151
|
Ponting CP, Mott R, Bork P, Copley RR. Novel protein domains and repeats in Drosophila melanogaster: insights into structure, function, and evolution. Genome Res 2001; 11:1996-2008. [PMID: 11731489 DOI: 10.1101/gr.198701] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Sequence database searching methods such as BLAST, are invaluable for predicting molecular function on the basis of sequence similarities among single regions of proteins. Searches of whole databases however, are not optimized to detect multiple homologous regions within a single polypeptide. Here we have used the prospero algorithm to perform self-comparisons of all predicted Drosophila melanogaster gene products. Predicted repeats, and their homologs from all species, were analyzed further to detect hitherto unappreciated evolutionary relationships. Results included the identification of novel tandem repeats in the human X-linked retinitis pigmentosa type-2 gene product, repeated segments in cystinosin, associated with a defect in cystine transport, and 'nested' homologous domains in dysferlin, whose gene is mutated in limb girdle muscular dystrophy. Novel signaling domain families were found that may regulate the microtubule-based cytoskeleton and ubiquitin-mediated proteolysis, respectively. Two families of glycosyl hydrolases were shown to contain internal repetitions that hint at their evolution via a piecemeal, modular approach. In addition, three examples of fruit fly genes were detected with tandem exons that appear to have arisen via internal duplication. These findings demonstrate how completely sequenced genomes can be exploited to further understand the relationships between molecular structure, function, and evolution.
Collapse
MESH Headings
- Amino Acid Sequence/genetics
- Amino Acid Transport Systems, Neutral
- Animals
- Antigens, Differentiation, B-Lymphocyte/chemistry
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antigens, Differentiation, B-Lymphocyte/physiology
- Aspartate-tRNA Ligase/chemistry
- Aspartate-tRNA Ligase/genetics
- Aspartate-tRNA Ligase/physiology
- Cystinosis/genetics
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/physiology
- Drosophila melanogaster/chemistry
- Drosophila melanogaster/enzymology
- Drosophila melanogaster/genetics
- Evolution, Molecular
- Exons/genetics
- Eye Proteins
- GTP-Binding Proteins
- Gene Duplication
- Glycoproteins
- Glycoside Hydrolases/chemistry
- Glycoside Hydrolases/genetics
- Glycoside Hydrolases/physiology
- Histocompatibility Antigens Class II/chemistry
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/physiology
- Humans
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/physiology
- Intracellular Signaling Peptides and Proteins
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Membrane Transport Proteins
- Molecular Sequence Data
- Muscular Dystrophies/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- Proteins/physiology
- Repetitive Sequences, Amino Acid
- Retinitis Pigmentosa/genetics
- Signal Transduction/genetics
- Species Specificity
- Tandem Repeat Sequences
Collapse
Affiliation(s)
- C P Ponting
- MRC Functional Genetics Unit, Department of Human Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | | | | | | |
Collapse
|
152
|
Rommelaere H, De Neve M, Neirynck K, Peelaers D, Waterschoot D, Goethals M, Fraeyman N, Vandekerckhove J, Ampe C. Prefoldin recognition motifs in the nonhomologous proteins of the actin and tubulin families. J Biol Chem 2001; 276:41023-8. [PMID: 11535601 DOI: 10.1074/jbc.m106591200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nascent actin and tubulin molecules undergo a series of complex interactions with chaperones and are thereby guided to their native conformation. These cytoskeletal proteins have the initial part of the pathway in common: both interact with prefoldin and with the cytosolic chaperonin containing tailless complex polypeptide 1. Little is understood with regard to how these chaperones and, in particular, prefoldin recognize the non-native forms of these target proteins. Using mutagenesis, we provide evidence that beta-actin and alpha-tubulin each have two prefoldin interaction sites. The most amino-terminally located site of both proteins shows striking sequence similarity, although these proteins are nonhomologous. Very similar motifs are present in beta- and gamma-tubulin and in the newly identified prefoldin target protein actin-related protein 1. Actin-related proteins 2 and 3 have related motifs, but these have altered charge properties. The latter two proteins do not bind prefoldin, although we identify them here as target proteins for the cytosolic chaperonin. Actin fragments containing the two prefoldin interaction regions compete efficiently with actin for prefoldin binding. In addition, they also compete with tubulins, suggesting that these target proteins contact similar prefoldin subunits.
