151
|
OptMAVEn--a new framework for the de novo design of antibody variable region models targeting specific antigen epitopes. PLoS One 2014; 9:e105954. [PMID: 25153121 PMCID: PMC4143332 DOI: 10.1371/journal.pone.0105954] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 07/29/2014] [Indexed: 01/12/2023] Open
Abstract
Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies. Computational design methods can overcome some of these limitations by using biophysics models to rationally select antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn). OptMAVEn simulates in silico the in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel computational antibody models with numerous interactions with their target epitopes were generated. The observed rates of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse computational antibody models with both optimized binding affinity to antigens and reduced immunogenicity.
Collapse
|
152
|
Nonsynonymous substitution rate heterogeneity in the peptide-binding region among different HLA-DRB1 lineages in humans. G3-GENES GENOMES GENETICS 2014; 4:1217-26. [PMID: 24793785 PMCID: PMC4455771 DOI: 10.1534/g3.114.011726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An extraordinary diversity of amino acid sequences in the peptide-binding region (PBR) of human leukocyte antigen [HLA; human major histocompatibility complex (MHC)] molecules has been maintained by balancing selection. The process of accumulation of amino acid diversity in the PBR for six HLA genes (HLA-A, B, C, DRB1, DQB1, and DPB1) shows that the number of amino acid substitutions in the PBR among alleles does not linearly correlate with the divergence time of alleles at the six HLA loci. At these loci, some pairs of alleles show significantly less nonsynonymous substitutions at the PBR than expected from the divergence time. The same phenomenon was observed not only in the HLA but also in the rat MHC. To identify the cause for this, DRB1 sequences, a representative case of a typical nonlinear pattern of substitutions, were examined. When the amino acid substitutions in the PBR were placed with maximum parsimony on a maximum likelihood tree based on the non-PBR substitutions, heterogeneous rates of nonsynonymous substitutions in the PBR were observed on several branches. A computer simulation supported the hypothesis that allelic pairs with low PBR substitution rates were responsible for the stagnation of accumulation of PBR nonsynonymous substitutions. From these observations, we conclude that the nonsynonymous substitution rate at the PBR sites is not constant among the allelic lineages. The deceleration of the rate may be caused by the coexistence of certain pathogens for a substantially long time during HLA evolution.
Collapse
|
153
|
Allorecognition of HLA-DP by CD4+ T cells is affected by polymorphism in its alpha chain. Mol Immunol 2014; 59:19-29. [DOI: 10.1016/j.molimm.2013.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/18/2013] [Accepted: 12/27/2013] [Indexed: 11/21/2022]
|
154
|
Koutsogiannouli EA, Moutou KA, Stamatis C, Walter L, Mamuris Z. Genetic variation in the major histocompatibility complex of the European brown hare (Lepus europaeus) across distinct phylogeographic areas. Immunogenetics 2014; 66:379-92. [DOI: 10.1007/s00251-014-0772-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
155
|
Singh R, Gupta P, Sharma PK, Ades EW, Hollingshead SK, Singh S, Lillard JW. Prediction and characterization of helper T-cell epitopes from pneumococcal surface adhesin A. Immunology 2014; 141:514-30. [PMID: 24138116 PMCID: PMC3956426 DOI: 10.1111/imm.12194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/15/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022] Open
Abstract
Pneumococcal surface adhesin A (PsaA) is a multifunctional lipoprotein known to bind nasopharyngeal epithelial cells, and is significantly involved in bacterial adherence and virulence. Identification of PsaA peptides that optimally bind human leucocyte antigen (HLA) and elicit a potent immune response would be of great importance to vaccine development. However, this is hindered by the multitude of HLA polymorphisms in humans. To identify the conserved immunodominant epitopes, we used an experimental dataset of 28 PsaA synthetic peptides and in silico methods to predict specific peptide-binding to HLA and murine MHC class II molecules. We also characterized spleen and cervical lymph node (CLN) -derived T helper (Th) lymphocyte cytokine responses to these peptides after Streptococcus pneumoniae strain EF3030 challenge in mice. Individual, yet overlapping, peptides 15 amino acids in length revealed residues of PsaA that consistently caused the highest interferon-γ, interleukin-2 (IL-2), IL-5 and IL-17 responses and proliferation as well as moderate IL-10 and IL-4 responses by ex vivo re-stimulated splenic and CLN CD4⁺ T cells isolated from S. pneumoniae strain EF3030-challenged F1 (B6 × BALB/c) mice. In silico analysis revealed that peptides from PsaA may interact with a broad range of HLA-DP, -DQ and -DR alleles, due in part to regions lacking β-turns and asparagine endopeptidase sites. These data suggest that Th cell peptides (7, 19, 20, 22, 23 and 24) screened for secondary structures and MHC class II peptide-binding affinities can elicit T helper cytokine and proliferative responses to PsaA peptides.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - Pranav Gupta
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - Praveen K Sharma
- Centre of Life Sciences, School of Natural Sciences, Central University of JharkhandRanchi, India
| | - Edwin W Ades
- Division of Bacterial Diseases, Centers for Disease Control and PreventionAtlanta, GA, USA
| | - Susan K Hollingshead
- Department of Microbiology, University of Alabama at Birmingham School of MedicineBirmingham, AL, USA
| | - Shailesh Singh
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| | - James W Lillard
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of MedicineAtlanta, GA, USA
| |
Collapse
|
156
|
Study of MHC class II region polymorphism in the Filipino cynomolgus macaque population. Immunogenetics 2014; 66:219-30. [PMID: 24569954 DOI: 10.1007/s00251-014-0764-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/05/2014] [Indexed: 01/03/2023]
Abstract
The cynomolgus macaque (Macaca fascicularis) is currently used as an animal model in various fields of immunology especially in the development of innovative vaccines for the prevention and treatment of infectious diseases. The polymorphism of the major histocompatibility complex (MHC) influences the development of adaptive immune responses and it is crucial to characterize the polymorphism of cynomolgus MHC genes. We present here a systematic study of the MHC class II haplotypes in the Filipino macaque population. By the study of a large sample of Filipino animals (N = 353), we have characterized 18 MHC class II haplotypes by means of genotyping seven microsatellites. The animals were DRB genotyped by means of PCR-SSO or DGGE-sequencing on genomic amplified fragments. We cloned and sequenced the complementary DNA (cDNA) of DQA, DQB, DPA, and DPB genes of 117 animals. Combining the microsatellite genotyping and cDNA characterized in the 117 animals, we defined genetic association between the cDNA and the microsatellites and characterized 18 MHC class II haplotypes. For 104 animals out of the 353 studied, the presence of a recombinant haplotype was highly probable. Thirty-four percent of recombination was located in 256 kb segment between D6S2876 and D6S2747 microsatellites, a region encompassing several hot spots of recombination in the human MHC.
