151
|
Shreevatsa B, Dharmashekara C, Swamy VH, Gowda MV, Achar RR, Kameshwar VH, Thimmulappa RK, Syed A, Elgorban AM, Al-Rejaie SS, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy. Molecules 2021; 26:6863. [PMID: 34833955 PMCID: PMC8622762 DOI: 10.3390/molecules26226863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of -8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1.
Collapse
Affiliation(s)
- Bhargav Shreevatsa
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Vikas Halasumane Swamy
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Meghana V. Gowda
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (V.H.S.); (M.V.G.)
| | - Vivek Hamse Kameshwar
- School of Natural Science, Adichunchanagiri University, B.G. Nagara, Nagamangala, Mandya 571448, India;
| | - Rajesh Kumar Thimmulappa
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru 570015, India;
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.S.); (A.M.E.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia;
| | - Joaquín Ortega-Castro
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, 07122 Palma de Malllorca, Spain; (J.O.-C.); (J.F.)
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru 570015, India; (B.S.); (C.D.)
| | - Shiva Prasad Kollur
- Department of Sciences, Mysuru Campus, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru 570026, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| |
Collapse
|
152
|
Zawadzińska K, Ríos-Gutiérrez M, Kula K, Woliński P, Mirosław B, Krawczyk T, Jasiński R. The Participation of 3,3,3-Trichloro-1-nitroprop-1-ene in the [3 + 2] Cycloaddition Reaction with Selected Nitrile N-Oxides in the Light of the Experimental and MEDT Quantum Chemical Study. Molecules 2021; 26:6774. [PMID: 34833866 PMCID: PMC8622200 DOI: 10.3390/molecules26226774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
The regioselective zw-type [3 + 2] cycloaddition (32CA) reactions of a series of aryl-substituted nitrile N-oxides (NOs) with trichloronitropropene (TNP) have been both experimentally and theoretically studied within the Molecular Electron Density Theory (MEDT). Zwitterionic NOs behave as moderate nucleophiles while TNP acts as a very strong electrophile in these polar 32CA reactions of forward electron density flux, which present moderate activation Gibbs free energies of 22.8-25.6 kcal·mol-1 and an exergonic character of 28.4 kcal·mol-1 that makes them irreversible and kinetically controlled. The most favorable reaction is that involving the most nucleophilic MeO-substituted NO. Despite Parr functions correctly predicting the experimental regioselectivity with the most favorable O-CCCl3 interaction, these reactions follow a two-stage one-step mechanism in which formation of the O-C(CCl3) bond takes place once the C-C(NO2) bond is already formed. The present MEDT concludes that the reactivity differences in the series of NOs come from their different nucleophilic activation and polar character of the reactions, rather than any mechanistic feature.
Collapse
Affiliation(s)
- Karolina Zawadzińska
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Mar Ríos-Gutiérrez
- Department of Organic Chemistry, University of Valencia, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - Karolina Kula
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Przemysław Woliński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| | - Barbara Mirosław
- Department of General and Coordination Chemistry and Crystallography, Maria Curie-Sklodowska University in Lublin, Pl. Marii Curie-Sklodowskiej 3, 20-031 Lublin, Poland;
| | - Tomasz Krawczyk
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland;
| | - Radomir Jasiński
- Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; (K.Z.); (K.K.); (P.W.)
| |
Collapse
|
153
|
Serrano-Sterling C, Becerra D, Portilla J, Rojas H, Macías M, Castillo JC. Synthesis, biological evaluation and X-ray crystallographic analysis of novel (E)-2-cyano-3-(het)arylacrylamides as potential anticancer agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
154
|
Pradeep S, Jain AS, Dharmashekara C, Prasad SK, Akshatha N, Pruthvish R, Amachawadi RG, Srinivasa C, Syed A, Elgorban AM, Al Kheraif AA, Ortega-Castro J, Frau J, Flores-Holguín N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Synthesis, Computational Pharmacokinetics Report, Conceptual DFT-Based Calculations and Anti-Acetylcholinesterase Activity of Hydroxyapatite Nanoparticles Derived From Acorus Calamus Plant Extract. Front Chem 2021; 9:741037. [PMID: 34692640 PMCID: PMC8529163 DOI: 10.3389/fchem.2021.741037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 01/02/2023] Open
Abstract
Over the years, Alzheimer's disease (AD) treatments have been a major focus, culminating in the identification of promising therapeutic targets. A herbal therapy approach has been required by the demand of AD stage-dependent optimal settings. Present study describes the evaluation of anti-acetylcholinesterase (AChE) activity of hydroxyapatite nanoparticles derived from an Acorus calamus rhizome extract (AC-HAp NPs). The structure and morphology of as-prepared (AC-HAp NPs) was confirmed using powder X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HR-TEM). The crystalline nature of as-prepared AC-HAp NPs was evident from XRD pattern. The SEM analysis suggested the spherical nature of the synthesized material with an average diameter between 30 and 50 nm. Further, the TEM and HR-TEM images revealed the shape and size of as-prepared (AC-HAp NPs). The interplanar distance between two lattice fringes was found to be 0.342 nm, which further supported the crystalline nature of the material synthesized. The anti-acetylcholinesterase activity of AC-HAp NPs was greater as compared to that of pure HAp NPs. The mechanistic evaluation of such an activity carried out using in silico studies suggested that the anti-acetylcholinesterase activity of phytoconstituents derived from Acorus calamus rhizome extract was mediated by BNDF, APOE4, PKC-γ, BACE1 and γ-secretase proteins. The global and local descriptors, which are the underpinnings of Conceptual Density Functional Theory (CDFT), have been predicted through the MN12SX/Def2TZVP/H2O model chemistry to help in the comprehension of the chemical reactivity properties of the five ligands considered in this study. With the further objective of analyzing their bioactivity, the CDFT studies are complemented with the estimation of some useful computed pharmacokinetics indices, their predicted biological targets, and the ADMET parameters related to the bioavailability of the five ligands are also reported.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Anisha S Jain
