151
|
Affiliation(s)
- M H Saier
- Department of Biology, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
152
|
Tsivkovskii R, Eisses JF, Kaplan JH, Lutsenko S. Functional properties of the copper-transporting ATPase ATP7B (the Wilson's disease protein) expressed in insect cells. J Biol Chem 2002; 277:976-83. [PMID: 11677246 DOI: 10.1074/jbc.m109368200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.
Collapse
Affiliation(s)
- Ruslan Tsivkovskii
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | | | | | |
Collapse
|
153
|
Hebert H, Purhonen P, Vorum H, Thomsen K, Maunsbach AB. Three-dimensional structure of renal Na,K-ATPase from cryo-electron microscopy of two-dimensional crystals. J Mol Biol 2001; 314:479-94. [PMID: 11846561 DOI: 10.1006/jmbi.2001.5137] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of Na, K-ATPase was determined by electron crystallography at 9.5 A from multiple small 2-D crystals induced in purified membranes isolated from the outer medulla of pig kidney. The density map shows a protomer stabilized in the E(2) conformation which extends approximately 65 A x 75 A x 150 A in the asymmetric unit of the P2 type unit cell. The alpha, beta, and gamma subunits were demonstrated in the membrane crystals with Western blotting and related to distinct domains in the density map. The alpha subunit corresponds to most of the density in the transmembrane region as well as the large hydrophilic headpiece on the cytoplasmic side of the membrane. The headpiece is divided into three separated domains, which are similar in overall shape to the domains of the calcium pump of the sarcoplasmic reticulum. One of these domains gives rise to a characteristic elongated projection onto the membrane plane while the putative nucleotide binding and phosphorylation domains form comparatively compact densities in the rest of the cytoplasmic part of the structure. Density on the extracellular face corresponds to the protein part of the beta subunit and is located as an extension of the transmembrane region perpendicular to the membrane plane. The structure of the lipid bilayer spanning part suggests the positions for the transmembrane helix from the beta subunit as well as the small gamma subunit present in this Na,K-ATPase. Two groups of ten helices from the catalytic alpha subunit corresponds to the remaining density in the transmembrane region. The present results demonstrate distinct similarities between the structure of the alpha subunit of Na,K-ATPase as determined here by cryo-electron microscopy and the reported X-ray structure of Ca-ATPase. However, conformational changes between the E(1) and E(2) forms are suggested by different relative positions of cytoplasmatic domains.
Collapse
Affiliation(s)
- H Hebert
- Karolinska Institutet Department of Biosciences, Center for Structural Biochemistry, Novum, Huddinge, S-141 57, Sweden.
| | | | | | | | | |
Collapse
|
154
|
Wallstedt A, Sommarin M, Nilsson MC, Munson AD, Margolis HA. The inhibition of ammonium uptake in excised birch (Betula pendula) roots by batatasin-III. PHYSIOLOGIA PLANTARUM 2001; 113:368-376. [PMID: 12060282 DOI: 10.1034/j.1399-3054.2001.1130310.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In northern Sweden, plants growing in association with the clonal dwarf shrub Empetrum hermaphroditum usually exhibit limited growth and are N-depleted. Previous studies suggest that this negative effect by E. hermaphroditum may be explained, at least in part, by the release of phenolic compounds, particularly the dihydrostilbene, batatasin-III from foliage to soil. In the present work, we investigated whether batatasin-III has the potential to interfere with NH4+ uptake in birch (Betula pendula) roots. Excised birch roots were exposed to batatasin-III during brief periods in 15NH4+ solutions, and then analyzed for labeled N. Batatasin-III inhibited N-NH4+ uptake by 28, 89 and 95% compared with the control, when roots were treated with 0.1, 1.0 and 2.8 mM of batatasin-III, respectively. The effect of 1.0-mM batatasin-III was greater at pH 4.2 than at pH 6.8. In addition, the inhibition of N-NH4+ uptake by batatasin-III was not reversed after rinsing the roots in water and transferring them to a batatasin-III free solution. Furthermore, birch seedlings immersed in a 1.0-mM batatasin-III solution for 2 h, and then replanted in pots with soil, had decreased growth, such that 10 weeks after treatment, the dry mass of both shoots and roots was reduced by 74 and 73%, respectively, compared with control seedlings. This suggests that a brief exposure to batatasin-III may have a long-term inhibitory effect on whole plant growth. Using plasma membrane vesicles isolated from easily extractable spinach (Spinacia oleracea) leaves, it was found that batatasin-III strongly inhibited proton pumping in isolated plasma membrane vesicles, while it only slightly inhibited ATP hydrolytic activity. The uncoupling of proton pumping from ATP hydrolytic activity suggests that batatasin-III disturbs membrane integrity. This hypothesis was further supported by a greater efflux of ions from birch roots immersed in a batatasin-III solution than from roots in a control solution.