Collapse
|
157
|
Mutant OmpF porins of Yersinia pseudotuberculosis with deletions of external loops: structure-functional and immunochemical properties. Biochem Biophys Res Commun 2014; 445:428-32. [PMID: 24530904 DOI: 10.1016/j.bbrc.2014.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 11/20/2022]
Abstract
Recombinant mutant OmpF porins from Yersinia pseudotuberculosis outer membrane were obtained using site-directed mutagenesis. Here we used four OmpF mutants where single extracellular loops L1, L4, L6, and L8 were deleted one at a time. The proteins were expressed in Escherichia coli at levels comparable to full-sized recombinant OmpF porin and isolated from the inclusion bodies. Purified trimers of the mutant porins were obtained after dialysis and consequent ion-exchange chromatography. Changes in molecular and spatial structure of the mutants obtained were studied using SDS-PAGE and optical spectroscopy (circular dichroism and intrinsic protein fluorescence). Secondary and tertiary structure of the mutant proteins was found to have some features in comparison with that of the full-sized recombinant OmpF. As shown by bilayer lipid membrane technique, the pore-forming activity of purified mutant porins was identical to OmpF porin isolated from the bacterial outer membrane. Lacking of the external loops mentioned above influenced significantly upon the antigenic structure of the porin as demonstrated using ELISA.
Collapse
|
158
|
Santos S, Balas A, Azcarate M, Vesga MA, Vicario JL. Characterization of a novel HLA-DRB1 allele: DRB1*11:153. ACTA ACUST UNITED AC 2014; 83:297-8. [DOI: 10.1111/tan.12290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/15/2013] [Indexed: 11/28/2022]
Affiliation(s)
- S. Santos
- Histocompatibilidad; Centro Vasco de Transfusión y Tejidos Humanos; Galdacano Vizcaya, Spain
| | - A. Balas
- Histocompatibilidad; Centro de Transfusión de la Comunidad de Madrid; Madrid Spain
| | - M. Azcarate
- Histocompatibilidad; Centro Vasco de Transfusión y Tejidos Humanos; Galdacano Vizcaya, Spain
| | - M. A. Vesga
- Histocompatibilidad; Centro Vasco de Transfusión y Tejidos Humanos; Galdacano Vizcaya, Spain
| | - J. L. Vicario
- Histocompatibilidad; Centro de Transfusión de la Comunidad de Madrid; Madrid Spain
| |
Collapse
|
159
|
Fan Y, Lu R, Wang L, Andreatta M, Li SC. Quantifying Significance of MHC II Residues. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:17-25. [PMID: 26355503 DOI: 10.1109/tcbb.2013.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The major histocompatibility complex (MHC), a cell-surface protein mediating immune recognition, plays important roles in the immune response system of all higher vertebrates. MHC molecules are highly polymorphic and they are grouped into serotypes according to the specificity of the response. It is a common belief that a protein sequence determines its three dimensional structure and function. Hence, the protein sequence determines the serotype. Residues play different levels of importance. In this paper, we quantify the residue significance with the available serotype information. Knowing the significance of the residues will deepen our understanding of the MHC molecules and yield us a concise representation of the molecules. In this paper we propose a linear programming-based approach to find significant residue positions as well as quantifying their significance in MHC II DR molecules. Among all the residues in MHC II DR molecules, 18 positions are of particular significance, which is consistent with the literature on MHC binding sites, and succinct pseudo-sequences appear to be adequate to capture the whole sequence features. When the result is used for classification of MHC molecules with serotype assigned by WHO, a 98.4 percent prediction performance is achieved. The methods have been implemented in java (http://code.google.com/p/quassi/).
Collapse
|
160
|
Balas A, Sánchez-Gordo F, Gomez-Zumaquero JM, Prat I, Vicario JL. A new HLA allele, HLA-B*08:108, described in two unrelated Spanish individuals. ACTA ACUST UNITED AC 2013; 83:130-1. [PMID: 24341671 DOI: 10.1111/tan.12268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
HLA-B*08:108 shows one nucleotide difference regarding B*08:01:01 at codon 109 (CTC>TTC, L109>F109).
Collapse
Affiliation(s)
- A Balas
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
161
|
Selection of conserved epitopes from hepatitis C virus for pan-populational stimulation of T-cell responses. Clin Dev Immunol 2013; 2013:601943. [PMID: 24348677 PMCID: PMC3856138 DOI: 10.1155/2013/601943] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/19/2013] [Indexed: 12/14/2022]
Abstract
The hepatitis C virus (HCV) is able to persist as a chronic infection, which can lead to cirrhosis and liver cancer. There is evidence that clearance of HCV is linked to strong responses by CD8 cytotoxic T lymphocytes (CTLs), suggesting that eliciting CTL responses against HCV through an epitope-based vaccine could prove an effective means of immunization. However, HCV genomic plasticity as well as the polymorphisms of HLA I molecules restricting CD8 T-cell responses challenges the selection of epitopes for a widely protective vaccine. Here, we devised an approach to overcome these limitations. From available databases, we first collected a set of 245 HCV-specific CD8 T-cell epitopes, all known to be targeted in the course of a natural infection in humans. After a sequence variability analysis, we next identified 17 highly invariant epitopes. Subsequently, we predicted the epitope HLA I binding profiles that determine their potential presentation and recognition. Finally, using the relevant HLA I-genetic frequencies, we identified various epitope subsets encompassing 6 conserved HCV-specific CTL epitopes each predicted to elicit an effective T-cell response in any individual regardless of their HLA I background. We implemented this epitope selection approach for free public use at the EPISOPT web server.
