151
|
Abstract
OBJECTIVES A large and diverse literature has implicated abnormalities of striatal structure and function in both unipolar and bipolar disorder. Recent functional imaging studies have greatly expanded this body of research. The aim of this review is to provide a comprehensive and critical appraisal of the relevant literature. METHODS A total of 331 relevant articles were reviewed to develop an integrated overview of striatal function in mood disorders. RESULTS There is compelling evidence from multiple studies that functional abnormalities of the striatum and greater corticostriatal circuitry exist in at least some forms of affective illness. The literature does not yet provide data to determine whether these aberrations represent primary pathology or they contribute directly to symptom expression. Finally, there is considerable evidence that bipolar disorder may be associated with striatal hyperactivity and some suggestion that unipolar illness may be associated with hypoactivation. CONCLUSIONS Additional research investigating striatal function in affective disorders will be critical to the development of comprehensive models of the neurobiology of these conditions.
Collapse
Affiliation(s)
- William R Marchand
- Department of Veterans Affairs, VISN 19 MIRECC, 5500 Foothill, Salt Lake City, UT 84148, USA.
| | | |
Collapse
|
152
|
Weiss T, Veh RW. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 2010; 172:74-93. [PMID: 20974229 DOI: 10.1016/j.neuroscience.2010.10.047] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/15/2010] [Accepted: 10/16/2010] [Indexed: 11/26/2022]
Abstract
Based on the specificity of its inputs and targets, the lateral habenular complex (LHb) constitutes a pivotal motor-limbic interface implicated in various cerebral functions particularly in regulating monoamine transmission. Despite its functional significance, cellular characteristics underlying LHb functionality have not been examined systematically. The present study aimed to correlate morphological and electrophysiological properties of neurons within the different subnuclei of the LHb using whole-cell recording and neurobiotin labeling in rat slice preparations. Morphological analysis revealed a heterogeneous population of projection neurons randomly distributed throughout the LHb. According to somatodendritic characteristics four main categories were classified including spherical, fusiform, polymorphic and vertical cells. Electrophysiological characterization of neurons within the different categories demonstrated homologous profiles and no significant differences between groups. Typically, LHb neurons possessed high input resistances and long membrane time constants. They also displayed time-dependent inward rectification and distinct afterhyperpolarization. A salient electrophysiological feature of LHb neurons was their ability to generate rebound bursts of action potentials in response to membrane hyperpolarization. Based on the pattern of spontaneous activity, neurons were classified as silent, tonic or bursting. The occurrence of distinctive firing modes was not related to topographic allocation. The patterns of spontaneous firing and evoked discharge were highly sensitive to alterations in membrane potential and merged upon de- and hyperpolarizing current injection and synaptic stimulation. Besides projection neurons, recordings revealed the existence of a subpopulation of cells possessing morphological and physiological properties of neocortical neurogliaform cells. They were considered to be interneurons. Our data suggest that neurons within the different LHb subnuclei behave electrophysiologically more similar than expected, considering their morphological heterogeneity. We conclude that the formation of functional neuronal entities within the LHb may be achieved through defined synaptic inputs to particular neurons, rather than by individual neuronal morphologies and intrinsic membrane properties.
Collapse
Affiliation(s)
- T Weiss
- Institut für Integrative Neuroanatomie, Centrum für Anatomie, Charité—Universitätsmedizin Berlin, Berlin, Germany.
| | | |
Collapse
|
153
|
Winter C, Vollmayr B, Djodari-Irani A, Klein J, Sartorius A. Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression. Behav Brain Res 2010; 216:463-5. [PMID: 20678526 DOI: 10.1016/j.bbr.2010.07.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 11/26/2022]
Abstract
Identifying new treatment approaches for treatment resistant depression (TRD) is an important topic for translational psychiatry. Functional inhibition of the lateral habenula (LHb) has recently been claimed to offer such an option for TRD. Rats which are bred for high susceptibility to develop learned helplessness provide a genetic model for TRD. We used the gamma-aminobutyric acid agonist muscimol to inhibit the LHb in Sprague-Dawley rats with congenital learned helplessness (cLH). Stereotactic pharmacological inhibition of the LHb exerted antidepressive effects in treatment resistant cLH rats.
Collapse
Affiliation(s)
- C Winter
- Department of Psychiatry and Psychotherapy, Technical University Dresden, Dresden, Germany
| | | | | | | | | |
Collapse
|
154
|
Shumake J, Colorado RA, Barrett DW, Gonzalez-Lima F. Metabolic mapping of the effects of the antidepressant fluoxetine on the brains of congenitally helpless rats. Brain Res 2010; 1343:218-25. [PMID: 20470763 PMCID: PMC2900439 DOI: 10.1016/j.brainres.2010.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
Antidepressants require adaptive brain changes before efficacy is achieved, and they may impact the affectively disordered brain differently than the normal brain. We previously demonstrated metabolic disturbances in limbic and cortical regions of the congenitally helpless rat, a model of susceptibility to affective disorder, and we wished to test whether administration of fluoxetine would normalize these metabolic differences. Fluoxetine was chosen because it has become a first-line drug for the treatment of affective disorders. We hypothesized that fluoxetine antidepressant effects may be mediated by decreasing metabolism in the habenula and increasing metabolism in the ventral tegmental area. We measured the effects of fluoxetine on forced swim behavior and regional brain cytochrome oxidase activity in congenitally helpless rats treated for 2 weeks with fluoxetine (5mg/kg, i.p., daily). Fluoxetine reduced immobility in the forced swim test as anticipated, but congenitally helpless rats responded in an atypical manner, i.e., increasing climbing without affecting swimming. As hypothesized, fluoxetine reduced metabolism in the habenula and increased metabolism in the ventral tegmental area. In addition, fluoxetine reduced the metabolism of the hippocampal dentate gyrus and dorsomedial prefrontal cortex. This study provided the first detailed mapping of the regional brain effects of an antidepressant drug in congenitally helpless rats. All of the effects were consistent with previous studies that have metabolically mapped the effects of serotonergic antidepressants in the normal rat brain, and were in the predicted direction of metabolic normalization of the congenitally helpless rat for all affected brain regions except the prefrontal cortex.
Collapse
Affiliation(s)
- Jason Shumake
- University of Texas at Austin, Departments of Psychology and Pharmacology, 1 University Station A8000, Austin, TX 78712, USA
| | - Rene A. Colorado
- University of Texas Health Science Center, Medical School, Houston, TX 77030, USA
| | - Douglas W. Barrett
- University of Texas at Austin, Departments of Psychology and Pharmacology, 1 University Station A8000, Austin, TX 78712, USA
| | - F. Gonzalez-Lima
- University of Texas at Austin, Departments of Psychology and Pharmacology, 1 University Station A8000, Austin, TX 78712, USA
| |
Collapse
|
155
|
Abstract
Surviving in a world with hidden rewards and dangers requires choosing the appropriate behaviours. Recent discoveries indicate that the habenula plays a prominent part in such behavioural choice through its effects on neuromodulator systems, in particular the dopamine and serotonin systems. By inhibiting dopamine-releasing neurons, habenula activation leads to the suppression of motor behaviour when an animal fails to obtain a reward or anticipates an aversive outcome. Moreover, the habenula is involved in behavioural responses to pain, stress, anxiety, sleep and reward, and its dysfunction is associated with depression, schizophrenia and drug-induced psychosis. As a highly conserved structure in the brain, the habenula provides a fundamental mechanism for both survival and decision-making.