Collapse
Affiliation(s)
- H Rommelaere
- Flanders Interuniversity Institute for Biotechnology and Department of Biochemistry, Faculty of Medicine, Ghent University, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Chapple JP, Grayson C, Hardcastle AJ, Saliba RS, van der Spuy J, Cheetham ME. Unfolding retinal dystrophies: a role for molecular chaperones? Trends Mol Med 2001; 7:414-21. [PMID: 11530337 DOI: 10.1016/s1471-4914(01)02103-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inherited retinal dystrophy is a major cause of blindness worldwide. Recent molecular studies have suggested that protein folding and molecular chaperones might play a major role in the pathogenesis of these degenerations. Incorrect protein folding could be a common consequence of causative mutations in retinal degeneration disease genes, particularly mutations in the visual pigment rhodopsin. Furthermore, several retinal degeneration disease genes have recently been identified as putative facilitators of correct protein folding, molecular chaperones, on the basis of sequence homology. We also consider whether manipulation of chaperone levels or chaperone function might offer potential novel therapies for retinal degeneration.
Collapse
Affiliation(s)
- J P Chapple
- Dept of Pathology, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, UK EC1V 9EL
| | | | | | | | | | | |
Collapse
|
154
|
Nogales E. Structural insight into microtubule function. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:397-420. [PMID: 11441808 DOI: 10.1146/annurev.biophys.30.1.397] [Citation(s) in RCA: 270] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley California 94720, USA.
| |
Collapse
|
155
|
Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC. Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 2001; 135:219-29. [PMID: 11580271 DOI: 10.1006/jsbi.2001.4386] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microtubule cytoskeleton consists of a highly organized network of microtubule polymers bound to their accessory proteins: microtubule-associated proteins, molecular motors, and microtubule-organizing proteins. The microtubule subunits are heterodimers composed of one alpha-tubulin polypeptide and one beta-tubulin polypeptide that should undergo a complex folding processing before they achieve a quaternary structure that will allow their incorporation into the polymer. Due to the extremely high protein concentration that exists at the cell cytoplasm, there are alpha- and beta-tubulin interacting proteins that prevent the unwanted interaction of these polypeptides with the surrounding protein pool during folding, thus allowing microtubule dynamics. Several years ago, the development of a nondenaturing electrophoretic technique made it possible to identify different tubulin intermediate complexes during tubulin biogenesis in vitro. By these means, the cytosolic chaperonin containing TCP-1 (CCT or TriC) and prefoldin have been demonstrated to intervene through tubulin and actin folding. Various other cofactors also identified along the alpha- and beta-tubulin postchaperonin folding route are now known to have additional roles in tubulin biogenesis such as participating in the synthesis, transport, and storage of alpha- and beta-tubulin. The future characterization of the tubulin-binding sites to these proteins, and perhaps other still unknown proteins, will help in the development of chemicals that could interfere with tubulin folding and thus modulating microtubule dynamics. In this paper, current knowledge of the above postchaperonin folding cofactors, which are in fact chaperones involved in tubulin heterodimer quaternary structure achievement, will be reviewed.