Collapse
|
162
|
Beerbaum M, Ballaschk M, Erdmann N, Schnick C, Diehl A, Uchanska-Ziegler B, Ziegler A, Schmieder P. NMR spectroscopy reveals unexpected structural variation at the protein-protein interface in MHC class I molecules. JOURNAL OF BIOMOLECULAR NMR 2013; 57:167-178. [PMID: 24006098 DOI: 10.1007/s10858-013-9777-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/28/2013] [Indexed: 06/02/2023]
Abstract
β2-Microglobulin (β2m) is a small, monomorphic protein non-covalently bound to the heavy chain (HC) in polymorphic major histocompatibility complex (MHC) class I molecules. Given the high evolutionary conservation of structural features of β2m in various MHC molecules as shown by X-ray crystallography, β2m is often considered as a mere scaffolding protein. Using nuclear magnetic resonance (NMR) spectroscopy, we investigate here whether β2m residues at the interface to the HC exhibit changes depending on HC polymorphisms and the peptides bound to the complex in solution. First we show that human β2m can effectively be produced in deuterated form using high-cell-density-fermentation and we employ the NMR resonance assignments obtained for triple-labeled β2m bound to the HLA-B*27:09 HC to examine the β2m-HC interface. We then proceed to compare the resonances of β2m in two minimally distinct subtypes, HLA-B*27:09 and HLA-B*27:05, that are differentially associated with the spondyloarthropathy Ankylosing Spondylitis. Each of these subtypes is complexed with four distinct peptides for which structural information is already available. We find that only the resonances at the β2m-HC interface show a variation of their chemical shifts between the different complexes. This indicates the existence of an unexpected plasticity that enables β2m to accommodate changes that depend on HC polymorphism as well as on the bound peptide through subtle structural variations of the protein-protein interface.
Collapse
Affiliation(s)
- Monika Beerbaum
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Liu HY, Xue F, Wan QH, Ge YF. MHC Class II Genes in the Endangered Hainan Eld's Deer (Cervus eldi hainanus). J Hered 2013; 104:874-80. [DOI: 10.1093/jhered/est062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
164
|
Shu YL, Hong P, Yang YW, Wu HL. An endemic frog harbors multiple expression loci with different patterns of variation in the MHC class II B gene. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2013; 320:501-10. [DOI: 10.1002/jez.b.22525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Yi-Lin Shu
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Pei Hong
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Yi-Wen Yang
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| | - Hai-Long Wu
- College of Life Sciences; Anhui Normal University; Wuhu People's Republic of China
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province; Wuhu People's Republic of China
| |
Collapse
|
165
|
Zou HY, Jin SZ, Li Z. HLA-B*40:06:06, a novel allele, which has arisen by silent mutation in codon 45. ACTA ACUST UNITED AC 2013; 82:142-4. [DOI: 10.1111/tan.12156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 05/28/2013] [Indexed: 11/26/2022]
Affiliation(s)
- H-Y Zou
- Immunogenetic Laboratory, Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, China
| | | | | |
Collapse
|
166
|
Yakubu A, Salako AE, De Donato M, Takeet MI, Peters SO, Adefenwa MA, Okpeku M, Wheto M, Agaviezor BO, Sanni TM, Ajayi OO, Onasanya GO, Ekundayo OJ, Ilori BM, Amusan SA, Imumorin IG. Genetic Diversity in Exon 2 of the Major Histocompatibility Complex Class II DQB1 Locus in Nigerian Goats. Biochem Genet 2013; 51:954-66. [DOI: 10.1007/s10528-013-9620-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 02/13/2013] [Indexed: 10/26/2022]
|
167
|
|
168
|
Sánchez-Gordo F, Balas A, Gomez-Zumaquero JL, Prat I, Vicario JL. Description of two new HLA alleles,A*01:128andC*05:88, identified in Spanish individuals. ACTA ACUST UNITED AC 2013; 82:134-5. [DOI: 10.1111/tan.12149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022]
Affiliation(s)
- F. Sánchez-Gordo
- Histocompatibilidad; Centro de Transfusión de Málaga; Málaga; Spain
| | - A. Balas
- Histocompatibilidad; Centro de Transfusión de la Comunidad de Madrid; Madrid; Spain
| | - J. L. Gomez-Zumaquero
- Plataforma de Secuenciación y Genotipado, Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - I. Prat
- Histocompatibilidad; Centro de Transfusión de Málaga; Málaga; Spain
| | - J. L. Vicario
- Histocompatibilidad; Centro de Transfusión de la Comunidad de Madrid; Madrid; Spain
| |
Collapse
|
169
|
MHC II DRB variation and trans-species polymorphism in the golden snub-nosed monkey (Rhinopithecus roxellana). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5713-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
170
|
Characterization of MHC class II A genes in Hainan Eld’s deer (Cervus eldi hainanus). CHINESE SCIENCE BULLETIN-CHINESE 2013. [DOI: 10.1007/s11434-013-5696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
171
|
Lindholm AK, Musolf K, Weidt A, König B. Mate choice for genetic compatibility in the house mouse. Ecol Evol 2013; 3:1231-47. [PMID: 23762510 PMCID: PMC3678478 DOI: 10.1002/ece3.534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022] Open
Abstract
In house mice, genetic compatibility is influenced by the t haplotype, a driving selfish genetic element with a recessive lethal allele, imposing fundamental costs on mate choice decisions. Here, we evaluate the cost of genetic incompatibility and its implication for mate choice in a wild house mice population. In laboratory reared mice, we detected no fertility (number of embryos) or fecundity (ability to conceive) costs of the t, and yet we found a high cost of genetic incompatibility: heterozygote crosses produced 40% smaller birth litter sizes because of prenatal mortality. Surprisingly, transmission of t in crosses using +/t males was influenced by female genotype, consistent with postcopulatory female choice for + sperm in +/t females. Analysis of paternity patterns in a wild population of house mice showed that +/t females were more likely than +/+ females to have offspring sired by +/+ males, and unlike +/+ females, paternity of their offspring was not influenced by +/t male frequency, further supporting mate choice for genetic compatibility. As the major histocompatibility complex (MHC) is physically linked to the t, we investigated whether females could potentially use variation at the MHC to identify male genotype at the sperm or individual level. A unique MHC haplotype is linked to the t haplotype. This MHC haplotype could allow the recognition of t and enable pre- and postcopulatory mate choice for genetic compatibility. Alternatively, the MHC itself could be the target of mate choice for genetic compatibility. We predict that mate choice for genetic compatibility will be difficult to find in many systems, as only weak fertilization biases were found despite an exceptionally high cost of genetic incompatibility.
