151
|
Warren M, Mierau G, Wartchow EP, Shimada H, Yano S. Histologic and ultrastructural features in early and advanced phases of Zellweger spectrum disorder (infantile Refsum disease). Ultrastruct Pathol 2018; 42:220-227. [PMID: 29482424 DOI: 10.1080/01913123.2018.1440272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Zellweger spectrum disorders (ZSD) are rare autosomal recessive inherited metabolic disorders and include severe (Zellweger syndrome) and milder phenotypes [neonatal adrenoleukodystrophy and infantile Refsum disease (IRD)]. ZSD are characterized by impaired peroxisomal functions and lack of peroxisomes detected by electron microscopy (EM). ZSD are caused by mutations in any of the 14 PEX genes. Patients with ZSD commonly demonstrate nonspecific hepatic symptoms within the first year, often without clinical suspicion of ZSD. Thus, recognition of pathologic findings in the liver is critical for the early diagnosis. We herein demonstrate the histologic and ultrastructural features in liver biopsies in the early and advanced phases from a 16-year-old male with IRD. The initial biopsy at 5 months of age showed a lack of peroxisomes by EM, and this finding played a critical role in the early diagnosis. In contrast, the second biopsy at 14 years of age, after long-term diet therapy, demonstrated significant disease progression with near-cirrhotic liver. In addition to lack of peroxisomes, EM revealed abundant trilamellar inclusions within large angulated lysosomes in many of the hepatocytes and Kupffer cells. Mitochondrial abnormalities were identified only in the second biopsy and were mainly identified in damaged cells; thus they were likely nonspecific secondary changes. This is the first report demonstrating histological and ultrastructural features of liver biopsies in the early and advanced phases from a child with ZSD. Trilamellar inclusions are considered to be an ultrastructural hallmark of ZSD, but they may not be apparent in the early phases.
Collapse
Affiliation(s)
- Mikako Warren
- a Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| | - Gary Mierau
- b Department of Pathology , Children's Hospital Colorado , Aurora , Colorado , USA
| | - Eric P Wartchow
- b Department of Pathology , Children's Hospital Colorado , Aurora , Colorado , USA
| | - Hiroyuki Shimada
- a Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| | - Shoji Yano
- c Genetics Division, Department of Pediatrics, Keck School of Medicine , University of Southern California , Los Angeles , California , USA
| |
Collapse
|
152
|
Smitthimedhin A, Otero HJ. Scimitar-like ossification of patellae led to diagnosis of Zellweger syndrome in newborn: a case report. Clin Imaging 2018; 49:128-130. [PMID: 29414506 DOI: 10.1016/j.clinimag.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/04/2018] [Accepted: 01/16/2018] [Indexed: 10/18/2022]
Abstract
Zellweger syndrome is the most severe form of a group of autosomal recessive disorders with defective peroxisomes. We report a case of Zellweger syndrome in a newborn baby, which was first suspected by the presence of scimitar-like patella seen on skeletal survey. The subsequent brain MRI showed germinolytic cysts and polymicrogyria, which furthered the suspicion. Laboratory and genetic results confirmed the diagnosis. To date, there are a limited number of case reports of this rare disease. We emphasize skeletal findings that can lead to targeted genetic and laboratory testing and hence earlier diagnosis.
Collapse
Affiliation(s)
- Anilawan Smitthimedhin
- Children's National Health System, 111 Michigan avenue NW, Washington, D.C. 20010, United States.
| | - Hansel J Otero
- Children's National Health System, 111 Michigan avenue NW, Washington, D.C. 20010, United States
| |
Collapse
|
153
|
|
154
|
Abstract
Ether lipids, such as plasmalogens, are peroxisome-derived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.
Collapse
Affiliation(s)
- John M Dean
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
155
|
O'Bryhim BE, Kozel BA, Lueder GT. Novel retinal findings in peroxisomal biogenesis disorders. Ophthalmic Genet 2018; 39:377-379. [PMID: 29377746 DOI: 10.1080/13816810.2018.1430241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Peroxisomal biogenesis disorders are caused by disruption of long chain fatty acid metabolism due to mutations in PEX genes. Individuals with these disorders often have vision loss due to optic atrophy and pigmentary retinopathy. We report an unusual retinal manifestation of peroxisomal biogenesis disorder.