Collapse
Affiliation(s)
- Okihide Hikosaka
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892-4435, USA.
| |
Collapse
|
156
|
Differential neuromodulation of acquisition and retrieval of avoidance learning by the lateral habenula and ventral tegmental area. J Neurosci 2010; 30:5876-83. [PMID: 20427648 DOI: 10.1523/jneurosci.3604-09.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several studies suggest an opponent functional relationship between the lateral habenula (LHb) and the ventral tegmental area (VTA). Previous work has linked LHb activation to the inhibition of dopaminergic neurons during loss of reward, as well as to deficits in escape and avoidance learning. We hypothesized that a dopamine signal might underlie the negative reinforcement of avoidance responses and that LHb activation could block this signal and thereby cause avoidance deficits. To test this idea, we implanted stimulating electrodes in either the VTA or LHb of gerbils engaged in two-way active avoidance learning, a task that shows learning-associated dopamine changes and that is acquired faster following LHb lesions. We delivered brief electrical brain stimulation whenever the animal performed a correct response, i.e., when the successful avoidance of foot shock was hypothesized to trigger an intrinsic reward signal. During the acquisition phase, VTA stimulation improved avoidance performance, while LHb stimulation impaired it. VTA stimulation appeared to improve both acquisition and asymptotic performance of the avoidance response, as VTA-stimulated animals reached above-normal performance but reverted to normal responding when stimulation was discontinued. The effects of LHb stimulation during avoidance acquisition were long lasting and persisted even after stimulation was discontinued. However, when given after successful acquisition of avoidance behavior, LHb stimulation had no effect, indicating that LHb stimulation specifically impaired avoidance acquisition without affecting memory retrieval or motivation or ability to perform the avoidance response. These results demonstrate opponent roles of LHb and VTA during acquisition but not during retrieval of avoidance learning.
Collapse
|
157
|
Ranft K, Dobrowolny H, Krell D, Bielau H, Bogerts B, Bernstein HG. Evidence for structural abnormalities of the human habenular complex in affective disorders but not in schizophrenia. Psychol Med 2010; 40:557-567. [PMID: 19671211 DOI: 10.1017/s0033291709990821] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The habenular complex is composed of important relay nuclei linking the limbic forebrain to the midbrain and brain stem nuclei. Based on clinical observations, experiments with animals and theoretical considerations, it has been speculated that this brain area might be involved in psychiatric diseases (i.e. schizophrenia and depression). However, evidence in favour of this hypothesis is still lacking because the human habenular complex has rarely been studied with regard to mental illness. METHOD We examined habenular volumes in post-mortem brains of 17 schizophrenia patients, 14 patients with depression (six patients with major depression and eight patients with bipolar depression) and 13 matched controls. We further determined the neuronal density, cell number and cell area of the medial habenular nuclei of the same cohorts using a counting box and a computer-assisted instrument. RESULTS Significantly reduced habenular volumes of the medial and lateral habenula were estimated in depressive patients in comparison to normal controls and schizophrenia patients. We also found a reduction in neuronal cell number and cell area in depressive patients for the right side compared to controls and schizophrenia patients. No such changes were seen in schizophrenia. CONCLUSIONS Our anatomical data argue against prominent structural alterations of the habenular nuclei in schizophrenia but demonstrate robust alterations in depressive patients. We are currently applying immunohistochemical markers to better characterize neuronal subpopulations of this brain region in schizophrenia and depression.
Collapse
Affiliation(s)
- K Ranft
- Department of Psychiatry, University of Magdeburg, D-39120 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Sartorius A, Kiening KL, Kirsch P, von Gall CC, Haberkorn U, Unterberg AW, Henn FA, Meyer-Lindenberg A. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol Psychiatry 2010; 67:e9-e11. [PMID: 19846068 DOI: 10.1016/j.biopsych.2009.08.027] [Citation(s) in RCA: 461] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/25/2009] [Indexed: 10/20/2022]
|
159
|
Harro J. Inter-individual differences in neurobiology as vulnerability factors for affective disorders: implications for psychopharmacology. Pharmacol Ther 2009; 125:402-22. [PMID: 20005252 DOI: 10.1016/j.pharmthera.2009.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Susceptibility to affective disorders is individually different, and determined both by genetic variance and life events that cause significant differences in the CNS structure and function between individual subjects. Therefore it is plausible that search for the inter-individual differences in endophenotypes that mediate the effects of causal factors, both genetic and environmental, will reveal the substrates for vulnerability, help to clarify pathogenetic mechanisms, and possibly aid in developing strategies to discover better, more personalized treatments. This review first examines comparatively a number of animal models of human affect and affect-related disorders that rely on persistent inter-individual differences, and then highlights some of the neurobiological findings in these models that are compatible with much of research in human behavioural and personality traits. Many behaviours occur in specific combinations in several models, but often remarkable dissociations are observed, providing a variety of constellations of traits. It is concluded that more systematic comparative experimentation on behaviour and neurobiology in different models is warranted to reveal possible "building blocks" of affect-related personality common in animals and humans. Looking into the perspectives in psychopharmacology the focus is placed on probable associations of inter-individual differences with brain structure and function, personality and coping strategies, and psychiatric vulnerability, highlighting some unexpected interactions between vulnerability endophenotypes, adverse life events, and behavioural traits. It is argued that further studies on inter-individual differences in affect and underlying neurobiology should include formal modeling of their epistatic, hierarchical and dynamic nature.
