151
|
Burch AD, Fane BA. Genetic analyses of putative conformation switching and cross-species inhibitory domains in Microviridae external scaffolding proteins. Virology 2003; 310:64-71. [PMID: 12788631 DOI: 10.1016/s0042-6822(03)00076-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Putative conformational switching and inhibitory regions in the Microviridae external scaffolding protein were investigated. Substitutions for glycine 61, hypothesized to promote a postdimerization conformational switch, have dominant lethal phenotypes. In previous studies, chimeric alpha3/phiX174 proteins for structures alpha-helix 1 and loop 6/alpha-helix 7 inhibited phiX174 morphogenesis when expressed from high copy number plasmids. To determine if inhibition was due to overexpression, chimeric genes were constructed into the phiX174 genome. In coinfections with wild-type, protein ratios would be 1:1. The helix 1 chimera has a recessive lethal phenotype; thus, overexpression confers inhibition. In single infections, the mutant cannot form procapsids, suggesting that helix 1 mediates the initial recognition of structural proteins. The lethal chimeric helix 7 protein has a dominant phenotype. Alone, the mutant forms defective procapsids, suggesting a later morphogenetic defect. The results of second-site genetic analyses indicate that the capsid-external scaffolding protein interface is larger than revealed in the crystal structure.
Collapse
Affiliation(s)
- April D Burch
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
152
|
Kainov DE, Butcher SJ, Bamford DH, Tuma R. Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages. J Mol Biol 2003; 328:791-804. [PMID: 12729755 DOI: 10.1016/s0022-2836(03)00322-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Double-stranded RNA (dsRNA) viruses are complex RNA processing machines that sequentially perform packaging, replication and transcription of their genomes. In order to characterize the assembly intermediates of such a machine we have developed an efficient in vitro assembly system for the procapsid of bacteriophage phi8. The major structural protein P1 is a stable and soluble tetramer. Three tetramers associate with a P2 monomer (RNA-dependent RNA polymerase) to form the nucleation complex. This complex is further stabilized by a P4 hexamer (packaging motor). Further assembly proceeds via rapid addition of individual building blocks. The incorporation of the packaging and replication machinery is under kinetic control. The in vitro assembled procapsids perform packaging, replication and transcription of viral RNA. Comparison with another dsRNA phage, phi6, indicates conservation of key assembly intermediates in the absence of sequence homology and suggests that a general assembly mechanism for the dsRNA virus lineage may exist.
Collapse
Affiliation(s)
- Denis E Kainov
- Department of Biosciences, Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
153
|
Endres D, Zlotnick A. Model-based analysis of assembly kinetics for virus capsids or other spherical polymers. Biophys J 2002; 83:1217-30. [PMID: 12124301 PMCID: PMC1302223 DOI: 10.1016/s0006-3495(02)75245-4] [Citation(s) in RCA: 188] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The assembly of virus capsids or other spherical polymers--empty, closed structures composed of hundreds of protein subunits--is poorly understood. Assembly of a closed spherical polymer is unlike polymerization of a filament or crystal, examples of open-ended polymers. This must be considered to develop physically meaningful analyses. We have developed a model of capsid assembly, based on a cascade of low-order reactions, that allows us to calculate kinetic simulations. The behavior of this model resembles assembly kinetics observed in solution (Zlotnick, A., J. M. Johnson, P. W. Wingfield, S. J. Stahl, and D. Endres. 1999. Biochemistry. 38:14644-14652). We exhibit two examples of this general model describing assembly of dodecahedral and icosahedral capsids. Using simulations based on these examples, we demonstrate how to extract robust estimates of assembly parameters from accessible experimental data. These parameters, nucleus size, average nucleation rate, and average free energy of association can be determined from measurement of subunit and capsid as time and concentration vary. Mathematical derivations of the analyses, carried out for a general model, are provided in an Appendix. The understanding of capsid assembly developed in this paper is general; the examples provided can be readily modified to reflect different biological systems. This enhanced understanding of virus assembly will allow a more quantitative analysis of virus stability and biological or antiviral factors that affect assembly.
Collapse
Affiliation(s)
- Dan Endres
- Department of Mathematics and Statistics, University of Central Oklahoma, Edmond, Oklahoma 73034, USA
| | | |
Collapse
|
154
|
Lanman J, Sexton J, Sakalian M, Prevelige PE. Kinetic analysis of the role of intersubunit interactions in human immunodeficiency virus type 1 capsid protein assembly in vitro. J Virol 2002; 76:6900-8. [PMID: 12072491 PMCID: PMC136311 DOI: 10.1128/jvi.76.14.6900-6908.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a crucial role in both assembly and maturation of the virion. Numerous recent studies have focused on either the soluble form of CA or the polymer end product of in vitro CA assembly. The CA polymer, in particular, has been used to study CA-CA interactions because it is a good model for the CA interactions within the virion core. However, analysis of the process of in vitro CA assembly can yield valuable insights into CA-CA interactions and the mechanism of core assembly. We describe here a method for the analysis of CA assembly kinetics wherein the progress of assembly is monitored by using turbidity. At pH 7.0 the addition of either of the isolated CA domains (i.e., the N or the C domain) to an assembly reaction caused a decrease in the assembly rate by competing for binding to the full-length CA protein. At pH 8.0 the addition of the isolated C domain had a similar inhibitory affect on CA assembly. However, at pH 8.0 the isolated N domain had no affect on the rate of CA assembly but, when mixed with the C domain, it alleviated the C-domain inhibition. These data provide biochemical evidence for a pH-sensitive homotypic N-domain interaction, as well as for an N- and C-domain interaction.
Collapse
Affiliation(s)
- Jason Lanman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA
| | | | | | | |
Collapse
|
155
|
Zlotnick A, Ceres P, Singh S, Johnson JM. A small molecule inhibits and misdirects assembly of hepatitis B virus capsids. J Virol 2002; 76:4848-54. [PMID: 11967301 PMCID: PMC136179 DOI: 10.1128/jvi.76.10.4848-4854.2002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Hepatitis B virus (HBV) capsids play an important role in viral nucleic acid metabolism and other elements of the virus life cycle. Misdirection of capsid assembly (leading to formation of aberrant particles) may be a powerful approach to interfere with virus production. HBV capsids can be assembled in vitro from the dimeric capsid protein. We show that a small molecule, bis-ANS, binds to capsid protein, inhibiting assembly of normal capsids and promoting assembly of noncapsid polymers. Using equilibrium dialysis to investigate binding of bis-ANS to free capsid protein, we found that only one bis-ANS molecule binds per capsid protein dimer, with an association energy of -28.0 +/- 2.0 kJ/mol (-6.7 +/- 0.5 kcal/mol). Bis-ANS inhibited in vitro capsid assembly induced by ionic strength as observed by light scattering and size exclusion chromatography. The binding energy of bis-ANS for capsid protein calculated from assembly inhibition data was -24.5 +/- 0.9 kJ/mol (-5.9 +/- 0.2 kcal/mol), essentially the same binding energy observed in studies of unassembled protein. These data indicate that capsid protein bound to bis-ANS did not participate in assembly; this mechanism of assembly inhibition is analogous to competitive or noncompetitive inhibition of enzymes. While assembly of normal capsids is inhibited, our data suggest that bis-ANS leads to formation of noncapsid polymers. Evidence of aberrant polymers was identified by light scattering and electron microscopy. We propose that bis-ANS acts as a molecular "wedge" that interferes with normal capsid protein geometry and capsid formation; such wedges may represent a new class of antiviral agent.