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shashanka K Prasad
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | | | - R Pruthvish
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, India
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangothri, Davangere, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Shiva Prasad Kollur
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| |
Collapse
|
155
|
Domingo LR, Acharjee N. Unveiling the Substituent Effects in the Stereochemistry of [3+2] Cycloaddition Reactions of Aryl‐ and Alkyldiazomethylphosphonates with Norbornadiene within a MEDT Perspective. ChemistrySelect 2021. [DOI: 10.1002/slct.202102942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry University of Valencia Dr. Moliner 50 Burjassot E-46100 Valencia Spain
| | - Nivedita Acharjee
- Department of Chemistry Durgapur Government College J. N. Avenue Durgapur West Bengal 713214 India
| |
Collapse
|
156
|
Ibrahim SM, Halim SA. Novel SnZr oxides nanomaterials synthesized by ultrasonic-assisted co-precipitation method: Application in biodiesel production and DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
157
|
Gester R, Torres A, da Cunha AR, Andrade-Filho T, Manzoni V. Theoretical study of thieno[3,4-b]pyrazine derivatives with enhanced NLO response. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
158
|
Raiol A, da Cunha AR, Manzoni V, Andrade-Filho T, Gester R. Solvent enhancement and isomeric effects on the NLO properties of a photoinduced cis-trans azomethine chromophore: A sequential MC/QM study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116887] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
159
|
Mohamed M, Abdelakder H, Abdellah B. Microwave assisted synthesis of 4-aminophenol Schiff bases: DFT computations, QSAR/Drug-likeness proprieties and antibacterial screening. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130666] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
160
|
Soleymani M, Chegeni M, Mohammadi E. BF3-catalyzed oxa-Diels–Alder reaction of ethyl vinyl sulfide and β-methyl-α-phenylacrolein: a molecular electron density theory study. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02841-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
161
|
Benbouguerra K, Chafai N, Chafaa S, Touahria YI, Tlidjane H. New α-Hydrazinophosphonic acid: Synthesis, characterization, DFT study and in silico prediction of its potential inhibition of SARS-CoV-2 main protease. J Mol Struct 2021; 1239:130480. [PMID: 33903777 PMCID: PMC8059216 DOI: 10.1016/j.molstruc.2021.130480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022]
Abstract
A new α-Hydrazinophosphonic acid (HDZPA) has been synthesized and its molecular structure was determined using spectroscopic methods. The Density Functional Theory (DFT) at the B3LYP/6-31 G (d,p) level was utilized to determine the electronic properties, vibrational modes and active sites of the examined molecule. In this context, some quantum chemical parameters have been calculated in order to discuss the reactivity of the studied molecule. Also, the inhibition activity of the investigated α-Hydrazinophosphonic acid for SARS-CoV-2 main protease (Mpro) and RNA dependent RNA polymerase (RdRp) has been predicted using in silico docking.
Collapse
Affiliation(s)
- Khalissa Benbouguerra
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda campus, 19000 Sétif, Algeria
- Département de Sciences Agronomiques, Faculté des Sciences de la Nature et de la Vie et des Sciences de la Terre et de l'Univers, Université Mohamed El Bachir El Ibrahimi de Bordj Bou Arréridj El-Anasser, 34030, Algeria
| | - Nadjib Chafai
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda campus, 19000 Sétif, Algeria
| | - Salah Chafaa
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda campus, 19000 Sétif, Algeria
| | - Youcef Islam Touahria
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda campus, 19000 Sétif, Algeria
| | - Hamida Tlidjane
- Laboratory of Electrochemistry of Molecular Materials and Complex (LEMMC). Department of Process Engineering, Faculty of Technology, University of Ferhat ABBAS Setif-1, El-Mabouda campus, 19000 Sétif, Algeria
| |
Collapse
|
162
|
Synthesis, crystal structure and electronic applications of monocarboxylic acid substituted phthalonitrile derivatives combined with DFT studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
163
|
Flores-Holguín N, Frau J, Glossman-Mitnik D. In Silico Pharmacokinetics, ADMET Study and Conceptual DFT Analysis of Two Plant Cyclopeptides Isolated From Rosaceae as a Computational Peptidology Approach. Front Chem 2021; 9:708364. [PMID: 34458236 PMCID: PMC8397472 DOI: 10.3389/fchem.2021.708364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
This research presents the outcomes of a computational determination of the chemical reactivity and bioactivity properties of two plant cyclopeptides isolated from Rosaceae through the consideration of Computational Peptidology (CP), a protocol employed previously in the research of similar molecular systems. CP allows the prediction of the global and local descriptors that are the integral foundations of Conceptual Density Functional Theory (CDFT) and which could help in getting in the understanding of the chemical reactivity properties of the two plant cyclopeptides under study, hoping that they could be related to their bioactivity. The methodology based on the Koopmans in DFT (KID) approach and the MN12SX/Def2TZVP/H2O model chemistry has been successfully validated. Various Chemoinformatics tools have been used to improve the process of virtual screening, thus identifying some additional properties of these two plant cyclopeptides connected to their ability to behave as potentially useful drugs. With the further objective of analyzing their bioactivity, the CP protocol is complemented with the estimation of some useful parameters related to pharmacokinetics, their predicted biological targets, and the Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) parameters related to the bioavailability of the two plant cyclopeptides under study are also reported.