Collapse
Affiliation(s)
- B E O'Bryhim
- a Department of Ophthalmology and Visual Sciences , Washington University in St. Louis , St. Louis , MO , USA
| | - B A Kozel
- b Department of Pediatrics , Washington University School of Medicine , St. Louis , MO , USA.,c National Institutes of Health , National Heart, Lung, and Blood Institute , Bethesda , MD , USA
| | - G T Lueder
- a Department of Ophthalmology and Visual Sciences , Washington University in St. Louis , St. Louis , MO , USA.,d Department of Pediatrics , St. Louis Children's Hospital , St. Louis , MO , USA
| |
Collapse
|
156
|
Kao YT, Gonzalez KL, Bartel B. Peroxisome Function, Biogenesis, and Dynamics in Plants. PLANT PHYSIOLOGY 2018; 176:162-177. [PMID: 29021223 PMCID: PMC5761812 DOI: 10.1104/pp.17.01050] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 05/19/2023]
Abstract
Recent advances highlight understanding of the diversity of peroxisome contributions to plant biology and the mechanisms through which these essential organelles are generated.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Kim L Gonzalez
- Department of Biosciences, Rice University, Houston, Texas 77005
| | - Bonnie Bartel
- Department of Biosciences, Rice University, Houston, Texas 77005
| |
Collapse
|
157
|
Stippled Chondral Calcifications of the Patella in Zellweger Syndrome. J Pediatr 2018; 192:265. [PMID: 29246349 DOI: 10.1016/j.jpeds.2017.09.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 11/23/2022]
|
158
|
Bülow MH, Wingen C, Senyilmaz D, Gosejacob D, Sociale M, Bauer R, Schulze H, Sandhoff K, Teleman AA, Hoch M, Sellin J. Unbalanced lipolysis results in lipotoxicity and mitochondrial damage in peroxisome-deficient Pex19 mutants. Mol Biol Cell 2017; 29:396-407. [PMID: 29282281 PMCID: PMC6014165 DOI: 10.1091/mbc.e17-08-0535] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 01/01/2023] Open
Abstract
Peroxisomal dysfunction is often associated with mitochondrial abnormalities for unknown reasons. We found that peroxisomal loss upon Pex19 mutation in Drosophila results in Hnf4 hyperactivation with free fatty acid accumulation and mitochondrial damage as a consequence. Genetic reduction of Hnf4 in Pex19 mutants improves all phenotypes, including lethality. Inherited peroxisomal biogenesis disorders (PBDs) are characterized by the absence of functional peroxisomes. They are caused by mutations of peroxisomal biogenesis factors encoded by Pex genes, and result in childhood lethality. Owing to the many metabolic functions fulfilled by peroxisomes, PBD pathology is complex and incompletely understood. Besides accumulation of peroxisomal educts (like very-long-chain fatty acids [VLCFAs] or branched-chain fatty acids) and lack of products (like bile acids or plasmalogens), many peroxisomal defects lead to detrimental mitochondrial abnormalities for unknown reasons. We generated Pex19 Drosophila mutants, which recapitulate the hallmarks of PBDs, like absence of peroxisomes, reduced viability, neurodegeneration, mitochondrial abnormalities, and accumulation of VLCFAs. We present a model of hepatocyte nuclear factor 4 (Hnf4)-induced lipotoxicity and accumulation of free fatty acids as the cause for mitochondrial damage in consequence of peroxisome loss in Pex19 mutants. Hyperactive Hnf4 signaling leads to up-regulation of lipase 3 and enzymes for mitochondrial β-oxidation. This results in enhanced lipolysis, elevated concentrations of free fatty acids, maximal β-oxidation, and mitochondrial abnormalities. Increased acid lipase expression and accumulation of free fatty acids are also present in a Pex19-deficient patient skin fibroblast line, suggesting the conservation of key aspects of our findings.