Collapse
Affiliation(s)
- M Lopez-Fanarraga
- Departamento de Biología Molecular-Unidad Asociada al Centro de Investigaciones Biológicas (CSIC), Universidad de Cantabria, Cardenal Herrera Oria s/n, Santander, 39011, Spain
| | | | | | | | | |
Collapse
|
156
|
Abstract
We demonstrate sorting of beta-tubulins during dimerization in the Drosophila male germ line. Different beta-tubulin isoforms exhibit distinct affinities for alpha-tubulin during dimerization. Our data suggest that differences in dimerization properties are important in determining isoform-specific microtubule functions. The differential use of beta-tubulin during dimerization reveals structural parameters of the tubulin heterodimer not discernible in the resolved three-dimensional structure. We show that the variable beta-tubulin carboxyl terminus, a surface feature in the heterodimer and in microtubules, and which is disordered in the crystallographic structure, is of key importance in forming a stable alpha-beta heterodimer. If the availability of alpha-tubulin is limiting, alpha-beta dimers preferentially incorporate intact beta-tubulins rather than a beta-tubulin missing the carboxyl terminus (beta 2 Delta C). When alpha-tubulin is not limiting, beta 2 Delta C forms stable alpha-beta heterodimers. Once dimers are formed, no further sorting occurs during microtubule assembly: alpha-beta 2 Delta C dimers are incorporated into axonemes in proportion to their contribution to the total dimer pool. Co-incorporation of beta 2 Delta C and wild-type beta 2-tubulin results in nonmotile axonemes because of a disruption of the periodicity of nontubulin axonemal elements. Our data show that the beta-tubulin carboxyl terminus has two distinct roles: 1) forming the alpha-beta heterodimer, important for all microtubules and 2) providing contacts for nontubulin components required for specific microtubule structures, such as axonemes.
Collapse
Affiliation(s)
- H D Hoyle
- Department of Biology and Indiana Molecular Biology Institute, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | | | |
Collapse
|
157
|
Abstract
Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of /¿-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- E Nogales
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA.
| |
Collapse
|
158
|
De Luca A, Torrente I, Mangino M, Danesi R, Dallapiccola B, Novelli G. Three novel mutations causing a truncated protein within the RP2 gene in Italian families with X-linked retinitis pigmentosa. Mutat Res 2001; 432:79-82. [PMID: 11465545 DOI: 10.1016/s1383-5726(00)00007-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
X-linked retinitis pigmentosa (XLRP) results from mutations in a number of loci, including RP2 at Xp11.3, and RP3 at Xp21.1. RP2 and RP3 genes have been identified by positional cloning. RP2 mutations are found in about 10% of XLRP patients. We performed a mutational screening of RP2 gene inpatients belonging to seven unrelated families in linkage with the RP2 locus. SSCP analysis detected three conformation variants, within exon 2 and 3. Direct sequencing of exon 2, disclosed a G-->A transition at nucleotide 449 (W150X), and a G-->T transversion in position 547 (E183X). Sequence analysis of exon 3 variant revealed an insertion (853/854insG), leading to a frameshift. In this patient, we detected an additional sequence alteration (A-->G at nucleotide 848, E283G). Each mutation was co-segregating with the disease in the affected family members available for the study. These mutations are expected to introduce a stop codon within the RP2 coding sequence probably resulting in a truncated or unstable protein.
Collapse
Affiliation(s)
- A De Luca
- Dipartimento di Biopatologia e Diagnostica per Immagini, Università di Roma Tor Vergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
159
|
Schubert A, Cattaruzza M, Hecker M, Darmer D, Holtz J, Morawietz H. Shear stress-dependent regulation of the human beta-tubulin folding cofactor D gene. Circ Res 2000; 87:1188-94. [PMID: 11110777 DOI: 10.1161/01.res.87.12.1188] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The flowing blood generates shear stress at the endothelial cell surface. The endothelial cells modify their phenotype by alterations in gene expression in response to different levels of fluid shear stress. To identify genes involved in this process, human umbilical vein endothelial cells were exposed to laminar shear stress (venous or arterial levels) in a cone-and-plate apparatus for 24 hours. Using the method of RNA arbitrarily primed polymerase chain reaction, we cloned a polymerase chain reaction fragment representing an mRNA species downregulated by arterial compared with venous shear stress (shear stress downregulated gene-1, SSD-1). According to Northern blot analysis, corresponding SSD-1 cDNA clones revealed a similar, time-dependent downregulation after 24 hours of arterial shear stress compared with venous shear stress or static controls. Three SSD-1 mRNA species of 2.8, 4.1, and 4.6 kb were expressed in a tissue-specific manner. The encoded amino acid sequence of the human endothelial SSD-1 isoform (4.1-kb mRNA species) revealed 80.4% identity and 90.9% homology to the bovine ss-tubulin folding cofactor D (tfcD) gene. Downregulation of tfcD mRNA expression by shear stress was defined at the level of transcription by nuclear run-on assays. The tfcD protein was downregulated by arterial shear stress. The shear stress-dependent downregulation of tfcD mRNA and protein was attenuated by the NO synthase inhibitor Nomega-nitro-L-arginine methyl ester. Furthermore, the NO donor DETA-NO downregulated tfcD mRNA. Because tfcD was shown to be a microtubule-destabilizing protein, our data suggest a shear stress-dependent regulation of the microtubular dynamics in human endothelial cells.
