151
|
Glebova K, Reznik ON, Reznik AO, Mehta R, Galkin A, Baranova A, Skoblov M. siRNA technology in kidney transplantation: current status and future potential. BioDrugs 2015; 28:345-61. [PMID: 24573958 DOI: 10.1007/s40259-014-0087-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kidney transplantation is one of the most common transplantation operations in the world, accounting for up to 50 % of all transplantation surgeries. To curtail the damage to transplanted organs that is caused by ischemia-reperfusion injury and the recipient's immune system, small interfering RNA (siRNA) technology is being explored. Importantly, the kidney as a whole is a preferential site for non-specific systemic delivery of siRNA. To date, most attempts at siRNA-based therapy for transplantation-related conditions have remained at the in vitro stage, with only a few of them being advanced into animal models. Hydrodynamic intravenous injection of naked or carrier-bound siRNAs is currently the most common route for delivery of therapeutic constructs. To our knowledge, no systematic screens for siRNA targets most relevant for kidney transplantation have been attempted so far. A majority of researchers have arrived at one or another target of interest by analyzing current literature that dissects pathological processes taking place in transplanted organs. A majority of the genes that make up the list of 53 siRNA targets that have been tested in transplantation-related models so far belong to either apoptosis- or immune rejection-centered networks. There is an opportunity for therapeutic siRNA combinations that may be delivered within the same delivery vector or injected at the same time and, by targeting more than one pathway, or by hitting the same pathways within two different key points, will augment the effects of each other.
Collapse
Affiliation(s)
- Kristina Glebova
- Research Center for Medical Genetics, Russian Academy of Medical Sciences, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
152
|
O'Neill S, Gallagher K, Hughes J, Wigmore SJ, Ross JA, Harrison EM. Challenges in early clinical drug development for ischemia-reperfusion injury in kidney transplantation. Expert Opin Drug Discov 2015; 10:753-62. [PMID: 25947288 DOI: 10.1517/17460441.2015.1044967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION In an effort to expand the donor pool, kidneys from donation after cardiac death (DCD) donors are increasingly utilised in renal transplantation. These kidneys suffer greater ischemia-reperfusion injury (IRI) and have a higher incidence of delayed graft function. In the last 25 years, relatively few pharmacological therapies to reduce IRI have been tested in randomised controlled trials in renal transplantation and currently no pharmacological agents are routinely utilised for this purpose. AREAS COVERED The authors look at why promising treatments in pre-clinical studies have not translated to significant clinical benefit in human trials. This may reflect a translational disconnect between the pre-clinical models used and clinical problems that are encountered in the transplant population. They also discuss the issues in conducting clinical trials and its implication on drug development. EXPERT OPINION Translating pharmacological strategies for reducing IRI is highly challenging at every stage of development from pre-clinical studies to clinical trials. Scientific knowledge of the complexity of IRI is rapidly evolving and new treatments are expected to emerge. There are ethical barriers that prevent donor treatments, particularly in the DCD setting. However, new clinical techniques such as normothermic regional and ex-vivo perfusion represent exciting opportunities to utilise pharmacological agents earlier in the process of transplantation.
Collapse
Affiliation(s)
- Stephen O'Neill
- University of Edinburgh, Chancellor's Building, MRC Centre for Inflammation Research, Tissue Injury and Repair Group, Royal Infirmary of Edinburgh , 49 Little France Crescent, Edinburgh EH16 4SA , UK +44 78 4959 2113 ; +44 13 1242 6520 ;
| | | | | | | | | | | |
Collapse
|
153
|
Levine MH, Wang Z, Bhatti TR, Wang Y, Aufhauser DD, McNeal S, Liu Y, Cheraghlou S, Han R, Wang L, Hancock WW. Class-specific histone/protein deacetylase inhibition protects against renal ischemia reperfusion injury and fibrosis formation. Am J Transplant 2015; 15:965-73. [PMID: 25708614 PMCID: PMC5493154 DOI: 10.1111/ajt.13106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a common cause of renal dysfunction and renal failure. Histone/protein deacetylases (HDACs) regulate gene accessibility and higher order protein structures and may alter cellular responses to a variety of stresses. We investigated whether use of pan- and class-specific HDAC inhibitors (HDACi) could improve IRI tolerance in the kidney. Using a model of unilateral renal IRI, we investigated early renal function after IRI, and calculated fibrosis after IRI using an automated scoring system. We found that pan-HDAC inhibition using trichostatin (TSA) yielded significant renal functional benefit at 24-96 hours (p < 0.001). Treated mice developed significantly less fibrosis at 30 days (p < 0.0004). Class I HDAC inhibition with MS-275 yielded similar effects. Protection from fibrosis formation was also noted in a cold ischemia transplant model (p < 0.008) with a trend toward improved cold ischemic survival in TSA-treated mice. These effects were not accompanied by induction of typical ischemic tolerance pathways or by priming of heat shock protein expression. In fact, heat shock protein 70 deletion or overexpression did not alter renal ischemia tolerance. Micro-RNA 21, known to be enhanced in vitro in renal tubular cells that survive stress, was enhanced by treatment with HDACi, pointing to possible mechanism.
Collapse
Affiliation(s)
- M. H. Levine
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA,Department of Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Z. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - T. R. Bhatti
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Y. Wang
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - D. D. Aufhauser
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - S. McNeal
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - Y. Liu
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - S. Cheraghlou
- Department of Surgery, Transplant Surgery, University of Pennsylvania, Philadelphia, PA
| | - R. Han
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - L. Wang
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - W. W. Hancock
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
154
|
Abstract
Ischemia reperfusion injury occurs in the kidney when blood supply is interrupted in clinical settings such as kidney transplantation or nephron sparing surgery for renal tumors. These lesions lead to acute kidney injury (AKI) a detrimental situation associated with impaired short-term allograft function (delayed graft function or primary non function) but also long-term transplant survival through the onset of chronic allograft nephropathy. The present review details the cellular and molecular consequences of ischemia reperfusion in a native kidney as well as in a kidney graft after cold ischemia time, giving a comprehensive description of biological pathways involved during the phase of ischemia and during the reperfusion period where the rapid return to normoxia leads to a large burst of reactive oxygen species along with a dramatic reduction in antioxidant defenses. This work also focuses on the distinct susceptibilities of kidney cells to ischemia (endothelial vs epithelial) and the outcome of acute kidney injury.
Collapse
|
155
|
Wang B, Wan J, Gong X, Kuang G, Cheng X, Min S. Mangiferin attenuates renal ischemia-reperfusion injury by inhibiting inflammation and inducing adenosine production. Int Immunopharmacol 2015; 25:148-54. [DOI: 10.1016/j.intimp.2014.11.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/03/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
|
156
|
Fonseca I, Oliveira JC, Santos J, Malheiro J, Martins LS, Almeida M, Dias L, Pedroso S, Lobato L, Henriques AC, Mendonça D. Leptin and adiponectin during the first week after kidney transplantation: biomarkers of graft dysfunction? Metabolism 2015; 64:202-7. [PMID: 25458832 DOI: 10.1016/j.metabol.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 11/29/2022]
Abstract
CONTEXT AND OBJECTIVE Based on evidence that leptin and adiponectin are removed from circulation primarily by the kidney, we designed a study to examine the longitudinal changes of these adipokines during the first week after kidney transplantation (KTx) and to test the hypothesis that higher levels of leptin and/or adiponectin could be early biomarkers of delayed graft function (DGF=dialysis requirement during the first post-transplant week) and acute rejection. STUDY DESIGN Repeated-measures prospective study. MATERIAL AND METHODS Forty consecutive adult patients with end-stage renal disease who were undergoing KTx. Leptin and adiponectin were measured in blood samples that were collected before (day-0) and after KTx (days-1, 2, 4 and 7). Linear mixed-models, receiver operating characteristic and area under curve (AUC-ROC) were used. RESULTS At post-transplant day-1, leptinemia and adiponectinemia declined 43% and 47%, respectively. At all times studied after KTx, the median leptin levels were significantly higher in patients developing DGF (n=18), but not adiponectin levels. Shortly after KTx (day-1), leptin values were significantly higher in DGF recipients in contrast to patients with promptly functioning kidneys, approximately two times higher when controlling for gender and BMI. The leptin reduction rate between pre-tranplant and one-day after KTx moderately predicted DGF (AUC=0.73). On day-1, serum leptin predicted DGF (AUC-ROC=0.76) with a performance slightly better than serum creatinine (AUC-ROC=0.72), even after correcting for BMI (AUC-ROC=0.73). Separating this analysis by gender showed that the performance of leptin in predicting DGF for male gender (AUC-ROC=0.86) improved. CONCLUSIONS Kidney graft function is an independent determinant of leptin levels, but not of adiponectin. Leptin levels at day-1 slightly outperformed serum creatinine in predicting the occurrence of DGF, and more accurately in male gender. No significant association was detected with acute rejection.
Collapse
Affiliation(s)
- Isabel Fonseca
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal; Institute of Public Health (ISPUP), University of Porto, Porto, Portugal.