Collapse
Affiliation(s)
- Adam Zlotnick
- Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA.
| | | | | | | |
Collapse
|
156
|
Aramli LA, Teschke CM. Alleviation of a defect in protein folding by increasing the rate of subunit assembly. J Biol Chem 2001; 276:25372-7. [PMID: 11304542 DOI: 10.1074/jbc.m101759200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding the nature of protein grammar is critical because amino acid substitutions in some proteins cause misfolding and aggregation of the mutant protein resulting in a disease state. Amino acid substitutions in phage P22 coat protein, known as tsf (temperature-sensitive folding) mutations, cause folding defects that result in aggregation at high temperatures. We have isolated global su (suppressor) amino acid substitutions that alleviate the tsf phenotype in coat protein (Aramli, L. A., and Teschke, C. M. (1999) J. Biol. Chem. 274, 22217-22224). Unexpectedly, we found that a global su amino acid substitution in tsf coat proteins made aggregation worse and that the tsf phenotype was suppressed by increasing the rate of subunit assembly, thereby decreasing the concentration of aggregation-prone folding intermediates.
Collapse
Affiliation(s)
- L A Aramli
- University of Connecticut, Department of Molecular and Cell Biology, 75 N. Eagleville Road, Storrs, CT 06269-3125, USA
| | | |
Collapse
|
157
|
Poranen MM, Paatero AO, Tuma R, Bamford DH. Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 2001; 7:845-54. [PMID: 11336707 DOI: 10.1016/s1097-2765(01)00228-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the assembly of the polymerase complex (procapsid) of a dsRNA virus from purified recombinant proteins. This molecular machine packages and replicates viral ssRNA genomic precursors in vitro. After addition of an external protein shell, these in vitro self-assembled viral core particles can penetrate the host plasma membrane and initiate a productive infection. Thus, a viral procapsid has been assembled and rendered infectious using purified components. Using this system, we have studied the mechanism of assembly of the common dsRNA virus shell and the incorporation of a symmetry mismatch within an icosahedral capsid. Our work demonstrates that this molecular machine, self-assembled under defined conditions in vitro, can function in its natural environment, the cell cytoplasm.
Collapse
Affiliation(s)
- M M Poranen
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | |
Collapse
|
158
|
Harper JD, Lansbury PT. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 2001; 66:385-407. [PMID: 9242912 DOI: 10.1146/annurev.biochem.66.1.385] [Citation(s) in RCA: 1284] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ordered protein aggregation in the brain is a hallmark of Alzheimer's disease and scrapie. The disease-specific amyloid fibrils comprise primarily a single protein, amyloid beta, in Alzheimer's disease, and the prion protein in scrapie. These proteins can be induced to form aggregates in vitro that are indistinguishable from brain-derived fibrils. Consequently, much effort has been invested in the development of in vitro model systems to study the details of the aggregation processes and the effects of endogenous molecules that have been implicated in disease. Selected studies of this type are reviewed herein. A simple mechanistic model has emerged for both processes that involves a nucleation-dependent polymerization. This mechanism dictates that aggregation is dependent on protein concentration and time. Furthermore, amyloid formation can be seeded by a preformed fibril. The physiological consequences of this mechanism are discussed.
Collapse
Affiliation(s)
- J D Harper
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
159
|
A kinetic and statistical-thermodynamic model for baculovirus infection and virus-like particle assembly in suspended insect cells. Chem Eng Sci 2000. [DOI: 10.1016/s0009-2509(99)00579-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Burch AD, Fane BA. Foreign and chimeric external scaffolding proteins as inhibitors of Microviridae morphogenesis. J Virol 2000; 74:9347-52. [PMID: 11000202 PMCID: PMC112362 DOI: 10.1128/jvi.74.20.9347-9352.2000] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral assembly is an ideal system in which to investigate the transient recognition and interplay between proteins. During morphogenesis, scaffolding proteins temporarily associate with structural proteins, stimulating conformational changes that promote assembly and inhibit off-pathway reactions. Microviridae morphogenesis is dependent on two scaffolding proteins, an internal and an external species. The external scaffolding protein is the most conserved protein within the Microviridae, whose canonical members are phiX174, G4, and alpha3. However, despite 70% homology on the amino acid level, overexpression of a foreign Microviridae external scaffolding protein is a potent cross-species inhibitor of morphogenesis. Mutants that are resistant to the expression of a foreign scaffolding protein cannot be obtained via one mutational step. To define the requirements for and constraints on scaffolding protein interactions, chimeric external scaffolding proteins have been constructed and analyzed for effects on in vivo assembly. The results of these experiments suggest that at least two cross-species inhibitory domains exist within these proteins; one domain most likely blocks procapsid formation, and the other allows procapsid assembly but blocks DNA packaging. A mutation conferring resistance to the expression of a chimeric protein (chiD(r)) that inhibits DNA packaging was isolated. The mutation maps to gene A, which encodes a protein essential for packaging. The chiD(r) mutation confers resistance only to a chimeric D protein; the mutant is still inhibited by the expression of foreign D proteins. The results presented here demonstrate how closely related proteins could be developed into antiviral agents that specifically target virion morphogenesis.
Collapse
Affiliation(s)
- A D Burch
- Department of Veterinary Sciences and Microbiology, University of Arizona, Tucson, Arizona 85721, USA
| | | |
Collapse
|
161
|
Abstract
Viruses assemble protective capsids from several copies of one or a few structural proteins. This is accomplished through a combination of conformational flexibility and control mechanisms that restrict this flexibility. This review will discuss some of these mechanisms in light of the many recent results in this area.