Collapse
Affiliation(s)
- Jaanus Harro
- Department of Psychology, University of Tartu, Estonian Centre of Behavioural and Health Sciences, Tiigi 78, 50410 Tartu, Estonia.
| |
Collapse
|
160
|
Effect of chronic stress on behavior and cerebral oxidative metabolism in rats with high or low positive affect. Neuroscience 2009; 164:963-74. [DOI: 10.1016/j.neuroscience.2009.08.041] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 08/14/2009] [Accepted: 08/16/2009] [Indexed: 11/18/2022]
|
161
|
Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 2009; 34:592-605. [PMID: 19958790 DOI: 10.1016/j.neubiorev.2009.11.023] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/28/2009] [Accepted: 11/26/2009] [Indexed: 01/10/2023]
Abstract
Major depressive disorder has recently been characterized by abnormal resting state hyperactivity in anterior midline regions. The neurochemical mechanisms underlying resting state hyperactivity remain unclear. Since animal studies provide an opportunity to investigate subcortical regions and neurochemical mechanisms in more detail, we used a cross-species translational approach comparing a meta-analysis of human data to animal data on the functional anatomy and neurochemical modulation of resting state activity in depression. Animal and human data converged in showing resting state hyperactivity in various ventral midline regions. These were also characterized by abnormal concentrations of glutamate and gamma-aminobutyric acid (GABA) as well as by NMDA receptor up-regulation and AMPA and GABA receptor down-regulation. This cross-species translational investigation suggests that resting state hyperactivity in depression occurs in subcortical and cortical midline regions and is mediated by glutamate and GABA metabolism. This provides insight into the biochemical underpinnings of resting state activity in both depressed and healthy subjects.
Collapse
|
162
|
Roiser JP, Levy J, Fromm SJ, Nugent AC, Talagala SL, Hasler G, Henn FA, Sahakian BJ, Drevets WC. The effects of tryptophan depletion on neural responses to emotional words in remitted depression. Biol Psychiatry 2009; 66:441-50. [PMID: 19539268 PMCID: PMC2745906 DOI: 10.1016/j.biopsych.2009.05.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 05/01/2009] [Accepted: 05/02/2009] [Indexed: 12/21/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) has been associated with both dysfunction of the central serotonergic system and abnormal responses to emotional stimuli. We used acute tryptophan depletion (ATD) to investigate the effect of temporarily reducing brain serotonin synthesis on neural and behavioral responses to emotional stimuli in remitted MDD subjects (rMDD) and healthy control subjects. METHODS Twenty control subjects and 23 rMDD subjects who had been unmedicated and in remission for > or =3 months completed the study. Following tryptophan or sham depletion, participants performed an emotional-processing task during functional magnetic resonance imaging. In addition, resting state regional blood flow was measured using arterial spin labeling. RESULTS Neither group exhibited significant mood change following ATD. However, tryptophan depletion differentially affected the groups in terms of hemodynamic responses to emotional words in a number of structures implicated in the pathophysiology of MDD, including medial thalamus and caudate. These interactions were driven by increased responses to emotional words in the control subjects, with little effect in the patients under the ATD condition. Following ATD, habenula blood flow increased significantly in the rMDD subjects relative to the control subjects, and increasing amygdala blood flow was associated with more negative emotional bias score across both groups. CONCLUSIONS These data provide evidence for elevated habenula blood flow and alterations in the neural processing of emotional stimuli following ATD in rMDD subjects, even in the absence of overt mood change. However, further studies are required to determine whether these findings represent mechanisms of resilience or vulnerability to MDD.
Collapse
Affiliation(s)
- Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London WC1N 3AR, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Veening JG, Böcker KBE, Verdouw PM, Olivier B, De Jongh R, Groenink L. Activation of the septohippocampal system differentiates anxiety from fear in startle paradigms. Neuroscience 2009; 163:1046-60. [PMID: 19580851 DOI: 10.1016/j.neuroscience.2009.06.064] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 06/26/2009] [Accepted: 07/29/2009] [Indexed: 12/18/2022]
Abstract
It has been suggested that different brain areas are involved in the modulation and expression of fear and anxiety. In the present study we investigated these potential differences by using the fear-potentiated-startle (FPS) and light-enhanced-startle (LES) paradigms to differentiate between fear and anxiety, respectively. Male Wistar rats were tested in the FPS and LES paradigm and perfused 1 h after the test session. Fos immunoreactivity (IR) was quantified in 21 brain areas and compared between FPS, LES and four control conditions. Both FPS and LES procedures significantly enhanced the acoustic startle response. A principal component analysis of Fos-IR-data showed that 70% of the changes in Fos-IR could be explained by three independent components: an arousal-component, identifying brain areas known to be activated under conditions of vigilance, arousal and stress, a LES- and an FPS-component. The LES component comprised the septohippocampal system and functionally interrelated areas including nucleus accumbens, anterior cingulate cortex, lateral habenula and supramammillary areas, but not the dorsolateral part of the bed nucleus of the stria terminalis. The central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded exclusively on the FPS component. Analysis of the separate brain areas revealed significantly higher Fos-IR in LES relative to FPS in the anterior cingulate cortex, nucleus accumbens shell, lateral septum, lateral habenula and area postrema. We conclude that the neural circuitry activated during FPS and LES shows clear differences. In anxiety as induced by LES, activation of the septohippocampal system and related areas seems to play a major role. In fear as induced by FPS, the central amygdaloid nucleus and the dorsolateral part of the bed nucleus of the stria terminalis loaded on the same component, but Fos-IR observed in these brain regions did not differentiate between anxiety and fear. Furthermore, principal-component analysis appears a useful tool in detecting and describing correlated changes in patterns of neuronal activity.
Collapse
Affiliation(s)
- J G Veening
- Department of Anatomy, 109 UMC St Radboud, University of Nijmegen, Geert Grooteplein N 21, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
164
|
Kim U. Topographic commissural and descending projections of the habenula in the rat. J Comp Neurol 2009; 513:173-87. [DOI: 10.1002/cne.21951] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
165
|
Valverde O, Célérier E, Baranyi M, Vanderhaeghen P, Maldonado R, Sperlagh B, Vassart G, Ledent C. GPR3 receptor, a novel actor in the emotional-like responses. PLoS One 2009; 4:e4704. [PMID: 19259266 PMCID: PMC2649507 DOI: 10.1371/journal.pone.0004704] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 01/14/2009] [Indexed: 12/31/2022] Open
Abstract
GPR3 is an orphan G protein-coupled receptor endowed with constitutive Gs signaling activity, which is expressed broadly in the central nervous system, with maximal expression in the habenula. We investigated the consequences of its genetic deletion in several behavioral paradigms and on neurotransmission. Compared to wild-type, hippocampal neurons from Gpr3(-/-) mice displayed lower basal intracellular cAMP levels, consistent with the strong constitutive activity of GPR3 in transiently transfected cells. Behavioral analyses revealed that Gpr3(-/-) mice exhibited a high level of avoidance of novel and unfamiliar environment, associated with increased stress reactivity in behavioral despair paradigms and aggressive behavior in the resident-intruder test. On the contrary, no deficit was found in the learning ability to avoid an aversive event in active avoidance task. The reduced ability of Gpr3(-/-) mice to cope with stress was unrelated to dysfunction of the hypothalamic-pituitary-adrenal axis, with Gpr3(-/-) mice showing normal corticosterone production under basal or stressful conditions. In contrast, dramatic alterations of monoamine contents were found in hippocampus, hypothalamus and frontal cortex of Gpr3(-/-) mice. Our results establish a link between tonic stimulation of the cAMP signaling pathway by GPR3 and control of neurotransmission by monoamines throughout the forebrain. GPR3 qualifies as a new player in the modulation of behavioral responses to stress and constitutes a novel promising pharmacological target for treatment of emotional disorders.