| | - José Carlos Oliveira
- Department of Clinical Chemistry, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal
| | - Josefina Santos
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - Jorge Malheiro
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - La Salete Martins
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - Manuela Almeida
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - Leonídio Dias
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal
| | - Sofia Pedroso
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - Luísa Lobato
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - António Castro Henriques
- Department of Nephrology and Kidney Transplantation, Centro Hospitalar do Porto, Hospital de Santo António, Porto, Portugal; Unit for Multidisciplinary Investigation in Biomedicine (UMIB), Porto, Portugal
| | - Denisa Mendonça
- Department of Population Studies, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Institute of Public Health (ISPUP), University of Porto, Porto, Portugal
| |
Collapse
|
157
|
Wang L, Liu XH, Chen H, Chen ZY, Weng XD, Qiu T, Liu L. Picroside II protects rat kidney against ischemia/reperfusion-induced oxidative stress and inflammation by the TLR4/NF-κB pathway. Exp Ther Med 2015; 9:1253-1258. [PMID: 25780418 PMCID: PMC4353747 DOI: 10.3892/etm.2015.2225] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
Picroside II possesses a wide range of pharmacological effects and has been demonstrated to ameliorate cerebral ischemia and reperfusion (I/R) injury. However, its effects on renal I/R injury remain unclear. In the present study, the role of picroside II in attenuating oxidative stress and the inflammatory response in a rat model of renal I/R injury was investigated. Sprague Dawley rats were subjected to 45 min of ischemia followed by 24 h of reperfusion. Prior to reperfusion, the rats were treated with picroside II or an equal volume of phosphate-buffered saline. Renal function and histological changes were compared and the relevant parameters of oxidative stress and inflammation were detected. The expression of toll-like receptor 4 (TLR4) and nuclear factor κB (NF-κB; p65) were assessed by immunohistochemistry and western blotting. It was observed that renal function was significantly improved by treatment with picroside II. Morphological analysis indicated that picroside II clearly reduced tissue damage and the expression of TLR4 and NF-κB. Reverse transcription-quantitative polymerase chain reaction demonstrated that picroside II inhibited the increase of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and intercellular adhesion molecule (ICAM)-1 expression induced by I/R injury. Western blot analysis indicated that the expression levels of TLR4 and NF-κB were significantly downregulated in the picroside II group compared with those in the I/R group. These results indicate that picroside II treatment suppressed the TLR4/NF-κB signaling pathway, protecting renal tissue against I/R-induced oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiu-Heng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhi-Yuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Dong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Qiu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lin Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
158
|
The angiopoietin/TIE receptor system: Focusing its role for ischemia-reperfusion injury. Cytokine Growth Factor Rev 2014; 26:281-91. [PMID: 25466648 DOI: 10.1016/j.cytogfr.2014.10.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023]
Abstract
Ischemia and reperfusion (I/R) are of fatal consequence for the affected organs, as they provoke a profound inflammatory reaction. This thoroughly destroys cells and tissues, inducing functional failure or even complete loss of organ function. Since I/R is primarily a vascular problem, the interaction between the endothelium and the surrounding environment is of great significance. The angiopoietins (ANG) and the TIE receptors are key players for the vascular homeostasis. This review summarizes biochemical and cellular mechanisms leading to I/R injury. After a brief introduction to the ANG/TIE system, a comprehensive overview of its role for the development of I/R syndrome is given. Finally, current therapeutic approaches to mitigate the consequences of I/R by modulating ANG/TIE signaling are reviewed in detail.
Collapse
|
159
|
Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA, Reeves WB. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Invest 2014; 124:4989-5001. [PMID: 25295536 DOI: 10.1172/jci76042] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
Ischemia is a leading cause of acute kidney injury. Kidney ischemia is associated with loss of cellular ion homeostasis; however, the pathways that underlie ion homeostasis dysfunction are poorly understood. Here, we evaluated the nonselective cation channel transient receptor potential melastatin 2 (TRPM2) in a murine model of kidney ischemia/reperfusion (I/R) injury. TRPM2-deficient mice were resistant to ischemic injury, as reflected by improved kidney function, reduced histologic damage, suppression of proapoptotic pathways, and reduced inflammation. Moreover, pharmacologic TRPM2 inhibition was also protective against I/R injury. TRPM2 was localized mainly in kidney proximal tubule epithelial cells, and studies in chimeric mice indicated that the effects of TRPM2 are due to expression in parenchymal cells rather than hematopoietic cells. TRPM2-deficient mice had less oxidative stress and lower levels of NADPH oxidase activity after ischemia. While RAC1 is a component of the NADPH oxidase complex, its relation to TRPM2 and kidney ischemic injury is unknown. Following kidney ischemia, TRPM2 promoted RAC1 activation, with active RAC1 physically interacting with TRPM2 and increasing TRPM2 expression at the cell membrane. Finally, inhibition of RAC1 reduced oxidant stress and ischemic injury in vivo. These results demonstrate that TRPM2-dependent RAC1 activation increases oxidant stress and suggest that therapeutic approaches targeting TRPM2 and/or RAC1 may be effective in reducing ischemic kidney injury.
Collapse
|
160
|
Papazova DA, Friederich-Persson M, Joles JA, Verhaar MC. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension. Am J Physiol Renal Physiol 2014; 308:F22-8. [PMID: 25275014 DOI: 10.1152/ajprenal.00278.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (Po2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney hypoxia. Lewis rats underwent syngenic renal transplantation (TX) and contralateral nephrectomy. Controls were uninephrectomized (1K-CON) or left untreated (2K-CON). After 7 days, urinary excretion of protein and thiobarbituric acid-reactive substances were measured, and after 14 days glomerular filtration rate (GFR), renal blood flow, whole kidney Qo2, cortical Po2, kidney cortex mitochondrial uncoupling, renal oxidative damage, and tubulointerstitial injury were assessed. TX, compared with 1K-CON, resulted in mitochondrial uncoupling mediated via uncoupling protein-2 (16 ± 3.3 vs. 0.9 ± 0.4 pmol O2 · s(-1)· mg protein(-1), P < 0.05) and increased whole kidney Qo2 (55 ± 16 vs. 33 ± 10 μmol O2/min, P < 0.05). Corticomedullary Po2 was lower in TX compared with 1K-CON (30 ± 13 vs. 47 ± 4 μM, P < 0.05) whereas no significant difference was observed between 2K-CON and 1K-CON rats. Proteinuria, oxidative damage, and the tubulointerstitial injury score were not significantly different in 1K-CON and TX. Treatment of donors for 5 days with mito-TEMPO reduced mitochondrial uncoupling but did not affect renal hemodynamics, Qo2, Po2, or injury. Collectively, our results demonstrate increased mitochondrial uncoupling as an early event after experimental renal transplantation associated with increased oxygen consumption and kidney hypoxia in the absence of increases in markers of damage.
Collapse
Affiliation(s)
- Diana A Papazova
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | | | - Jaap A Joles
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| | - Marianne C Verhaar
- Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands; and
| |
Collapse
|
161
|
Tofangchiha S, Moazen Jamshidi SMM, Emami H, Dormanesh B. Investigating Antithyroid Effects of Propylthiouracil on the Ischemia and Reperfusion Injury in Rat' Kidney and Determining the Role of Nitric Oxide in Mediating this Effect. IRANIAN RED CRESCENT MEDICAL JOURNAL 2014; 16:e15605. [PMID: 25763197 PMCID: PMC4329750 DOI: 10.5812/ircmj.15605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/28/2014] [Accepted: 02/22/2014] [Indexed: 01/22/2023]
Abstract
BACKGROUND Renal ischemia/reperfusion injury (IRI) is a major problem in renal transplantation, which occurs during the process of organ retrieval and storage, and is closely associated with acute rejection episodes and late allograft failure. Recent studies have revealed a new phenomenon called "chemical preconditioning" that can induce tolerance against the ischemic stress via a variety of proposed pathways especially nitric oxide (NO) system. Propylthiouracil (PTU) is suggested to modulate the intracellular NO signaling. OBJECTIVES In this study, we investigated the preconditioning properties of chronic pretreatment with PTU in preventing renal IRI. In addition, we evaluated the involvement of NO pathway. MATERIALS AND METHODS Sixty adult male Wistar rats were allocated into six groups. All groups underwent right nephrectomy 15 days before intervention. In groups 1 (Chronic PTU + L-NG-nitro arginine methyl ester [L-NAME]) and 2 (Chronic PTU) oral PTU (500 mg/L in water) treatment was started 15 days before right nephrectomy to achieve the therapeutic plasma level of PTU. Fourteen days after nephrectomy, animals received either L-NAME (10 mg/kg) or its vehicle and renal IRI was induced 45 minutes later. Groups 3 and 4 (Control) received respectively L-NAME (10 mg/kg) and its vehicle 45 minutes before IRI. The last two groups were normal sham operated rats and PTU + sham. Rats were killed 24 hours after IRI. The blood samples were collected and assessed for serum blood urea nitrogen (BUN) and creatinine (Cr) level, and tissue samples were fixed in formalin for histopathologic scoring of tubular damage (H-score). RESULTS The mean BUN, Cr, and H-score of control group were 176.66 ± 12.24 mmol/L, 4.45 ± 0.44 μmol/L, and 83.5% ± 3.5%, respectively. Chronic pretreatment with PTU significantly improved BUN (40.4 ± 6.1 mmol/L), Cr (0.96 ± 0.068 μmol/L), and H-score (7.83% ± 4.02%) in IRI animals in comparison to those that were not treated with chronic PTU (P < 0.001) and L-NAME; however, it did not completely reversed the chronic PTU-induced protection (BUN, 93.33 ± 12.22 mmol/L; Cr, 2.7 ± 1.15 μmol/L, and H-score, 24.83% ± 3.5%). There was no significant difference between rats that were treated with L-NAME alone (group 5) and the control group. CONCLUSIONS Our study demonstrates that preconditioning of kidney with chronic PTU administration protects renal tissue against IRI and this phenomenon was mediated through NO system. The results suggest a potential indication for using PTU to protect the kidney before transplantations and to reduce the risk of tissue rejection afterwards.
Collapse
Affiliation(s)
- Shahnaz Tofangchiha
- Department of Internal Medicine, AJA University of Medical Sciences, Tehran, IR Iran
| | | | - Hamed Emami
- Tehran University of Medical Sciences, Tehran, IR Iran
| | - Banafshe Dormanesh
- Department of Pediatric Nephrology, AJA University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
162
|
Hoyer DP, Gallinat A, Swoboda S, Wohlschläger J, Rauen U, Paul A, Minor T. Subnormothermic machine perfusion for preservation of porcine kidneys in a donation after circulatory death model. Transpl Int 2014; 27:1097-106. [PMID: 24963744 DOI: 10.1111/tri.12389] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/12/2014] [Accepted: 06/23/2014] [Indexed: 01/26/2023]
Abstract
Machine perfusion for preservation led to compelling success for the outcome of renal transplantation. Further refinements of methods to decrease preservation injury remain an issue of high interest. This study investigates functional and morphological aspects of kidneys preserved by subnormothermic (20 °C) machine perfusion (SNTM) compared with oxygenated hypothermic machine perfusion (HMPox) and cold storage (CS) in a donation after circulatory death (DCD) model. After 30 min of warm ischaemia, porcine kidneys were randomly assigned to preservation for 7 h by CS, HMPox or SNTM. Afterwards, kidneys were reperfused for 2 h with autologous blood in vitro for assessment of function and integrity. Application of SNTM for preservation led to significantly higher blood flow and urine output compared with both other groups. SNTM led to a twofold increased creatinine clearance compared with HMPox and 10-fold increased creatinine clearance compared with CS. Structural integrity was best preserved by SNTM. In conclusion, this is the first study on SNTM for kidneys from DCD donors. SNTM seems to be a promising preservation method with the potential to improve functional parameters of kidneys during reperfusion.