Collapse
Affiliation(s)
- Anna Wallstedt
- Department of Ecology, Lund University, Lund, SE-223 62 Lund, Sweden Département des sciences du bois et de la forêt, Université Laval, Québec, G1K 7P4, Canada Department of Plant Biochemistry, Lund University, SE-221 00 Lund, Sweden Department of Forest Vegetation Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | | | | | | | | |
Collapse
|
155
|
Sweadner KJ, Donnet C. Structural similarities of Na,K-ATPase and SERCA, the Ca(2+)-ATPase of the sarcoplasmic reticulum. Biochem J 2001; 356:685-704. [PMID: 11389677 PMCID: PMC1221896 DOI: 10.1042/0264-6021:3560685] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The crystal structure of SERCA1a (skeletal-muscle sarcoplasmic-reticulum/endoplasmic-reticulum Ca(2+)-ATPase) has recently been determined at 2.6 A (note 1 A = 0.1 nm) resolution [Toyoshima, Nakasako, Nomura and Ogawa (2000) Nature (London) 405, 647-655]. Other P-type ATPases are thought to share key features of the ATP hydrolysis site and a central core of transmembrane helices. Outside of these most-conserved segments, structural similarities are less certain, and predicted transmembrane topology differs between subclasses. In the present review the homologous regions of several representative P-type ATPases are aligned with the SERCA sequence and mapped on to the SERCA structure for comparison. Homology between SERCA and the Na,K-ATPase is more extensive than with any other ATPase, even PMCA, the Ca(2+)-ATPase of plasma membrane. Structural features of the Na,K-ATPase are projected on to the Ca(2+)-ATPase crystal structure to assess the likelihood that they share the same fold. Homology extends through all ten transmembrane spans, and most insertions and deletions are predicted to be at the surface. The locations of specific residues are examined, such as proteolytic cleavage sites, intramolecular cross-linking sites, and the binding sites of certain other proteins. On the whole, the similarity supports a shared fold, with some particular exceptions.
Collapse
Affiliation(s)
- K J Sweadner
- Neuroscience Center, Massachusetts General Hospital, 149-6118, 149 13th Street, Charlestown, MA 02129, USA.
| | | |
Collapse
|
156
|
Sweadner KJ, Feschenko MS. Predicted location and limited accessibility of protein kinase A phosphorylation site on Na-K-ATPase. Am J Physiol Cell Physiol 2001; 280:C1017-26. [PMID: 11245618 DOI: 10.1152/ajpcell.2001.280.4.c1017] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of Na-K-ATPase by cAMP-dependent protein kinase occurs in a variety of tissues. Phosphorylation of the enzyme's catalytic subunit at a classical phosphorylation consensus motif has been observed with purified enzyme. Demonstration of phosphorylation at the same site in normal living cells or tissues has been more difficult, however, making it uncertain that the Na-K-ATPase is a direct physiological substrate of the kinase. Recently, the structure of the homologous sarco(endo)plasmic reticulum Ca-ATPase (SERCA1a) has been determined at 2.6 A resolution (Toyoshima C, Nakasako M, Nomura H, and Ogawa H. Nature 405: 647-655, 2000.), and the Na-K- ATPase should have the same fold. Here, the Na-K-ATPase sequence has been aligned with the Ca-ATPase structure to examine the predicted disposition of the phosphorylation site. The location is close to the membrane and partially buried by adjacent loops, and the site is unlikely to be accessible to the kinase in this conformation. Conditions that may expose the site or further bury it are discussed to highlight the issues facing future research on regulation of Na-K-ATPase by cAMP-dependent pathways.