Collapse
Affiliation(s)
- T Dokland
- Institute of Molecular Agrobiology, The National University of Singapore.
| |
Collapse
|
162
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
163
|
Sun Y, Parker MH, Weigele P, Casjens S, Prevelige PE, Krishna NR. Structure of the coat protein-binding domain of the scaffolding protein from a double-stranded DNA virus. J Mol Biol 2000; 297:1195-202. [PMID: 10764583 DOI: 10.1006/jmbi.2000.3620] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.
Collapse
Affiliation(s)
- Y Sun
- Comprehensive Cancer Center, Birmingham, AL, 35294, USA
| | | | | | | | | | | |
Collapse
|
164
|
Dröge A, Santos MA, Stiege AC, Alonso JC, Lurz R, Trautner TA, Tavares P. Shape and DNA packaging activity of bacteriophage SPP1 procapsid: protein components and interactions during assembly. J Mol Biol 2000; 296:117-32. [PMID: 10656821 DOI: 10.1006/jmbi.1999.3450] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The procapsid of the Bacillus subtilis bacteriophage SPP1 is formed by the major capsid protein gp13, the scaffolding protein gp11, the portal protein gp6, and the accessory protein gp7. The protein stoichiometry suggests a T=7 symmetry for the SPP1 procapsid. Overexpression of SPP1 procapsid proteins in Escherichia coli leads to formation of biologically active procapsids, procapsid-like, and aberrant structures. Co-production of gp11, gp13 and gp6 is essential for assembly of procapsids competent for DNA packaging in vitro. Presence of gp7 in the procapsid increases the yield of viable phages assembled during the reaction in vitro five- to tenfold. Formation of closed procapsid-like structures requires uniquely the presence of the major head protein and the scaffolding protein. The two proteins interact only when co-produced but not when mixed in vitro after separate synthesis. Gp11 controls the polymerization of gp13 into normal (T=7) and small sized (T=4?) procapsids. Predominant formation of T=7 procapsids requires presence of the portal protein. This implies that the portal protein has to be integrated at an initial stage of the capsid assembly process. Its presence, however, does not have a detectable effect on the rate of procapsid assembly during SPP1 infection. A stable interaction between gp6 and the two major procapsid proteins was only detected when the three proteins are co-produced. Efficient incorporation of a single portal protein in the procapsid appears to require a structural context created by gp11 and gp13 early during assembly, rather than strong interactions with any of those proteins. Gp7, which binds directly to gp6 both in vivo and in vitro, is not necessary for incorporation of the portal protein in the procapsid structure.
Collapse
Affiliation(s)
- A Dröge
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, Berlin, D-14195, Germany.
| | | | | | | | | | | | | |
Collapse
|
165
|
Abstract
The process of phage capsid assembly is reviewed, with particular attention to the probable role of curvature in helping to determine head size and shape. Both measures of curvature (mean curvature and Gaussian curvature, explained in Appendix I), should act best when the assembling shell is spherical, which could account for procapsids having this shape. Procapsids are also relatively thick, which should help head size determination by the mean curvature. The accessory role of inner and outer scaffolds in size determination and head nucleation is also reviewed. Nucleation failure generates various malformations, including non-closure, but the most common is the tube or polyhead, where the subunits' inherent curvature is expressed as a constant mean curvature. This induces lattice distortions that only partly understood. An extra tubular section in normal heads leads to the prolate shape, with a more complex and variable geometry. Newly assembled procapsids are both enlarged and toughened by the head transformation. In the procapsid the Gaussian curvature is uniformly distributed. But toughening tends to equalize bond lengths, so all the Gaussian curvature gets concentrated in the vertices, being zero elsewhere. This explains head angularization. Because of this change in Gaussian curvature, the regular subunit packing in the polyhedral head cannot be mapped onto the procapsid. This explains part of the hexon distortions found in this region. The implications of translocase-induced DNA twist, end rotation and the coiling of packaged DNA, are discussed. The symmetry mismatches between the head, connector and tail are discussed in relation to the possible alpha-helical structures of their DNA channels.
Collapse
Affiliation(s)
- M F Moody
- School of Pharmacy, University of London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| |
Collapse
|
166
|
Aramli LA, Teschke CM. Single amino acid substitutions globally suppress the folding defects of temperature-sensitive folding mutants of phage P22 coat protein. J Biol Chem 1999; 274:22217-24. [PMID: 10428787 DOI: 10.1074/jbc.274.32.22217] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amino acid sequence of a polypeptide defines both the folding pathway and the final three-dimensional structure of a protein. Eighteen amino acid substitutions have been identified in bacteriophage P22 coat protein that are defective in folding and cause their folding intermediates to be substrates for GroEL and GroES. These temperature-sensitive folding (tsf) substitutions identify amino acids that are critical for directing the folding of coat protein. Additional amino acid residues that are critical to the folding process of P22 coat protein were identified by isolating second site suppressors of the tsf coat proteins. Suppressor substitutions isolated from the phage carrying the tsf coat protein substitutions included global suppressors, which are substitutions capable of alleviating the folding defects of numerous tsf coat protein mutants. In addition, potential global and site-specific suppressors were isolated, as well as a group of same site amino acid substitutions that had a less severe phenotype than the tsf parent. The global suppressors were located at positions 163, 166, and 170 in the coat protein sequence and were 8-190 amino acid residues away from the tsf parent. Although the folding of coat proteins with tsf amino acid substitutions was improved by the global suppressor substitutions, GroEL remained necessary for folding. Therefore, we believe that the global suppressor sites identify a region that is critical to the folding of coat protein.
Collapse
Affiliation(s)
- L A Aramli
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
167
|
Greene B, King J. In vitro unfolding/refolding of wild type phage P22 scaffolding protein reveals capsid-binding domain. J Biol Chem 1999; 274:16135-40. [PMID: 10347165 DOI: 10.1074/jbc.274.23.16135] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The scaffolding proteins of double-stranded DNA viruses are required for the polymerization of capsid subunits into properly sized closed shells but are absent from the mature virions. Phage P22 scaffolding subunits are elongated 33-kDa molecules that copolymerize with coat subunits into icosahedral precursor shells and subsequently exit from the precursor shell through channels in the procapsid lattice to participate in further rounds of polymerization and dissociation. Purified scaffolding subunits could be refolded in vitro after denaturation by high temperature or guanidine hydrochloride solutions. The lack of coincidence of fluorescence and circular dichroism signals indicated the presence of at least one partially folded intermediate, suggesting that the protein consisted of multiple domains. Proteolytic fragments containing the C terminus were competent for copolymerization with capsid subunits into procapsid shells in vitro, whereas the N terminus was not needed for this function. Proteolysis of partially denatured scaffolding subunits indicated that it was the capsid-binding C-terminal domain that unfolded at low temperatures and guanidinium concentrations. The minimal stability of the coat-binding domain may reflect its role in the conformational switching needed for icosahedral shell assembly.