Collapse
Affiliation(s)
- Dieter P Hoyer
- Department of General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | |
Collapse
|
163
|
Investigation of apoptosis-related gene expression levels in preimplantation biopsies as predictors of delayed kidney graft function. Transplantation 2014; 97:1260-5. [PMID: 24503763 DOI: 10.1097/01.tp.0000442579.12285.e8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The purpose of this study was to investigate the expression of the gene coding for the antiapoptotic molecule Bcl-2, the proapoptotic molecule Bax, and the apoptosis executor enzyme caspase-3 in preimplantation renal biopsies (PIB) as markers for delayed graft function. METHODS In this prospective single-center study, gene expression levels were evaluated using real-time TaqMan polymerase chain reaction in PIB of kidneys from 72 deceased donors (DDs) and 18 living donors (LDs). RESULTS CASP3 and BAX expression levels were higher, whereas those of BCL2 were lower, in DD than in LD PIB. In biopsies from DD, BCL2 levels were lower in cases with DGF, whereas no differences were observed concerning CASP3 and BAX. The BAX/BCL2 gene expression ratio greater than 2.29 associated with DGF with an odds ratio of 2.00. A multiple regression analysis including data of TLR4 expression in the first day posttransplant PB from a previous study of our group conducted in the same patients revealed a very strong association of the combination of BAX/BCL2 greater than 2.3 in PIB and TLR4 of 0.95 uRE or lesser in PB with the occurrence of DGF, with OR of 120 and positive and negative predictive values of 91% and 92%, respectively. CONCLUSIONS The power to predict DGF of the combination of high BAX/BCL2 expression in PIB and low TLR4 expression in the first day posttransplant peripheral blood observed in the present study is extremely high, in comparison to any other marker or combinations of markers so far published in the literature.
Collapse
|
164
|
Lin M, Li L, Zhang Y, Zheng L, Xu M, Rong R, Zhu T. Baicalin ameliorates H2O2 induced cytotoxicity in HK-2 cells through the inhibition of ER stress and the activation of Nrf2 signaling. Int J Mol Sci 2014; 15:12507-22. [PMID: 25029541 PMCID: PMC4139857 DOI: 10.3390/ijms150712507] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 12/15/2022] Open
Abstract
Renal ischemia-reperfusion injury plays a key role in renal transplantation and greatly affects the outcome of allograft. Our previous study proved that Baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, protects kidney from ischemia-reperfusion injury. This study aimed to study the underlying mechanism in vitro. Human renal proximal tubular epithelial cell line HK-2 cells were stimulated by H2O2 with and without Baicalin pretreatment. The cell viability, apoptosis and oxidative stress level were measured. The expression of endoplasmic reticulum (ER) stress hallmarks, such as binding immunoglobulin protein (BiP) and C/EBP homologous protein (CHOP), were analyzed by western blot and real-time PCR. NF-E2-related factor 2 (Nrf2) expression was also measured. In the H2O2 group, cell viability decreased and cell apoptosis increased. Reactive Oxygen Species (ROS) and Glutathione/Oxidized Glutathione (GSH/GSSG) analysis revealed increased oxidative stress. ER stress and Nrf2 signaling also increased. Baicalin pretreatment ameliorated H2O2-induced cytotoxicity, reduced oxidative stress and ER stress and further activated the anti-oxidative Nrf2 signaling pathway. The inducer of ER stress and the inhibitor of Nrf2 abrogated the protective effects, while the inhibitor of ER stress and the inducer of Nrf2 did not improve the outcome. This study revealed that Baicalin pretreatment serves a protective role against H2O2-induced cytotoxicity in HK-2 cells, where the inhibition of ER stress and the activation of downstream Nrf2 signaling are involved.
Collapse
Affiliation(s)
- Miao Lin
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai 20032, China.
| | - Long Li
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 20032, China.
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 20032, China.
| | - Long Zheng
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 20032, China.
| | - Ming Xu
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai 20032, China.
| | - Ruiming Rong
- Department of Urology, Fudan University Zhongshan Hospital, Shanghai 20032, China.
| | - Tongyu Zhu
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 20032, China.
| |
Collapse
|
165
|
Jongbloed F, de Bruin RWF, Pennings JLA, Payán-Gómez C, van den Engel S, van Oostrom CT, de Bruin A, Hoeijmakers JHJ, van Steeg H, IJzermans JNM, Dollé MET. Preoperative fasting protects against renal ischemia-reperfusion injury in aged and overweight mice. PLoS One 2014; 9:e100853. [PMID: 24959849 PMCID: PMC4069161 DOI: 10.1371/journal.pone.0100853] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is inevitable during kidney transplantation leading to oxidative stress and inflammation. We previously reported that preoperative fasting in young-lean male mice protects against IRI. Since patients are generally of older age with morbidities possibly leading to a different response to fasting, we investigated the effects of preoperative fasting on renal IRI in aged-overweight male and female mice. Male and female F1-FVB/C57BL6-hybrid mice, average age 73 weeks weighing 47.2 grams, were randomized to preoperative ad libitum feeding or 3 days fasting, followed by renal IRI. Body weight, kidney function and survival of the animals were monitored until day 28 postoperatively. Kidney histopathology was scored for all animals and gene expression profiles after fasting were analyzed in kidneys of young and aged male mice. Preoperative fasting significantly improved survival after renal IRI in both sexes compared with normal fed mice. Fasted groups had a better kidney function shown by lower serum urea levels after renal IRI. Histopathology showed less acute tubular necrosis and more regeneration in kidneys from fasted mice. A mRNA analysis indicated the involvement of metabolic processes including fatty acid oxidation and retinol metabolism, and the NRF2-mediated stress response. Similar to young-lean, healthy male mice, preoperative fasting protects against renal IRI in aged-overweight mice of both genders. These findings suggest a general protective response of fasting against renal IRI regardless of age, gender, body weight and genetic background. Therefore, fasting could be a non-invasive intervention inducing increased oxidative stress resistance in older and overweight patients as well.
Collapse
Affiliation(s)
- Franny Jongbloed
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Ron W. F. de Bruin
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen L. A. Pennings
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - César Payán-Gómez
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
- Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - Sandra van den Engel
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Conny T. van Oostrom
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Center, Department of Pathobiology Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Jan H. J. Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harry van Steeg
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan N. M. IJzermans
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martijn E. T. Dollé
- Laboratory of Health Protection Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| |
Collapse
|
166
|
Costa FLDS, Yamaki VN, Gonçalves TB, Coelho JVB, Percário S, Brito MVH. Combined remote ischemic perconditioning and local postconditioning on liver ischemia-reperfusion injury. J Surg Res 2014; 192:98-102. [PMID: 24952413 DOI: 10.1016/j.jss.2014.05.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/24/2014] [Accepted: 05/16/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Remote ischemic perconditioning (rPER) is the newest technique described to mitigate ischemia and reperfusion (IR) injury. Local postconditioning (POS) is also an effective technique for this purpose. It is uncertain if adding local POS to rPER provides superior liver protection, so we tested this hypothesis. MATERIALS AND METHODS Twenty five Wistar rats were assigned into five groups: sham, IR, POS, rPER, and rPER + POS. Animals were subjected to liver ischemia for 60 min. POS consisted of four cycles of 5-min liver perfusion followed by 5-min liver ischemia (40 min total) after the major ischemic period. rPER consisted of four cycles of 5-min hindlimb ischemia followed by 5 min hindlimb perfusion contemporaneously to major liver ischemic period, during its last 40 min. After 2 h, median and left lobes were harvested for malondialdehyde and Trolox equivalent antioxidant capacity (TEAC) measurement, and blood for the measurement of serum transaminases. RESULTS All tissue conditioning techniques were able to reduce transaminases serum levels, having no differences among them. All tissue conditioning techniques were able to reduce hepatic tissue MDA level; however, only rPER + POS had higher values than SHAM. All tissue conditioning techniques also enhanced TEAC; however, only POS had lower TEAC than SHAM. CONCLUSIONS rPER appears as the most promising technique to avoid IR injury. This technique reduced oxidative stress of cell membranes and lowered transaminases serum level. There was no additive protection when POS and rPER were held together.
Collapse
Affiliation(s)
| | - Vitor Nagai Yamaki
- Experimental Surgery Laboratory, Department of Operatory Technique, Para State University, Brazil
| | - Thiago Barbosa Gonçalves
- Experimental Surgery Laboratory, Department of Operatory Technique, Para State University, Brazil
| | - João Vitor Baia Coelho
- Experimental Surgery Laboratory, Department of Operatory Technique, Para State University, Brazil
| | - Sandro Percário
- Oxidative Stress Laboratory, Department of Pharmacology, University of Pará, Brazil
| | | |
Collapse
|
167
|
Kim SY, Huh KH, Lee JR, Kim SH, Jeong SH, Choi YS. Comparison of the effects of normal saline versus Plasmalyte on acid-base balance during living donor kidney transplantation using the Stewart and base excess methods. Transplant Proc 2014; 45:2191-6. [PMID: 23953528 DOI: 10.1016/j.transproceed.2013.02.124] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/16/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury is an inevitable consequence of kidney transplantation, leading to metabolic acidosis. This study compared the effects of normal saline (NS) and Plasmalyte on acid-base balance and electrolytes during living donor kidney transplantation using the Stewart and base excess (BE) methods. METHODS Patients were randomized to an NS group (n = 30) or a Plasmalyte group (n = 30). Arterial blood samples were collected for acid-base analysis after induction of anesthesia (T0), prior to clamping the iliac vein (T1), 10 minutes after reperfusion of the donated kidney (T2), and at the end of surgery (T3). In addition serum creatinine and 24-hour urine output were recorded on postoperative days 1,2, and 7. Over the first postoperative 7 days we recorded episodes of graft failure requiring dialysis. RESULTS Compared with the Plasmalyte group, the NS group showed significantly lower values of pH, BE, and effective strong ion differences during the postreperfusion period (T2 and T3). Chloride-related values (chloride [Cl(-)], free-water corrected Cl(-), BEcl) were significantly higher at T1, T2, and T3, indicating hyperchloremic rather than dilutional metabolic acidosis. Early postoperative graft functions in terms of serum creatinine, urine output, and graft failure requiring dialysis were not significantly different between the groups. CONCLUSIONS Both NS and Plamalyte can be used safely during uncomplicated living donor kidney transplantation. However, Plasmalyte more stably maintains acid-base and electrolyte balance compared with NS especially during the postreperfusion period.