Collapse
Affiliation(s)
- Anna K Lindholm
- Institute of Evolutionary Biology und Environmental Studies, University of Zurich Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | | | | | | |
Collapse
|
172
|
Celniker G, Nimrod G, Ashkenazy H, Glaser F, Martz E, Mayrose I, Pupko T, Ben-Tal N. ConSurf: Using Evolutionary Data to Raise Testable Hypotheses about Protein Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201200096] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
173
|
Wowk PF, Mattar SB, Bicalho MG. Identification of a newHLA-DRB1*11variant,HLA-DRB1*11:130,by sequence-based typing in a Brazilian individual. ACTA ACUST UNITED AC 2013; 81:469-70. [DOI: 10.1111/tan.12089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 11/29/2022]
Affiliation(s)
- P. F. Wowk
- Laboratory of Immunogenetics and Histocompatibility, Genetics Department; Universidade Federal do Paraná; Curitiba; Brazil
| | - S. B. Mattar
- Laboratory of Immunogenetics and Histocompatibility, Genetics Department; Universidade Federal do Paraná; Curitiba; Brazil
| | - M. G. Bicalho
- Laboratory of Immunogenetics and Histocompatibility, Genetics Department; Universidade Federal do Paraná; Curitiba; Brazil
| |
Collapse
|
174
|
Oyarzún P, Ellis JJ, Bodén M, Kobe B. PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity. BMC Bioinformatics 2013; 14:52. [PMID: 23409948 PMCID: PMC3598884 DOI: 10.1186/1471-2105-14-52] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/31/2013] [Indexed: 12/18/2022] Open
Abstract
Background CD4+ T-cell epitopes play a crucial role in eliciting vigorous protective immune responses during peptide (epitope)-based vaccination. The prediction of these epitopes focuses on the peptide binding process by MHC class II proteins. The ability to account for MHC class II polymorphism is critical for epitope-based vaccine design tools, as different allelic variants can have different peptide repertoires. In addition, the specificity of CD4+ T-cells is often directed to a very limited set of immunodominant peptides in pathogen proteins. The ability to predict what epitopes are most likely to dominate an immune response remains a challenge. Results We developed the computational tool Predivac to predict CD4+ T-cell epitopes. Predivac can make predictions for 95% of all MHC class II protein variants (allotypes), a substantial advance over other available methods. Predivac bases its prediction on the concept of specificity-determining residues. The performance of the method was assessed both for high-affinity HLA class II peptide binding and CD4+ T-cell epitope prediction. In terms of epitope prediction, Predivac outperformed three available pan-specific approaches (delivering the highest specificity). A central finding was the high accuracy delivered by the method in the identification of immunodominant and promiscuous CD4+ T-cell epitopes, which play an essential role in epitope-based vaccine design. Conclusions The comprehensive HLA class II allele coverage along with the high specificity in identifying immunodominant CD4+ T-cell epitopes makes Predivac a valuable tool to aid epitope-based vaccine design in the context of a genetically heterogeneous human population.The tool is available at: http://predivac.biosci.uq.edu.au/.
Collapse
Affiliation(s)
- Patricio Oyarzún
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
175
|
A rationally engineered anti-HIV peptide fusion inhibitor with greatly reduced immunogenicity. Antimicrob Agents Chemother 2012; 57:679-88. [PMID: 23147734 DOI: 10.1128/aac.01152-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Peptides derived from the C-terminal heptad repeat 2 (HR2) region of the HIV-1 gp41 envelope glycoprotein, so-called C peptides, are very efficient HIV-1 fusion inhibitors. We previously developed innovative gene therapeutic approaches aiming at the direct in vivo production of C peptides from genetically modified host cells and found that T cells expressing membrane-anchored or secreted C peptides are protected from HIV-1 infection. However, an unwanted immune response against such antiviral peptides may significantly impair clinical efficacy and pose safety risks to patients. To overcome this problem, we engineered a novel C peptide, V2o, with greatly reduced immunogenicity and excellent antiviral activity. V2o is based on the chimeric C peptide C46-EHO, which is derived from the HR2 regions of HIV-2(EHO) and HIV-1(HxB2) and has broad anti-HIV and anti-simian immunodeficiency virus activity. Antibody and major histocompatibility complex class I epitopes within the C46-EHO peptide sequence were identified by in silico and in vitro analyses. Using rational design, we removed these epitopes by amino acid substitutions and thus minimized antigenicity and immunogenicity considerably. At the same time, the antiviral activity of the deimmunized peptide V2o was preserved or even enhanced compared to that of the parental C46-EHO peptide. Thus, V2o is an ideal candidate, especially for those novel therapeutic approaches for HIV infection that involve direct in vivo production of antiviral C peptides.
Collapse
|
176
|
Luo MF, Pan HJ, Liu ZJ, Li M. Balancing selection and genetic drift at major histocompatibility complex class II genes in isolated populations of golden snub-nosed monkey (Rhinopithecus roxellana). BMC Evol Biol 2012; 12:207. [PMID: 23083308 PMCID: PMC3532231 DOI: 10.1186/1471-2148-12-207] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 10/05/2012] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Small, isolated populations often experience loss of genetic variation due to random genetic drift. Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered primate species. RESULTS Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples representing three isolated populations. We isolated nine DQA1 alleles and sixteen DQB1 alleles and validated expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia (SNJ) population. Historical balancing selection was revealed at both the DQA1 and DQB1 loci, as revealed by excess non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models. Patterns of microsatellite variation revealed population structure. FST outlier analysis showed that population differentiation at the two MHC loci was similar to the microsatellite loci. CONCLUSIONS MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small, long-isolated populations. The results of this study may contribute to captive breeding and translocation programs for endangered species.