Collapse
Affiliation(s)
- B Greene
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
168
|
Thuman-Commike PA, Greene B, Malinski JA, Burbea M, McGough A, Chiu W, Prevelige PE. Mechanism of scaffolding-directed virus assembly suggested by comparison of scaffolding-containing and scaffolding-lacking P22 procapsids. Biophys J 1999; 76:3267-77. [PMID: 10354452 PMCID: PMC1300296 DOI: 10.1016/s0006-3495(99)77479-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Assembly of certain classes of bacterial and animal viruses requires the transient presence of molecules known as scaffolding proteins, which are essential for the assembly of the precursor procapsid. To assemble a procapsid of the proper size, each viral coat subunit must adopt the correct quasiequivalent conformation from several possible choices, depending upon the T number of the capsid. In the absence of scaffolding protein, the viral coat proteins form aberrantly shaped and incorrectly sized capsids that cannot package DNA. Although scaffolding proteins do not form icosahedral cores within procapsids, an icosahedrally ordered coat/scaffolding interaction could explain how scaffolding can cause conformational differences between coat subunits. To identify the interaction sites of scaffolding protein with the bacteriophage P22 coat protein lattice, we have determined electron cryomicroscopy structures of scaffolding-containing and scaffolding-lacking procapsids. The resulting difference maps suggest specific interactions of scaffolding protein with only four of the seven quasiequivalent coat protein conformations in the T = 7 P22 procapsid lattice, supporting the idea that the conformational switching of a coat subunit is regulated by the type of interactions it undergoes with the scaffolding protein. Based on these results, we propose a model for P22 procapsid assembly that involves alternating steps in which first coat, then scaffolding subunits form self-interactions that promote the addition of the other protein. Together, the coat and scaffolding provide overlapping sets of binding interactions that drive the formation of the procapsid.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Newcomb WW, Homa FL, Thomsen DR, Trus BL, Cheng N, Steven A, Booy F, Brown JC. Assembly of the herpes simplex virus procapsid from purified components and identification of small complexes containing the major capsid and scaffolding proteins. J Virol 1999; 73:4239-50. [PMID: 10196320 PMCID: PMC104203 DOI: 10.1128/jvi.73.5.4239-4250.1999] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/1998] [Accepted: 02/09/1999] [Indexed: 11/20/2022] Open
Abstract
An in vitro system is described for the assembly of herpes simplex virus type 1 (HSV-1) procapsids beginning with three purified components, the major capsid protein (VP5), the triplexes (VP19C plus VP23), and a hybrid scaffolding protein. Each component was purified from insect cells expressing the relevant protein(s) from an appropriate recombinant baculovirus vector. Procapsids formed when the three purified components were mixed and incubated for 1 h at 37 degrees C. Procapsids assembled in this way were found to be similar in morphology and in protein composition to procapsids formed in vitro from cell extracts containing HSV-1 proteins. When scaffolding and triplex proteins were present in excess in the purified system, greater than 80% of the major capsid protein was incorporated into procapsids. Sucrose density gradient ultracentrifugation studies were carried out to examine the oligomeric state of the purified assembly components. These analyses showed that (i) VP5 migrated as a monomer at all of the protein concentrations tested (0.1 to 1 mg/ml), (ii) VP19C and VP23 migrated together as a complex with the same heterotrimeric composition (VP19C1-VP232) as virus triplexes, and (iii) the scaffolding protein migrated as a heterogeneous mixture of oligomers (in the range of monomers to approximately 30-mers) whose composition was strongly influenced by protein concentration. Similar sucrose gradient analyses performed with mixtures of VP5 and the scaffolding protein demonstrated the presence of complexes of the two having molecular weights in the range of 200,000 to 600,000. The complexes were interpreted to contain one or two VP5 molecules and up to six scaffolding protein molecules. The results suggest that procapsid assembly may proceed by addition of the latter complexes to regions of growing procapsid shell. They indicate further that procapsids can be formed in vitro from virus-encoded proteins only without any requirement for cell proteins.
Collapse
Affiliation(s)
- W W Newcomb
- Department of Microbiology and Cancer Center, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Teschke CM. Aggregation and assembly of phage P22 temperature-sensitive coat protein mutants in vitro mimic the in vivo phenotype. Biochemistry 1999; 38:2873-81. [PMID: 10074339 DOI: 10.1021/bi982739f] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aggregation is a common side reaction in the folding of proteins which is likely due to inappropriate interactions of folding intermediates. In the in vivo folding of phage P22 coat protein, amino acid substitutions that cause a temperature-sensitive-folding (tsf) phenotype lead to the localization of the mutant coat proteins to inclusion bodies. Investigated here is the aggregation of wild-type (WT) coat protein and 3 tsf mutants of coat protein. The tsf coat proteins aggregated when refolded in vitro at high temperature. If the tsf coat proteins were refolded at 4 degrees C, they were able attain an assembly active state. WT coat protein, on the other hand, did not aggregate significantly even when folded at high temperature. The refolded tsf mutants exhibited altered secondary and tertiary structures and had an increased surface hydrophobicity, which may explain the increased propensity of their folding intermediates to aggregate.
Collapse
Affiliation(s)
- C M Teschke
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA.
| |
Collapse
|
171
|
Schwartz R, Shor PW, Prevelige PE, Berger B. Local rules simulation of the kinetics of virus capsid self-assembly. Biophys J 1998; 75:2626-36. [PMID: 9826587 PMCID: PMC1299938 DOI: 10.1016/s0006-3495(98)77708-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A computer model is described for studying the kinetics of the self-assembly of icosahedral viral capsids. Solution of this problem is crucial to an understanding of the viral life cycle, which currently cannot be adequately addressed through laboratory techniques. The abstract simulation model employed to address this is based on the local rules theory of. Proc. Natl. Acad. Sci. USA. 91:7732-7736). It is shown that the principle of local rules, generalized with a model of kinetics and other extensions, can be used to simulate complicated problems in self-assembly. This approach allows for a computationally tractable molecular dynamics-like simulation of coat protein interactions while retaining many relevant features of capsid self-assembly. Three simple simulation experiments are presented to illustrate the use of this model. These show the dependence of growth and malformation rates on the energetics of binding interactions, the tolerance of errors in binding positions, and the concentration of subunits in the examples. These experiments demonstrate a tradeoff within the model between growth rate and fidelity of assembly for the three parameters. A detailed discussion of the computational model is also provided.