Collapse
Affiliation(s)
- Norma Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | - Juan Frau
- Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| |
Collapse
|
164
|
Zhao Q, Li Y, Zhang QX, Cheng JP, Li X. Catalytic Asymmetric Aza-Diels-Alder Reaction of Ketimines and Unactivated Dienes. Angew Chem Int Ed Engl 2021; 60:17608-17614. [PMID: 34036702 DOI: 10.1002/anie.202104788] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/11/2021] [Indexed: 12/19/2022]
Abstract
The enantioselective aza-Diels-Alder reaction is efficient for constructing chiral tetrahydropyridines, but the catalytic asymmetric aza-Diels-Alder reaction of ketimines with unactivated dienes is still a challenging topic. Herein, guided by computational screening, a highly enantioselective aza-Diels-Alder reaction of 2-aryl-3H-indol-3-ones with unactivated dienes was realized by using a B(C6 F5 )3 /chiral phosphoric acid catalyst system under mild conditions. The reaction has a broad scope with respect to both aza-Diels-Alder reaction partners and hence offers rapid access to an array of tetrahydropyridine derivatives with pretty outcomes (up to 99 % yield, >20:1 dr and 98:2 er). The reaction is very efficient: lowering catalyst loadings for the model reaction to 0.1 mol %, enantioselectivity is still maintained. The synthetic utility was confirmed by transformations of the products. DFT calculations provide convincing evidence for the interpretation of stereoselection.
Collapse
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing-Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.,Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
165
|
Zhao Q, Li Y, Zhang Q, Cheng J, Li X. Catalytic Asymmetric Aza‐Diels–Alder Reaction of Ketimines and Unactivated Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qun Zhao
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Qing‐Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
166
|
Modeling the DFT structural and reactivity studies of a pyrimidine -6-carboxylate derivative with reference to its wavefunction-dependent, MD simulations and evaluation for potential antimicrobial activity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
167
|
Acharjee N, Mohammad-Salim HA, Chakraborty M. Unveiling [3 + 2] cycloaddition reactions of benzonitrile oxide and diphenyl diazomethane to cyclopentene and norbornene: a molecular electron density theory perspective. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02811-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
168
|
Moghazy YM, Hamada NMM, Fathalla MF, Elmarassi YR, Hamed EA, El-Atawy MA. Understanding the reaction mechanism of the regioselective piperidinolysis of aryl 1-(2,4-dinitronaphthyl) ethers in DMSO: Kinetic and DFT studies. PROGRESS IN REACTION KINETICS AND MECHANISM 2021. [DOI: 10.1177/14686783211027446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactions of aryl 1-(2,4-dinitronaphthyl) ethers with piperidine in dimethyl sulfoxide at 25oC resulted in substitution of the aryloxy group at the ipso carbon atom. The reaction was measured spectrophotochemically and the kinetic studies suggested that the titled reaction is accurately third order. The mechanism is began by fast nucleophilic attack of piperidine on C1 to form zwitterion intermediate (I) followed by deprotonation of zwitterion intermediate (I) to the Meisenheimer ion (II) in a slow step, that is, SB catalysis. The regular variation of activation parameters suggested that the reaction proceeded through a common mechanism. The Hammett equation using reaction constant σo values and Brønsted coefficient value showed that the reaction is poorly dependent on aryloxy substituent and the reaction was significantly associative and Meisenheimer intermediate-like. The mechanism of piperidinolysis has been theoretically investigated using density functional theory method using B3LYP/6-311G(d,p) computational level. The combination between experimental and computational studies predicts what mechanism is followed either through uncatalyzed or catalyzed reaction pathways, that is, SB and SB-GA. The global parameters of the reactants, the proposed activated complexes, and the local Fukui function analysis explained that C1 carbon atom is the most electrophilic center of ether. Also, kinetics and theoretical calculation of activation energies indicated that the mechanism of the piperidinolysis passed through a two-step mechanism and the proton transfer process was the rate determining step.
Collapse
Affiliation(s)
- Yasmen M Moghazy
- Chemistry Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Nagwa MM Hamada
- Chemistry Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Magda F Fathalla
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Yasser R Elmarassi
- Chemistry Department, Faculty of Education, Alexandria University, Alexandria, Egypt
- Basic Science Department, Imam Abdulrahman Bin Faisal University (Dammam University), Dammam, Kingdom of Saudi Arabia
| | - Ezzat A Hamed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed A El-Atawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| |
Collapse
|
169
|
Sahrane M, Marakchi K, Ghailane R. Theoretical study of the Diels–Alder reaction of 3-bromo-1-phenylprop-2-ynone with furan and 2-methylfuran. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02812-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
170
|
Ekramipooya A, Valadi FM, Farisabadi A, Gholami MR. Effect of the heteroatom presence in different positions of the model asphaltene structure on the self-aggregation: MD and DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116109] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
171
|
Examinations directed to characterization within the framework of spectroscopic and DFT approach on the structural isomer of the pyridine substituted thiazole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
172
|
A molecular electron density theory study of the [3 + 2] cycloaddition reaction of nitronic ester with methyl acrylate. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
173
|
Ha NN, Thi Thu Ha N, Cam LM. New insight into the mechanism of carbon dioxide activation on copper-based catalysts: A theoretical study. J Mol Graph Model 2021; 107:107979. [PMID: 34217023 DOI: 10.1016/j.jmgm.2021.107979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 11/18/2022]
Abstract
A combination of Artificial Bee Colony algorithm, eXtended Tight Binding and Density functional theory methods were performed to study the activation process of carbon dioxide (CO2) over copper (Cu4 cluster) based catalytic systems. The findings revealed that the activation of the C-O bond resulted from the electron transfer to σ*, π* - MO of CO2. The more the electrons are transferred to CO2, the more the C-O bond is activated and elongated. The suitability of several metal oxide supports (Fe2O3, Al2O3, MgO, ZnO) is estimated using calculated electronic parameters (global electrophilicity index, vertical ionization potential and vertical electron affinity). Aside from demonstrating the appropriateness of Al2O3 and ZnO, a thorough examination of MgO revealed that, due to the formation of stable carbonate products, this oxide is not really appropriate as a support for copper-based catalysts in CO2 conversion. Our studies have also shown that the electron enrichment of copper atoms plays a key role in the activation of C-O bonds. Alkali metal doping (Li, K, Cs) significantly improves the catalytic efficiency of the Cu4 cluster. Based on the results of electron transfer to the CO2 molecule, the effect of doping alkali metal atoms may be organized in the following order: Cs > K > Li. A new core/shell catalytic system with potassium atoms in the core and copper atoms in the shell has been proposed and has proven to be a promising, efficient catalytic system in the CO2 adsorption and activation.