Collapse
Affiliation(s)
- Olga Valverde
- Grup de Recerca de Neurobiologia del Comportament, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Evelyne Célérier
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mária Baranyi
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Beata Sperlagh
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gilbert Vassart
- IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
| | - Catherine Ledent
- IRIBHM, Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
- * E-mail:
| |
Collapse
|
166
|
O'Reilly KC, Shumake J, Bailey SJ, Gonzalez-Lima F, Lane MA. Chronic 13-cis-retinoic acid administration disrupts network interactions between the raphe nuclei and the hippocampal system in young adult mice. Eur J Pharmacol 2009; 605:68-77. [PMID: 19168052 DOI: 10.1016/j.ejphar.2008.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/11/2008] [Accepted: 12/18/2008] [Indexed: 10/21/2022]
Abstract
Previously, we showed that chronic administration of 13-cis-retinoic acid (13-cis-RA) induces depression-related behaviors in mice and that 13-cis-RA alters components of the serotonergic system in vitro. Work by others has shown that 13-cis-RA reduces hippocampal neurogenesis in mice and orbitofrontal cortex metabolism in humans. In the current study, we measured cytochrome oxidase activity, a metabolic marker that reflects steady state neuronal energy demand, in various regions of the brain to determine the effects of 13-cis-RA on neuronal metabolic activity and network interactions between the raphe nuclei and the hippocampal system. Brain cytochrome oxidase activity in young adult male mice was analyzed following 6 weeks of daily 13-cis-RA (1 mg/kg) or vehicle injection and behavioral testing. Chronic 13-cis-RA administration significantly decreased cytochrome oxidase activity only in the inferior rostral linear nucleus of the raphe. However, covariance analysis of interregional correlations in cytochrome oxidase activity revealed that 13-cis-RA treatment caused a functional uncoupling between the dorsal raphe nuclei and the hippocampus. Furthermore, a path analysis indicated that a network comprising lateral habenula to dorsal raphe to hippocampus was effectively uncoupled in 13-cis-RA treated animals. Finally, cytochrome oxidase activity in the dentate gyrus of 13-cis-RA treated mice was inversely correlated with depression-related behavior. Taken together, these data show that 13-cis-RA alters raphe metabolism and disrupts functional connectivity between the raphe nuclei and the hippocampal formation, which may contribute to the observed increase in depression-related behaviors.
Collapse
Affiliation(s)
- Kally C O'Reilly
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | |
Collapse
|
167
|
Nugent AC, Neumeister A, Goldman D, Herscovitch P, Charney DS, Drevets WC. Serotonin transporter genotype and depressive phenotype determination by discriminant analysis of glucose metabolism under acute tryptophan depletion. Neuroimage 2008; 43:764-74. [PMID: 18718871 PMCID: PMC2650221 DOI: 10.1016/j.neuroimage.2008.07.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/04/2008] [Accepted: 07/16/2008] [Indexed: 12/16/2022] Open
Abstract
Acute tryptophan depletion (ATD) putatively results in a transient reduction in central serotonin transmission, and induces depressed mood in some un-medicated subjects with remitted major depressive disorder (MDD). The 5-HT transporter promoter region length polymorphism (5-HTTLPR) has been shown to influence behavioral and metabolic responses to ATD, as well as the risk for developing MDD within the context of stress. The current study investigates the relationships between 5-HTTLPR genotype, neurophysiologic response to ATD, and diagnostic phenotype (healthy control subjects versus MDD subjects differentiated by their depressive response to ATD) using (18)FDG-PET. Un-medicated subjects with remitted MDD and healthy controls were genotyped for the long (l) and short (s) alleles of the 5-HTTLPR polymorphism and categorized into one of three genotypes. On two separate occasions, subjects received either a placebo or an amino acid mixture designed to deplete plasma tryptophan, followed by (18)FDG-PET scanning. Depressive symptoms were rated to determine the diagnostic phenotype. Descriptive and predictive discriminant analyses were performed using brain regional metabolic data to classify according to phenotype and genotype. Overall, 79% of the cases were classified correctly by genotype, and 85% were classified correctly by phenotype. In a leave-one-out cross-validation, 72% of the subjects were classified correctly as carrying an s-allele, and 79% of the subjects were classified correctly by primary diagnosis. The robust nature of the classification results indicates that much of the variance in metabolic response to ATD is accounted for by genotypic and phenotypic category.
Collapse
Affiliation(s)
- Allison C Nugent
- Section on Neuroimaging in Mood and Anxiety Disorders, National Institute of Mental Health, NIH, Bethesda, MD 20892-0940, USA.
| | | | | | | | | | | |
Collapse
|
168
|
Spivey J, Barrett D, Padilla E, Gonzalez-Lima F. Mother-infant separation leads to hypoactive behavior in adolescent Holtzman rats. Behav Processes 2008; 79:59-65. [PMID: 18585869 PMCID: PMC2562243 DOI: 10.1016/j.beproc.2008.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 05/05/2008] [Accepted: 05/16/2008] [Indexed: 02/04/2023]
Abstract
This is the first study of the effects of mother-infant separation (MS) on adolescent behavior of Holtzman (HO) rats. Different rat strains, such as Harlan Sprague-Dawley and HO, share a common origin. However, MS may lead to hypoactive behavioral effects in HO rats because of their greater susceptibility to show depressive-like responses to stress. Sixty HO pups were divided into three groups at postnatal day 2 (P2). For 10 days, the MS group was separated 6h daily and the early handled (EH) group 15 min daily. A standard facility reared (SFR) group was not separated. Animals were tested for novel open-field activity (P28), defensive withdrawal in a light-dark (LD) apparatus (P29) and familiar open-field (P30). Behavioral measures were classified into general activity (ambulatory and short movement time), orienting (rearing time) and risk-taking (velocity and exposed zone time). MS rats displayed reductions in general activity and risk-taking, and increases in orienting time. In contrast, EH favored risk-taking behavior, which may be consistent with previous findings implicating early handling as beneficial in coping with stress. Sex differences in these behaviors were limited. This study suggests a genetic predisposition in HO rats for predominantly hypoactive/anxiety-like behaviors when exposed to an early life stressor.
Collapse
Affiliation(s)
- Jaclyn Spivey
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712-0187, USA
| | | | | | | |
Collapse
|
169
|
Abstract
In this contribution to the CNS Spectrums neuroanatomy series, Stefanie Geisler, MD, discusses the lateral habenula (LHb). This nuclear complex is one of the areas of the brain that forms part of the cross-talk between limbic fore-brain and some important ascending modulatory pathways. Situated at the caudal end of the dorsal diencephalon and classically regarded as projecting largely to the brainstem, including the serotoninergic raphe nuclei, the LHb receives afferents from widespread forebrain areas. Therefore, the LHb is able to influence serotonin tone in the brain, and has long interested neuroanatomists as a potential limbic-motor interface. Nonetheless, the LHb was not much discussed outside neuroanatomical circles until recently, when it was discovered that its impact on the mesotelencephalic dopamine system is probably much greater than had been assumed. The LHb has become a hot topic. This article-addresses these developments and emphasizes the clinical relevance of this interesting brain structure.