Collapse
Affiliation(s)
- K J Sweadner
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | | |
Collapse
|
157
|
Guennoun S, Horisberger JD. Structure of the 5th transmembrane segment of the Na,K-ATPase alpha subunit: a cysteine-scanning mutagenesis study. FEBS Lett 2000; 482:144-8. [PMID: 11018538 DOI: 10.1016/s0014-5793(00)02050-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the structure of the pathway of cations across the Na, K-ATPase, we applied the substituted cysteine accessibility method to the putative 5th transmembrane segment of the alpha subunit of the Na,K-ATPase of the toad Bufo marinus. Only the most extracellular amino acid position (A(796)) was accessible from the extracellular side in the native Na,K-pump. After treatment with palytoxin, six other positions (Y(778), L(780), S(782), P(785), E(786) and L(791)), distributed along the whole length of the segment, became readily accessible to a small-size methanethiosulfonate compound (2-aminoethyl methanethiosulfonate). The accessible residues are not located on the same side of an alpha-helical model but the pattern of reactivity would rather suggest a beta-sheet structure for the inner half of the putative transmembrane segment. These results demonstrate the contribution of the 5th transmembrane segment to the palytoxin-induced channel and indicate which amino acid positions are exposed to the pore of this channel.
Collapse
Affiliation(s)
- S Guennoun
- Institute of Pharmacology and Toxicology, Bugnon 27, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
158
|
Petrov VV, Padmanabha KP, Nakamoto RK, Allen KE, Slayman CW. Functional role of charged residues in the transmembrane segments of the yeast plasma membrane H+-ATPase. J Biol Chem 2000; 275:15709-16. [PMID: 10747929 DOI: 10.1074/jbc.m000546200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As defined by hydropathy analysis, the membrane-spanning segments of the yeast plasma membrane H(+)-ATPase contain seven negatively charged amino acids (Asp and Glu) and four positively charged amino acids (Arg and His). To explore the functional role of these residues, site-directed mutants at all 11 positions and at Glu-288, located near the cytoplasmic end of M3, have been constructed and expressed in yeast secretory vesicles. Substitutions at four of the positions (Glu-129, Glu-288, Asp-833, and Arg-857) had no significant effect on ATP hydrolysis or ATP-dependent proton pumping, substitutions at five additional positions (Arg-695, His-701, Asp-730, Asp-739, and Arg-811) led to misfolding of the ATPase and blockage at an early stage of biogenesis, and substitutions of Asp-143 allowed measurable biogenesis but nearly abolished ATP hydrolysis and proton transport. Of greatest interest were mutations of Glu-703 in M5 and Glu-803 in M8, which altered the apparent coupling between hydrolysis and transport. Three Glu-703 mutants (E703Q, E703L, E703D) showed significantly reduced pumping over a wide range of hydrolysis values and thus appeared to be partially uncoupled. At Glu-803, by contrast, one mutant (E803N) was almost completely uncoupled, while another (E803Q) pumped protons at an enhanced rate relative to the rate of ATP hydrolysis. Both Glu-703 and Glu-803 occupy positions at which amino acid substitutions have been shown to affect transport by mammalian P-ATPases. Taken together, the results provide growing evidence that residues in membrane segments 5 and 8 of the P-ATPases contribute to the cation transport pathway and that the fundamental mechanism of transport has been conserved throughout the group.