Collapse
Affiliation(s)
- Margret H Bülow
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Christian Wingen
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Deniz Senyilmaz
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Dominic Gosejacob
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Mariangela Sociale
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Reinhard Bauer
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Heike Schulze
- Department of Membrane Biology & Lipid Biochemistry, Life & Medical Sciences Institute (LIMES), Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Konrad Sandhoff
- Department of Membrane Biology & Lipid Biochemistry, Life & Medical Sciences Institute (LIMES), Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, 53121 Bonn, Germany
| | - Aurelio A Teleman
- Division of Signal Transduction in Cancer and Metabolism, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Michael Hoch
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| | - Julia Sellin
- Department of Molecular Developmental Biology, Life & Medical Sciences Institute (LIMES), University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
159
|
Joyal JS, Gantner ML, Smith LEH. Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res 2017; 64:131-156. [PMID: 29175509 DOI: 10.1016/j.preteyeres.2017.11.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Jean-Sébastien Joyal
- Department of Pediatrics, Pharmacology and Ophthalmology, CHU Sainte-Justine Research Center, Université de Montréal, Montreal, Qc, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Qc, Canada.
| | - Marin L Gantner
- The Lowy Medical Research Institute, La Jolla, United States
| | - Lois E H Smith
- Department of Ophthalmology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Avenue, Boston MA 02115, United States.
| |
Collapse
|
160
|
Dodge JC. Lipid Involvement in Neurodegenerative Diseases of the Motor System: Insights from Lysosomal Storage Diseases. Front Mol Neurosci 2017; 10:356. [PMID: 29163032 PMCID: PMC5675881 DOI: 10.3389/fnmol.2017.00356] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare inherited metabolic diseases that are frequently triggered by the accumulation of lipids inside organelles of the endosomal-autophagic-lysosomal system (EALS). There is now a growing realization that disrupted lysosomal homeostasis (i.e., lysosomal cacostasis) also contributes to more common neurodegenerative disorders such as Parkinson disease (PD). Lipid deposition within the EALS may also participate in the pathogenesis of some additional neurodegenerative diseases of the motor system. Here, I will highlight the lipid abnormalities and clinical manifestations that are common to LSDs and several diseases of the motor system, including amyotrophic lateral sclerosis (ALS), atypical forms of spinal muscular atrophy, Charcot-Marie-Tooth disease (CMT), hereditary spastic paraplegia (HSP), multiple system atrophy (MSA), PD and spinocerebellar ataxia (SCA). Elucidating the underlying basis of intracellular lipid mislocalization as well as its consequences in each of these disorders will likely provide innovative targets for therapeutic research.
Collapse
Affiliation(s)
- James C Dodge
- Neuroscience Therapeutic Area, Sanofi, Framingham, MA, United States
| |
Collapse
|
161
|
Gonzalez KL, Fleming WA, Kao YT, Wright ZJ, Venkova SV, Ventura MJ, Bartel B. Disparate peroxisome-related defects in Arabidopsis pex6 and pex26 mutants link peroxisomal retrotranslocation and oil body utilization. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:110-128. [PMID: 28742939 PMCID: PMC5605450 DOI: 10.1111/tpj.13641] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/22/2017] [Accepted: 07/18/2017] [Indexed: 05/29/2023]
Abstract
Catabolism of fatty acids stored in oil bodies is essential for seed germination and seedling development in Arabidopsis. This fatty acid breakdown occurs in peroxisomes, organelles that sequester oxidative reactions. Import of peroxisomal enzymes is facilitated by peroxins including PEX5, a receptor that delivers cargo proteins from the cytosol to the peroxisomal matrix. After cargo delivery, a complex of the PEX1 and PEX6 ATPases and the PEX26 tail-anchored membrane protein removes ubiquitinated PEX5 from the peroxisomal membrane. We identified Arabidopsis pex6 and pex26 mutants by screening for inefficient seedling β-oxidation phenotypes. The mutants displayed distinct defects in growth, response to a peroxisomally metabolized auxin precursor, and peroxisomal protein import. The low PEX5 levels in these mutants were increased by treatment with a proteasome inhibitor or by combining pex26 with peroxisome-associated ubiquitination machinery mutants, suggesting that ubiquitinated PEX5 is degraded by the proteasome when the function of PEX6 or PEX26 is reduced. Combining pex26 with mutations that increase PEX5 levels either worsened or improved pex26 physiological and molecular defects, depending on the introduced lesion. Moreover, elevating PEX5 levels via a 35S:PEX5 transgene exacerbated pex26 defects and ameliorated the defects of only a subset of pex6 alleles, implying that decreased PEX5 is not the sole molecular deficiency in these mutants. We found peroxisomes clustered around persisting oil bodies in pex6 and pex26 seedlings, suggesting a role for peroxisomal retrotranslocation machinery in oil body utilization. The disparate phenotypes of these pex alleles may reflect unanticipated functions of the peroxisomal ATPase complex.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bonnie Bartel
- Corresponding author: Bonnie Bartel, Department of Biosciences, MS-140, Rice University, 6100 Main St., Houston TX, USA. Phone: 713-348-5602, Fax: 713-348-5154;
| |
Collapse
|
162
|
Bjørgo K, Fjær R, Mørk HH, Ferdinandusse S, Falkenberg KD, Waterham HR, Øye AM, Sikiric A, Amundsen SS, Kulseth MA, Selmer K. Biochemical and genetic characterization of an unusual mild PEX3-related Zellweger spectrum disorder. Mol Genet Metab 2017; 121:325-328. [PMID: 28673549 DOI: 10.1016/j.ymgme.2017.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Patients with PEX3 mutations usually present with a severe form of Zellweger spectrum disorder with death in the first year of life. Whole exome sequencing in adult siblings with intellectual disability revealed a homozygous variant in PEX3 that abolishes the normal splice site. A cryptic acceptor splice site is activated and an in-frame transcript with a deletion is produced. This transcript translates into a protein with residual activity explaining the relatively mild peroxisomal abnormalities and clinical phenotype.