Collapse
|
170
|
Kowski AB, Geisler S, Krauss M, Veh RW. Differential projections from subfields in the lateral preoptic area to the lateral habenular complex of the rat. J Comp Neurol 2008; 507:1465-78. [PMID: 18203181 DOI: 10.1002/cne.21610] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The lateral habenular complex (LHb) constitutes an important link in the dorsal diencephalic conduction system conveying information from limbic forebrain structures to regulatory midbrain nuclei. In line with the considerable number of biological functions in which the habenula is thought to be involved, a complex subnuclear organization of the LHb has been suggested. However, the precise connectivity of habenular subnuclei remains to be identified. We hypothesize that axons from the lateral preoptic area (LPOA) project to distinct subnuclei of the LHb. As a result of an unexpected heterogeneity within the LPOA, we first examined its subregional morphology. Based on the analysis of several coronal series of sections, seven subfields were identified within the LPOA. Retrograde tracing experiments revealed that neurons projecting to the LHb were concentrated in the dorsal, ventral, and ventromedial subfields of the rostral LPOA and in the caudal LPOA. Anterograde tracing experiments confirmed that all LPOA subfields containing retrogradely labelled cells project to the LHb. Neurons in rostral subfields of the LPOA target predominantly the lateral area of the LHb, whereas caudal LPOA fibers innervate the medial LHb. Afferent labelling is most prominent within the magnocellular subnucleus in the LHbM, and only few fibers can be observed in the parvocellular subnucleus of the LHbM. The superior subnucleus of the LHbM and the oval subnucleus of the LHbL do not receive any fibers from the LPOA at all. This is the first comprehensive study so far to show that projections from LPOA subfields individually target subnuclei in the lateral habenular complex.
Collapse
Affiliation(s)
- Alexander B Kowski
- Institut für Integrative Neuroanatomie, Centrum 2, Charité Universitätsmedizin Berlin, 10115 Berlin, Germany
| | | | | | | |
Collapse
|
171
|
Yang LM, Hu B, Xia YH, Zhang BL, Zhao H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav Brain Res 2007; 188:84-90. [PMID: 18054396 DOI: 10.1016/j.bbr.2007.10.022] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/22/2007] [Accepted: 10/25/2007] [Indexed: 12/28/2022]
Abstract
The dorsal raphe nucleus (DRN)-serotonin (5-HT) system plays a key role in stress-related psychiatric disorders such as anxiety and depression. The habenular nucleus (Hb) is closely connected with the DRN both morphologically and functionally. Here, we used two types of depressive animal models by exposing rats to chronic mild stress (CMS) and by chronically administering the tricyclic antidepressant clomipramine (CLI) in the rat during the neonatal state of life to produce adult depressed rats. We investigated the effects of lateral habenular nucleus (LHb) lesions on the behavioral response and on the level of 5-HT in DRN in the depressed rats. Forced-swimming test (FST) showed that the immobility time decreased, and the climbing time increased after lesioning LHb of depressed rats. Microdialysis results indicated that the 5-HT level in DRN in depressed rats was lower than that of the control group. Lesion of the LHb was followed by an increased 5-HT turnover in the DRN. Our results suggested that the lesion of the LHb could improve the behavioral response of the depressed rats and the 5-HT level of the DRN increased by LHb lesions could be involved in the effects.
Collapse
Affiliation(s)
- Li-Min Yang
- Department of Physiology, School of Basic Medical Sciences, Jilin University, 2 Xinmin Street, Changchun 130021, China
| | | | | | | | | |
Collapse
|
172
|
Matrov D, Kolts I, Harro J. Cerebral oxidative metabolism in rats with high and low exploratory activity. Neurosci Lett 2007; 413:154-8. [PMID: 17234343 DOI: 10.1016/j.neulet.2006.11.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2006] [Revised: 11/16/2006] [Accepted: 11/22/2006] [Indexed: 11/30/2022]
Abstract
To reveal brain regions most significantly related to individual differences in exploratory behaviour, oxidative metabolism was measured by cytochrome c oxidase histochemistry in 2 months old Wistar rats with persistently high (HE) or low (LE) exploratory activity in a novel environment. LE-rats had significantly higher levels of oxidative metabolism in dorsal raphe and inferior colliculi. In contrast, HE-rats had higher metabolic activity in entorhinal cortex. In conclusion, rats with different exploratory styles differ in underlying cerebral activity as measured via oxidative metabolism in regions implicated in defensive behaviours and cognitive processing of sensory stimuli.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tiigi 78, EE-50410 Tartu, Estonia
| | | | | |
Collapse
|
173
|
Hines LM, Hoffman PL, Bhave S, Saba L, Kaiser A, Snell L, Goncharov I, LeGault L, Dongier M, Grant B, Pronko S, Martinez L, Yoshimura M, Tabakoff B. A sex-specific role of type VII adenylyl cyclase in depression. J Neurosci 2006; 26:12609-19. [PMID: 17135423 PMCID: PMC6674903 DOI: 10.1523/jneurosci.1040-06.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Revised: 10/04/2006] [Accepted: 10/21/2006] [Indexed: 10/23/2022] Open
Abstract
Major depression represents a complex mental disorder. The identification of biological markers that define subtypes of major depressive disorder would greatly facilitate appropriate medical treatments, as well as provide insight into etiology. Reduced activity of the cAMP signaling system has been implicated in the etiology of major depression. Previous work has shown low adenylyl cyclase activity in platelets and postmortem brain tissue of depressed individuals. Here, we investigate the role of the brain type VII isoform of adenylyl cyclase (AC7) in the manifestation of depressive symptoms in genetically modified animals, using a combination of in vivo behavioral experiments, gene expression profiling, and bioinformatics. We also completed studies with humans on the association of polymorphisms in the AC7 gene with major depressive illness (unipolar depression) based on Diagnostic and Statistical Manual of Mental Disorders IV criteria. Collectively, our results demonstrate a sex-specific influence of the AC7 gene on a heritable form of depressive illness.