Collapse
Affiliation(s)
- A Schubert
- Institute of Pathophysiology, Martin Luther University, Halle, Germany
| | | | | | | | | | | |
Collapse
|
160
|
Breviario D, Nick P. Plant tubulins: a melting pot for basic questions and promising applications. Transgenic Res 2000; 9:383-93. [PMID: 11206967 DOI: 10.1023/a:1026598710430] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- D Breviario
- Istituto Biosintesi Vegetali CNR, Milano, Italy.
| | | |
Collapse
|
161
|
Everding B, Wilhelm S, Averesch S, Scherdin U, Hölzel F, Steffen M. IFN-gamma-induced change in microtubule organization and alpha-tubulin expression during growth inhibition of lung squamous carcinoma cells. J Interferon Cytokine Res 2000; 20:983-90. [PMID: 11096455 DOI: 10.1089/10799900050198426] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In cultures of KNS-62 cells derived from a human lung squamous cell carcinoma, the initial growth arrest in the continuous presence of interferon-gamma (IFN-gamma) turned to cytopathic effects after 2 days of treatment. The remaining viable cells showed grossly distorted morphology, with enlargement and extensions up to 5 cell diameters. The presence of apoptotic cells was shown 3 days after treatment with IFN-gamma. Immunocytochemically, the microtubular structures appeared augmented and highly aggregated. The level of alpha-tubulin-specific mRNA was distinctly increased after administration of IFN-gamma, and the amount of extractable alpha-tubulin protein was reduced. In parallel kinetics experiments, growth arrest by serum depletion or by contact inhibition during confluence resulted in reduced levels of alpha-tubulin-specific mRNA and in slightly elevated alpha-tubulin protein. The IFN-gamma-induced effects suggest interference with assembly or maintenance of the tubulin cable network, presumably associated with cell deformation and cytotoxicity.
Collapse
Affiliation(s)
- B Everding
- Department of Internal Medicine, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
162
|
Hanada T, Lin L, Tibaldi EV, Reinherz EL, Chishti AH. GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes. J Biol Chem 2000; 275:28774-84. [PMID: 10859302 DOI: 10.1074/jbc.m000715200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Reorganization of the cortical cytoskeleton is a hallmark of T lymphocyte activation. Upon binding to antigen presenting cells, the T cells rapidly undergo cytoskeletal re-organization thus forming a cap at the cell-cell contact site leading to receptor clustering, protein segregation, and cellular polarization. Previously, we reported cloning of the human lymphocyte homologue of the Drosophila Discs Large tumor suppressor protein (hDlg). Here we show that a novel protein termed GAKIN binds to the guanylate kinase-like domain of hDlg. Affinity protein purification, peptide sequencing, and cloning of GAKIN cDNA from Jurkat J77 lymphocytes identified GAKIN as a novel member of the kinesin superfamily of motor proteins. GAKIN mRNA is ubiquitously expressed, and the predicted amino acid sequence shares significant sequence similarity with the Drosophila kinesin-73 motor protein. GAKIN sequence contains a motor domain at the NH(2) terminus, a central stalk domain, and a putative microtubule-interacting sequence called the CAP-Gly domain at the COOH terminus. Among the MAGUK superfamily of proteins examined, GAKIN binds to the guanylate kinase-like domain of PSD-95 but not of p55. The hDlg and GAKIN are localized mainly in the cytoplasm of resting T lymphocytes, however, upon CD2 receptor cross-linking the hDlg can translocate to the lymphocyte cap. We propose that the GAKIN-hDlg interaction lays the foundation for a general paradigm of coupling MAGUKs to the microtubule-based cytoskeleton, and that this interaction may be functionally important for the intracellular trafficking of MAGUKs and associated protein complexes in vivo.