Collapse
Affiliation(s)
- R Schwartz
- Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
172
|
Nakonechny WS, Teschke CM. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein. J Biol Chem 1998; 273:27236-44. [PMID: 9765246 DOI: 10.1074/jbc.273.42.27236] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our present understanding of the action of the chaperonins GroEL/S on protein folding is based primarily on in vitro studies, whereas the folding of proteins in the cellular milieu has not been as thoroughly investigated. We have developed a means of examining in vivo protein folding and assembly that utilizes the coat protein of bacteriophage P22, a naturally occurring substrate of GroEL/S. Here we show that amino acid substitutions in coat protein that cause a temperature-sensitive-folding (tsf) phenotype slowed assembly rates upon increasing the temperature of cell growth. Raising cellular concentrations of GroEL/S increased the rate of assembly of the tsf mutant coat proteins to nearly that of wild-type (WT) coat protein by protecting a thermolabile folding intermediate from aggregation, thereby increasing the concentration of assembly-competent coat protein. The rate of release of the tsf coat proteins from the GroEL/S-coat protein ternary complex was approximately 2-fold slower at non-permissive temperatures when compared with the release of WT coat protein. However, the rate of release of WT or tsf coat proteins at each temperature remained constant regardless of GroEL/S levels. Thus, raising the cellular concentration of GroEL/S increased the amount of assembly-competent tsf coat proteins not by altering the rates of folding but by increasing the probability of GroEL/S-coat protein complex formation.
Collapse
Affiliation(s)
- W S Nakonechny
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269-3125, USA
| | | |
Collapse
|
173
|
Abstract
Assembly of the bacteriophage P22 requires a 303 amino acid residue scaffolding protein. Two scaffolding protein deletion mutants, consisting of residues 141 to 303 and 141 to 292, have been described. We report here that the 141-303 fragment, but not the 141-292 fragment, promoted procapsid assembly in vitro, bound to preformed shells of coat protein, and bound to a coat protein affinity column. These findings suggest that the carboxyl-terminal half of the scaffolding protein is sufficient for promoting assembly, and that the 11 amino acid residues at the extreme carboxyl terminus are required for binding to the coat protein. Analysis of the products of in vitro assembly reactions suggests that the maximum amount of scaffolding protein that can pack into a procapsid is dictated by the internal volume of the procapsid rather than by a finite number of binding sites. However, when the amount of scaffolding protein was reduced to limiting values, both the wild-type protein and the 141-303 fragment assembled procapsids with the same number, rather than the same mass, of scaffolding protein molecules. When the 141-292 fragment was added to a mixture of coat and scaffolding proteins, the initial phase of procapsid assembly was inhibited, but the final yield and composition of the procapsids were not affected. Assembly by a covalent dimeric mutant scaffolding protein (R74C/L177I) was not inhibited by the 141-292 fragment, which suggests that the inhibition is due to the formation of inactive heterodimers between the 141-292 fragment and the monomeric scaffolding protein. The 141-303 fragment, which has less tendency to self-associate than the wild-type protein, formed aberrant species as well as normal procapsid-like particles when the rate of assembly was high, suggesting that scaffolding protein dimerization may play a role in ensuring fidelity of assembly. Alternatively, residues 1 to 140 may play a direct structural role in preventing inappropriate scaffolding/coat protein interactions.
Collapse
Affiliation(s)
- M H Parker
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | | |
Collapse
|
174
|
McNab AR, Desai P, Person S, Roof LL, Thomsen DR, Newcomb WW, Brown JC, Homa FL. The product of the herpes simplex virus type 1 UL25 gene is required for encapsidation but not for cleavage of replicated viral DNA. J Virol 1998; 72:1060-70. [PMID: 9445000 PMCID: PMC124578 DOI: 10.1128/jvi.72.2.1060-1070.1998] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1997] [Accepted: 10/29/1997] [Indexed: 02/05/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) UL25 gene contains a 580-amino-acid open reading frame that codes for an essential protein. Previous studies have shown that the UL25 gene product is a virion component (M. A. Ali et al., Virology 216:278-283, 1996) involved in virus penetration and capsid assembly (C. Addison et al., Virology 138:246-259, 1984). In this study, we describe the isolation of a UL25 mutant (KUL25NS) that was constructed by insertion of an in-frame stop codon in the UL25 open reading frame and propagated on a complementing cell line. Although the mutant was capable of synthesis of viral DNA, it did not form plaques or produce infectious virus in noncomplementing cells. Antibodies specific for the UL25 protein were used to demonstrate that KUL25NS-infected Vero cells did not express the UL25 protein. Western immunoblotting showed that the UL25 protein was associated with purified, wild-type HSV A, B, and C capsids. Transmission electron microscopy indicated that the nucleus of Vero cells infected with KUL25NS contained large numbers of both A and B capsids but no C capsids. Analysis of infected cells by sucrose gradient sedimentation analysis confirmed that the ratio of A to B capsids was elevated in KUL25NS-infected Vero cells. Following restriction enzyme digestion, specific terminal fragments were observed in DNA isolated from KUL25NS-infected Vero cells, indicating that the UL25 gene was not required for cleavage of replicated viral DNA. The latter result was confirmed by pulsed-field gel electrophoresis (PFGE), which showed the presence of genome-size viral DNA in KUL25NS-infected Vero cells. DNase I treatment prior to PFGE demonstrated that monomeric HSV DNA was not packaged in the absence of the UL25 protein. Our results indicate that the product of the UL25 gene is required for packaging but not cleavage of replicated viral DNA.
Collapse
Affiliation(s)
- A R McNab
- Pharmacia & Upjohn, Inc., Kalamazoo, Michigan 49007, USA
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
Virus capsids assemble through the repeated interaction of well-defined protein subunits in a highly specific process. Basic research into the mechanism of protein polymerisation and virus assembly suggest that inhibition of the protein-protein interactions necessary for assembly is a valid therapeutic strategy. Computer models of virus-capsid assembly have located vulnerable stages in assembly, and small-molecule inhibitors of virus assembly have been identified. The challenge will be identifying agents that block assembly with the required specificity.
Collapse
Affiliation(s)
- P E Prevelige
- Department of Microbiology, University of Alabama at Birmingham 35294, USA
| |
Collapse
|
176
|
Thuman-Commike PA, Greene B, Malinski JA, King J, Chiu W. Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. Biophys J 1998; 74:559-68. [PMID: 9449356 PMCID: PMC1299408 DOI: 10.1016/s0006-3495(98)77814-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Assembly of bacteriophage P22 procapsids requires the participation of approximately 300 molecules of scaffolding protein in addition to the 420 coat protein subunits. In the absence of the scaffolding, the P22 coat protein can assemble both wild-type-size and smaller size closed capsids. Both sizes of procapsid assembled in the absence of the scaffolding protein have been studied by electron cryomicroscopy. These structural studies show that the larger capsids have T = 7 icosahedral lattices and appear the same as wild-type procapsids. The smaller capsids possess T = 4 icosahedral symmetry. The two procapsids consist of very similar penton and hexon clusters, except for an increased curvature present in the T = 4 hexon. In particular, the pronounced skewing of the hexons is conserved in both sizes of capsid. The T = 7 procapsid has a local non-icosahedral twofold axis in the center of the hexon and thus contains four unique quasi-equivalent coat protein conformations that are the same as those in the T = 4 procapsid. Models of how the scaffolding protein may direct these four coat subunit types into a T = 7 rather than a T = 4 procapsid are presented.