Collapse
Affiliation(s)
- Lisa M. Hines
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paula L. Hoffman
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Sanjiv Bhave
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Laura Saba
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Alan Kaiser
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Larry Snell
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Igor Goncharov
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Lucie LeGault
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada H4H 1R3
| | - Maurice Dongier
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada H4H 1R3
| | - Bridget Grant
- Division of Epidemiology, National Institute on Alcohol Abuse and Alcoholism, Rockville, Maryland 20852, and
| | - Sergey Pronko
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Larry Martinez
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Masami Yoshimura
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana 70803
| | - Boris Tabakoff
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| |
Collapse
|
174
|
Wrubel KM, Barrett D, Shumake J, Johnson SE, Gonzalez-Lima F. Methylene blue facilitates the extinction of fear in an animal model of susceptibility to learned helplessness. Neurobiol Learn Mem 2006; 87:209-17. [PMID: 17011803 DOI: 10.1016/j.nlm.2006.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 11/30/2022]
Abstract
The objectives were to (1) extend previous findings on fear extinction deficits in male congenitally helpless rats (a model for susceptibility to learned helplessness) to female congenitally helpless rats, and (2) attempt a therapeutic intervention with methylene blue, a metabolic enhancer that improves memory retention, to alleviate the predicted extinction deficits. In the first experiment, fear acquisition (four tone-shock pairings in operant chamber) was followed by extinction training (60 tones in open field). Congenitally helpless rats showed fear acquisition similar to controls but had dramatic extinction deficits, and did not display the gradual extinction curves observed in controls. Congenitally helpless rats demonstrated greater tone-evoked freezing as compared to controls in both the acquisition and extinction contexts one week after extinction training, and also in the extinction probe conducted one month later. In the second experiment (which began one month after the first experiment) congenitally helpless subjects were further exposed to tones for 5 days, each followed by 4 mg/kg methylene blue or saline IP, and had a fear renewal test in the acquisition context. Methylene blue administration improved retention of the extinction memory as demonstrated by significant decreases in fear renewal as compared to saline-administered congenitally helpless subjects. The impaired ability to extinguish fear to a traumatic memory in congenitally helpless rats supports the validity of this strain as an animal model for vulnerability to post-traumatic stress disorder, and this study further suggests that methylene blue may facilitate fear extinction as an adjunct to exposure therapy.
Collapse
Affiliation(s)
- Kathryn M Wrubel
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
175
|
Hegadoren KM, Lasiuk GC, Coupland NJ. Posttraumatic stress disorder Part III: health effects of interpersonal violence among women. Perspect Psychiatr Care 2006; 42:163-73. [PMID: 16916419 DOI: 10.1111/j.1744-6163.2006.00078.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TOPIC The aim of this three-part series is to examine the sufficiency of the posttraumatic stress (PTSD) diagnostic construct to capture the full spectrum of human responses to psychological trauma. Part I (Lasiuk & Hegadoren, 2006a) reviewed the conceptual history of PTSD from the nineteenth century to its inclusion in the third edition of the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, 1980), while Part II (Lasiuk & Hegadoren, 2006b) described subsequent refinements to the original PTSD diagnostic criteria and highlighted subsequent controversies. PURPOSE This paper focuses on interpersonal violence (sexual, physical, and emotional abuse/assault) and its sequelae in women. We argue in support of Judith Herman's (1992) conceptualization of the human trauma response as a spectrum, anchored at one end by an acute stress reaction that resolves on its own without treatment, and on the other by "complex" PTSD, with "classic" or "simple" PTSD somewhere between the two. SOURCES OF INFORMATION he existing theoretical, clinical and research literatures related to humans responses to trauma. CONCLUSION The paper concludes with a call for the need to increase a gendered perspective in all aspects of trauma research and clinical service delivery.
Collapse
|
176
|
Watanabe T, Radulovic J, Boretius S, Frahm J, Michaelis T. Mapping of the habenulo-interpeduncular pathway in living mice using manganese-enhanced 3D MRI. Magn Reson Imaging 2006; 24:209-15. [PMID: 16563949 DOI: 10.1016/j.mri.2005.10.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Revised: 10/27/2005] [Accepted: 10/27/2005] [Indexed: 11/17/2022]
Abstract
This magnetic resonance imaging (MRI) study describes mapping of the habenulo-interpeduncular pathway in living mice based on manganese-induced contrast. Six hours after intracerebroventricular microinjection of MnCl2, T1-weighted 3D MRI (2.35 T) at 117 mum isotropic resolution revealed a continuous pattern of anterograde labeling from the habenula via the fasciculus retroflexus to the interpeduncular nucleus. Alternatively, the less invasive systemic administration of MnCl2 allowed for monitoring of the dynamic uptake pattern of respective neural components with even higher reproducibility across animals. Time courses covered the range from 42 min to 24 h after injection. In conclusion, manganese-enhanced MRI may open new ways for functional assessments of the habenulo-interpeduncular system in animal models with cognitive impairment.
Collapse
Affiliation(s)
- Takashi Watanabe
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | | | | | | | | |
Collapse
|
177
|
Shumake J, Barrett D, Gonzalez-Lima F. Behavioral characteristics of rats predisposed to learned helplessness: reduced reward sensitivity, increased novelty seeking, and persistent fear memories. Behav Brain Res 2006; 164:222-30. [PMID: 16095730 DOI: 10.1016/j.bbr.2005.06.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/29/2022]
Abstract
The congenitally helpless rat strain, which was selectively bred for increased susceptibility to learned helplessness, may model the predisposition to affective disorders, including depression and post-traumatic stress disorder. Other than the selected trait, the behavior of this strain is not well characterized. In this study, we assessed congenitally helpless rats on several behavioral tests. First, we assessed reward sensitivity by measuring their consumption of a 5% sucrose solution. Next, we assessed exploratory behavior and fearfulness in both a novel and familiar open field, and in a light-dark test. Finally, we assessed fear conditioning by exposing the animals to 4 tone-shock pairs on 1 day (acquisition) and then presenting 60 tones over the next 2 days (extinction). Compared to normal Sprague-Dawley controls, congenitally helpless rats showed less consumption of the sucrose solution and more exploratory behavior in the novel, but not the familiar, open fields. They also showed less fearfulness in the light-dark test, but more conditioned freezing to the tone predicting shock. Moreover, this freezing was resistant to extinction; congenitally helpless rats not only failed to show a fear decrement during extinction, but actually showed increased fear, a phenomenon termed "paradoxical enhancement." Thus, congenitally helpless rats appear to have a behavioral phenotype characterized by reduced sensitivity to reward, increased drive to explore novel environments, and increased propensity to form and maintain fear-associated memories. This behavioral phenotype is discussed as resembling the personality of humans vulnerable to post-traumatic stress disorder.