Collapse
Affiliation(s)
- T Hanada
- Section of Hematology-Oncology Research, Departments of Medicine, Anatomy, and Cellular Biology, St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | | | |
Collapse
|
163
|
Kubota H, Yokota S, Yanagi H, Yura T. Transcriptional regulation of the mouse cytosolic chaperonin subunit gene Ccta/t-complex polypeptide 1 by selenocysteine tRNA gene transcription activating factor family zinc finger proteins. J Biol Chem 2000; 275:28641-8. [PMID: 10893243 DOI: 10.1074/jbc.m005009200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin containing t-complex polypeptide 1 (CCT) is a molecular chaperone assisting in the folding of proteins in eukaryotic cytosol, and the Ccta (encoding the alpha subunit of CCT)/t-complex polypeptide 1 gene encodes the alpha subunit of CCT. We show here that transcription of the mouse Ccta gene is regulated by selenocysteine tRNA gene transcription activating factor (Staf) family zinc-finger transcription factors ZNF143 and ZNF76. Reporter gene assay using HeLa cells indicated that the Ccta gene promoter contains two 18-base pair-long cis-acting elements with similar sequences at -70 and -20 base pairs (designated CCT alpha subunit gene transcription activating element 1 (CAE1) and CAE2, respectively). By yeast one-hybrid screening of CAE1-binding factors, we isolated human ZNF143, which is known to activate transcription of selenocysteine tRNA and small nuclear RNA genes. DNA binding domains of ZNF143 and ZNF76 produced in E. coli recognized CAE1 and CAE2 elements in electrophoretic mobility shift assay. HeLa cell nuclear extract contained a protein that specifically binds to CAE1 and CAE2 and recognized by anti-ZNF143 antibody. Transcription from a minimal Ccta promoter containing CAE2 element in HeLa cells was enhanced by overexpression of full-length ZNF143 and ZNF76 but inhibited by that of their DNA binding domains alone. These results demonstrate that the Staf family proteins control transcription of at least one of the chaperone-encoding genes besides that of tRNA and small nuclear RNA genes. These RNA and chaperone genes are suggested to be coregulated to facilitate synthesis of mature proteins during active cell growth.
Collapse
Affiliation(s)
- H Kubota
- HSP Research Institute, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan.
| | | | | | | |
Collapse
|
164
|
Abstract
Overexpression of the beta-tubulin binding protein Rbl2p/cofactor A is lethal in yeast cells expressing a mutant alpha-tubulin, tub1-724, that produces unstable heterodimer. Here we use RBL2 overexpression to identify mutations in other genes that affect formation or stability of heterodimer. This approach identifies four genes-CIN1, CIN2, CIN4, and PAC2-as affecting heterodimer formation in vivo. The vertebrate homologues of two of these gene products-Cin1p/cofactor D and Pac2p/cofactor E-can catalyze exchange of tubulin polypeptides into preexisting heterodimer in vitro. Previous work suggests that both Cin2p or Cin4p act in concert with Cin1p in yeast, but no role for vertebrate homologues of either has been reported in the in vitro reaction. Results presented here demonstrate that these proteins can promote heterodimer formation in vivo. RBL2 overexpression in cin1 and pac2 mutant cells causes microtubule disassembly and enhanced formation of Rbl2p-beta-tubulin complex, as it does in the alpha-tubulin mutant that produces weakened heterodimer. Significantly, excess Cin1p/cofactor D suppresses the conditional phenotypes of that mutant alpha-tubulin. Although none of the four genes is essential for viability under normal conditions, they become essential under conditions where the levels of dissociated tubulin polypeptides increase. Therefore, these proteins may provide a salvage pathway for dissociated tubulin heterodimers and so rescue cells from the deleterious effects of free beta-tubulin.