Collapse
Affiliation(s)
- V V Petrov
- Departments of Genetics and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 05610, USA
| | | | | | | | | |
Collapse
|
159
|
Hwang I, Sze H, Harper JF. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci U S A 2000; 97:6224-9. [PMID: 10823962 PMCID: PMC18586 DOI: 10.1073/pnas.97.11.6224] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/1999] [Indexed: 11/18/2022] Open
Abstract
The magnitude and duration of a cytosolic Ca(2+) release can potentially be altered by changing the rate of Ca(2+) efflux. In plant cells, Ca(2+) efflux from the cytoplasm is mediated by H(+)/Ca(2+)-antiporters and two types of Ca(2+)-ATPases. ACA2 was recently identified as a calmodulin-regulated Ca(2+)-pump located in the endoplasmic reticulum. Here, we show that phosphorylation of its N-terminal regulatory domain by a Ca(2+)-dependent protein kinase (CDPK isoform CPK1), inhibits both basal activity ( approximately 10%) and calmodulin stimulation ( approximately 75%), as shown by Ca(2+)-transport assays with recombinant enzyme expressed in yeast. A CDPK phosphorylation site was mapped to Ser(45) near a calmodulin binding site, using a fusion protein containing the N-terminal domain as an in vitro substrate for a recombinant CPK1. In a full-length enzyme, an Ala substitution for Ser(45) (S45/A) completely blocked the observed CDPK inhibition of both basal and calmodulin-stimulated activities. An Asp substitution (S45/D) mimicked phosphoinhibition, indicating that a negative charge at this position is sufficient to account for phosphoinhibition. Interestingly, prior binding of calmodulin blocked phosphorylation. This suggests that, once ACA2 binds calmodulin, its activation state becomes resistant to phosphoinhibition. These results support the hypothesis that ACA2 activity is regulated as the balance between the initial kinetics of calmodulin stimulation and CDPK inhibition, providing an example in plants for a potential point of crosstalk between two different Ca(2+)-signaling pathways.
Collapse
Affiliation(s)
- I Hwang
- Department of Cell Biology and Molecular Genetics, and Maryland Agricultural Experiment Station, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
160
|
Williams LE, Pittman JK, Hall JL. Emerging mechanisms for heavy metal transport in plants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:104-26. [PMID: 10748249 DOI: 10.1016/s0005-2736(00)00133-4] [Citation(s) in RCA: 275] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Heavy metal ions such as Cu(2+), Zn(2+), Mn(2+), Fe(2+), Ni(2+) and Co(2+) are essential micronutrients for plant metabolism but when present in excess, these, and non-essential metals such as Cd(2+), Hg(2+) and Pb(2+), can become extremely toxic. Thus mechanisms must exist to satisfy the requirements of cellular metabolism but also to protect cells from toxic effects. The mechanisms deployed in the acquisition of essential heavy metal micronutrients have not been clearly defined although a number of genes have now been identified which encode potential transporters. This review concentrates on three classes of membrane transporters that have been implicated in the transport of heavy metals in a variety of organisms and could serve such a role in plants: the heavy metal (CPx-type) ATPases, the natural resistance-associated macrophage protein (Nramp) family and members of the cation diffusion facilitator (CDF) family. We aim to give an overview of the main features of these transporters in plants in terms of structure, function and regulation drawing on information from studies in a wide variety of organisms.
Collapse
Affiliation(s)
- L E Williams
- University of Southampton, School of Biological Sciences, Bassett Crescent East, Southampton, UK.
| | | | | |
Collapse
|
161
|
Geisler M, Axelsen KB, Harper JF, Palmgren MG. Molecular aspects of higher plant P-type Ca(2+)-ATPases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:52-78. [PMID: 10748247 DOI: 10.1016/s0005-2736(00)00131-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent genomic data in the model plant Arabidopsis thaliana reveal the existence of at least 11 Ca(2+)-ATPase genes, and an analysis of expressed sequence tags suggests that the number of calcium pumps in this organism might be even higher. A phylogenetic analysis shows that 11 Ca(2+)-ATPases clearly form distinct groups, type IIA (or ECA for ER-type Ca(2+)-ATPase) and type IIB (ACA for autoinhibited Ca(2+)-ATPase). While plant IIB calcium pumps characterized so far are localized to internal membranes, their animal homologues are exclusively found in the plasma membrane. However, Arabidopsis type IIB calcium pump isoforms ACA8, ACA9 and ACA10 form a separate outgroup and, based on the high molecular masses of the encoded proteins, are good candidates for plasma membrane bound Ca(2+)-ATPases. All known plant type IIB calcium ATPases seem to employ an N-terminal calmodulin-binding autoinhibitor. Therefore it appears that the activity of type IIB Ca(2+)-ATPases in plants and animals is controlled by N-terminal and C-terminal autoinhibitory domains, respectively. Possible functions of plant calcium pumps are described and - beside second messenger functions directly linked to calcium homeostasis - new data on a putative involvement in secretory and salt stress functions are discussed.