Collapse
Affiliation(s)
- Jason Shumake
- University of Texas at Austin, Department of Psychology, 1 University Station A8000, Austin, TX 78712-0187, USA
| | | | | |
Collapse
|
178
|
Sakata JT, Crews D, Gonzalez-Lima F. Behavioral correlates of differences in neural metabolic capacity. ACTA ACUST UNITED AC 2005; 48:1-15. [PMID: 15708625 DOI: 10.1016/j.brainresrev.2004.07.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/21/2022]
Abstract
Cytochrome oxidase is a rate-limiting enzyme in oxidative phosphorylation, the major energy-synthesizing pathway used by the central nervous system, and cytochrome oxidase histochemistry has been extensively utilized to map changes in neural metabolism following experimental manipulations. However, the value of cytochrome oxidase activity in predicting behavior has not been analyzed. We argue that this endeavor is important because genetic composition and embryonic environment can engender differences in baseline neural metabolism in pertinent neural circuits, and these differences could represent differences in the degree to which specific behaviors are 'primed.' Here we review our studies in which differences in cytochrome oxidase activity and in behavior were studied in parallel. Using mammalian and reptilian models, we find that embryonic experiences that shape the propensity to display social behaviors also affect cytochrome oxidase activity in limbic brain areas, and elevated cytochrome oxidase activity in preoptic, hypothalamic, and amygdaloid nuclei correlates with heightened aggressive and sexual tendencies. Selective breeding regimes were used to create rodent genetic lines that differ in their susceptibility to display learned helplessness and in behavioral excitability. Differences in cytochrome oxidase activity in areas like the paraventricular hypothalamus, frontal cortex, habenula, septum, and hippocampus correlate with differences in susceptibility to display learned helplessness, and differences in activity in the dentate gyrus and perirhinal and posterior parietal cortex correlate with differences in hyperactivity. Thus, genetic and embryonic manipulations that engender specific behavioral differences produce specific neurometabolic profiles. We propose that knowledge of neurometabolic differences can yield valuable predictions about behavioral phenotype in other systems.
Collapse
Affiliation(s)
- Jon T Sakata
- Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
179
|
Abstract
Depressive disorders are among the most common psychiatric diseases, with prevalence estimates ranging from 5% to a maximum of 20%. Despite their high prevalence and socioeconomic impact, little is known about their etiology. Heritability estimates demonstrate up to a 50% genetic component based on family aggregation and contrasting monozygotic and dizygotic twin studies. The low relative risk to siblings ( lambda sib <1.5) makes the search for their genetic determinants very tedious. Gene-environment interaction has been recognized for a long time in the pathophysiology of depression, and its best biological substratum at present is represented by the serotonin transporter (5-HTT) gene, where several copies of its short allele culminate in depression and suicide in response to lifelong stress events. Many total genome scans have been performed with variable results, the most authoritative being the one of Utah pedigrees with a strong family history of major depression. It identified a locus on chromosome 12 encompassing a gene cluster and sex-specific predisposition. Nevertheless, recent genome scan meta-analysis yielded somewhat disappointing conclusions with a relatively low significance for quantitative trait loci on chromosomes 9, 10, 14, and 18. Studies on animal models have contributed to the chromosomal mapping of many behavioral traits, including anxiety, the stress response, and depression. Although F2 crosses constitute a classical approach, novel models of recombinant inbred strain and recombinant congenic strain animals allow for a rapid initial localization of any traits. This type of analysis has led us to uncover significant loci for the stress response and anxiety in rats and mice.
Collapse
Affiliation(s)
- Pavel Hamet
- Département de médecine, Faculté de médecine, Université de Montréal, and Centre de recherche, Centre hospitalier de l'Université de Montréal (CHUM), Québec, Canada.
| | | |
Collapse
|
180
|
Koshiba M, George I, Hara E, Hessler NA. Social behavior modulates songbird interpeduncular nucleus function. Neuroreport 2005; 16:445-9. [PMID: 15770149 DOI: 10.1097/00001756-200504040-00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Male zebra finches produce the same song while alone and during courtship of a female. However, singing-related activity in the anterior forebrain nuclei lateral magnocellular anterior nidopallium and Area X markedly depends on the social context. Thus, the anterior forebrain should receive a signal of social context from outside the song system. Here we investigated a possible source of such modulation, the midbrain interpeduncular nucleus, by monitoring immediate early genes and synaptic activity. The level of immunoreactivity for egr1 was high and calretinin was low following courtship directed singing, but the opposite pattern was seen after solo undirected singing. Further, pairs of stimulation caused depression of synaptic responses after directed singing, but facilitation after undirected singing.
Collapse
Affiliation(s)
- Mamiko Koshiba
- Lab for Vocal Behavior Mechanisms, Brain Science Institute, RIKEN 2-1, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
181
|
Abstract
Among the most useful models for depressive disorders are those, which involve a stress induced change in behaviour. Learned helplessness is one such model and is induced through exposure to uncontrollable and unpredictable aversive events. Learned helplessness as induced in rats using foot shock is well characterized and has good face validity and predictive validity as a model of depression, including alterations in HPA axis activity and REM sleep characteristic of depression. The data concerning the validity will be briefly reviewed. The model can also be used to look at the role of genetics through selective breeding. These studies will be reviewed and the utility of the genetic strains for understanding the interaction of stress and affect will be examined. A second model of depression using exposure to chronic stress also has high face and predictive validity. A new form of this approach, recently described, also is suitable for the examination of genetic factors leading to depressive like behaviour and this will be presented.
Collapse
Affiliation(s)
- Fritz A Henn
- Central Institute of Mental Health, D-68159 Mannheim, Germany.
| | | |
Collapse
|
182
|
Shumake J, Conejo-Jimenez N, Gonzalez-Pardo H, Gonzalez-Lima F. Brain differences in newborn rats predisposed to helpless and depressive behavior. Brain Res 2004; 1030:267-76. [PMID: 15571675 DOI: 10.1016/j.brainres.2004.10.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
Inborn brain differences in metabolic capacity were mapped in congenitally helpless rats, a genetically selected strain predisposed to show helpless and depressive behavior. There are a number of brain regions showing abnormal metabolism in adult congenitally helpless rats. Some of these alterations may be innate while others may be due to environmental factors, such as maternal care and postnatal stress. To identify which brain structures show innate differences, brains of newborn rats from congenitally helpless and non-helpless strains were compared using cytochrome oxidase histochemistry, an endogenous marker of regional metabolic capacity. A smaller subset of regions affected in adults showed significantly less metabolic activity in the newborn brains, including paraventricular hypothalamus, habenula, hippocampus, subiculum, lateral septal nucleus, anterior cingulate cortex, infralimbic cortex, and medial orbitofrontal cortex. A covariance analysis further revealed a striking reduction of functional connectivity in the congenitally helpless brain, including a complete decoupling of limbic forebrain regions from midbrain/diencephalic regions. This pattern of brain metabolism suggests that helplessness vulnerability is linked to altered functioning of limbic networks that are key to controlling the hypothalamic-pituitary-adrenal axis. This implies that vulnerable animals have innate deficits in brain systems that would normally allow them to cope with stress, predisposing them in this manner to more readily develop helpless and depressive behaviors.