Collapse
Affiliation(s)
- Kathrine Bjørgo
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | - Roar Fjær
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | - Hanne Håberg Mørk
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Kim D Falkenberg
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Academic Medical Center, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Ane-Marte Øye
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | - Alma Sikiric
- Department of Neurohabilitation, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | | | - Mari Ann Kulseth
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| | - Kaja Selmer
- Department of Medical Genetics, Oslo University Hospital, P.B 4956 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
163
|
Sabo A, Mishra P, Dugan-Perez S, Voruganti VS, Kent JW, Kalra D, Cole SA, Comuzzie AG, Muzny DM, Gibbs RA, Butte NF. Exome sequencing reveals novel genetic loci influencing obesity-related traits in Hispanic children. Obesity (Silver Spring) 2017; 25:1270-1276. [PMID: 28508493 PMCID: PMC5687071 DOI: 10.1002/oby.21869] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/28/2017] [Accepted: 03/30/2017] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform whole exome sequencing in 928 Hispanic children and identify variants and genes associated with childhood obesity. METHODS Single-nucleotide variants (SNVs) were identified from Illumina whole exome sequencing data using integrated read mapping, variant calling, and an annotation pipeline (Mercury). Association analyses of 74 obesity-related traits and exonic variants were performed using SeqMeta software. Rare autosomal variants were analyzed using gene-based association analyses, and common autosomal variants were analyzed at the SNV level. RESULTS (1) Rare exonic variants in 10 genes and 16 common SNVs in 11 genes that were associated with obesity traits in a cohort of Hispanic children were identified, (2) novel rare variants in peroxisome biogenesis factor 1 (PEX1) associated with several obesity traits (weight, weight z score, BMI, BMI z score, waist circumference, fat mass, trunk fat mass) were discovered, and (3) previously reported SNVs associated with childhood obesity were replicated. CONCLUSIONS Convergence of whole exome sequencing, a family-based design, and extensive phenotyping discovered novel rare and common variants associated with childhood obesity. Linking PEX1 to obesity phenotypes poses a novel mechanism of peroxisomal biogenesis and metabolism underlying the development of childhood obesity.