Collapse
Affiliation(s)
- M Geisler
- Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | | | | | | |
Collapse
|
162
|
Portillo F. Regulation of plasma membrane H(+)-ATPase in fungi and plants. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1469:31-42. [PMID: 10692636 DOI: 10.1016/s0304-4157(99)00011-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The plasma membrane H+-ATPase from fungi and plants is a proton pump which plays a key role in the physiology of these organisms controlling essential functions such as nutrient uptake and intracellular pH regulation. In fungal and plant cells the activity of the proton pump is regulated by a large number of environmental factors at both transcriptional and post-translational levels. During the last years the powerful tools of molecular biology have been successfully used in fungi and plants allowing the cloning of a wide diversity of H+-ATPase genes and rapid progress on the molecular basis of reaction mechanism and regulation of the proton pump. This review focuses on recent results on regulation of plasma membrane H+-ATPase obtained by molecular approaches.
Collapse
Affiliation(s)
- F Portillo
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, E-28029, Madrid, Spain.
| |
Collapse
|
163
|
Pardo JP, Martínez F, Guerra G, Velázquez I, Rendón JL, Mendoza G. An alternative model for the transmembrane segments of the yeast H+-ATPase. Yeast 1999; 15:1585-93. [PMID: 10572256 DOI: 10.1002/(sici)1097-0061(199911)15:15<1585::aid-yea483>3.0.co;2-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
An alternative topological model for the yeast plasma membrane H(+)-ATPase from K. lactis was deduced by joint prediction, using 11 algorithms for the prediction of transmembrane segments complemented with hydrophobic moment analysis. Similarly to the model currently used in the literature, this alternative model contains 10 transmembrane segments, four in the N-half and six in the C-half of the protein. However, the distribution of the membrane-associated segments on the C-half of the enzyme differs in both models. Nine of the 10 transmembrane segments are highly hydrophobic with low hydrophobic moments, and are probably involved in structural roles. The fifth transmembrane segment is, on the other hand, less hydrophobic, with the highest hydrophobic moment, suggesting that this segment might have a dynamic role in the coupling of the hydrolysis of ATP with the translocation of protons across the membrane. The alignment of the Ca(2+)-ATPase, the Na(+)/K(+)-ATPase and the H(+)-ATPase sequences showed that these proteins have the same topology in the N-half, but important differences were found at the C-half of the enzymes. In contrast with the mammalian ATPases, the fifth transmembrane segment in the H(+)-ATPase appears early in the sequence, giving rise to a shorter cytoplasmic central loop. This alternative model will be useful in the designing of site-directed mutagenesis experiments and contains information for the fitting of the amino acid sequence into the transmembrane region of the three-dimensional model of the ATPase.
Collapse
Affiliation(s)
- J P Pardo
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Apartado Postal 70-159, 04510 México D.F., México.
| | | | | | | | | | | |
Collapse
|
164
|
Pittman JK, Mills RF, O'Connor CD, Williams LE. Two additional type IIA Ca(2+)-ATPases are expressed in Arabidopsis thaliana: evidence that type IIA sub-groups exist. Gene 1999; 236:137-47. [PMID: 10433975 DOI: 10.1016/s0378-1119(99)00242-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High affinity Ca(2+)-ATPases play a central role in calcium homeostasis by catalysing the active efflux of calcium from the cytoplasm. This study reports the identification of two additional type IIA (SERCA-type) Ca(2+)-ATPases from Arabidopsis (AtECA2 and AtECA3), and describes the detailed sequence analysis of these genes in comparison with AtECA1 and other plant and animal Ca(2+)-ATPases. Southern analysis suggests that each of these genes is present as a single copy and also that there may be a small family of moderately related genes that encode type IIA Ca(2+)-ATPases in Arabidopsis. Evidence is also provided from RT-PCR that these genes are expressed in Arabidopsis. Hydropathy analysis predicts that the topology of the Arabidopsis type IIA proteins is similar to the animal SERCA proteins. Sequence and phylogenetic analyses suggest that the type IIA Ca(2+)-ATPases can be further divided into sub-groups.
Collapse
Affiliation(s)
- J K Pittman
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|