Collapse
Affiliation(s)
- Mao-Fang Luo
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
- Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Graduate School of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Juan Pan
- College of Nature Conservation, Beijing Forestry University, Beijing, 100083, China
| | - Zhi-Jin Liu
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
| | - Ming Li
- Key laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beixhenxi Road, Chaoyang, Beijing, 100101, China
| |
Collapse
|
177
|
MHC influences infection with parasites and winter survival in the root vole Microtus oeconomus. Evol Ecol 2012. [DOI: 10.1007/s10682-012-9611-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
178
|
Santos S, Balas A, García-Sánchez F, Vesga MA, Vicario JL. Sequencing of two novel HLA-A*29 alleles, A*29:39 and A*29:40. ACTA ACUST UNITED AC 2012; 80:541-2. [PMID: 23033953 DOI: 10.1111/tan.12013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/09/2012] [Indexed: 11/28/2022]
Abstract
A*29:39 differs from A*29:02:01 by three clustered amino acid replacements at α1 domain, T73>I73, A76>V76 and N77>D77. A*29:40 shows one nucleotide difference regarding A*29:02:01 allele, resulting in one amino acid substitution at position 154, E154>G154.
Collapse
Affiliation(s)
- S Santos
- Departamento de Histocompatibilidad, Centro Vasco de Transfusión y Tejidos Humanos, Galdacano, Vizcaya, Spain
| | | | | | | | | |
Collapse
|
179
|
Kuduk K, Babik W, Bojarska K, Śliwińska EB, Kindberg J, Taberlet P, Swenson JE, Radwan J. Evolution of major histocompatibility complex class I and class II genes in the brown bear. BMC Evol Biol 2012; 12:197. [PMID: 23031405 PMCID: PMC3508869 DOI: 10.1186/1471-2148-12-197] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. RESULTS We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. CONCLUSIONS Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.
Collapse
Affiliation(s)
- Katarzyna Kuduk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Wiesław Babik
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, Kraków, 31-016, Poland
| | - Katarzyna Bojarska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewa B Śliwińska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, Kraków, 31-120, Poland
| | - Jonas Kindberg
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, SE, 901 83, Sweden
| | - Pierre Taberlet
- Laboratoire d’Ecologie Alpine (LECA), Génomique des Populations et Biodiversité, CNRS UMR 5553, Université Joseph Fourier, BP 53, Grenoble Cedex 9, F-38041, France
| | - Jon E Swenson
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Ãs, NO-1432, Norway
- Norwegian Institute for Nature Research, Trondheim, NO-7485, Norway
| | - Jacek Radwan
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| |
Collapse
|
180
|
Gupta SK, Srivastava M, Akhoon BA, Gupta SK, Grabe N. In silico accelerated identification of structurally conserved CD8+ and CD4+ T-cell epitopes in high-risk HPV types. INFECTION GENETICS AND EVOLUTION 2012; 12:1513-8. [DOI: 10.1016/j.meegid.2012.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/06/2012] [Accepted: 02/12/2012] [Indexed: 01/18/2023]
|
181
|
Conejeros P, Power M, Alekseyev S, Dixon B. Global major histocompatibility class II β (mh-IIβ)-polymorphism in Arctic charr Salvelinus alpinus. JOURNAL OF FISH BIOLOGY 2012; 81:1158-1174. [PMID: 22957861 DOI: 10.1111/j.1095-8649.2012.03350.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study explored the use of the gene encoding the β subunit of the major histocompatibility (MH) receptor as a population marker in Arctic charr Salvelinus alpinus. The use of this polymorphic marker allowed differentiation of the S. alpinus lineages previously defined using mitochondrial DNA (mtDNA) but also allowed differentiation between the populations studied within those lineages. The majority of the variation observed here occurred prior to the last glaciation event. Nevertheless, all S. alpinus populations were differentiated using both MH Class II β (mh-IIβ) sequences and allelic frequencies. The fact that all the populations studied presented high rates of non-synonymous: synonymous substitutions and high levels of interpopulation variation, suggested mh-IIβ as an ideal marker to assess differentiation among S. alpinus populations in ways that may represent divergence both by genetic drift and natural adaptation to the local environment.
Collapse
Affiliation(s)
- P Conejeros
- Centro de Investigación y Gestión de Recursos Naturales, Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Errázuriz 1834, Valparaíso 2362735, Chile
| | | | | | | |
Collapse
|
182
|
Wu HL, Tong CC, Li E, Luo TL. Insight into gene evolution within Cervidae and Bovidae through genetic variation in MHC-DQA in the black muntjac (Muntiacus crinifrons). GENETICS AND MOLECULAR RESEARCH 2012; 11:2888-98. [PMID: 22653641 DOI: 10.4238/2012.may.15.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The critical role that the major histocompatibility complex plays in the immune recognition of parasites and pathogens makes its evolutionary dynamics exceptionally relevant to ecology, population biology, and conservation studies. The black muntjac is a rare deer endemic to a small mountainous region in eastern China. We found that this species has two DQA loci through cDNA expression and sequence variation analysis. The level of variation at both DQA loci was found to be extremely low (three alleles for DQA1 and four alleles for DQA2), possibly because of past bottlenecks and the species' relatively solitary behavior pattern. The ratio of d(N)/d(S) in the putative peptide binding region of the DQA2 locus (13.36, P = 0.012) was significantly larger than one but not that of DQA1 (0.94, P = 0.95), suggesting strong positive selection at the DQA2 but not at the DQA1 locus. This difference might reflect different sets of evolutionary selection pressures acting on the two loci. The phylogenetic tree showed that DQA1 alleles from two species of Cervidae and two of Bovidae grouped together, as did the DQA2 alleles. However, different genes from the four species were located in separate branches. These results lead us to suggest that these DQA alleles are derived from primordial DQA genes from a common ancestor and are maintained in Cervidae and Bovidae since their divergence around 25.5-27.8 million years ago.