Collapse
Affiliation(s)
- J Shumake
- Department of Psychology and Institute for Neuroscience, 1 University Station A8000, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
183
|
Sakata JT, Crews D. Cytochrome oxidase activity in the preoptic area correlates with differences in sexual behavior of intact and castrated male leopard geckos (Eublepharis macularius). Behav Neurosci 2004; 118:857-62. [PMID: 15301612 DOI: 10.1037/0735-7044.118.4.857] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although the utility of analyzing behavioral experience effects on neural cytochrome oxidase (CO) activity is well recognized, the behavioral correlates of endogenous differences in CO activity have rarely been explored. In male leopard geckos (Eublepharis macularius), the incubation temperature experienced during embryogenesis (IncT) and age affect CO activity in the preoptic area (POA), an area that modulates copulatory behavior. In this study, the authors assessed whether differences in POA CO activity correlate with differences in sexual behavior in intact and castrated geckos. Males with IncT- and age-dependent increases in POA CO activity mounted females with shorter latencies while intact and after castration and ejaculated more frequently after castration. The authors discuss the predictive value of CO activity and propose similar parallels in other species.
Collapse
Affiliation(s)
- J T Sakata
- Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | | |
Collapse
|
184
|
Millan MJ, Brocco M, Papp M, Serres F, La Rochelle CD, Sharp T, Peglion JL, Dekeyne A. S32504, a novel naphtoxazine agonist at dopamine D3/D2 receptors: III. Actions in models of potential antidepressive and anxiolytic activity in comparison with ropinirole. J Pharmacol Exp Ther 2004; 309:936-50. [PMID: 14978196 DOI: 10.1124/jpet.103.062463] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In forced-swim tests in mice and rats, the novel D(3)/D(2) receptor agonist S32504 [(+)-trans-3,4,4a,5,6,10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth[1,2-b]-1,4-oxazine] dose-dependently (0.04-2.5 mg/kg) and stereospecifically suppressed immobility compared with its enantiomer S32601 [(-)-trans-3,4,4a,5,6,10b-hexahydro-9-carbamoyl-4-propyl-2H-naphth-[1,2-b]-1,4-oxazine]. Ropinirole was less potent than S32504 in this procedure, and it was likewise less potent than S32504 (0.04-2.5 mg/kg) in attenuating motor-suppressant properties of the alpha(2)-adrenoceptor agonist S18616 [(S)-spiro[(1-oxa-2-amino-3-azacyclopent-2-ene)-4,2'-(1',2',3',4'-tetrahydronaphthalene)]]. In a learned helplessness paradigm, S32504 (0.08-2.5 mg/kg) suppressed escape failures. Furthermore, in a chronic mild stress model of anhedonia, S32504 (0.16-2.5 mg/kg) rapidly restored the suppression of sucrose consumption. S32504 inhibited marble-burying behavior in mice (0.04-0.16 mg/kg) and aggressive behavior in isolated mice (0.04-2.5 mg/kg): only higher doses of ropinirole mimicked these actions of S32504. In tests of anxiolytic activity, S32504 was more potent (0.0025-0.16 mg/kg) than ropinirole in suppressing fear-induced ultrasonic vocalizations, and S32601 was inactive. Furthermore, in contrast to ropinirole, S32504 modestly enhanced punished responses in a Vogel conflict procedure and increased open-arm entries in a plus-maze. At doses active in the above-described procedures, S32504 did not elicit hyperlocomotion. In the forced-swim, marble-burying, and ultrasonic vocalization models, actions of S32504 were blocked by the D(2)/D(3) antagonists haloperidol and raclopride and by the D(2) antagonist L741,626 [4-(4-chlorophenyl)-1-(1H-indol-3-ylmethyl)piperidin-4-ol], but not by the D(3) receptor antagonist S33084 [(3aR,9bS)-N-[4-(8-cyano-1,3a,4,9b-tetrahydro-3H-benzopyrano[3,4-c]pyrrole-2-yl)-butyl]-(4-phenyl)benzamide. Finally, chronic administration of S32504 did not, in contrast to venlafaxine, modify corticolimbic levels of serotonin(2A) receptors or brain-derived neurotrophic factor. In conclusion, S32504 displays a broad and distinctive profile of activity in models of potential antidepressive and anxiolytic properties. Its actions are more pronounced than those of ropinirole and principally involve engagement of D(2) receptors.
Collapse
MESH Headings
- Aggression/drug effects
- Animals
- Anti-Anxiety Agents/therapeutic use
- Antidepressive Agents/therapeutic use
- Brain-Derived Neurotrophic Factor/genetics
- Brain-Derived Neurotrophic Factor/metabolism
- Disease Models, Animal
- Dopamine Agonists/therapeutic use
- Electrophysiology
- Helplessness, Learned
- Humans
- Indoles/therapeutic use
- Male
- Maze Learning/drug effects
- Mice
- Motor Activity/drug effects
- Neurochemistry
- Oxazines/therapeutic use
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Dopamine D2/agonists
- Receptors, Dopamine D2/metabolism
- Receptors, Dopamine D3
- Sucrose/metabolism
- Swimming
- Vocalization, Animal/drug effects
Collapse
Affiliation(s)
- Mark J Millan
- Institut de Recherches Servier, Centre de Recherches de Croissy, Psychopharmacology Department, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Eisch AJ, Bolaños CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, Verhaagen J, Nestler EJ. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54:994-1005. [PMID: 14625141 DOI: 10.1016/j.biopsych.2003.08.003] [Citation(s) in RCA: 318] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Previous work has shown that brain-derived neurotrophic factor (BDNF) and its receptor, tyrosine kinase receptor B (TrkB), are involved in appetitive behavior. Here we show that BDNF in the ventral tegmental area-nucleus accumbens (VTA-NAc) pathway is also involved in the development of a depression-like phenotype. METHODS Brain-derived neurotrophic factor signaling in the VTA-NAc pathway was altered in two complementary ways. One group of rats received intra-VTA infusion of vehicle or BDNF for 1 week. A second group of rats received intra-NAc injections of vehicle or adeno-associated viral vectors encoding full-length (TrkB.FL) or truncated (TrkB.T1) TrkB; the latter is kinase deficient and serves as a dominant-negative receptor. Rats were examined in the forced swim test and other behavioral tests. RESULTS Intra-VTA infusions of BDNF resulted in 57% shorter latency to immobility relative to control animals, a depression-like effect. Intra-NAc injections of TrkB.T1 resulted in and almost fivefold longer latency to immobility relative to TrkB.FL and control animals, an antidepressant-like effect. No effect on anxiety-like behaviors or locomotion was seen. CONCLUSIONS These data suggest that BDNF action in the VTA-NAc pathway might be related to development of a depression-like phenotype. This interpretation is intriguing in that it suggests a role for BDNF in the VTA-NAc that is opposite of the proposed role for BDNF in the hippocampus.
Collapse
Affiliation(s)
- Amelia J Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Texas, Dallas 75390-9070, USA
| | | | | | | | | | | | | | | |
Collapse
|