Collapse
Affiliation(s)
- S Y Kim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
168
|
Mallet V, Dutheil D, Polard V, Rousselot M, Leize E, Hauet T, Goujon JM, Zal F. Dose-Ranging Study of the Performance of the Natural Oxygen Transporter HEMO2Life in Organ Preservation. Artif Organs 2014; 38:691-701. [DOI: 10.1111/aor.12307] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Vanessa Mallet
- Institut National de la Santé et de la Recherche Médicale U1082; Faculté de Médecine et Pharmacie; Université de Poitiers; Morlaix France
- Hemarina SA; Morlaix France
| | | | | | | | - Elisabeth Leize
- Département de Prothèses; Unité de Formation et de Recherche d'Odontologie; Centre Hospitalier Universitaire de Brest; Brest France
| | - Thierry Hauet
- Institut National de la Santé et de la Recherche Médicale U1082; Faculté de Médecine et Pharmacie; Université de Poitiers; Morlaix France
- Département de Biochimie; Centre Hospitalier Universitaire de Poitiers; Morlaix France
- Fédération pour l'Étude de l'Ischemie Reperfusion en Transplantation; Morlaix France
- Plate-forme IBiSA (Infrastructures en Biologie, Sante et Agronomie); Unité de Transplantation Expérimentale; Génétique Expérimentale en Productions Animales; Département de Génétique Animale; Domaine du Magneraud; Institut National de Recherche Agronomique; Surgères France
| | - Jean Michel Goujon
- Institut National de la Santé et de la Recherche Médicale U1082; Faculté de Médecine et Pharmacie; Université de Poitiers; Morlaix France
| | | |
Collapse
|
169
|
Guevara T, Sancho M, Pérez-Payá E, Orzáez M. Role of CDK5/cyclin complexes in ischemia-induced death and survival of renal tubular cells. Cell Cycle 2014; 13:1617-26. [PMID: 24675881 PMCID: PMC4050167 DOI: 10.4161/cc.28628] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/20/2014] [Accepted: 03/23/2014] [Indexed: 12/31/2022] Open
Abstract
Ischemia reperfusion processes induce damage in renal tubules and compromise the viability of kidney transplants. Understanding the molecular events responsible for tubule damage and recovery would help to develop new strategies for organ preservation. CDK5 has been traditionally considered a neuronal kinase with dual roles in cell death and survival. Here, we demonstrate that CDK5 and their regulators p35/p25 and cyclin I are also expressed in renal tubular cells. We show that treatment with CDK inhibitors promotes the formation of pro-survival CDK5/cyclin I complexes and enhances cell survival upon an ischemia reperfusion pro-apoptotic insult. These findings support the benefit of treating with CDK inhibitors for renal preservation, assisting renal tubule protection.
Collapse
Affiliation(s)
- Tatiana Guevara
- Laboratory of Peptide and Protein Chemistry; Centro de Investigación Príncipe Felipe; Valencia, Spain
- Instituto de Biomedicina de Valencia; IBV-CSIC; Valencia, Spain
| | - Mónica Sancho
- Laboratory of Peptide and Protein Chemistry; Centro de Investigación Príncipe Felipe; Valencia, Spain
| | - Enrique Pérez-Payá
- Laboratory of Peptide and Protein Chemistry; Centro de Investigación Príncipe Felipe; Valencia, Spain
- Instituto de Biomedicina de Valencia; IBV-CSIC; Valencia, Spain
| | - Mar Orzáez
- Laboratory of Peptide and Protein Chemistry; Centro de Investigación Príncipe Felipe; Valencia, Spain
| |
Collapse
|
170
|
Kaucsár T, Révész C, Godó M, Krenács T, Albert M, Szalay CI, Rosivall L, Benyó Z, Bátkai S, Thum T, Szénási G, Hamar P. Activation of the miR-17 family and miR-21 during murine kidney ischemia-reperfusion injury. Nucleic Acid Ther 2014; 23:344-54. [PMID: 23988020 DOI: 10.1089/nat.2013.0438] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion (I/R) is the main cause of acute kidney injury (AKI) in patients. We investigated renal microRNA (miRNA) expression profiles and the time course of changes in selected miRNA expressions after renal I/R to characterize the miRNA network activated during development and recovery from AKI. METHODS AND RESULTS One day after lethal (30 minutes) and sublethal (20 minutes) renal ischemia, AKI was verified by renal histology (tubular necrosis, regeneration), blood urea nitrogen (BUN) level, renal mRNA expression, and plasma concentration of neutrophil gelatinase-associated lipocalin (NGAL) in C57BL/6J mice. On the first day after 30-minute, lethal I/R miR-21, miR-17-5p, and miR-106a were elevated out of the 21 miRNAs successfully profiled on the Luminex multiplex assay. After 20-minute, sublethal I/R, renal miR-17-5p and miR-106a expressions were elevated on the first and second days of reperfusion, while miR-21 expression increased later and lasted longer. Renal miR-17-5p and miR-21 expressions correlated with each other. Renal function returned to normal on the fourth day after sublethal I/R. CONCLUSIONS Our results demonstrate that besides miR-21, miR-17-5p, and miR-106a are additionally activated during the maintenance and recovery phases of renal I/R injury. Furthermore, a correlation between renal miR-17-5p and miR-21 expressions warrants further investigation of how they may influence each other and the outcome of renal ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Tamás Kaucsár
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Marshall GR, Mangus RS, Powelson JA, Fridell JA, Kubal CA, Tector AJ. Donor management parameters and organ yield: single center results. J Surg Res 2014; 191:208-13. [PMID: 24953985 DOI: 10.1016/j.jss.2014.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 01/17/2014] [Accepted: 02/27/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Management of organ donors in the intensive care unit is an emerging subject in critical care and transplantation. This study evaluates organ yield outcomes for a large number of patients managed by the Indiana Organ Procurement Organization. MATERIALS AND METHODS This is a retrospective review of intensive care unit records from 2008-2012. Donor demographic information and seven donor management parameters (DMP) were recorded at admission, consent, 12 h after consent, and before procurement. Three study groups were created: donors meeting 0-3, 4, or 5-7 DMP. Active donor Organ Procurement Organization management began at consent; so, data analysis focuses on the 12-h postconsent time point. Outcomes included organs transplanted per donor (OTPD) and transplantation of individual solid organs. RESULTS Complete records for 499 patients were reviewed. Organ yield was 1415 organs of 3992 possible (35%). At 12 h, donors meeting more DMP had more OTPD: 2.2 (0-3) versus 3.0 (4) versus 3.5 (5-7) (P < 0.01). Aggregate DMP met was significantly associated with transplantation of every organ except intestine. Oxygen tension, vasopressor use, and central venous pressure were the most frequent independent predictors of organ usage. There were significantly more organs transplanted for donors meeting all three of these parameters (4.5 versus 2.7, P < 0.01). CONCLUSIONS Initial DMP met does not appear to be a significant prognostic factor for OTPD. Aggregate DMP is associated with transplantation rates for most organs, with analysis of individual parameters suggesting that appropriate management of oxygenation, volume status, and vasopressor use could lead to more organs procured per donor.
Collapse
Affiliation(s)
- George Ryne Marshall
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard S Mangus
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| | - John A Powelson
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jonathan A Fridell
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Chandrashekhar A Kubal
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
172
|
Lin M, Li L, Li L, Pokhrel G, Qi G, Rong R, Zhu T. The protective effect of baicalin against renal ischemia-reperfusion injury through inhibition of inflammation and apoptosis. Altern Ther Health Med 2014; 14:19. [PMID: 24417870 PMCID: PMC3893527 DOI: 10.1186/1472-6882-14-19] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022]
Abstract
Background Renal ischemia-reperfusion injury (IRI) increases the rates of acute kidney failure, delayed graft function, and early mortality after kidney transplantation. The pathophysiology involved includes oxidative stress, mitochondrial dysfunction, and immune-mediated injury. The anti-oxidation, anti-apoptosis, and anti-inflammation properties of baicalin, a flavonoid glycoside isolated from Scutellaria baicalensis, have been verified. This study therefore assessed the effects of baicalin against renal IRI in rats. Methods Baicalin was intraperitoneally injected 30 min before renal ischemia. Serum and kidneys were harvested 24 h after reperfusion. Renal function and histological changes were assessed. Markers of oxidative stress, the Toll-like receptor (TLR)2 and TLR4 signaling pathway, mitochondrial stress, and cell apoptosis were also evaluated. Results Baicalin treatment decreased oxidative stress and histological injury, and improved kidney function, as well as inhibiting proinflammatory responses and tubular apoptosis. Baicalin pretreatment also reduced the expression of TLR2, TLR4, MyD88, p-NF-κB, and p-IκB proteins, as well as decreasing caspase-3 activity and increasing the Bcl-2/Bax ratio. Conclusions Baicalin may attenuate renal ischemia-reperfusion injury by inhibiting proinflammatory responses and mitochondria-mediated apoptosis. These effects are associated with the TLR2/4 signaling pathway and mitochondrial stress.
Collapse
|
173
|
Protective effects of mesenchymal stem cells with CXCR4 up-regulation in a rat renal transplantation model. PLoS One 2013; 8:e82949. [PMID: 24386129 PMCID: PMC3875425 DOI: 10.1371/journal.pone.0082949] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/30/2013] [Indexed: 12/14/2022] Open
Abstract
The homing of mesenchymal stem cells to injured tissue, which is important for the correction of conditions such as ischemia-reperfusion injury (IRI) and immunolesions, has been performed previously, but with poor efficiency. Substantial improvements in engraftment are required to derive clinical benefits from MSC transplantation. Chemokines are the most important factors that control cellular migration. Stromal derived factor-1 (SDF-1) is up-regulated during tissue/organ ischemia damage, and its cognate receptor, chemokine receptor 4 (CXCR4), is involved in stem cell migration. The aim of our study was to investigate CXCR4 expression in MSCs and to validate both its role in mediating migration to transplanted kidneys and its immunoregulatory effects in renal protection. Specifically, the present study was designed to investigate the short-term tissue homing of MSCs carrying genetically modified CXCR4 in a rat renal transplantation model. We tested the hypothesis that MSCs with CXCR4 over-expression can more efficiently regulate immunological reactions. Lentiviral vectors were used to over-express CXCR4 or to introduce a short hairpin ribonucleic acid (shRNA) construct targeting endogenous CXCR4 in rat MSCs. MSCs were labeled with enhanced green fluorescent protein (eGFP). After cell sorting, recipient kidneys were regionally perfused; recipient animals were injected with transduced MSCs, native MSCs, or PBS via tail vein following renal transplantation; and the effects of MSC injection were observed.