Collapse
Affiliation(s)
- Aniko Sabo
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Pamela Mishra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - V. Saroja Voruganti
- Department of Nutrition and UNC Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Jack W. Kent
- Department of Genetics, Texas Biomedical Research institute, San Antonio, TX, USA
| | - Divya Kalra
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Shelley A. Cole
- Department of Genetics, Texas Biomedical Research institute, San Antonio, TX, USA
| | - Anthony G. Comuzzie
- Department of Genetics, Texas Biomedical Research institute, San Antonio, TX, USA
| | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Nancy F. Butte
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
164
|
Costello JL, Castro IG, Schrader TA, Islinger M, Schrader M. Peroxisomal ACBD4 interacts with VAPB and promotes ER-peroxisome associations. Cell Cycle 2017; 16:1039-1045. [PMID: 28463579 PMCID: PMC5499832 DOI: 10.1080/15384101.2017.1314422] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/29/2022] Open
Abstract
Cooperation between cellular organelles such as mitochondria, peroxisomes and the ER is essential for a variety of important and diverse metabolic processes. Effective communication and metabolite exchange requires physical linkages between the organelles, predominantly in the form of organelle contact sites. At such contact sites organelle membranes are brought into close proximity by the action of molecular tethers, which often consist of specific protein pairs anchored in the membrane of the opposing organelles. Currently numerous tethering components have been identified which link the ER with multiple other organelles but knowledge of the factors linking the ER with peroxisomes is limited. Peroxisome-ER interplay is important because it is required for the biosynthesis of unsaturated fatty acids, ether-phospholipids and sterols with defects in these functions leading to severe diseases. Here, we characterize acyl-CoA binding domain protein 4 (ACBD4) as a tail-anchored peroxisomal membrane protein which interacts with the ER protein, vesicle-associated membrane protein-associated protein-B (VAPB) to promote peroxisome-ER associations.
Collapse
Affiliation(s)
| | - Inês G. Castro
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | - Markus Islinger
- Institute of Neuroanatomy, Center for Biomedicine & Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | | |
Collapse
|
165
|
Schady DA, Finegold MJ. Contemporary Evaluation of the Pediatric Liver Biopsy. Gastroenterol Clin North Am 2017; 46:233-252. [PMID: 28506363 DOI: 10.1016/j.gtc.2017.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver disease in the neonate, infant, child, and adolescent may manifest differently depending on the type of disorder. These disorders show marked overlap clinically and on light microscopy. Histology and ultrastructural examination are used in tandem for the diagnosis of most disorders. A final diagnosis or interpretation of the pediatric liver biopsy depends on appropriate and adequate clinical history, laboratory test results, biochemical assays, and molecular analyses, as indicated by the light microscopic and ultrastructural examination.
Collapse
Affiliation(s)
- Deborah A Schady
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA.
| | - Milton J Finegold
- Department of Pathology and Immunology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
166
|
Saffert P, Enenkel C, Wendler P. Structure and Function of p97 and Pex1/6 Type II AAA+ Complexes. Front Mol Biosci 2017; 4:33. [PMID: 28611990 PMCID: PMC5447069 DOI: 10.3389/fmolb.2017.00033] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
Protein complexes of the Type II AAA+ (ATPases associated with diverse cellular activities) family are typically hexamers of 80–150 kDa protomers that harbor two AAA+ ATPase domains. They form double ring assemblies flanked by associated domains, which can be N-terminal, intercalated or C-terminal to the ATPase domains. Most prominent members of this family include NSF (N-ethyl-maleimide sensitive factor), p97/VCP (valosin-containing protein), the Pex1/Pex6 complex and Hsp104 in eukaryotes and ClpB in bacteria. Tremendous efforts have been undertaken to understand the conformational dynamics of protein remodeling type II AAA+ complexes. A uniform mode of action has not been derived from these works. This review focuses on p97/VCP and the Pex1/6 complex, which both structurally remodel ubiquitinated substrate proteins. P97/VCP plays a role in many processes, including ER- associated protein degradation, and the Pex1/Pex6 complex dislocates and recycles the transport receptor Pex5 from the peroxisomal membrane during peroxisomal protein import. We give an introduction into existing knowledge about the biochemical and cellular activities of the complexes before discussing structural information. We particularly emphasize recent electron microscopy structures of the two AAA+ complexes and summarize their structural differences.
Collapse
Affiliation(s)
- Paul Saffert
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| | - Cordula Enenkel
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Petra Wendler
- Department of Biochemistry, Institute of Biochemistry and Biology, University of PotsdamPotsdam, Germany
| |
Collapse
|
167
|
Cipolla CM, Lodhi IJ. Peroxisomal Dysfunction in Age-Related Diseases. Trends Endocrinol Metab 2017; 28:297-308. [PMID: 28063767 PMCID: PMC5366081 DOI: 10.1016/j.tem.2016.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes carry out many key functions related to lipid and reactive oxygen species (ROS) metabolism. The fundamental importance of peroxisomes for health in humans is underscored by the existence of devastating genetic disorders caused by impaired peroxisomal function or lack of peroxisomes. Emerging studies suggest that peroxisomal function may also be altered with aging and contribute to the pathogenesis of a variety of diseases, including diabetes and its related complications, neurodegenerative disorders, and cancer. With increasing evidence connecting peroxisomal dysfunction to the pathogenesis of these acquired diseases, the possibility of targeting peroxisomal function in disease prevention or treatment becomes intriguing. Here, we review recent developments in understanding the pathophysiological implications of peroxisomal dysfunctions outside the context of inherited peroxisomal disorders.