Collapse
Affiliation(s)
- H-L Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, China.
| | | | | | | |
Collapse
|
183
|
Li W, Wang T, Ling F, Zhao H, Wei L, Zhuo M, Du H, Wang X. Identification of MhcMafa-DRB alleles in a cohort of cynomolgus macaques of Vietnamese origin. Am J Primatol 2012; 74:958-66. [PMID: 22903750 DOI: 10.1002/ajp.22048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/04/2012] [Accepted: 05/23/2012] [Indexed: 11/11/2022]
Abstract
Cynomolgus macaques have been used widely to build a research model of infectious and chronic diseases, as well as in transplantation studies, where disease susceptibility and/or resistance are associated with the major histocompatibility complex (MHC). To better elucidate polymorphisms and genetic differences in the Mafa-DRB locus, and facilitate the experimental use of cynomolgus macaques, we used pool screening combined with cloning and direct sequencing of polymerase chain reaction products to characterize MhcMafa-DRB gene alleles in 153 Vietnamese cynomolgus macaques. We identified 30 Mafa-DRB alleles belonging to 17 allelic lineages, including four novel sequences that had not been documented in earlier reports. The highest frequency allele was Mafa-DRB*W27:04, which was present in 7 of 35 (20%) monkeys. The next most frequent alleles were Mafa-DRB*3:07 and Mafa-DRB*W7:01, which were detected in 5 of 35 (14.3%) and 4 of 35 (11.4%) of the monkeys, respectively. The high-frequency alleles in this Vietnamese population may be high priority targets for additional characterization of immune functions. Only the DRB1*03 and DRB1*10 lineages were also present in humans, whereas the remaining alleles were monkey-specific lineages. We found 25 variable sites by aligning the deduced amino acid sequences of 29 identified alleles. Evolutionary and population analyses based on these sequences showed that human, rhesus, and cynomolgus macaques share several Mhc-DRB lineages and the shared polymorphisms in the DRB region may be attributable to the existence of interbreeding between rhesus and cynomolgus macaques. This information will promote the understanding of MHC diversity and polymorphism in cynomolgus macaques and increase the value of this species as a model for biomedical research.
Collapse
Affiliation(s)
- Wai Li
- School of Life Science, General Hospital of PLA T, Beijing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
184
|
Chen F, Pan L, Chao W, Dai Y, Yu W. Character of chicken polymorphic major histocompatibility complex class II alleles of 3 Chinese local breeds. Poult Sci 2012; 91:1097-104. [PMID: 22499866 DOI: 10.3382/ps.2011-02007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To better understand the major histocompatibility complex (MHC) genetic character of domestic birds, we sequenced and analyzed chicken MHC II (B-L) genes of 3 local chicken breeds, derived from 3 separate areas in China. We amplified cDNA sequences from 105 individuals, accounting for 35 alleles. Some of the same B-LB alleles with a high frequency were found in all samples. The putative B-L α-chain had few polymorphic sites, whereas the B-L β-chain had several polymorphic sites. Most of the mutation positions were located in the B-LB β1 domain encoded by exon 2, especially in the peptide-binding region. This indicated that the highly polymorphic peptide-binding region could potentiate binding diverse antigen epitopes. The comparison of 3-D molecule structures of chicken B-L and human HLA-DR1 revealed a distinctly structural similarity, but the chicken B-L molecule had more polymorphic sites than the human HLA-DR1 molecule, which presumably might be a mechanism to compensate for responding to a wider array of pathogens due to fewer loci for chicken. Moreover, some conserved sites in human and chicken MHC class II molecules reflected their common ancestry and similar functions. These results suggest that the chicken B-L gene showed more polymorphic sites and distinctly dominant trans-breed alleles, potentially to adapt to pathogens.
Collapse
Affiliation(s)
- F Chen
- Anhui Agricultural University, Hefei 230036, China
| | | | | | | | | |
Collapse
|
185
|
Zhang P, Kuang YY, Wu HL, Li L, Ge YF, Wan QH, Fang SG. The Père David's deer MHC class I genes show unexpected diversity patterns, with monomorphic classical genes but polymorphic nonclassical genes and pseudogenes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 318:294-307. [PMID: 22821865 DOI: 10.1002/jez.b.22445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Père David's deer (Elaphurus davidianus) is a highly inbred species that arose from 11 founders but now comprises a population of about 3,000 individuals, making it interesting to investigate the adaptive variation of this species from the major histocompatibility complex (MHC) perspective. In this study, we isolated Elda-MHC class I loci using magnetic bead-based cDNA hybridization, and examined the molecular variations of these loci using single-strand conformation polymorphism (SSCP) and sequence analysis. We obtained seven MHC class I genes, which we designated F1, F12, G2, I7, AF, I8, and C1. Our analyses of stop codons, phylogenetic trees, amino acid conservation, and G+C content revealed that F1, F12, G2, and I7 were classical genes, AF was a nonclassical gene, and I8 and C1 were pseudogenes. Our subsequent molecular examinations showed that the diversity pattern in the Père David's deer was unusual. Most mammals have more polymorphic classical class I loci vs. the nonclassical and neutral genes. In contrast, the Père David's deer was found to be monomorphic at classical genes F1, F12, G2, and I7, dimorphic at the nonclassical AF gene, dimorphic at pseudogene I8, and tetramorphic at pseudogene C1. The adverse polymorphism patterns of Elda-I genes might provide evidence for selection too faster deplete MHC variation than drift in the bottlenecked populations, while the postbottleneck tetramorphism of the C1 pseudogene appears to be evidence of strong historical balancing selection.
Collapse
Affiliation(s)
- Pei Zhang
- The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
186
|
Kuduk K, Johanet A, Allainé D, Cohas A, Radwan J. Contrasting patterns of selection acting on MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). J Evol Biol 2012; 25:1686-93. [PMID: 22594882 DOI: 10.1111/j.1420-9101.2012.02537.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.
Collapse
Affiliation(s)
- K Kuduk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, Poland
| | | | | | | | | |
Collapse
|
187
|
Babik W, Kawałko A, Wójcik JM, Radwan J. Low Major Histocompatibility Complex Class I (MHC I) Variation in the European Bison (Bison bonasus). J Hered 2012; 103:349-59. [DOI: 10.1093/jhered/ess005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
188
|
RADWAN JACEK, ZAGALSKA-NEUBAUER MAGDALENA, CICHOŃ MARIUSZ, SENDECKA JOANNA, KULMA KATARZYNA, GUSTAFSSON LARS, BABIK WIESŁAW. MHC diversity, malaria and lifetime reproductive success in collared flycatchers. Mol Ecol 2012; 21:2469-79. [DOI: 10.1111/j.1365-294x.2012.05547.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
189
|
Blancher A, Aarnink A, Tanaka K, Ota M, Inoko H, Yamanaka H, Nakagawa H, Apoil PA, Shiina T. Study of cynomolgus monkey (Macaca fascicularis) Mhc DRB gene polymorphism in four populations. Immunogenetics 2012; 64:605-14. [PMID: 22790512 DOI: 10.1007/s00251-012-0613-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/12/2012] [Indexed: 11/25/2022]
Abstract
The cynomolgus macaque (Macaca fascicularis) is currently used as an animal model in various fields of immunology especially in the development of innovative vaccines for the prevention and treatment of infectious diseases. The polymorphism of the major histocompatibility complex (MHC) influences the development of adaptive immune responses, and it is crucial to characterize the polymorphism of cynomolgus MHC genes. Among all macaque species, the cynomolgus macaque has the most diversified geographical area encompassing continental and insular populations. By the study of a large sample of animals from the Philippines (N = 359), we have characterized 20 DRB haplotypes. The DRB genotyping was performed by denaturing gradient gel electrophoresis (DGGE) sequencing of exon 2 and was confirmed by polymerase chain reaction-sequence-specific oligonucleotide. The DRB and DRA cDNA of 126 animals were characterized by cloning and sequencing. By means of DGGE sequencing, we characterized the polymorphism of genomic DRB exon 2 in three other cynomolgus macaque population samples (Java, Vietnam, and Mauritius), and we discuss about the origin of the founders of the Mauritian and the Filipino cynomolgus macaque populations.