Collapse
Affiliation(s)
- Nguyen Ngoc Ha
- Faculty of Chemistry, Hanoi National University of Education, 100000, 136 Xuan Thuy Str., Hanoi, Viet Nam.
| | - Nguyen Thi Thu Ha
- Faculty of Chemistry, Hanoi National University of Education, 100000, 136 Xuan Thuy Str., Hanoi, Viet Nam.
| | - Le Minh Cam
- Faculty of Chemistry, Hanoi National University of Education, 100000, 136 Xuan Thuy Str., Hanoi, Viet Nam.
| |
Collapse
|
174
|
Cuesta SA, Torres FJ, Rincón L, Paz JL, Márquez EA, Mora JR. Effect of the Nucleophile's Nature on Chloroacetanilide Herbicides Cleavage Reaction Mechanism. A DFT Study. Int J Mol Sci 2021; 22:ijms22136876. [PMID: 34206795 PMCID: PMC8268095 DOI: 10.3390/ijms22136876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, the degradation mechanism of chloroacetanilide herbicides in the presence of four different nucleophiles, namely: Br-, I-, HS-, and S2O3-2, was theoretically evaluated using the dispersion-corrected hybrid functional wB97XD and the DGDZVP as a basis set. The comparison of computed activation energies with experimental data shows an excellent correlation (R2 = 0.98 for alachlor and 0.97 for propachlor). The results suggest that the best nucleophiles are those where a sulfur atom performs the nucleophilic attack, whereas the other species are less reactive. Furthermore, it was observed that the different R groups of chloroacetanilide herbicides have a negligible effect on the activation energy of the process. Further insights into the mechanism show that geometrical changes and electronic rearrangements contribute 60% and 40% of the activation energy, respectively. A deeper analysis of the reaction coordinate was conducted, employing the evolution chemical potential, hardness, and electrophilicity index, as well as the electronic flux. The charge analysis shows that the electron density of chlorine increases as the nucleophilic attack occurs. Finally, NBO analysis indicates that the nucleophilic substitution in chloroacetanilides is an asynchronous process with a late transition state for all models except for the case of the iodide attack, which occurs through an early transition state in the reaction.
Collapse
Affiliation(s)
- Sebastián A. Cuesta
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador; (S.A.C.); (F.J.T.); (L.R.)
- Departamento de Ingeniería Química, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - F. Javier Torres
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador; (S.A.C.); (F.J.T.); (L.R.)
- Departamento de Ingeniería Química, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - Luis Rincón
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador; (S.A.C.); (F.J.T.); (L.R.)
- Departamento de Ingeniería Química, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
| | - José Luis Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Cercado de Lima 15081, Peru;
| | - Edgar A. Márquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Exactas, Universidad del Norte, Carrera 51B, Km 5, Vía Puerto Colombia, Barranquilla 081007, Colombia
- Correspondence: (E.A.M.); (J.R.M.)
| | - José R. Mora
- Grupo de Química Computacional y Teórica (QCT-USFQ), Departamento de Ingeniería Química, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador; (S.A.C.); (F.J.T.); (L.R.)
- Departamento de Ingeniería Química, Instituto de Simulación Computacional (ISC-USFQ), Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito 170901, Ecuador
- Correspondence: (E.A.M.); (J.R.M.)
| |
Collapse
|
175
|
Keim M, Konetzke K, Freytag A, Maas G. 3‐Trifloxy‐3‐(trifluoromethyl)prop‐2‐ene 1‐Iminium Salts as Precursors for Elusive 3‐(Trifluoromethyl)prop‐2‐yne 1‐Iminium Salts. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Michael Keim
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Katharina Konetzke
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Angelika Freytag
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Gerhard Maas
- Institute of Organic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
176
|
Ngo Hanna J, Nziko VDPN, Ntie-Kang F, Mbah JA, Toze FAA. The use of minimal topological differences to inspire the design of novel tetrahydroisoquinoline analogues with antimalarial activity. Heliyon 2021; 7:e07032. [PMID: 34095565 PMCID: PMC8165424 DOI: 10.1016/j.heliyon.2021.e07032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/18/2021] [Accepted: 05/06/2021] [Indexed: 11/30/2022] Open
Abstract
A quantitative structure-activity relationship (QSAR) study was conducted using nineteen previously synthesized, and tested 1-aryl-6-hydroxy-1,2,3,4-tetrahydroisoquinolines with proven in vitro activities against Plasmodium falciparum. In order to computationally design and screen potent antimalarial agents, these compounds with known biological activity ranging from 0.697 to 35.978 μM were geometry optimized at the B3LYP/6-311 + G(d,p) level of theory, using the Gaussian 09W software. To calculate the topological differences, the series of the nineteen compounds was superimposed and a hypermolecule obtained with s¯ = 17 and 20 vertices. Other molecular descriptors were considered in order to build a highly predictive QSAR model. These include the minimal topological differences (MTD), LogP, two dimensional polarity surface area (TDPSA), dipole moment (μ), chemical hardness (η), electrophilicity (ω), potential energy (Ep), electrostatic energy (Eele) and number of rotatable bonds (NRB). By using a training set composed of 15 randomly selected compounds from this series, several QSAR equations were derived. The QSAR equations obtained were then used to attempt to predict the IC50 values of 4 remaining compounds in a test (or validation) set. Ten analogues were proposed by a fragment search of a fragment library containing the pharmacophore model of the active compounds contained in the training set. The most active proposed analogue showed a predicted activity within the lower micromolar range.