Collapse
|
174
|
Hypothermic machine perfusion reduces delayed graft function and improves one-year graft survival of kidneys from expanded criteria donors: a meta-analysis. PLoS One 2013; 8:e81826. [PMID: 24339970 PMCID: PMC3858268 DOI: 10.1371/journal.pone.0081826] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 10/17/2013] [Indexed: 12/21/2022] Open
Abstract
Background Expanded criteria donors (ECDs) are currently accepted as potential sources to increase the donor pool and to provide more chances of kidney transplantation for elderly recipients who would not survive long waiting periods. Hypothermic machine perfusion (HMP) is designed to mitigate the deleterious effects of simple cold storage (CS) on the quality of preserved organs, particularly when the donor is in a marginal status. Methods We compared the transplant outcomes in patients receiving ECD kidneys with either HMP or CS graft preservation. Articles from the MEDLINE, EMBASE and Cochrane Library databases were searched and all studies reporting outcomes from HMP versus CS methods of kidney preservation were included in this meta-analysis. The parameters analyzed included the incidence of delayed graft function (DGF), primary non-function (PNF) and one-year graft and patient survival. Results A total of seven studies qualified for the review, involving 2374 and 8716 kidney grafts with HMP or CS preservation respectively, all from ECD donors. The incidence of delayed graft function (DGF) was significantly reduced with an odd ratio(OR) of 0.59 (95% CI 0.54–0.66, P<0.001) and one-year graft survival was significantly improved with an OR of 1.12 (95% CI 1.03–1.21, P = 0.005) in HMP preservation compared to CS. However, there was no difference in the incidence of PNF (OR 0.54, 95% CI 0.21–1.40, P = 0.20), and one-year patient survival (OR 0.98, 95% CI 0.94–1.02, P = 0.36) between HMP and CS preservation. Conclusions HMP was associated with a reduced incidence of DGF and an with increased one-year graft survival, but it was not associated with the incidence of PNF and one-year patient survival.
Collapse
|
175
|
Comparative Effects of Phosphoenolpyruvate, a Glycolytic Intermediate, as an Organ Preservation Agent with Glucose and N-Acetylcysteine against Organ Damage during Cold Storage of Mouse Liver and Kidney. ISRN PHARMACOLOGY 2013; 2013:375825. [PMID: 24490082 PMCID: PMC3893771 DOI: 10.1155/2013/375825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022]
Abstract
We evaluated the usefulness of phosphoenolpyruvate (PEP), a glycolytic intermediate with antioxidative and energy supplementation potentials, as an organ preservation agent. Using ex vivo mouse liver and kidney of a static cold storage model, we compared the effects of PEP against organ damage and oxidative stress during cold preservation with those of glucose or N-acetylcysteine (NAC). Lactate dehydrogenase (LDH) leakage, histological changes, and oxidative stress parameters (measured as thiobarbituric acid reactive substance and glutathione content) were determined. PEP (100 mM) significantly prevented an increase in LDH leakage, histological changes, such as tubulonecrosis and vacuolization, and changes in oxidative stress parameters during 72 h of cold preservation in mouse liver. Although glucose (100 mM) partly prevented LDH leakage and histological changes, no effects against oxidative stress were observed. By contrast, NAC inhibited oxidative stress in the liver and did not prevent LDH leakage or histological changes. PEP also significantly prevented kidney damage during cold preservation in a dose-dependent manner, and the protective effects were superior to those of glucose and NAC. We suggest that PEP, a functional carbohydrate with organ protective and antioxidative activities, may be useful as an organ preservation agent in clinical transplantation.
Collapse
|
176
|
Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Abdennebi HB, Roselló-Catafau J. Role of sirtuins in ischemia-reperfusion injury. World J Gastroenterol 2013; 19:7594-7602. [PMID: 24616566 PMCID: PMC3837258 DOI: 10.3748/wjg.v19.i43.7594] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion injury (IRI) remains an unresolved and complicated situation in clinical practice, especially in the case of organ transplantation. Several factors contribute to its complexity; the depletion of energy during ischemia and the induction of oxidative stress during reperfusion initiate a cascade of pathways that lead to cell death and finally to severe organ injury. Recently, the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases has gained increasing attention from researchers, due to their involvement in the modulation of a wide variety of cellular functions. There are seven mammalian sirtuins and, among them, the nuclear/cytoplasmic sirtuin 1 (SIRT1) and the mitochondrial sirtuin 3 (SIRT3) are ubiquitously expressed in many tissue types. Sirtuins are known to play major roles in protecting against cellular stress and in controlling metabolic pathways, which are key processes during IRI. In this review, we mainly focus on SIRT1 and SIRT3 and examine their role in modulating pathways against energy depletion during ischemia and their involvement in oxidative stress, apoptosis, microcirculatory stress and inflammation during reperfusion. We present evidence of the beneficial effects of sirtuins against IRI and emphasize the importance of developing new strategies by enhancing their action.
Collapse
|
177
|
Wang LT, Chen BL, Wu CT, Huang KH, Chiang CK, Hwa Liu S. Protective role of AMP-activated protein kinase-evoked autophagy on an in vitro model of ischemia/reperfusion-induced renal tubular cell injury. PLoS One 2013; 8:e79814. [PMID: 24223196 PMCID: PMC3819246 DOI: 10.1371/journal.pone.0079814] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/04/2013] [Indexed: 02/04/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a common cause of injury to target organs such as brain, heart, and kidneys. Renal injury from I/R, which may occur in renal transplantation, surgery, trauma, or sepsis, is known to be an important cause of acute kidney injury. The detailed molecular mechanism of renal I/R injury is still not fully clear. Here, we investigate the role of AMP-activated protein kinase (AMPK)-evoked autophagy in the renal proximal tubular cell death in an in vitro I/R injury model. To mimic in vivo renal I/R injury, LLC-PK1 cells, a renal tubular cell line derived from pig kidney, were treated with antimycin A and 2-deoxyglucose to mimic ischemia injury followed by reperfusion with growth medium. This I/R injury model markedly induced apoptosis and autophagy in LLC-PK1 cells in a time-dependent manner. Autophagy inhibitor 3-methyladenine (3MA) significantly enhanced I/R injury-induced apoptosis. I/R could also up-regulate the phosphorylation of AMPK and down-regulate the phosphorylation of mammalian target of rapamycin (mTOR). Cells transfected with small hairpin RNA (shRNA) for AMPK significantly increased the phosphorylation of mTOR as well as decreased the induction of autophagy followed by enhancing cell apoptosis during I/R. Moreover, the mTOR inhibitor RAD001 significantly enhanced autophagy and attenuated cell apoptosis during I/R. Taken together, these findings suggest that autophagy induction protects renal tubular cell injury via an AMPK-regulated mTOR pathway in an in vitro I/R injury model. AMPK-evoked autophagy may be as a potential target for therapeutic intervention in I/R renal injury.
Collapse
Affiliation(s)
- Li-Ting Wang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Lin Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Cheng-Tien Wu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Kang Chiang
- Departments of Integrated Diagnostics & Therapeutics and Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- * E-mail: (SHL); (CKC)
| | - Shing Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- * E-mail: (SHL); (CKC)
| |
Collapse
|
178
|
Catena F, Coccolini F, Montori G, Vallicelli C, Amaduzzi A, Ercolani G, Ravaioli M, Del Gaudio M, Schiavina R, Brunocilla E, Liviano G, Feliciangeli G, Pinna A. Kidney Preservation: Review of Present and Future Perspective. Transplant Proc 2013; 45:3170-7. [DOI: 10.1016/j.transproceed.2013.02.145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 01/05/2013] [Accepted: 02/16/2013] [Indexed: 01/31/2023]
|
179
|
Akimoto T, Kimura T, Watanabe Y, Ishikawa N, Iwazu Y, Saito O, Muto S, Yagisawa T, Kusano E. The impact of nephrectomy and renal transplantation on serum levels of soluble Klotho protein. Transplant Proc 2013; 45:134-6. [PMID: 23375286 DOI: 10.1016/j.transproceed.2012.07.150] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 06/29/2012] [Accepted: 07/11/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND Klotho, a single-pass transmembrane protein primarily expressed in the kidneys, parathyroid glands, and choroid plexus of the brain, has a short cytoplasmic tail and a long extracellular domain, which can be cleaved and released as a soluble form. However, information regarding the origins and kinetics of soluble serum Klotho remains poorly understood. We evaluated serial changes in serum Klotho levels among living donors before and after retroperitoneoscopic nephrectomy as well as in their renal transplant recipients. METHODS The levels of soluble Klotho in serum obtained from 10 living donors and their renal transplant recipients were determined using a sandwich enzyme-linked immunosorbent assay system. RESULTS Serum soluble Klotho was detectable in all subjects. The baseline serum Klotho concentrations in the living donors ranged from 726.4 to 1417.1 pg/mL (median, 909.8 pg/mL; interquartile ranges [IR], 754.8-1132.4), whereas that in the concomitant renal transplant recipients ranged from 397.5 to 1047.2 pg/mL (median, 613.0 pg/mL; IR, 445.9-750.8; P = .003). The levels of soluble serum Klotho measured 5 days after retroperitoneoscopic nephrectomy (median, 619.0 pg/mL; IR, 544.6-688.5; P = .001) were significantly lower than the baseline values. Among the renal transplant recipients, no significant changes in serum Klotho levels were observed during the observation period. CONCLUSION Our data regarding soluble serum Klotho levels obtained from living donors support the idea that the kidneys are a major source of soluble serum Klotho in human subjects without a deterioration of renal function. In recipients, concomitant acute kidney injuries and immunosuppressive protocols might modulate the release of soluble Klotho from the grafts into the circulation.