Collapse
Affiliation(s)
- Antoine Blancher
- Laboratoire d'Immunogénétique moléculaire, EA 3034, Faculté de Médecine Purpan, Université Paul Sabatier, Toulouse 3, CHU de Toulouse, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Mattar SB, Wowk PF, da Graça Bicalho M. HLA-DRB1*08:48, a novel allele identified in a Brazilian donor. ACTA ACUST UNITED AC 2012; 79:391-2. [DOI: 10.1111/j.1399-0039.2012.01850.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
191
|
Chen H, Hayashi G, Lai OY, Dilthey A, Kuebler PJ, Wong TV, Martin MP, Fernandez Vina MA, McVean G, Wabl M, Leslie KS, Maurer T, Martin JN, Deeks SG, Carrington M, Bowcock AM, Nixon DF, Liao W. Psoriasis patients are enriched for genetic variants that protect against HIV-1 disease. PLoS Genet 2012; 8:e1002514. [PMID: 22577363 PMCID: PMC3343879 DOI: 10.1371/journal.pgen.1002514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/11/2011] [Indexed: 02/08/2023] Open
Abstract
An important paradigm in evolutionary genetics is that of a delicate balance between genetic variants that favorably boost host control of infection but which may unfavorably increase susceptibility to autoimmune disease. Here, we investigated whether patients with psoriasis, a common immune-mediated disease of the skin, are enriched for genetic variants that limit the ability of HIV-1 virus to replicate after infection. We analyzed the HLA class I and class II alleles of 1,727 Caucasian psoriasis cases and 3,581 controls and found that psoriasis patients are significantly more likely than controls to have gene variants that are protective against HIV-1 disease. This includes several HLA class I alleles associated with HIV-1 control; amino acid residues at HLA-B positions 67, 70, and 97 that mediate HIV-1 peptide binding; and the deletion polymorphism rs67384697 associated with high surface expression of HLA-C. We also found that the compound genotype KIR3DS1 plus HLA-B Bw4-80I, which respectively encode a natural killer cell activating receptor and its putative ligand, significantly increased psoriasis susceptibility. This compound genotype has also been associated with delay of progression to AIDS. Together, our results suggest that genetic variants that contribute to anti-viral immunity may predispose to the development of psoriasis.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Genki Hayashi
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Olivia Y. Lai
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Alexander Dilthey
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Peter J. Kuebler
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Tami V. Wong
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Maureen P. Martin
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, National Cancer Institute, Frederick, Maryland, United States of America
| | | | - Gil McVean
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Matthias Wabl
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Kieron S. Leslie
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Toby Maurer
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Steven G. Deeks
- HIV/AIDS Program, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, National Cancer Institute, Frederick, Maryland, United States of America
| | - Anne M. Bowcock
- Division of Human Genetics, Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Douglas F. Nixon
- Division of Experimental Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Wilson Liao
- Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
192
|
Bahr A, Wilson AB. The evolution of MHC diversity: evidence of intralocus gene conversion and recombination in a single-locus system. Gene 2012; 497:52-7. [PMID: 22301266 DOI: 10.1016/j.gene.2012.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/16/2012] [Accepted: 01/17/2012] [Indexed: 11/29/2022]
Abstract
Gene conversion, the unidirectional exchange of genetic material between homologous sequences, is thought to strongly influence patterns of genetic diversity. The high diversity of major histocompatibility complex (MHC) genes in many species is thought to reflect a long history of gene conversion events both within and among loci. Theoretical work suggests that intra- and interlocus gene conversion leave characteristic signatures of nucleotide diversity, but empirical studies of MHC variation have rarely been able to analyze the effects of conversion events in isolation, due to the presence of multiple gene copies in most species. The potbellied seahorse (Hippocampus abdominalis), a species with a single copy of the MH class II beta-chain gene (MHIIb), provides an ideal system in which to explore predictions on the effects of intralocus gene conversion on patterns of genetic diversity. The genetic diversity of the MHIIb peptide binding region (PBR) is high in the seahorse, similar to other vertebrate species. In contrast, the remainder of the gene shows a total absence of synonymous variation and low levels of intronic sequence diversity, concentrated in 3 short repetitive regions and 1-12 SNPs per intron. The distribution of substitutions across the gene results in a patchwork pattern of shared polymorphism between otherwise divergent sequences. The pattern of nucleotide diversity observed in the seahorse MHIIb gene is congruent with theoretical expectations for intralocus gene conversion, indicating that this evolutionary mechanism has played an important role in MHC gene evolution, contributing to both the high diversity in the PBR and the low diversity outside this region. Neutral variation at this locus may be further reduced due to biases in nucleotide composition and functional constraints.
Collapse
Affiliation(s)
- Angela Bahr
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
193
|
Balas A, Sánchez-Gordo F, García-Sánchez F, Prat I, Vicario JL. Sequencing of a new HLA-DRB1*04:98 allele in a Spanish donor. TISSUE ANTIGENS 2011; 78:462-463. [PMID: 21762398 DOI: 10.1111/j.1399-0039.2011.01740.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
DRB1*04:98 shows four nucleotide changes regarding DRB1*04:01:01, resulting in two amino acids replacement at positions A73G and A74R.