Collapse
Affiliation(s)
- J A Fleming
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
165
|
Radcliffe PA, Garcia MA, Toda T. The cofactor-dependent pathways for alpha- and beta-tubulins in microtubule biogenesis are functionally different in fission yeast. Genetics 2000; 156:93-103. [PMID: 10978278 PMCID: PMC1461245 DOI: 10.1093/genetics/156.1.93] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The biogenesis of microtubules in the cell comprises a series of complex steps, including protein-folding reactions catalyzed by chaperonins. In addition a group of evolutionarily conserved proteins, called cofactors (A to E), is required for the production of assembly-competent alpha-/beta-tubulin heterodimers. Using fission yeast, in which alp11(+), alp1(+), and alp21(+), encoding the homologs for cofactors B, D, and E, respectively, are essential for cell viability, we have undertaken the genetic analysis of alp31(+), the homolog of cofactor A. Gene disruption analysis shows that, unlike the three genes mentioned above, alp31(+) is dispensable for cell growth and division. Nonetheless, detailed analysis of alp31-deleted cells demonstrates that Alp31(A) is required for the maintenance of microtubule structures and, consequently, the proper control of growth polarity. alp31-deleted cells show genetic interactions with mutations in beta-tubulin, but not in alpha-tubulin. Budding yeast cofactor A homolog RBL2 is capable of suppressing the polarity defects of alp31-deleted cells. We conclude that the cofactor-dependent biogenesis of microtubules comprises an essential and a nonessential pathway, both of which are required for microtubule integrity.
Collapse
Affiliation(s)
- P A Radcliffe
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
166
|
Moser M, Schäfer E, Ehmann B. Characterization of protein and transcript levels of the chaperonin containing tailless complex protein-1 and tubulin during light-regulated growth of oat seedlings. PLANT PHYSIOLOGY 2000; 124:313-320. [PMID: 10982445 PMCID: PMC59145 DOI: 10.1104/pp.124.1.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2000] [Accepted: 06/22/2000] [Indexed: 05/23/2023]
Abstract
In grass seedlings the network of cortical microtubules is reorganized during light-dependent growth of coleoptiles and mesocotyls. We investigated the effects of light-dependent growth on the relative steady-state levels of the mRNAs and protein levels of alpha-tubulin and the epsilon-subunit of the chaperonin containing tailless complex protein-1 in oat (Avena sativa) coleoptiles, which were grown in different light conditions to establish different growth responses. The soluble pools of the epsilon-subunit of the chaperonin containing tailless complex protein-1 and alpha-tubulin decreased in nonelongating coleoptiles, suggesting that the dynamics of the light-regulated soluble pool reflect the processes occurring during reorganization of cortical microtubules. The shifts in pool sizes are discussed in relation to the machinery that controls the dynamic structure of cortical microtubules in plant cells.