Collapse
Affiliation(s)
- P A Thuman-Commike
- Department of Computational and Applied Mathematics, W. M. Keck Center for Computational Biology, Rice University, Houston, Texas 77005-1892, USA.
| | | | | | | | | |
Collapse
|
177
|
Pelletier A, Dô F, Brisebois JJ, Lagacé L, Cordingley MG. Self-association of herpes simplex virus type 1 ICP35 is via coiled-coil interactions and promotes stable interaction with the major capsid protein. J Virol 1997; 71:5197-208. [PMID: 9188587 PMCID: PMC191755 DOI: 10.1128/jvi.71.7.5197-5208.1997] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ordered copolymerization of viral proteins to form the herpes simplex virus (HSV) capsid occurs within the nucleus of the infected cell and is a complex process involving the products of at least six viral genes. In common with capsid assembly in double-stranded DNA bacteriophages, HSV capsid assembly proceeds via the assembly of an outer capsid shell around an interior scaffold. This capsid intermediate matures through loss of the scaffold and packaging of the viral genomic DNA. The interior of the HSV capsid intermediate contains the viral protease and assembly protein which compose the scaffold. Proteolytic processing of these proteins is essential for and accompanies capsid maturation. The assembly protein (ICP35) is the primary component of the scaffold, and previous studies have demonstrated it to be capable of intermolecular association with itself and with the major capsid protein, VP5. We have defined structural elements within ICP35 which are responsible for intermolecular self-association and for interaction with VP5. Yeast (Saccharomyces cerevisiae) two-hybrid assays and far-Western studies with purified recombinant ICP35 mapped a core self-association domain between Ser165 and His219. Site-directed mutations in this domain implicate a putative coiled coil in ICP35 self-association. This coiled-coil motif is highly conserved within the assembly proteins of other alpha herpesviruses. In the two-hybrid assay the core self-association domain was sufficient to mediate stable self-association only in the presence of additional structural elements in either N- or C-terminal flanking regions. These regions also contain conserved sequences which exhibit a high propensity for alpha helicity and may contribute to self-association by forming additional short coiled coils. Our data supports a model in which ICP35 molecules have an extended conformation and associate in parallel orientation through homomeric coiled-coil interactions. In additional two-hybrid experiments we evaluated ICP35 mutants for association with VP5. We discovered that in addition to the C-terminal 25 amino acids of ICP35, previously shown to be required for VP5 binding, an additional upstream region was required. This region is between Ser165 and His234 and contains the core self-association domain. Site-directed mutations and construction of chimeric molecules in which the self-association domain of ICP35 was replaced by the GCN4 leucine zipper indicated that this region contributes to VP5 binding through mediating self-association of ICP35 and not through direct binding interactions. Our results suggest that self-association of ICP35 strongly promotes stable association with VP5 in vivo and are consistent with capsid formation proceeding via formation of stable subassemblies of ICP35 and VP5 which subsequently assemble into capsid intermediates in the nucleus.
Collapse
Affiliation(s)
- A Pelletier
- Department of Biological Sciences, Bio-Méga Research Division, Boehringer Ingelheim, (Canada) Ltd., Laval, Quebec
| | | | | | | | | |
Collapse
|
178
|
Abstract
The genome of HSV-1 contains 80-85 open reading frames. Genetic and biochemical evidence suggests that at least 39 of these genes encode proteins that are components of the HSV-1 virion. The architecture of the HSV-1 virion consists of a trilaminar lipid envelope, an amorphous layer known as the tegument, a capsid shell, and a DNA-containing core. The capsid is an icosahedral shell whose major morphological features are 162 capsomers. It is composed of a major capsid protein called VP5 and three less abundant proteins, VP19C, VP23 and VP26. VP5 is the structural subunit of all 162 capsomers while VP19C and VP23 are located in the space between the capsomers. In addition to the structural proteins, capsid assembly involves participation of the HSV-1-encoded protease and the scaffolding protein, preVP22a. DNA packaging involves participation of DNA, empty capsids, and at least seven additional HSV-1-encoded proteins. Considerable advances have been made in understanding the structure of the capsid shell, largely as the result of applying cryoelectron microscopy techniques. Use of recombinant baculoviruses has allowed for a detailed analysis of the proteins required for capsid assembly. More recently, an in vitro system has been developed which has aided in defining the assembly pathway by identifying intermediates in the assembly of intact capsids. The in vitro system has identified a fragile roundish procapsid which matures into the polyhedral capsid in a transition similar to that undergone by bacteriophage proheads. This review is a summary of our present knowledge with respect to the structure and assembly of the HSV-1 capsid and what is known about the seven genes involved in DNA packaging. Copyright 1997 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- FL Homa
- Molecular Biology Research, Pharmacia & Upjohn Inc., Kalamazoo, Michigan 49001, USA
| | | |
Collapse
|
179
|
Becker B, de la Fuente N, Gassel M, Günther D, Tavares P, Lurz R, Trautner TA, Alonso JC. Head morphogenesis genes of the Bacillus subtilis bacteriophage SPP1. J Mol Biol 1997; 268:822-39. [PMID: 9180375 DOI: 10.1006/jmbi.1997.0997] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have identified and characterized the phage cistrons required for assembly of SPP1 heads. A DNA fragment containing most of the head morphogenesis genes was cloned and sequenced. The 3'-end of a previously identified gene (gene 6) and eight complete open reading frames (7 to 15) were predicted. We have assigned genes 7, 8, 9, 11, 12, 13, 14 and 15 to these orfs by correlating genetic and immunological data with DNA and protein sequence information. G7P was identified as a minor structural component of proheads and heads, G11P as the scaffold protein, G12P and G15P as head minor proteins and G13P as the coat protein. Characterization of intermediates in head assembly, which accumulate during infection with mutants deficient in DNA packaging or in morphogenetic genes, allowed the definition of the head assembly pathway. No proteolytic processing of any of the head components was detected. Removal of G11P by mutation leads to the accumulation of prohead-related structures and aberrant particles which are similar to the assemblies formed by purified G13P in the absence of other phage-encoded proteins. The native molecular masses of G11P and G13P are about 350 kDa and larger than 5000 kDa, respectively (predicted molecular masses 23.4 kDa and 35.3 kDa, respectively). G13P, upon denaturation and renaturation, assembles from protomers into some prohead-related structures. The organization of the DNA packaging and head genes of SPP1 resembles the organization of genes in the analogous regions of phage lambda and P22.