Collapse
Affiliation(s)
- Cynthia M Cipolla
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
168
|
Abstract
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.
Collapse
Affiliation(s)
- Taras Y Nazarko
- a Section of Molecular Biology , Division of Biological Sciences, UC San Diego , La Jolla , CA , USA
| |
Collapse
|
169
|
Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathol 2017; 133:283-301. [PMID: 28004277 PMCID: PMC5250669 DOI: 10.1007/s00401-016-1655-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022]
Abstract
The activation of the highly conserved unfolded protein response (UPR) is prominent in the pathogenesis of the most prevalent neurodegenerative disorders, such as Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS), which are classically characterized by an accumulation of aggregated or misfolded proteins. This activation is orchestrated by three endoplasmic reticulum (ER) stress sensors: PERK, ATF6 and IRE1. These sensors transduce signals that induce the expression of the UPR gene programme. Here, we first identified an early activator of the UPR and investigated the role of a chronically activated UPR in the pathogenesis of X-linked adrenoleukodystrophy (X-ALD), a neurometabolic disorder that is caused by ABCD1 malfunction; ABCD1 transports very long-chain fatty acids (VLCFA) into peroxisomes. The disease manifests as inflammatory demyelination in the brain or and/or degeneration of corticospinal tracts, thereby resulting in spastic paraplegia, with the accumulation of intracellular VLCFA instead of protein aggregates. Using X-ALD mouse model (Abcd1− and Abcd1−/Abcd2−/− mice) and X-ALD patient’s fibroblasts and brain samples, we discovered an early engagement of the UPR. The response was characterized by the activation of the PERK and ATF6 pathways, but not the IRE1 pathway, showing a difference from the models of AD, PD or ALS. Inhibition of PERK leads to the disruption of homeostasis and increased apoptosis during ER stress induced in X-ALD fibroblasts. Redox imbalance appears to be the mechanism that initiates ER stress in X-ALD. Most importantly, we demonstrated that the bile acid tauroursodeoxycholate (TUDCA) abolishes UPR activation, which results in improvement of axonal degeneration and its associated locomotor impairment in Abcd1−/Abcd2−/− mice. Altogether, our preclinical data provide evidence for establishing the UPR as a key drug target in the pathogenesis cascade. Our study also highlights the potential role of TUDCA as a treatment for X-ALD and other axonopathies in which similar molecular mediators are implicated.
Collapse
|
170
|
Ventura MJ, Wheaton D, Xu M, Birch D, Bowne SJ, Sullivan LS, Daiger SP, Whitney AE, Jones RO, Moser AB, Chen R, Wangler MF. Diagnosis of a mild peroxisomal phenotype with next-generation sequencing. Mol Genet Metab Rep 2016; 9:75-78. [PMID: 27872819 PMCID: PMC5109284 DOI: 10.1016/j.ymgmr.2016.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 12/31/2022] Open
Abstract
Peroxisomal biogenesis disorders (PBD) are caused by mutations in PEX genes, and are typically diagnosed with biochemical testing in plasma followed by confirmatory testing. Here we report the unusual diagnostic path of a child homozygous for PEX1 p.G843D. The patient presented with sensorineural hearing loss, pigmentary retinopathy, and normal intellect. After testing for Usher syndrome was negative, he was found to have PBD through a research sequencing panel. When evaluating a patient with hearing loss and pigmentary retinopathy, mild PBD should be on the differential regardless of cognitive function.
