM, Jiao XF, Wu D, Zhang JY, Chen F, Wang YS, Huang CJ, Zhang SX, Li X, Huo LJ. Bisphenol AF negatively affects oocyte maturation of mouse in vitro through increasing oxidative stress and DNA damage. Chem Biol Interact 2017; 278:222-229. [DOI: 10.1016/j.cbi.2017.10.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 02/02/2023]
|
162
|
The in vitro comparative study of the effect of BPA, BPS, BPF and BPAF on human erythrocyte membrane; perturbations in membrane fluidity, alterations in conformational state and damage to proteins, changes in ATP level and Na +/K + ATPase and AChE activities. Food Chem Toxicol 2017; 110:351-359. [PMID: 29079494 DOI: 10.1016/j.fct.2017.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 01/03/2023]
Abstract
Bisphenols are massively used in the industry, and thus the exposure of biota including humans to these substances has been noted. In this study we have assessed the effect of BPA and its selected analogs, i.e. BPS, BPF and BPAF on membrane of human red blood cells, which is the first barrier that must be overcome by xenobiotics penetrating the cell, and is commonly utilized as a model in the investigation of the effect of different xenobiotics on various cell types. Red blood cells were incubated with BPA and its analogs in the concentrations ranging from 0.1 to 250 μg/ml for 4 h and 24 h. We have noted that the compounds studied altered membrane fluidity at its hydrophobic region, increased internal viscosity and osmotic fragility of the erythrocytes and altered conformational state of membrane proteins. Moreover, bisphenols examined increased thiol groups level, caused oxidative damage to membrane proteins, decreased ATP level, depleted the activity of Na+/K + ATPase and changed the activity of AChE in human red blood cells. It has been shown that the strongest changes were noted in cells treated with BPAF, while BPS caused the weakest (or none) alterations in the parameters studied.
Collapse
|
163
|
Rosenfeld CS. Neuroendocrine disruption in animal models due to exposure to bisphenol A analogues. Front Neuroendocrinol 2017; 47:123-133. [PMID: 28801100 PMCID: PMC5612897 DOI: 10.1016/j.yfrne.2017.08.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/14/2017] [Accepted: 08/05/2017] [Indexed: 12/26/2022]
Abstract
Animal and human studies provide evidence that exposure to the endocrine disrupting chemical (EDC), bisphenol A (BPA), can lead to neurobehavioral disorders. Consequently, there is an impetus to identify safer alternatives to BPA. Three bisphenol compounds proposed as potential safer alternatives to BPA are bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF). However, it is not clear whether these other compounds are safer in terms of inducing less endocrine disrupting effects in animals and humans who are now increasingly coming into contact with these BPA-substitutes. In the past few years, several animal studies have shown exposure to these other bisphenols induce similar neurobehavioral disruption as BPA. We will explore in this review article the current studies suggesting these other bisphenols result in neuroendocrine disruptions that may be estrogen receptor-dependent. Current work may aide in designing future studies to test further whether these BPA-substitutes can act as neuroendocrine disruptors.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
164
|
Josarayi GA, Mohammad-Hasani A, Aftabi Y, Moudi E, Hosseinzadeh Colagar A. The AhRR-c.565C>G transversion may increase total antioxidant capacity levels of the seminal plasma in infertile men. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17428-17435. [PMID: 28593539 DOI: 10.1007/s11356-017-9356-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
The Aryl hydrocarbon receptor (AhR)-repressor (AhRR) is a regulator of the AhR pathway, which plays an important role in xenobiotic and reactive oxygen species (ROS) metabolism. Total antioxidant capacity (TAC) is a major factor in semen quality that protects sperm against ROS stress. Malondialdehyde (MDA) is the indicator of lipid peroxidation damage that is occurred due to ROSs. In this study, we determined and compared the MDA and TAC levels of infertile men's semen and blood plasma regarding genotype groups of AhRR-c.565C>G transversion. Semen and blood samples of 123 infertile males were collected from the Fatemeh Zahra IVF Centre, Babol, Iran. TAC and MDA levels of seminal and blood plasma were measured by TBARS and FRAP methods, respectively. Cases were genotyped by the PCR-RFLP method. The frequency of c.565C>G genotypes was determined as CC (34.14%), CG (55.28%) and GG (10.58%). Mean levels of TAC μm/L and MDA nmol/mL in semen plasma of CC, CG and GG groups were (1365.7, 1.28), (1542.8, 1.51) and (1860.2, 0.82), respectively. Also, mean levels of TAC μm/L and MDA nmol/mL in blood plasma samples in CC, CG and GG genotypes were (806.14, 1.168), (727.1, 1.006) and (635.7, 0.83), respectively. Comparison of marker levels between genotypes revealed that the TAC level of semen plasma in the GG genotype was significantly higher than its level in the CC group (p < 0.05). Our findings showed that in seminal plasma of infertile men with the GG genotype of AhRR-c.565C>G transversion, the level of total antioxidant capacity is significantly higher in comparison with the CC genotype. Then, the G allele of AhRR-c.565C>G transversion may have a role in the increase in antioxidant capacity of seminal plasma.
Collapse
Affiliation(s)
- Gholam Ali Josarayi
- Fatemeh Zahra Infertility and Health Reproductive Research Center, Babol University of Medical Sciences, Babol, 47745-47176, Iran
| | - Azadeh Mohammad-Hasani
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Younes Aftabi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Emadodin Moudi
- Department of Urology, Babol University of Medical Sciences, Babol, 47745-47176, Iran
| | - Abasalt Hosseinzadeh Colagar
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|