Collapse
Affiliation(s)
- M Moser
- Institut für Biologie II der Universität Freiburg, Schänzlestrasse, 1 D-79104 Freiburg, Germany
| | | | | |
Collapse
|
167
|
Fanarraga ML, Párraga M, Aloria K, del Mazo J, Avila J, Zabala JC. Regulated expression of p14 (cofactor A) during spermatogenesis. CELL MOTILITY AND THE CYTOSKELETON 2000; 43:243-54. [PMID: 10401580 DOI: 10.1002/(sici)1097-0169(1999)43:3<243::aid-cm7>3.0.co;2-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The correct folding of tubulins and the generation of functional alpha beta-tubulin heterodimers require the participation of a series of recently described molecular chaperones and CCT (or TRiC), the cytosolic chaperonin containing TCP-1. p14 (cofactor A) is a highly conserved protein that forms stable complexes with beta-tubulin which are not apparently indispensable along the in vitro beta-tubulin folding route. Consequently, the precise role of p14 is still unknown, though findings on Rb12p (its yeast homologue) suggest p14 might play a role in meiosis and/or perhaps to serve as an excess beta-tubulin reservoir in the cell. This paper investigates the in vivo possible role of p14 in testis where mitosis, meiosis, and intense microtubular remodeling processes occur. Our results confirm that p14 is more abundantly expressed in testis than in other adult mammalian tissues. Northern blot, Western blot, in situ hybridization, and immunocytochemical analyses have all demonstrated that p14 is progressively upregulated from the onset of meiosis through spermiogenesis, being more abundant in differentiating spermatids. The close correlation observed between the mRNA expression waves for p14 and testis specific tubulin isotypes beta 3 and alpha 3/7, together with the above results, suggest that p14 role in testis would presumably be associated to beta-tubulin processing rather than meiosis itself. Additional in vitro beta 3-tubulin synthesis experiments have shown that p14 plays a double role in beta-tubulin folding, enhancing the dimerization of newly synthesized beta-tubulin isotypes as well as capturing excess beta-tubulin monomers. The above evidence suggests that p14 is a chaperone required for the actual beta-tubulin folding process in vivo and storage of excess beta-tubulin in situations, such as in testis, where excessive microtubule remodeling could lead to a disruption of the alpha-beta balance. As seen for other chaperones, p14 could also serve as a route to lead excess beta-tubulin or replaced isotypes towards degradation.
Collapse
Affiliation(s)
- M L Fanarraga
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain.
| | | | | | | | | | | |
Collapse
|
168
|
Hoogenraad CC, Akhmanova A, Grosveld F, De Zeeuw CI, Galjart N. Functional analysis of CLIP-115 and its binding to microtubules. J Cell Sci 2000; 113 ( Pt 12):2285-97. [PMID: 10825300 DOI: 10.1242/jcs.113.12.2285] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytoplasmic linker proteins (CLIPs) bind to microtubules and are proposed to link this cytoskeletal network to other intracellular structures. We are interested in CLIP-115, since this protein is enriched in neuronal dendrites and may operate in the control of brain-specific organelle translocations. Each CLIP monomer is characterized by two microtubule-binding (MTB) motifs, surrounded by basic, serine-rich regions. This head domain is connected to the C-terminal tail through a long coiled-coil structure. The MTB domains are conserved as a single domain in other proteins involved in microtubule based transport and dynamics, such as p150(Glued). Here we provide evidence that efficient binding of CLIP-115 to microtubules is sensitive to phosphorylation and is not mediated by the conserved MTB domains alone, but requires the presence of the basic, serine rich regions in addition to the MTB motifs. In transfected COS-1 cells, CLIP-115 initially accumulates at the distal ends of microtubules and coincides with CLIP-170, indicating that both proteins mark growing microtubule ends. However, when expressed at higher levels, CLIP-115 and -170 affect the microtubule network differently. This might be partly due to the divergent C-termini of the two proteins. We demonstrate that, similar to CLIP-170, CLIP-115 forms homodimers, which, at least in vitro, are linked by disulfide bridges. Cysteine(391) of CLIP-115, however, is specific in that it controls the microtubule bundling capacity of certain mutant CLIP-115 molecules. Therefore, both similar and specific mechanisms appear to regulate the conformation of CLIPs as well as their binding to microtubules.