Collapse
Affiliation(s)
- Meredith J. Ventura
- School of Medicine, Baylor College of Medicine, Houston, TX 77030, United States
| | - Dianna Wheaton
- Department of Ophthalmology, University of Texas Southwestern, Dallas, TX 75390, United States
- Retina Foundation of the Southwest, Dallas, TX 75231, United States
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
| | - David Birch
- Department of Ophthalmology, University of Texas Southwestern, Dallas, TX 75390, United States
- Retina Foundation of the Southwest, Dallas, TX 75231, United States
| | - Sara J. Bowne
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Lori S. Sullivan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, TX 77030, United States
| | - Annette E. Whitney
- Digestive Health Associates of Texas, 7777 Forest Lane B304, Dallas, TX 75230, United States
| | | | - Ann B. Moser
- Kennedy Krieger Institute, Baltimore, MD 21205, United States
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Michael F. Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Texas Children's Neurological Research Institute, Houston, TX 77030, United States
| |
Collapse
|
171
|
Abstract
Early diagnosis of males with X-linked adrenoleukodystrophy (X-ALD) is essential for preventing loss of life due to adrenal insufficiency and for timely therapy of the childhood cerebral form of X-ALD with hematopoietic cell transplantation. This article describes X-ALD, the current therapies, the history of the development of the newborn screening test, the approval by the Secretary of Health and Human Services for the addition of X-ALD newborn screening to the recommended uniform panel of disorders screened as newborns (RUSP) and the successful implementation of X-ALD newborn screening in the state of New York beginning on 30 December 2013. Follow-up guidelines that have been established in New York are outlined. Based on the success of newborn screening in New York, and early results in Connecticut, where X-ALD newborn screening started in December 2015, and in California, where X-ALD newborn screening began in September 2016, we are confident and hopeful that X-ALD newborn screening will expand to include all US states and to countries that have established neonatal screening programs. The Minster of Health in the Netherlands has approved the addition of X-ALD to the newborn screening program with a start date expected in 2017. The states, such as Massachusetts, Illinois, Minnesota, New Jersey, Florida and Washington, that have legislative approval will commence screening as soon as budgetary resources, testing and follow-up procedures are in place.
Collapse
|
172
|
Affiliation(s)
| | - Maria Daniela D'Agostino
- McGill University Department of Human Genetics and McGill University Health Center, Department of Medical Genetics, Montreal, QC, Canada
| | - Nancy Braverman
- McGill University Department of Human Genetics and Pediatrics, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
173
|
Gunduz M, Unal O. Dysmorphic Facial Features and Other Clinical Characteristics in Two Patients with PEX1 Gene Mutations. Case Rep Pediatr 2016; 2016:5175709. [PMID: 27882258 PMCID: PMC5110867 DOI: 10.1155/2016/5175709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/21/2016] [Indexed: 11/18/2022] Open
Abstract
Peroxisomal disorders are a group of genetically heterogeneous metabolic diseases related to dysfunction of peroxisomes. Dysmorphic features, neurological abnormalities, and hepatic dysfunction can be presenting signs of peroxisomal disorders. Here we presented dysmorphic facial features and other clinical characteristics in two patients with PEX1 gene mutation. Follow-up periods were 3.5 years and 1 year in the patients. Case I was one-year-old girl that presented with neurodevelopmental delay, hepatomegaly, bilateral hearing loss, and visual problems. Ophthalmologic examination suggested septooptic dysplasia. Cranial magnetic resonance imaging (MRI) showed nonspecific gliosis at subcortical and periventricular deep white matter. Case II was 2.5-year-old girl referred for investigation of global developmental delay and elevated liver enzymes. Ophthalmologic examination findings were consistent with bilateral nystagmus and retinitis pigmentosa. Cranial MRI was normal. Dysmorphic facial features including broad nasal root, low set ears, downward slanting eyes, downward slanting eyebrows, and epichantal folds were common findings in two patients. Molecular genetic analysis indicated homozygous novel IVS1-2A>G mutation in Case I and homozygous p.G843D (c.2528G>A) mutation in Case II in the PEX1 gene. Clinical findings and developmental prognosis vary in PEX1 gene mutation. Kabuki-like phenotype associated with liver pathology may indicate Zellweger spectrum disorders (ZSD).