Collapse
Affiliation(s)
- B Becker
- Max-Planck-Institut für molekulare Genetik, Berlin, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
180
|
|
181
|
Parker MH, Stafford WF, Prevelige PE. Bacteriophage P22 scaffolding protein forms oligomers in solution. J Mol Biol 1997; 268:655-65. [PMID: 9171289 DOI: 10.1006/jmbi.1997.0995] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The scaffolding protein of Salmonella typhimurium bacteriophage P22 is a 33.6 kDa protein required both in vivo and in vitro for the polymerization of the viral coat protein into closed T = 7 icosahedral procapsids. In vitro assembly reaction kinetics have previously been found to vary between second and third order with respect to scaffolding protein concentration, suggesting that dimers and/or higher-order oligomers may be the active species in assembly. Analytical ultracentrifugation experiments suggest that scaffolding protein undergoes a rapidly-reversible monomer/dimer/tetramer equilibrium, with higher association constants at 4 degrees C than at 20 degrees C. Under conditions in which in vitro assembly reactions are carried out (30 to 1000 microg/ml scaffolding protein, 20 degrees C), monomers are the predominant species, but the concentration of dimers is significant. A mutant scaffolding protein, R74C/L177I, which forms disulfide-linked dimers, catalyzed procapsid assembly at a higher rate than did the wild-type scaffolding protein; preincubation in dithiothreitol had little effect on the wild-type protein, but greatly reduced the activity of the mutant. These findings suggest that dimers and/or higher-order oligomers of scaffolding protein are active species in the assembly of P22.
Collapse
Affiliation(s)
- M H Parker
- Dept. of Microbiology, Univ. of Alabama at Birmingham, 35294, USA
| | | | | |
Collapse
|
182
|
Santambrogio P, Pinto P, Levi S, Cozzi A, Rovida E, Albertini A, Artymiuk P, Harrison PM, Arosio P. Effects of modifications near the 2-, 3- and 4-fold symmetry axes on human ferritin renaturation. Biochem J 1997; 322 ( Pt 2):461-8. [PMID: 9065764 PMCID: PMC1218213 DOI: 10.1042/bj3220461] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Ferritin is a protein of 24 subunits which assemble into a shell with 432 point symmetry. It can be denatured reversibly in acidic guanidine hydrochloride, with the formation of poorly populated renaturation intermediates. In order to increase the accumulation of intermediates and to study the mechanism of ferritin renaturation, we analysed variants of the human ferritin H-chain altered at the N-terminus (delta(1-13)), near the 4-fold axis (Leu-169 --> Arg), the 3-fold axis (Asp-131 --> Ile + Glu-134 --> Phe) or the 2-fold axis (Ile-85 --> Cys). We also carried out specific chemical modifications of Cys-130 (near the 3-fold axis) and Cys-85 (near the 2-fold axis). Renaturation of the modified ferritins yielded assembly intermediates that differed in size and physical properties. Alterations of residues around the 2-, 4- and 3-fold axes produced subunit monomers, dimers and higher oligomers respectively. All these intermediates could be induced to assemble into ferritin 24-mers by concentrating them or by co-renaturing them with wild-type H-ferritin. The results support the hypothesis that the symmetric subunit dimers are the building blocks of ferritin assembly, and are consistent with a reassembly pathway involving the coalescence of dimers, probably around the 4-fold axis, followed by stepwise addition of dimers until the 24-mer cage is completed. In addition they show that assembly interactions are responsible for the large hysteresis of folding and unfolding plots. The implications of the studies for in vivo heteropolymer formation in vertebrates, which have two types of ferritin chain (H and L), are discussed.
Collapse
|
183
|
King J, Haase-Pettingell C, Robinson AS, Speed M, Mitraki A. Thermolabile folding intermediates: inclusion body precursors and chaperonin substrates. FASEB J 1996; 10:57-66. [PMID: 8566549 PMCID: PMC2040114 DOI: 10.1096/fasebj.10.1.8566549] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
An unexpected aspect of the expression of cloned genes is the frequent failure of newly synthesized polypeptide chains to reach their native state, accumulating instead as insoluble inclusion bodies. Amyloid deposits represent a related state associated with a variety of human diseases. The critical folding intermediates at the juncture of productive folding and the off-pathway aggregation reaction have been identified for the phage P22 tailspike and coat proteins. Though the parallel beta coil tailspike is thermostable, an early intracellular folding intermediate is thermolabile. As the temperature of intracellular folding is increased, this species partitions to inclusion bodies, a kinetic trap within the cell. The earliest intermediates along the in vitro aggregation pathway, sequential multimers of the thermolabile folding intermediates, have been directly identified by native gel electrophoresis. Temperature-sensitive folding (tsf) mutations identify sites in the beta coil domain, which direct the junctional intermediate down the productive pathway. Global suppressors of tsf mutants inhibit the pathway to inclusion bodies, rescuing the mutant chains. These mutants identify sites important for avoiding aggregation. Coat folding intermediates also partition to inclusion bodies as temperature is increased. Coat tsf mutants are suppressed by overexpression of the GroE chaperonin, indicating that the thermolabile intermediate is a physiological substrate for GroE. We suggest that many proteins are likely to have thermolabile intermediates in their intracellular folding pathways, which will be precursors to inclusion body formation at elevated temperatures and therefore substrates for heat shock chaperonins.
Collapse
Affiliation(s)
- J King
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
184
|
Galisteo ML, Gordon CL, King J. Stability of wild-type and temperature-sensitive protein subunits of the phage P22 capsid. J Biol Chem 1995; 270:16595-601. [PMID: 7622466 DOI: 10.1074/jbc.270.28.16595] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Temperature-sensitive folding (tsf) mutants of the phage P22 coat protein prevent newly synthesized polypeptide chains from reaching the conformation competent for capsid assembly in cells, and can be rescued by the GroEL chaperone (Gordon, C., Sather, S., Casjens, S., and King, J. (1994) J. Biol. Chem. 269, 27941-27951). Here we investigate the stabilities of wild-type and four tsf mutant unpolymerized subunits. Wild-type coat protein subunits denatured at 40 degrees C, with a calorimetric enthalpy of approximately 600 kJ/mol. Comparison with coat protein denaturation within the shell lattice (Tm = 87 degrees C, delta H approximately 1700 kJ/mol) (Galisteo, M.L., and King, J. (1993) Biophys. J. 65, 227-235) indicates that protein-protein interactions within the capsid provide enormous stabilization. The melting temperatures of the subunits carrying tsf substitutions were similar to wild-type. At low temperatures, the tsf mutants, but not the wild-type, formed non-covalent dimers, which were dissociated at temperatures above 30 degrees C. Spectroscopic and calorimetric studies indicated that the mutant proteins have reduced amounts of ordered structure at low temperature, as compared to the wild-type protein. Although complex, the in vitro phenotypes are consistent with the in vivo finding that the mutants are defective in folding, rather than subunit stability. These results suggest a role for incompletely folded subunits as precursors in viral capsid assembly, providing a mechanism of reaching multiple conformations in the polymerized form.