Collapse
Affiliation(s)
- A Balas
- Departamento de Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain.
| | | | | | | | | |
Collapse
|
194
|
Heyder J, Heinold A, Fiedler G, Opelz G, Tran TH. Characterization of four new HLA alleles: HLA-B*15:01:18, HLA-B*44:110, HLA-C*04:01:22 and HLA-DQB 1*05:14. ACTA ACUST UNITED AC 2011; 79:209-10. [DOI: 10.1111/j.1399-0039.2011.01805.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
195
|
Rice JM, Stern LJ, Guignon EF, Lawrence DA, Lynes MA. Antigen-specific T cell phenotyping microarrays using grating coupled surface plasmon resonance imaging and surface plasmon coupled emission. Biosens Bioelectron 2011; 31:264-9. [PMID: 22104646 DOI: 10.1016/j.bios.2011.10.029] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/10/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022]
Abstract
The circulating population of peripheral T lymphocytes obtained from a blood sample can provide a large amount of information about an individual's medical status and history. Recent evidence indicates that the detection and functional characterization of antigen-specific T cell subsets within the circulating population may provide a diagnostic indicator of disease and has the potential to predict an individual's response to therapy. In this report, a microarray detection platform that combines grating-coupled surface plasmon resonance imaging (GCSPRI) and grating-coupled surface plasmon coupled emission (SPCE) fluorescence detection modalities were used to detect and characterize CD4(+) T cells. The microspot regions of interest (ROIs) printed on the array consisted of immobilized antibodies or peptide loaded MHC monomers (p/MHC) as T cell capture ligands mixed with additional antibodies as cytokine capture ligands covalently bound to the surface of a corrugated gold sensor chip. Using optimized parameters, an unlabeled influenza peptide reactive T cell clone could be detected at a frequency of 0.1% in a mixed T cell sample using GCSPRI. Additionally, after cell binding was quantified, differential TH1 cytokine secretion patterns from a T cell clone cultured under TH1 or TH2 inducing conditions was detected using an SPCE fluorescence based assay. Differences in the secretion patterns of 3 cytokines, characteristic of the inducing conditions, indicated that differences were a consequence of the functional status of the captured cells. A dual mode GCSPRI/SPCE assay can provide a rapid, high content T cell screening/characterization tool that is useful for diagnosing disease, evaluating vaccination efficacy, or assessing responses to immunotherapeutics.
Collapse
Affiliation(s)
- James M Rice
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, BSP 318, Storrs, CT 06269, USA.
| | | | | | | | | |
Collapse
|
196
|
Sin YW, Dugdale HL, Newman C, Macdonald DW, Burke T. MHC class II genes in the European badger (Meles meles): characterization, patterns of variation, and transcription analysis. Immunogenetics 2011; 64:313-27. [DOI: 10.1007/s00251-011-0578-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 09/28/2011] [Indexed: 10/16/2022]
|
197
|
Bharadwaj M, Illing P, Theodossis A, Purcell AW, Rossjohn J, McCluskey J. Drug hypersensitivity and human leukocyte antigens of the major histocompatibility complex. Annu Rev Pharmacol Toxicol 2011; 52:401-31. [PMID: 22017685 DOI: 10.1146/annurev-pharmtox-010611-134701] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human leukocyte antigen (HLA) genes are the most polymorphic in the human genome and are critical in regulating specific immunity, hence their historical discovery as "immune response" genes. HLA allotypes are also implicated in unwanted immune reactions, including drug hypersensitivity syndrome, in which small therapeutic drugs interact with antigenic peptides to drive T cell responses restricted by host HLA. Abacavir, allo-purinol, and carbamazepine are three commonly used drugs that cause a T cell-mediated hypersensitivity that is HLA linked, with each drug exhibiting striking specificity for presentation by defined HLA allotypes. Recent findings have begun to unearth the mechanistic basis for these HLA associations, and here we review recent advances in the field of HLA-associated drug hypersensitivities.
Collapse
Affiliation(s)
- Mandvi Bharadwaj
- Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
198
|
Novikova OD, Khomenko VA, Emelyanenko VI, Likhatskaya GN, Zelepuga EA, Kim NY, Isaeva MP, Portnyagina OY, Vostrikova OP, Sidorova OV, Solov’eva TF. OmpC-like porin from Yersinia pseudotuberculosis: Molecular characteristics, physico-chemical and functional properties. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2011. [DOI: 10.1134/s1990747811010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
199
|
Misra N, Panda PK, Shah K, Sukla LB, Chaubey P. Population coverage analysis of T-Cell epitopes of Neisseria meningitidis serogroup B from Iron acquisition proteins for vaccine design. Bioinformation 2011; 6:255-61. [PMID: 21738325 PMCID: PMC3124689 DOI: 10.6026/97320630006255] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 06/01/2011] [Indexed: 01/10/2023] Open
Abstract
Although the concept of Reverse Vaccinology was first pioneered for sepsis and meningococcal meningitidis causing bacterium, Neisseria meningitides, no broadly effective vaccine against serogroup B meningococcal disease is yet available. In the present investigation, HLA distribution analysis was undertaken to select three most promiscuous T-cell epitopes out of ten computationally validated epitopes of Iron acquisition proteins from Neisseria MC58 by using the population coverage tool of Immune Epitope Database (IEDB). These epitopes have been determined on the basis of their binding ability with maximum number of HLA alleles along with highest population coverage rate values for all the geographical areas studied. The comparative population coverage analysis of moderately immunogenic and high immunogenic peptides suggests that the former may activate T-cell response in a fairly large proportion of people in most geographical areas, thus indicating their potential for development of epitope-based vaccine.
Collapse
Affiliation(s)
- Namrata Misra
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Prasanna Kumar Panda
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Kavita Shah
- Environmental Biochemistry and Bioinformatics Lab, Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi-221 005, India
| | - Lala Bihari Sukla
- Bioresources Engineering Department, Institute of Minerals and Materials Technology (formerly Regional Research Lab), CSIR, Bhubaneswar-751013, Orissa,India
| | - Priyanka Chaubey
- Environmental Biochemistry and Bioinformatics Lab, Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
200
|
Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol 2011; 91:274-86. [PMID: 21665321 DOI: 10.1016/j.ejcb.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|