Collapse
Affiliation(s)
- Joelleinsert Ngo Hanna
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon.,Department of Chemistry, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon
| | | | - Fidele Ntie-Kang
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon.,Department of Pharmaceutical Chemistry, Martin-Luther University of Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.,Institute of Botany, Technical University University Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - James A Mbah
- Department of Chemistry, Faculty of Science, University of Buea, P. O. Box 63, Buea, Cameroon
| | - Flavien A A Toze
- Department of Chemistry, Faculty of Science, University of Douala, P. O. Box 24157, Douala, Cameroon
| |
Collapse
|
177
|
Spessato L, Duarte VA, Viero P, Zanella H, Fonseca JM, Arroyo PA, Almeida VC. Optimization of Sibipiruna activated carbon preparation by simplex-centroid mixture design for simultaneous adsorption of rhodamine B and metformin. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125166. [PMID: 33858109 DOI: 10.1016/j.jhazmat.2021.125166] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/31/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The present paper reports the application of augmented simplex-centroid mixture design to obtain a high BET surface area activated carbon using as reactants KOH, K2CO3 and K2C2O4. The optimum mixture composition was 2.51 g of KOH, 0.49 g of K2CO3 and absence of K2C2O4, generating an optimized AC (ACop) with SBET value equals to 1984 m2 g-1. The results herein obtained show that low amounts of K2CO3 can catalyze the pore development in the presence of KOH, increasing the surface area. Furthermore, the fractal dimensions of ACop are greater than 2.72, indicating the material has a complex pore structure with irregularities self-similar upon variations of resolution, as seen by SEM images. The TPD curves showed that the ACop has different oxygenated molecular fragments, which agrees with the pHPZC value (5.05). The ACop was applied in the adsorption of rhodamine B (RhB) and metformin (Met) in both binary and monocomponent systems. The simultaneous adsorption at 30 °C reveals that the adsorption capacity of RhB is 630.94 mg g-1, while for Met the value is 103.83 mg g-1.
Collapse
Affiliation(s)
- Lucas Spessato
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.
| | - Vitor A Duarte
- Department of Chemical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Patrícia Viero
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Heloisa Zanella
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Jhessica M Fonseca
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Pedro A Arroyo
- Department of Chemical Engineering, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil
| | - Vitor C Almeida
- Department of Chemistry, State University of Maringá, Av. Colombo 5790, Maringá, Paraná, Brazil.
| |
Collapse
|
178
|
Rkein B, Bigot A, Birbaum L, Manneveau M, De Paolis M, Legros J, Chataigner I. Reactivity of 3-nitroindoles with electron-rich species. Chem Commun (Camb) 2021; 57:27-44. [PMID: 33300929 DOI: 10.1039/d0cc06658c] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The indol(in)e building block is one of the "privileged-structures" for the pharmaceutical industry since this fragment plays a central role in drug discovery. While the electron-rich character of the indole motif has been investigated for decades, exploiting the electrophilic reactivity of 3-nitroindole derivatives has recently been put at the heart of a wide range of new, albeit challenging, chemical reactions. In particular, dearomatization processes have considerably enriched the scope of C2[double bond, length as m-dash]C3 functionalizations of these scaffolds. This feature article showcases this remarkable electrophilic reactivity of 3-nitroindoles with electron-rich species and highlights their value in generating diversely substituted indol(in)es. This compilation underlines how these heteroaromatic templates have gradually become model substrates for electron-poor aromatic compounds in dearomatization strategies.
Collapse
Affiliation(s)
- Batoul Rkein
- Normandie Université, INSA Rouen, UNIROUEN, CNRS, COBRA Laboratory, F-76000 Rouen, France.