Collapse
Affiliation(s)
- M L Galisteo
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | |
Collapse
|
185
|
Teschke CM, King J. In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry 1995; 34:6815-26. [PMID: 7756313 DOI: 10.1021/bi00020a028] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The coat protein that forms the icosahedral shell of phage P22 can be efficiently refolded in vitro [Teschke, C. M., & King, J. (1993) Biochemistry 32, 10839-10847]. Temperature-sensitive mutants of coat protein interfere with folding or assembly in vivo [Gordon, C. L., & King, J. (1993) J. Biol. Chem. 268, 9358-9368]. The folding of a set of phage P22 coat proteins carrying the temperature-sensitive for folding (tsf) substitutions W48Q, A108V, G232D, T294I, and F353L has been investigated in vitro. Denatured tsf polypeptides were able to fold into soluble species with high efficiency. The efficiency of folding of the wild-type (WT) and mutant polypeptides at different temperatures showed sharp transitions where aggregation predominated over folding. The refolding of the tsf mutant proteins did not show an obvious thermal defect in yield. The tsf polypeptides folded through the long-lived kinetic intermediate previously described for WT coat protein with similar relaxation times. The folding kinetics of the tsf polypeptides in bisANS, a hydrophobic fluorescent dye, were also similar to those of the WT protein. However, the folded tsf proteins showed decreased secondary structure compared to WT coat protein. Analysis of the folded state by native gel electrophoresis revealed that the tsf coat proteins folded into dimers and trimers, not monomers. The dimer and trimer species were incompetent for assembly. Once formed, dimers and trimers showed no propensity toward aggregation. The folding pathway of the mutant polypeptides must be quite similar to the WT pathway, but at some step inappropriate intersubunit interactions occur due to the amino acid substitutions, trapping the subunits from assembly.
Collapse
Affiliation(s)
- C M Teschke
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
186
|
Flyvbjerg H, Sneppen K, Libchaber A, Leibler S. Spontaneous nucleation of microtubules. PHYSICAL REVIEW. E, STATISTICAL PHYSICS, PLASMAS, FLUIDS, AND RELATED INTERDISCIPLINARY TOPICS 1995; 51:5058-5063. [PMID: 9963218 DOI: 10.1103/physreve.51.5058] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|
187
|
|
188
|
New high sensitivity sedimentation methods: Application to the analysis of the assembly of bacteriophage P22. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/s1080-8914(06)80052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
189
|
Berger B, Shor PW, Tucker-Kellogg L, King J. Local rule-based theory of virus shell assembly. Proc Natl Acad Sci U S A 1994; 91:7732-6. [PMID: 8052652 PMCID: PMC44476 DOI: 10.1073/pnas.91.16.7732] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A local rule-based theory is developed which shows that the self-assembly of icosahedral virus shells may depend on only the lower-level interactions of a protein subunit with its neighbors--i.e., on local rules rather than on larger structural building blocks. The local rule theory provides a framework for understanding the assembly of icosahedral viruses. These include both viruses that fall in the quasiequivalence theory of Caspar and Klug and the polyoma virus structure, which violates quasi-equivalence and has puzzled researchers since it was first observed. Local rules are essentially templates for energetically favorable arrangements. The tolerance margins for these rules are investigated through computer simulations. When these tolerance margins are exceeded in a particular way, the result is a "spiraling" malformation that has been observed in nature.
Collapse
Affiliation(s)
- B Berger
- Mathematics Department, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
190
|
Prevelige PE, King J, Silva JL. Pressure denaturation of the bacteriophage P22 coat protein and its entropic stabilization in icosahedral shells. Biophys J 1994; 66:1631-41. [PMID: 8061212 PMCID: PMC1275883 DOI: 10.1016/s0006-3495(94)80955-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The pressure stability of bacteriophage P22 coat protein in both monomeric and polymeric forms under hydrostatic pressure was examined using light scattering, fluorescence emission, polarization, and lifetime methodology. The monomeric protein is very unstable toward pressure and undergoes significant structural changes at pressures as low as 0.5 kbar. These structural changes ultimately lead to denaturation of the subunit. Comparison of the protein denatured by pressure to that in guanidine hydrochloride suggests that pressure results in partial unfolding, perhaps by a domain mechanism. Fluorescence lifetime measurements indicate that at atmospheric pressure the local environments of the tryptophans are remarkably similar, suggesting they may be clustered. In contrast to the monomeric protein subunit, the protein when polymerized into procapsid shells is very stable to applied pressure and does not dissociate with pressure up to 2.5 kbar. However, under applied pressure the procapsid shells are cold-labile, suggesting they are entropically stabilized. The significance of these results in terms of virus assembly are discussed.
Collapse
Affiliation(s)
- P E Prevelige
- Boston Biomedical Research Institute, Massachusetts 02114
| | | | | |
Collapse
|
191
|
|
192
|
Abstract
During the packaging of double-stranded DNA by bacterial viruses, the precursor procapsid loses its internal core of scaffolding protein and undergoes a substantial expansion to form the mature virion. Here we show that upon heating, purified P22 procapsids release their scaffolding protein subunits, and the coat protein lattice expands in the absence of any other cellular or viral components. Following these processes by differential scanning calorimetry revealed four different transitions that correlated with structural transitions in the coat protein shells. Exit of scaffolding protein from the procapsid occurred reversibly and just above physiological temperature. Expansion of the procapsid lattice, which was exothermic, occurred after the release of scaffolding protein. Partial denaturation of coat subunits within the intact shell structure was detected prior to the major endothermic event. This major endotherm occurred above 80 degrees C and represents particle breakage and irreversible coat protein denaturation. The results indicate that the coat subunits are designed to form a metastable precursor lattice, which appears to be separated from the mature lattice by a kinetic barrier.
Collapse
Affiliation(s)
- M L Galisteo
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|