Collapse
Affiliation(s)
- T Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Zhao H, Ning J, Savage S, Kang H, Lu K, Zheng X, George AJT, Ma D. A novel strategy for preserving renal grafts in an ex vivo setting: potential for enhancing the marginal donor pool. FASEB J 2013; 27:4822-33. [PMID: 23934278 DOI: 10.1096/fj.13-236810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Renal transplantation remains the best treatment option for patients with end-stage renal failure. However, the shortage of renal grafts remains a big challenge. Renal graft ischemic injuries that occur before and after graft retrieval have a devastating effect on graft survival, especially on grafts from marginal donors. This study was conducted to assess the protective effect against ischemic injury of a preservative solution supplemented with xenon (Xe), when used on ex vivo kidney grafts in a rat renal transplant model, and to explore the underlying mechanisms in vitro. Lewis rat renal grafts were stored in Soltran preservative solution at 4°C, saturated with nitrogen (N2) or Xe gas (70% Xe or N2, with 5% CO2 balanced with O2) for 24 or 48 h. Grafts stored in Xe-saturated preservative solution demonstrated significantly less severe histopathologic changes, together with enhanced B-cell lymphoma (Bcl)-2 and heat shock protein (HSP)-70 expression. After engraftment in the Lewis rat recipient, renal function was significantly improved in the Xe-treated grafts, and macrophage infiltration and fibrosis were reduced. Xe exposure enhanced Bcl-2 and HSP-70 expression in human renal tubular epithelial (HK-2) cells and prevented mitochondrial and nuclear damage. The release of the apoptogenic factors cytochrome c, apoptosis-inducing factor (AIF), and proinflammatory high-mobility group protein B1 (HMGB-1) was effectively suppressed. This study thus demonstrated for the first time that Xe confers renoprotection on renal grafts ex vivo and is likely to stabilize cellular structure during ischemic insult. The current study has significant clinical implications, in which the use of Xe ex vivo could enhance the marginal donor pool of renal grafts by preventing graft loss due to ischemia.
Collapse
Affiliation(s)
- Hailin Zhao
- 1D.M., Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Rd., London SW10 9NH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Yang C, Zhao T, Lin M, Zhao Z, Hu L, Jia Y, Xue Y, Xu M, Tang Q, Yang B, Rong R, Zhu T. Helix B surface peptide administered after insult of ischemia reperfusion improved renal function, structure and apoptosis through beta common receptor/erythropoietin receptor and PI3K/Akt pathway in a murine model. Exp Biol Med (Maywood) 2013; 238:111-9. [PMID: 23479770 DOI: 10.1258/ebm.2012.012185] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Erythropoietin (EPO) has been well recognized as a tissue protective agent by inhibiting apoptosis and inflammation. The tissue protective effect of EPO, however, only occurs at a high dosage, which may elicit severe side-effects at the meantime. Helix B surface peptide (HBSP), a novel peptide derived from the non-erythropoietic helix B of EPO, plays a specific role in tissue protection. We investigated effects of HBSP and the expression of its heterodimeric receptor, beta common receptor (βcR)/EPO receptor ( ), in a murine renal ischemia reperfusion (IR) injury model. HBSP significantly ameliorated renal dysfunction and tissue damage, decreased apoptotic cells in the kidney and reduced activation of caspase-9 and -3. The βcR/EPOR in the kidney was up-regulated by IR, but down-regulated by HBSP. Further investigation revealed that the expression and phosphorylation of Akt was dramatically enhanced by HBSP, but strongly reversed by wortmannin, the PI3K inhibitor. Wortmannin intervention improved βcR/EPOR expression, promoted caspase-9 and -3 activation, and increased active caspase-3 positive cells, while renal function and structure, and apoptotic cell counts scarcely changed. This result indicates a significant contribution of PI3K/Akt signaling pathway in the renoprotection of HBSP. The therapeutic effects of HBSP in this study suggest that HBSP could be a better candidate for renal protection.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, P R China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Scintigraphic comparison of renal ischemia–reperfusion injury models in rats: correlations with biochemical and histopathological findings. Ann Nucl Med 2013; 27:564-71. [DOI: 10.1007/s12149-013-0727-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/24/2013] [Indexed: 12/26/2022]
|
183
|
Machine perfusion versus cold storage of kidneys derived from donation after cardiac death: a meta-analysis. PLoS One 2013; 8:e56368. [PMID: 23536758 PMCID: PMC3594243 DOI: 10.1371/journal.pone.0056368] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In response to the increased organ shortage, organs derived from donation after cardiac death (DCD) donors are becoming an acceptable option once again for clinical use in transplantation. However, transplant outcomes in cases where DCD organs are used are not as favorable as those from donation after brain death or living donors. Different methods of organ preservation are a key factor that may influence the outcomes of DCD kidney transplantation. METHODS We compared the transplant outcomes in patients receiving DCD kidneys preserved by machine perfusion (MP) or by static cold storage (CS) preservation by conducting a meta-analysis. The MEDLINE, EMBASE and Cochrane Library databases were searched. All studies reporting outcomes for MP versus CS preserved DCD kidneys were further considered for inclusion in this meta-analysis. Odds ratios and 95% confidence intervals (CI) were calculated to compare the pooled data between groups that were transplanted with kidneys that were preserved by MP or CS. RESULTS Four prospective, randomized, controlled trials, involving 175 MP and 176 CS preserved DCD kidney transplant recipients, were included. MP preserved DCD kidney transplant recipients had a decreased incidence of delayed graft function (DGF) with an odd ration of 0.56 (95% CI = 0.36-0.86, P = 0.008) compared to CS. However, no significant differences were seen between the two technologies in incidence of primary non-function, one year graft survival, or one year patient survival. CONCLUSIONS MP preservation of DCD kidneys is superior to CS in terms of reducing DGF rate post-transplant. However, primary non-function, one year graft survival, and one year patient survival were not affected by the use of MP or CS for preservation.
Collapse
|
184
|
Yi X, Zhang G, Yuan J. Renoprotective Role of Fenoldopam Pretreatment Through Hypoxia-Inducible Factor-1alpha and Heme Oxygenase-1 Expressions in Rat Kidney Transplantation. Transplant Proc 2013; 45:517-22. [DOI: 10.1016/j.transproceed.2012.02.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 12/27/2022]
|
185
|
Beiral HJV, Rodrigues-Ferreira C, Fernandes AM, Gonsalez SR, Mortari NC, Takiya CM, Sorenson MM, Figueiredo-Freitas C, Galina A, Vieyra A. The impact of stem cells on electron fluxes, proton translocation, and ATP synthesis in kidney mitochondria after ischemia/reperfusion. Cell Transplant 2012; 23:207-20. [PMID: 23211430 DOI: 10.3727/096368912x659862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Tissue damage by ischemia/reperfusion (I/R) results from a temporary cessation of blood flow followed by the restoration of circulation. The injury depresses mitochondrial respiration, increases the production of reactive oxygen species (ROS), decreases the mitochondrial transmembrane potential, and stimulates invasion by inflammatory cells. The primary objective of this work was to address the potential use of bone marrow stem cells (BMSCs) to preserve and restore mitochondrial function in the kidney after I/R. Mitochondria from renal proximal tubule cells were isolated by differential centrifugation from rat kidneys subjected to I/R (clamping of renal arteries followed by release of circulation after 30 min), without or with subcapsular administration of BMSCs. Respiration starting from mitochondrial complex II was strongly affected following I/R. However, when BMSCs were injected before ischemia or together with reperfusion, normal electron fluxes, electrochemical gradient for protons, and ATP synthesis were almost completely preserved, and mitochondrial ROS formation occurred at a low rate. In homogenates from cultured renal cells transiently treated with antimycin A, the coculture with BMSCs induced a remarkable increase in protein S-nitrosylation that was similar to that found in mitochondria isolated from I/R rats, evidence that BMSCs protected against both superoxide anion and peroxynitrite. Labeled BMSCs migrated to damaged tubules, suggesting that the injury functions as a signal to attract and host the injected BMSCs. Structural correlates of BMSC injection in kidney tissue included stimulus of tubule cell proliferation, inhibition of apoptosis, and decreased inflammatory response. Histopathological analysis demonstrated a score of complete preservation of tubular structures by BMSCs, associated with normal plasma creatinine and urinary osmolality. These key findings shed light on the mechanisms that explain, at the mitochondrial level, how stem cells prevent damage by I/R. The action of BMSCs on mitochondrial functions raises the possibility that autologous BMSCs may help prevent I/R injuries associated with transplantation and acute renal diseases.
Collapse
Affiliation(s)
- Hellen J V Beiral
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Lin IH, Lin CP, Lin FS, Liu CC, Hung MH, Fan SZ. The role of transesophageal echocardiography in transplantation of an adult-sized kidney to a small child. ACTA ACUST UNITED AC 2012; 50:185-7. [DOI: 10.1016/j.aat.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 11/28/2022]
|
187
|
Cantaluppi V, Biancone L, Quercia A, Deregibus MC, Segoloni G, Camussi G. Rationale of mesenchymal stem cell therapy in kidney injury. Am J Kidney Dis 2012; 61:300-9. [PMID: 22938846 DOI: 10.1053/j.ajkd.2012.05.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/23/2012] [Indexed: 01/06/2023]
Abstract
Numerous preclinical and clinical studies suggest that mesenchymal stem cells, also known as multipotent mesenchymal stromal cells (MSCs), may improve pathologic conditions involving different organs. These beneficial effects initially were ascribed to the differentiation of MSCs into organ parenchymal cells. However, at least in the kidney, this is a very rare event and the kidney-protective effects of MSCs have been attributed mainly to paracrine mechanisms. MSCs release a number of trophic, anti-inflammatory, and immune-modulatory factors that may limit kidney injury and favor recovery. In this article, we provide an overview of the biologic activities of MSCs that may be relevant for the treatment of kidney injury in the context of a case vignette concerning a patient at high immunologic risk who underwent a second kidney transplantation followed by the development of ischemia-reperfusion injury and acute allograft rejection. We discuss the possible beneficial effect of MSC treatment in the light of preclinical and clinical data supporting the regenerative and immunomodulatory potential of MSCs.
Collapse
Affiliation(s)
- Vincenzo Cantaluppi
- Nephrology, Dialysis and Renal Transplantation Unit, Centre for Experimental Medical Research (CeRMS) and Department of Internal Medicine, University of Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
188
|
Paulus P, Ockelmann P, Tacke S, Karnowski N, Ellinghaus P, Scheller B, Holfeld J, Urbschat A, Zacharowski K. Deguelin attenuates reperfusion injury and improves outcome after orthotopic lung transplantation in the rat. PLoS One 2012; 7:e39265. [PMID: 22745725 PMCID: PMC3380011 DOI: 10.1371/journal.pone.0039265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/22/2012] [Indexed: 12/21/2022] Open
Abstract
The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling.