| | | | | | | | | | | | | |
Collapse
|
179
|
Sheena Mary Y, Shyma Mary Y, Serdaroglu G, Kaya S, Sarojini BK, Umamahesvari H, Mohan BJ. Conformational Analysis, Spectroscopic Insights, Chemical Descriptors, ELF, LOL and Molecular Docking Studies of Potential Pyrimidine Derivative with Biological Activities. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1924803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | - Goncagül Serdaroglu
- Faculty of Education, Mathematics and Science Education, Sivas Cumhuriyet University, Sivas, Turkey
| | - Savaş Kaya
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, Sivas, Turkey
| | - B. K. Sarojini
- Department of Industrial Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| | - H. Umamahesvari
- Department of Physics, Srinivasa Institute of Technology and Management Studies (Autonomous), Chittoor, Andhra Pradesh, India
| | - B. J. Mohan
- Department of Chemistry, P.A. College of Engineering, Mangalore, Karnatka, India
| |
Collapse
|
180
|
Ayarde-Henríquez L, Guerra C, Duque-Noreña M, Rincón E, Pérez P, Chamorro E. Are There Only Fold Catastrophes in the Diels-Alder Reaction Between Ethylene and 1,3-Butadiene? J Phys Chem A 2021; 125:5152-5165. [PMID: 33977708 DOI: 10.1021/acs.jpca.1c01448] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This work revisits the topological characterization of the Diels-Alder reaction between 1,3-butadiene and ethylene. In contrast to the currently accepted rationalization, we here provide strong evidence in support of a representation in terms of seven structural stability domains separated by a sequence of 10 elementary catastrophes, but all are only of the fold type (F and F†), that is, C4H6 + C2H4:1-7-[FF]F[F†F†][F†F†][FF]F†-0: C6H10. Such an unexpected finding provides fundamental new insights opening simplifying perspectives concerning the rationalization of the CC bond formation in pericyclic reactions in terms of the simplest Thom's elementary catastrophe, namely, the one-(state) variable, one-(control) parameter function.
Collapse
Affiliation(s)
- Leandro Ayarde-Henríquez
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andres Bello, Avenida República 275, 8370146 Santiago, Chile
| | - Cristian Guerra
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andres Bello, Avenida República 275, 8370146 Santiago, Chile
| | - Mario Duque-Noreña
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andres Bello, Avenida República 275, 8370146 Santiago, Chile
| | - Elizabeth Rincón
- Facultad de Ciencias, Instituto de Ciencias Químicas, Universidad Austral de Chile, Las encinas 220, 5110033 Valdivia, Chile
| | - Patricia Pérez
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andres Bello, Avenida República 275, 8370146 Santiago, Chile
| | - Eduardo Chamorro
- Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andres Bello, Avenida República 275, 8370146 Santiago, Chile
| |
Collapse
|
181
|
Lotfi M, Hamzehloueian M, Haghdadi M. A DFT study on the mechanism and selectivity of [3 + 2] cycloaddition reactions leading to pyrole[2,1-a] phthalazine compounds. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02756-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
182
|
Domingo LR, Acharjee N. Unveiling the Chemo‐ and Regioselectivity of the [3+2] Cycloaddition Reaction between 4‐Chlorobenzonitrile Oxide and β‐Aminocinnamonitrile with a MEDT Perspective**. ChemistrySelect 2021. [DOI: 10.1002/slct.202100978] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Luis R Domingo
- Department of Organic Chemistry University of Valencia Dr.Moliner 50 Burjassot E-46100 Valencia Spain E-mail: Contact
| | - Nivedita Acharjee
- Department of Chemistry Durgapur Government College J. N. Avenue Durgapur West Bengal 713214 India E-mail: Contact
| |
Collapse
|
183
|
Microwave-assisted synthesis of (3,5-disubstituted isoxazole)-linked benzimidazolone derivatives: DFT calculations and biological activities. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02764-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
184
|
Aggoun D, Messasma Z, Bouzerafa B, Berenguer R, Morallon E, Ouennoughi Y, Ourari A. Synthesis, characterization and DFT investigation of new metal complexes of Ni(II), Mn(II) and VO(IV) containing N,O-donor Schiff base ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
185
|
Nasaruddin NH, Ahmad SN, Sirat SS, Wai TK, Zakaria NA, Bahron H. Structural Characterization, DFT, Hirshfeld Surface Analysis and Antibacterial Activity of a Schiff Base Derived from Cyclohexanediamine. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130066] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
186
|
Concentration and solvent dependent SERS, DFT, MD simulations and molecular docking studies of a thioxothiazolidine derivative with antimicrobial properties. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
187
|
Periyasamy K, Sakthivel P, Vennila P, Anbarasan P, Venkatesh G, Sheena Mary Y. Novel D-π-A phenothiazine and dibenzofuran organic dyes with simple structures for efficient dye-sensitized solar cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
188
|
Alnajjar R, Mohamed N, Kawafi N. Bicyclo[1.1.1]Pentane as Phenyl Substituent in Atorvastatin Drug to improve Physicochemical Properties: Drug-likeness, DFT, Pharmacokinetics, Docking, and Molecular Dynamic Simulation. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
189
|
Ahmad S, Mahmood T, Ahmad M, Arshad MN, Ullah F, Shafiq M, Aslam S, Asiri AM. Synthesis, single crystal X-ray, spectroscopic and computational (DFT) studies 2,1-benzothiazine based hydrazone derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
190
|
Kula K, Kącka-Zych A, Łapczuk-Krygier A, Jasiński R. Analysis of the possibility and molecular mechanism of carbon dioxide consumption in the Diels-Alder processes. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-1009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The large and significant increase in carbon dioxide concentration in the Earth’s atmosphere is a serious problem for humanity. The amount of CO2 is increasing steadily which causes a harmful greenhouse effect that damages the Earth’s climate. Therefore, one of the current trends in modern chemistry and chemical technology are issues related to its utilization. This work includes the analysis of the possibility of chemical consumption of CO2 in Diels-Alder processes under non-catalytic and catalytic conditions after prior activation of the C=O bond. In addition to the obvious benefits associated with CO2 utilization, such processes open up the possibility of universal synthesis of a wide range of internal carboxylates. These studies have been performed in the framework of Molecular Electron Density Theory as a modern view of the chemical reactivity. It has been found, that explored DA reactions catalyzed by Lewis acids with the boron core, proceeds via unique stepwise mechanism with the zwitterionic intermediate. Bonding Evolution Theory (BET) analysis of the molecular mechanism associated with the DA reaction between cyclopentadiene and carbon dioxide indicates that it takes place thorough a two-stage one-step mechanism, which is initialized by formation of C–C single bond. In turn, the DA reaction between cyclopentadiene and carbon dioxide catalysed by BH3 extends in the environment of DCM, indicates that it takes place through a two-step mechanism. First path of catalysed DA reaction is characterized by 10 different phases, while the second by eight topologically different phases.