Collapse
Affiliation(s)
- Mehmet Gunduz
- Division of Metabolism and Nutrition, Ankara Children's Hematology-Oncology Research and Training Hospital, Ankara, Turkey
| | - Ozlem Unal
- Division of Metabolism and Nutrition, Ankara Children's Hematology-Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
174
|
Kao YT, Fleming WA, Ventura MJ, Bartel B. Genetic Interactions between PEROXIN12 and Other Peroxisome-Associated Ubiquitination Components. PLANT PHYSIOLOGY 2016; 172:1643-1656. [PMID: 27650450 PMCID: PMC5100787 DOI: 10.1104/pp.16.01211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 05/28/2023]
Abstract
Most eukaryotic cells require peroxisomes, organelles housing fatty acid β-oxidation and other critical metabolic reactions. Peroxisomal matrix proteins carry peroxisome-targeting signals that are recognized by one of two receptors, PEX5 or PEX7, in the cytosol. After delivering the matrix proteins to the organelle, these receptors are removed from the peroxisomal membrane or matrix. Receptor retrotranslocation not only facilitates further rounds of matrix protein import but also prevents deleterious PEX5 retention in the membrane. Three peroxisome-associated ubiquitin-protein ligases in the Really Interesting New Gene (RING) family, PEX2, PEX10, and PEX12, facilitate PEX5 retrotranslocation. However, the detailed mechanism of receptor retrotranslocation remains unclear in plants. We identified an Arabidopsis (Arabidopsis thaliana) pex12 Glu-to-Lys missense allele that conferred severe peroxisomal defects, including impaired β-oxidation, inefficient matrix protein import, and decreased growth. We compared this pex12-1 mutant to other peroxisome-associated ubiquitination-related mutants and found that RING peroxin mutants displayed elevated PEX5 and PEX7 levels, supporting the involvement of RING peroxins in receptor ubiquitination in Arabidopsis. Also, we observed that disruption of any Arabidopsis RING peroxin led to decreased PEX10 levels, as seen in yeast and mammals. Peroxisomal defects were exacerbated in RING peroxin double mutants, suggesting distinct roles of individual RING peroxins. Finally, reducing function of the peroxisome-associated ubiquitin-conjugating enzyme PEX4 restored PEX10 levels and partially ameliorated the other molecular and physiological defects of the pex12-1 mutant. Future biochemical analyses will be needed to determine whether destabilization of the RING peroxin complex observed in pex12-1 stems from PEX4-dependent ubiquitination on the pex12-1 ectopic Lys residue.
Collapse
Affiliation(s)
- Yun-Ting Kao
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Wendell A Fleming
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Meredith J Ventura
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| | - Bonnie Bartel
- Biochemistry and Cell Biology Program, Department of BioSciences, Rice University, Houston, Texas 77005 (Y.-T.K., W.A.F., M.J.V., B.B.)
| |
Collapse
|
175
|
Depreux FF, Wang L, Jiang H, Jodelka FM, Rosencrans RF, Rigo F, Lentz JJ, Brigande JV, Hastings ML. Antisense oligonucleotides delivered to the amniotic cavity in utero modulate gene expression in the postnatal mouse. Nucleic Acids Res 2016; 44:9519-9529. [PMID: 27683224 PMCID: PMC5175366 DOI: 10.1093/nar/gkw867] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Congenital diseases account for a large portion of pediatric illness. Prenatal screening and diagnosis permit early detection of many genetic diseases. Fetal therapeutic strategies to manage disease processes in utero represent a powerful new approach for clinical care. A safe and effective fetal pharmacotherapy designed to modulate gene expression ideally would avoid direct mechanical engagement of the fetus and present an external reservoir of drug. The amniotic cavity surrounding the fetus could serve as an ideal drug reservoir. Antisense oligonucleotides (ASOs) are an established tool for the therapeutic modulation of gene expression. We hypothesize that ASOs administered to the amniotic cavity will gain entry to the fetus and modulate gene expression. Here, we show that an ASO targeting MALAT1 RNA, delivered by transuterine microinjection into the mouse amniotic cavity at embryonic day 13-13.5, reduces target RNA expression for up to 4 weeks after birth. A similarly delivered ASO targeting a causal splice site mutation for Usher syndrome corrects gene expression in the inner ear, a therapeutically relevant target tissue. We conclude that intra-amniotic delivery of ASOs is well tolerated and produces a sustained effect on postnatal gene expression. Transuterine delivery of ASOs is an innovative platform for developing fetal therapeutics to efficaciously treat congenital disease.
Collapse
Affiliation(s)
- Frederic F Depreux
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Lingyan Wang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Han Jiang
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Francine M Jodelka
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Robert F Rosencrans
- Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA.,Department of Otorhinolaryngology, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - John V Brigande
- Department of Otolaryngology, Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|