Collapse
Affiliation(s)
- Patrick Paulus
- Clinic of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Park JH, Lee JH, Joo DJ, Song KJ, Kim YS, Koo BN. Effect of sevoflurane on grafted kidney function in renal transplantation. Korean J Anesthesiol 2012; 62:529-35. [PMID: 22778888 PMCID: PMC3384790 DOI: 10.4097/kjae.2012.62.6.529] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/15/2011] [Accepted: 11/28/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The objective of this retrospective study was to determine if there are any differences in grafted kidney function in recipients of kidney transplantation (KT) when donors and recipients were anesthetized with sevoflurane compared to desflurane. METHODS Seventy-three pairs of donors-recipients were anesthetized with sevoflurane (Sevo group) and 71 pairs were anesthetized with desflurane (Des group). We retrospectively investigated the blood urea nitrogen (BUN) levels, creatinine (Cr) levels, and estimated glomerular filtration rates (eGFR) of the recipients in both groups for 1 year postoperatively. We tested non-inferiority for serum creatinine at discharge and 1 year after KT. Short-term (1 year) outcomes of KT were assessed by the incidence of delayed graft function (DGF), acute rejection episodes (ARE), and graft failure. RESULTS There were no differences in BUN, Cr, eGFR, or outcomes of KT at 1 year postoperatively. Specifically, the 95% confidence interval for the difference in creatinine levels between the Sevo and Des groups was less than the margin of equivalence at the time of discharge and 1 year after surgery. The occurrences of DGF, ARE, and graft failure were comparable between the groups. CONCLUSIONS Compared to desflurane, sevoflurane had no adverse effects on grafted renal function or on the short-term outcome of renal transplantation.
Collapse
Affiliation(s)
- Jin Ha Park
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
190
|
Hiroyoshi T, Tsuchida M, Uchiyama K, Fujikawa K, Komatsu T, Kanaoka Y, Matsuyama H. Splenectomy protects the kidneys against ischemic reperfusion injury in the rat. Transpl Immunol 2012; 27:8-11. [PMID: 22484617 DOI: 10.1016/j.trim.2012.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/26/2012] [Accepted: 03/27/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND Ischemic reperfusion (I/R) injury of the kidney is closely associated with delayed graft function, increased acute rejection, and late allograft dysfunction. Splenectomy reduced hepatic I/R injury by inhibiting leukocyte infiltration in the liver, release of TNF-α, cell apoptosis, and expression of caspase-3. Thus, we investigated the effects of splenectomy on renal I/R injury in the rat. METHODS Male Wistar rats were assigned to four groups: sham operation (sham group), sham operation+splenectomy (sham+SPLN group), right nephrectomy followed by clamping the left renal pedicle for 30min (I/R 30 group), and I/R 30+splenectomy (I/R 30+SPLN group). Renal function was determined by measuring the concentration of blood urea nitrogen (BUN) and serum creatinine (S-Cr). The serum level of tumor necrosis factor-α (TNF-α) was measured as the marker for inflammation. Left kidneys were obtained 24h after reperfusion. TUNEL assay was assessed for cell apoptosis. Spleens were obtained immediately (0-h group) and 3h after reperfusion (3-h group). The removed spleens were histologically evaluated. RESULTS The BUN and S-Cr levels were significantly lower in the I/R 30+SPLN group than in the I/R 30 group (p<0.05 for both). Apoptotic cells were significantly lower in the I/R 30+SPLN group than in the I/R 30 group. The serum level of TNF-α, which was increased after I/R, was significantly lower in the I/R 30+SPLN group than in the I/R 30 group (p<0.05). Spleen weights were significantly lower in the 3-h group than in the 0-h group (p<0.05). CONCLUSION These results suggest that splenectomy reduces renal I/R injury, and this effect may occur by an anti-inflammatory pathway and inhibition of cell apoptosis.
Collapse
Affiliation(s)
- Toshiya Hiroyoshi
- Department of Urology, Graduate School of Medicine, Yamaguchi University,Yamaguchi, Japan.
| | | | | | | | | | | | | |
Collapse
|
191
|
Kolonko A, Chudek J, Pawlik A, Wilk J, Jałowiecki P, Więcek A. Acute kidney injury before organ procurement is associated with worse long-term kidney graft outcome. Transplant Proc 2012; 43:2871-4. [PMID: 21996176 DOI: 10.1016/j.transproceed.2011.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND As the disparity between the numbers of available organ donors and patients awaiting transplantation increases, different strategies have been proposed to extend the donor pool. Patients with acute kidney injury (AKI) developing during an intensive care unit (ICU) stay are often considered to be donors, but the long-term outcomes of such high-risk kidney transplantations is unknown. We analyzed the renal function and outcomes over 5 years of kidney grafts recovered from deceased donors diagnosed with AKI. MATERIALS AND METHODS We collected data from 61 deceased kidney donors, identified in 1 ICU, and 120 kidney graft recipients who underwent transplantation between January 1999 and December 2006. Donors were stratified according to the RIFLE classification, based on their creatinine and urine output change from admission to the ICU and organ procurement. Recipient kidney graft function (eGFR) calculated according to the MDRD (Modification of Diet in Renal Disease) equation was estimated every 6 months. RESULTS Among 61 donors, 10 (16.4%) developed AKI, including 7 classified as "risk", 2 as "injury," and 1 as "failure." The mean follow-up of kidney graft recipients was 49±18 months. The long-term risk for graft loss was significantly higher among the group of kidneys recovered from donors with AKI (27.8% vs 7.1%; P=.02; log-rank=0.07). Their excretory function was worse over the whole follow-up period. CONCLUSION Patients with kidney grafts obtained from the donors with AKI showed a higher risk for graft loss and worse excretory function upon long-term follow-up.
Collapse
Affiliation(s)
- A Kolonko
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice, Poland.
| | | | | | | | | | | |
Collapse
|
192
|
Wu B, Wu H, Chen J, Hua X, Li N, Lu M. Comparative proteomic analysis of human donor tissues during orthotopic liver transplantation: ischemia versus reperfusion. Hepatol Int 2012. [PMID: 26201644 DOI: 10.1007/s12072-012-9346-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To explore the specific alterations in protein profiles that occur during ischemia/reperfusion injury (I/RI) and find novel therapeutic strategies to reduce I/RI during orthotopic liver transplantation (OLT). METHOD We used the comparative proteomic approach of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to compare the proteomic profiles of the same donor liver at three different time points: T1, immediately after cardiac arrest of donors (normal control); T2, before portal vein anastomosis (ischemia); and T3, 2 h after hepatic artery anastomosis (reperfusion). RESULT We identified 34 proteins that were significantly altered during I/RI. These differentially expressed proteins were functionally classified into seven categories: metabolic enzyme, molecular chaperone, antioxidant enzyme, cytoskeleton protein, signal transduction protein, cyclin, and binding protein. Among the 34 proteins, 9 changed during ischemia only (from T1 to T2), 11 changed during reperfusion only (from T2 to T3), and the others changed during both ischemia and reperfusion (from T1 to T3) periods. CONCLUSION Ischemia and reperfusion during LT may lead to different modifications of the liver proteins. Most metabolic enzymes and antioxidant enzymes were upregulated during ischemia, indicating that lipid metabolic disorder and oxidative stress are closely related to the development of ischemic injury. ER chaperones may play a vital role in mediating I/RI and preventing ER stress caused by I/RI. Modulation of ER chaperones could be used as a key therapeutic target to improve the outcomes of LT.
Collapse
Affiliation(s)
- Bin Wu
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - HongLi Wu
- School of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 120 VBS, Lincoln, NE, 68583-0905, USA.
| | - JianNing Chen
- Department of Pathology, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - XueFeng Hua
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - Ning Li
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - MinQiang Lu
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
193
|
Diamond JM, Lederer DJ, Kawut SM, Lee J, Ahya VN, Bellamy S, Palmer SM, Lama VN, Bhorade S, Crespo M, Demissie E, Sonett J, Wille K, Orens J, Shah PD, Weinacker A, Weill D, Kohl BA, Deutschman CC, Arcasoy S, Shah AS, Belperio JA, Wilkes D, Reynolds JM, Ware LB, Christie JD. Elevated plasma long pentraxin-3 levels and primary graft dysfunction after lung transplantation for idiopathic pulmonary fibrosis. Am J Transplant 2011; 11:2517-22. [PMID: 21883907 PMCID: PMC3206646 DOI: 10.1111/j.1600-6143.2011.03702.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Primary graft dysfunction (PGD) after lung transplantation may result from ischemia reperfusion injury (IRI). The innate immune response to IRI may be mediated by Toll-like receptor and IL-1-induced long pentraxin-3 (PTX3) release. We hypothesized that elevated PTX3 levels were associated with PGD. We performed a nested case control study of lung transplant recipients with idiopathic pulmonary fibrosis (IPF) or chronic obstructive pulmonary disease (COPD) from the Lung Transplant Outcomes Group cohort. PTX3 levels were measured pretransplant, and 6 and 24 h postreperfusion. Cases were subjects with grade 3 PGD within 72 h of transplantation and controls were those without grade 3 PGD. Generalized estimating equations and multivariable logistic regression were used for analysis. We selected 40 PGD cases and 79 non-PGD controls. Plasma PTX3 level was associated with PGD in IPF but not COPD recipients (p for interaction < 0.03). Among patients with IPF, PTX3 levels at 6 and 24 h were associated with PGD (OR = 1.6, p = 0.02 at 6 h; OR = 1.4, p = 0.008 at 24 h). Elevated PTX3 levels were associated with the development of PGD after lung transplantation in IPF patients. Future studies evaluating the role of innate immune activation in IPF and PGD are warranted.