Collapse
Affiliation(s)
- Karolina Kula
- Institute of Organic Chemistry and Technology, Cracow University of Technology , Cracow 31-155 , Poland
| | - Agnieszka Kącka-Zych
- Institute of Organic Chemistry and Technology, Cracow University of Technology , Cracow 31-155 , Poland
| | - Agnieszka Łapczuk-Krygier
- Institute of Organic Chemistry and Technology, Cracow University of Technology , Cracow 31-155 , Poland
| | - Radomir Jasiński
- Institute of Organic Chemistry and Technology, Cracow University of Technology , Cracow 31-155 , Poland
| |
Collapse
|
191
|
The Role of the Catalyst on the Reactivity and Mechanism in the Diels–Alder Cycloaddition Step of the Povarov Reaction for the Synthesis of a Biological Active Quinoline Derivative: Experimental and Theoretical Investigations. ORGANICS 2021. [DOI: 10.3390/org2010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
An experimental and theoretical study of the reactivity and mechanism of the non-catalyzed and catalyzed Povarov reaction for the preparation of a 4-ethoxy-2,3,4,4a-tetrahydro-2-phenylquinoline as a biological active quinoline derivative has been performed. The optimization of experimental conditions indicate that the use of a catalyst, namely Lewis acid with an electron-releasing group, creates the best experimental conditions for this kind of reaction. The chemical structure was characterized by the usual spectroscopic methods. The prepared quinoline derivative has been also tested in vitro for antibacterial activity, which displays moderate inhibitory activity against both Escherichia coli and Staphylococcus aureus. The antioxidant activity was investigated in vitro by evaluating their reaction with 1,1-diphenyl-2-picrylhydrazyl DPPH radical, which reveals high reactivity. The computational study was performed on the Diels–Alder step of the Povarov reaction using a B3LYP/6-31G(d,p) level of theory. The conceptual DFT reactivity indices explain well the reactivity and the meta regioselectivity experimentally observed. Both catalysts enhance the reactivity of the imine, favoring the formation of the meta regioisomers with a low activation energy, and they change the mechanism to highly synchronous for the Lewis acid and to stepwise for the Brønsted acid. The reaction of imine with allyl alcohol does not give any product, which requires high activation energy.
Collapse
|
192
|
Spectroscopic and DFT investigations of 8-hydroxy quinoline-5-sulfonic acid-5-chloro-8-hydroxyquinoline cocrystal. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01579-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
193
|
Theoretical Study of closo-Borate Anions [BnHn]2− (n = 5–12): Bonding, Atomic Charges, and Reactivity Analysis. Symmetry (Basel) 2021. [DOI: 10.3390/sym13030464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This study has focused on the structure, bonding, and reactivity analysis of closo-borate anions [BnHn]2− (n = 5–12). Several descriptors of B–H interactions have been calculated. It has been found that the values of electron density and total energy at bond critical point are the most useful descriptors for investigation of B–H interactions. Using results from the descriptor analysis, one may conclude that orbital interactions in [BnHn]2− increase with increasing the boron cluster size. Several approaches to estimate atomic charges have been applied. Boron atoms in apical positions have more negative values of atomic charges as compared with atoms from equatorial positions. The mean values of boron and hydrogen atomic charges tend to be more positive with the increasing of boron cluster size. Global and local reactivity descriptors using conceptual density functional theory (DFT) theory have been calculated. Based on this theory, the closo-borate anions [BnHn]2− (n = 5–9) can be considered strong and moderate electrophiles, while the closo-borate anions [BnHn]2− (n = 10–12) can be considered marginal electrophiles. Fukui functions for electrophilic attack have been calculated. Fukui functions correlate well with atomic charges of the closo-borate anions. Boron atoms in apical positions have the most positive values of Fukui functions.