Collapse
Affiliation(s)
- Joshua M. Diamond
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David J. Lederer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Steven M. Kawut
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA,Penn Cardiovascular Institute, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - James Lee
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Vivek N. Ahya
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Scarlett Bellamy
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Scott M. Palmer
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Raleigh-Durham, North Carolina
| | - Vibha N. Lama
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Sangeeta Bhorade
- Division of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois
| | - Maria Crespo
- Division of Pulmonary, Allergy, and Critical Care, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ejigayehu Demissie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Joshua Sonett
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York
| | - Keith Wille
- Division of Pulmonary and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jonathan Orens
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Johns Hopkins University Hospital, Baltimore, Maryland
| | - Pali D. Shah
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ann Weinacker
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - David Weill
- Division of Pulmonary and Critical Care Medicine, Stanford University, Palo Alto, California
| | - Benjamin A. Kohl
- Department of Anesthesia and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Clifford C. Deutschman
- Department of Anesthesia and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Selim Arcasoy
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Ashish S. Shah
- Department of Surgery, Johns Hopkins University Hospital, Baltimore, Maryland
| | - John A. Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - David Wilkes
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - John M. Reynolds
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jason D. Christie
- Pulmonary, Allergy, and Critical Care Division, University of Pennsylvania School of Medicine, Philadelphia, PA,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | |
Collapse
|
194
|
Ozaki KS, Kimura S, Murase N. Use of carbon monoxide in minimizing ischemia/reperfusion injury in transplantation. Transplant Rev (Orlando) 2011; 26:125-39. [PMID: 22000659 DOI: 10.1016/j.trre.2011.01.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 01/20/2011] [Indexed: 01/27/2023]
Abstract
Although carbon monoxide (CO) is known to be toxic because of its ability to interfere with oxygen delivery at high concentrations, mammalian cells endogenously generate CO primarily via the catalysis of heme by heme oxygenases. Recent findings have indicated that heme oxygenases and generation of CO serve as a key mechanism to maintain the integrity of the physiological function of organs and supported the development of a new paradigm that CO, at low concentrations, functions as a signaling molecule in the body and exerts significant cytoprotection. Consequently, exogenously delivered CO has been shown to mediate potent protection in various injury models through its anti-inflammatory, vasodilating, and antiapoptotic functions. Ischemia/reperfusion (I/R) injury associated with organ transplantation is one of the major deleterious factors limiting the success of transplantation. Ischemia/reperfusion injury is a complex cascade of interconnected events involving cell damage, apoptosis, vigorous inflammatory responses, microcirculation disturbance, and thrombogenesis. Carbon monoxide has a great potential in minimizing I/R injury. This review will provide an overview of the basic physiology of CO, preclinical studies examining efficacy of CO in I/R injury models, and possible protective mechanisms. Carbon monoxide could be developed to be a valuable therapeutic molecule in minimizing I/R injury in transplantation.
Collapse
Affiliation(s)
- Kikumi S Ozaki
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
195
|
Thuillier R, Dutheil D, Trieu MTN, Mallet V, Allain G, Rousselot M, Denizot M, Goujon JM, Zal F, Hauet T. Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation. Am J Transplant 2011; 11:1845-60. [PMID: 21875432 DOI: 10.1111/j.1600-6143.2011.03614.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Static preservation is currently the most widely used organ preservation strategy; however, decreased donor organ quality is impacting outcome negatively. M101 is an O₂ carrier with high-oxygen affinity and the capacity to function at low temperatures. We tested the benefits of M101 both in vitro, on cold preserved LLC-PK1, as well as in vivo, in a large white pig kidney autotransplantation model. In vitro, M101 supplementation reduced cold storage-induced cell death. In vivo, early follow-up demonstrated superiority of M101-supplemented solutions, lowering the peak of serum creatinine and increasing the speed of function recovery. On the longer term, supplementation with M101 reduced kidney inflammation levels and maintained structural integrity, particularly with University of Wisconsin (UW). At the end of the 3-month follow-up, M101 supplementation proved beneficial in terms of survival and function, as well as slowing the advance of interstitial fibrosis. We show that addition of M101 to classic organ preservation protocols with UW and Histidine-Tryptophane-Ketoglutarate, the two most widely used solutions worldwide in kidney preservation, provides significant benefits to grafts, both on early function recovery and outcome. Simple supplementation of the solution with M101 is easily translatable to the clinic and shows promises in terms of outcome.
Collapse
Affiliation(s)
- R Thuillier
- Inserm U927, Faculté de Médecine et Pharmacie, University of Poitiers, Poitiers, F86000, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Immunopathogenesis of ischemia/reperfusion-associated tissue damage. Clin Immunol 2011; 141:3-14. [PMID: 21839685 DOI: 10.1016/j.clim.2011.07.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 07/07/2011] [Indexed: 02/08/2023]
Abstract
Ischemia/reperfusion (IR) instigates a complex array of inflammatory events which result in damage to the local tissue. IR-related organ damage occurs invariably in several clinical conditions including trauma, organ transplantation, autoimmune diseases and revascularization procedures. We critically review available pre-clinical experimental information on the role of immune response in the expression of tissue damage following IR. Distinct elements of the innate and adaptive immune response are involved in the expression of tissue injury. Interventions such as prevention of binding of natural antibody to antigen expressed on the surface of ischemia-conditioned cells, inhibition of the ensuing complement activation, modulation of Toll-like receptors, B or T cell depletion and blockade of inflammatory cytokines and chemokines limit IR injury in preclinical studies. Clinical trials that will determine the therapeutic value of each approach is needed.
Collapse
|
197
|
Preservation strategies to reduce ischemic injury in kidney transplantation: pharmacological and genetic approaches. Curr Opin Organ Transplant 2011; 16:180-7. [PMID: 21415820 DOI: 10.1097/mot.0b013e3283446b1d] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW In the current graft shortage, it is paramount to improve the quality of transplanted organs. Organ preservation represents an underused therapeutic window with great potential to reduce ischaemia-reperfusion injury (IRI) and improve graft quality. Herein, we review strategies using this window as well as other promising work targeting IRI pathways using pharmacological treatments and gene therapy. RECENT FINDINGS We highlight studies using molecules administered during kidney preservation to target key components of IRI such as inflammation, oxidative stress, mitochondrial activity and the coagulation pathway. We further expose recent studies of gene therapy directed against inflammation or apoptosis during cold storage. Other pathways with potential therapeutic molecules are cited. SUMMARY The use of cold preservation as a therapeutic window to deliver pharmacological or gene therapy treatments can significantly improve both short-term and long-term graft outcomes. Even if human gene therapy remains hampered by the quantity of agent needed and the potential harmfulness of the vector, it clearly offers a wide array of possibilities for the future. Although gene therapy is still too immature, we expose pharmacological strategies which can readily be applied to the clinic and improve both transplantation success rates and the patients' quality of life.
Collapse
|
198
|
Hosgood SA, Mohamed IH, Bagul A, Nicholson ML. Hypothermic machine perfusion after static cold storage does not improve the preservation condition in an experimental porcine kidney model. Br J Surg 2011; 98:943-50. [DOI: 10.1002/bjs.7481] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2011] [Indexed: 11/12/2022]
Abstract
Abstract
Background
Combining hypothermic techniques, as a more practical approach to preservation, may enhance the condition of kidneys donated after cardiac death.
Methods
Porcine kidneys were retrieved after 10 min in situ warm ischaemia, then preserved by either 18 h static cold storage (CS), hypothermic machine perfusion for 18 h (HMP) or 14 h static CS followed by 4 h HMP (4HMP). Kidneys were reperfused for 3 h with oxygenated autologous blood on an isolated organ perfusion system to assess renal function and injury.
Results
Intrarenal resistance was significantly higher in the 4HMP group than in the CS and HMP groups: mean(s.d.) area under the curve (AUC) 8·48(2·97), 3·41(1·80) and 3·78(1·68) mmHg/min.h respectively (P = 0·011). Creatinine clearance was lower after 4HMP and CS: AUC 2·3(0·6) and 2·2(1·7) ml per min per 100g.h respectively versus 9·8(7·3) ml per min per 100g.h in the HMP group (P = 0·022). Levels of endothelin 1 were higher in the 4HMP and CS groups: mean(s.d.) 21·6(4·0) and 24·2(2·3) pg/ml respectively versus 11·4(4·6) pg/ml in the HMP group (P = 0·002). Morphological damage was increased in the 4HMP group.
Conclusion
This porcine kidney study demonstrated no advantage to the addition of 4 h of HMP after CS.
Collapse
Affiliation(s)
- S A Hosgood
- Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - I H Mohamed
- Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - A Bagul
- Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| | - M L Nicholson
- Department of Infection, Immunity and Inflammation, Transplant Group, University of Leicester, Leicester General Hospital, Leicester LE5 4PW, UK
| |
Collapse
|
199
|
Kahan BD. Forty years of publication of Transplantation Proceedings--the fourth decade: Globalization of the enterprise. Transplant Proc 2011; 43:3-29. [PMID: 21335147 DOI: 10.1016/j.transproceed.2010.12.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Barry D Kahan
- Division of Immunology and Organ Transplantation, The University of Texas-Health Science Center at Houston Medical School, Houston, Texas 77030, USA.
| |
Collapse
|
200
|
Obeidat MA, Luyckx VA, Grebe SO, Jhangri GS, Maguire C, Zavodni A, Jackson S, Mueller TF. Post-transplant nuclear renal scans correlate with renal injury biomarkers and early allograft outcomes. Nephrol Dial Transplant 2011; 26:3038-45. [PMID: 21321005 DOI: 10.1093/ndt/gfq814] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clinical- and histopathology-based scores are limited predictors of allograft outcome. In addition, more objective markers of early transplant function are needed to identify and validate biomarkers and predictive scores. We evaluated existing scores and transcriptome biomarkers of kidney injury as predictors of early transplant function measured by renal scan. METHODS Clinical, histopathologic and transcriptome data were collected in 143 consecutive kidney transplant recipients. A post-operative renal scan was performed within 48 h. Prediction scores for early outcomes were calculated. RESULTS Patients were stratified into three groups by renal scan: normal, mild-to-moderate or severe dysfunction. Kidneys with severe dysfunction were more often from deceased donors (P < 0.001), had greater HLA antigen mismatches (P < 0.001), were transplanted into older recipients (P = 0.040), had lower urine output during the first 8 h (P < 0.001), higher Day 7 serum creatinine (P < 0.001) and higher incidence of delayed graft function (P < 0.001). Clinical- and pathology-based scores did not discriminate between scan groups. In contrast, the overall transcriptome (P < 0.001) and transcripts of preselected acute kidney injury (AKI) genes were significantly different between the groups, with kidney injury molecule 1 (P = 0.001) and neutrophil gelatinase-associated lipocalin (P = 0.002) being most highly expressed and genes associated with glutathione metabolism (GSTA1, 3 and 4) most down-regulated in kidneys with subsequent severe dysfunction. CONCLUSIONS Renal scans reflect early transplant function and allow for a more objective assessment of scores predicting early outcome and for identification of biomarkers. The study shows that transcript levels of AKI genes correlate better with renal scans than clinical- or histopathology-based scores.
Collapse
Affiliation(s)
- Motaz A Obeidat
- Department of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | | | | | | | | |
Collapse
|