Collapse
|
194
|
Elkwafi G, Mohamed N, Elabbar F, Alnajjar R. Flavonoid content of the Libyan Onosma Cyrenaicum: isolation, identification, electronic chemical reactivity, drug likeness, docking, and MD study. J Biomol Struct Dyn 2021; 40:7351-7366. [PMID: 33685329 DOI: 10.1080/07391102.2021.1897046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, an attempt to identify the flavonoid content of the Libyan Onosma Cyrenaicum led to the isolation of three flavonoids 7,8-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one(GE-001), 5,7-dihydroxy-2-(3-hydroxy-4-methoxy phenyl)-4H-chromen-4-one (GE-002) and 5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one (GE-003), the isolated compounds were characterized using 1H and 13C-NMR techniques. A further DFT study at ωB97-XD with 6-311++G** basis set in water was conducted to calculate the isolated compounds' global and local reactivity descriptors and Fukui indices along with their antioxidant activity. The drug-likeness and bioactivity properties of the isolated compounds were estimated and discussed. Finally, GE-001, GE-002, and GE-003 were docked into HCV NS5B polymerase active siteand this was followed by molecular dynamic simulation to certify the obtained docking result and to obtain the MM-GBSA free binding energyy of the isolated compounds. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghazala Elkwafi
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
| | - Najwa Mohamed
- Department of Medicinal Chemistry, Faculty of Pharmacy, University of Benghazi, Benghazi, Libya
| | - Fakhri Elabbar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya.,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
195
|
Heydari S, Haghdadi M, Hamzehloueian M, Bosra HG. An investigation of the regio-, chemo-, and stereoselectivity of cycloaddition reactions of 2-phenylsulfonyl-1,3-butadiene and its 3-phenylsulfanyl derivative: a DFT study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
196
|
Regio- and stereochemistry in the intramolecular [4 + 2] and intermolecular [3 + 2] cycloaddition reactions in the synthesis of epoxypyrrolo[3,4-g]indazoles: a density functional theory study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
197
|
Experimental and theoretical spectroscopic characterization, NLO response, and reactivity of the pharmacological agent spilanthol and analogues. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
198
|
Unveiling the molecular mechanisms of the cycloaddition reactions of aryl hetaryl thioketones and C,N-disubstituted nitrilimines. J Mol Model 2021; 27:84. [PMID: 33594575 DOI: 10.1007/s00894-021-04706-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Many synthetic routes to constructing biologically active heterocyclic compounds are made feasible through the (3 + 2) cycloaddition (32CA) reactions. Due to a large number of possible combinations of several heteroatoms from either the three-atom components (TACs) or the ethylene derivatives, the potential of the 32CA reactions in heterocyclic syntheses is versatile. Herein, the cycloaddition reaction of thiophene-2-carbothialdehyde derivatives and C,N-disubstituted nitrilimines have been studied through density functional theory (DFT) calculations at the B3LYP/6-311G(d,p) level of theory. In the present study, a one-step 32CA and two-step (4 + 3) cycloaddition (43CA) reaction mechanisms involved in TACs reactions and ethylene derivative have been investigated. In all reactions considered, the one-step 32CA cycloaddition is preferred over the two-step 43CA. The TAC chemoselectively adds across the thiocarbonyl group present in the ethylene derivative in a 32CA fashion to form the corresponding cycloadduct. Analysis of the electrophilic [Formula: see text] and nucleophilic [Formula: see text] Parr functions at the various reaction centers in the ethylene derivative show that the TAC adds across the atomic centers with the largest Parr functions, which is in total agreement with the experimental observation. The selectivities observed in the titled reactions are kinetically controlled.
Collapse
|
199
|
McCosker PM, Butler NM, Shakoori A, Volland MK, Perry MJ, Mullen JW, Willis AC, Clark T, Bremner JB, Guldi DM, Keller PA. The Cascade Reactions of Indigo with Propargyl Substrates for Heterocyclic and Photophysical Diversity. Chemistry 2021; 27:3708-3721. [PMID: 32885487 DOI: 10.1002/chem.202003662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/31/2020] [Indexed: 11/11/2022]
Abstract
The synthesis of structurally diverse heterocycles for chemical space exploration was achieved via the cascade reactions of indigo with propargylic electrophiles. New pyrazinodiindolodione, naphthyridinedione, azepinodiindolone, oxazinoindolone and pyrrolodione products were prepared in one pot reactions by varying the leaving group (-Cl, -Br, -OMs, -OTs) or propargyl terminal functionality (-H, -Me, -Ph, -Ar). Mechanistic and density functional theory studies revealed that the unsaturated propargyl moiety can behave as an electrophile when aromatic terminal substitutions are made, and therefore competes with leaving group substitution for new outcomes. Selected products from the cascade reactions were investigated for their absorption and fluorescence properties, including transient absorption spectroscopy. This revealed polarity dependent excited state relaxation pathways, fluorescence, and triplet formation, thus highlighting these reactions as a means to access diverse functional materials rapidly.
Collapse
Affiliation(s)
- Patrick M McCosker
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia.,Department of Chemistry and Pharmacy, Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelbachstrasse 25, 91052, Erlangen, Germany.,Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Nicholas M Butler
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Alireza Shakoori
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Michel K Volland
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Matthew J Perry
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Jesse W Mullen
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Anthony C Willis
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Timothy Clark
- Department of Chemistry and Pharmacy, Computer-Chemistry-Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelbachstrasse 25, 91052, Erlangen, Germany
| | - John B Bremner
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials (ICMM), Chair of Physical Chemistry I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Paul A Keller
- School of Chemistry & Molecular Bioscience, Molecular Horizons, Illawarra Health & Medical Research Institute, University of Wollongong, Northfields Avenue, 2522, Wollongong, NSW, Australia
| |
Collapse
|
200
|
Molteni G, Ponti A. The Azide-Allene Dipolar Cycloaddition: Is DFT Able to Predict Site- and Regio-Selectivity? Molecules 2021; 26:928. [PMID: 33578668 PMCID: PMC7916341 DOI: 10.3390/molecules26040928] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
The site- and regio-selectivity of thermal, uncatalysed 1,3-dipolar cycloadditions between arylazides and mono- or tetra-substituted allenes with different electronic features have been investigated by both conceptual (reactivity indices) and computational (M08-HX, ωB97X-D, and B3LYP) DFT approaches. Both approaches show that these cycloadditions follow a nonpolar one-step mechanism. The experimental site- and regio-selectivity of arylazides towards methoxycarbonyl- and sulfonyl-allenes as well as tetramethyl- and tetrafluoro-allenes was calculated by DFT transition state calculations, achieving semiquantitative agreement to both previous and novel experimental findings. From the mechanistic standpoint, 1H-NMR evidence of a methylene-1,2,3-triazoline intermediate reinforces the reliability of the computational scheme.
Collapse
Affiliation(s)
- Giorgio Molteni
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy;
| | - Alessandro Ponti
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC), Consiglio Nazionale delle Ricerche, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|