Collapse
Affiliation(s)
- C C Hoogenraad
- MGC Department of Cell Biology and Genetics and Department of Anatomy, Erasmus University, PO Box 1738, The Netherlands
| | | | | | | | | |
Collapse
|
169
|
Bhamidipati A, Lewis SA, Cowan NJ. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 2000; 149:1087-96. [PMID: 10831612 PMCID: PMC2174823 DOI: 10.1083/jcb.149.5.1087] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ADP ribosylation factor-like proteins (Arls) are a family of small monomeric G proteins of unknown function. Here, we show that Arl2 interacts with the tubulin-specific chaperone protein known as cofactor D. Cofactors C, D, and E assemble the alpha/beta- tubulin heterodimer and also interact with native tubulin, stimulating it to hydrolyze GTP and thus acting together as a beta-tubulin GTPase activating protein (GAP). We find that Arl2 downregulates the tubulin GAP activity of C, D, and E, and inhibits the binding of D to native tubulin in vitro. We also find that overexpression of cofactors D or E in cultured cells results in the destruction of the tubulin heterodimer and of microtubules. Arl2 specifically prevents destruction of tubulin and microtubules by cofactor D, but not by cofactor E. We generated mutant forms of Arl2 based on the known properties of classical Ras-family mutations. Experiments using these altered forms of Arl2 in vitro and in vivo demonstrate that it is GDP-bound Arl2 that interacts with cofactor D, thereby averting tubulin and microtubule destruction. These data establish a role for Arl2 in modulating the interaction of tubulin-folding cofactors with native tubulin in vivo.
Collapse
Affiliation(s)
- Arunashree Bhamidipati
- Department of Biochemistry, New York University Medical Center, New York, New York 10016
| | - Sally A. Lewis
- Department of Biochemistry, New York University Medical Center, New York, New York 10016
| | - Nicholas J. Cowan
- Department of Biochemistry, New York University Medical Center, New York, New York 10016
| |
Collapse
|
170
|
Abstract
Tubulin binding agents constitute an important class of antimitotics and are widely used for the treatment of solid tumours an haematopoietic malignancies. These compounds, currently represented by the vinca alkaloids and the taxanes, differ from most of the other clinically useful antimitotics in that their target is not nucleic acids, but the mitotic spindle, which is an essential component of the mitotic machinery. Recent data on the mechanisms of action of and mechanisms of resistance to tubulin binding agents are presented. The importance of microtubule dynamics is emphasised, in particular in relationship to the usefulness of drug combinations. Concerning the reported resistance mechanisms, an emerging body of data show that altered microtubule structure may be involved in reduced sensitivity to these compounds. Promising new molecules, including those derived from marine organisms are described.
Collapse
Affiliation(s)
- C Dumontet
- Service d'Hématologie, Centre Hospitalier Lyon Sud, 69495 Pierre Bénite Cedex, France.
| |
Collapse
|
171
|
Yokota SI, Yanagi H, Yura T, Kubota H. Upregulation of cytosolic chaperonin CCT subunits during recovery from chemical stress that causes accumulation of unfolded proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1658-64. [PMID: 10712596 DOI: 10.1046/j.1432-1327.2000.01157.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chaperonin containing TCP-1 (CCT) is a molecular chaperone consisting of eight subunit species and assists in the folding of actin, tubulin and some other cytosolic proteins. We examined the stress response of CCT subunit proteins in mammalian cultured cells using chemical stressors that cause accumulation of unfolded proteins. Levels of CCT subunit proteins in HeLa cells were coordinately and transiently upregulated under continuous chemical stress with sodium arsenite. CCT subunit levels in several mammalian cell lines were also upregulated during recovery from chemical stress caused by sodium arsenite or a proline analogue, L-azetidine-2-carboxylic acid. Several unidentified proteins that were newly synthesized and associated with CCT were found to increase concomitantly with CCT subunits themselves and known substrates during recovery from the stress. These results suggest that CCT plays important roles in the recovery of cells from protein damage by assisting in the folding of proteins that are actively synthesized and/or renatured during this period.
Collapse
Affiliation(s)
- S I Yokota
- HSP Research Institute, Kyoto Research Park, Japan
| | | | | | | |
Collapse
|
172
|
Grantham J, Llorca O, Valpuesta JM, Willison KR. Partial occlusion of both cavities of the eukaryotic chaperonin with antibody has no effect upon the rates of beta-actin or alpha-tubulin folding. J Biol Chem 2000; 275:4587-91. [PMID: 10671484 DOI: 10.1074/jbc.275.7.4587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The eukaryotic chaperonin containing T-complex polypeptide 1 (CCT) is required in vivo for the production of native actin and tubulin. It is a 900-kDa oligomer formed from two back-to-back rings, each containing eight different subunits surrounding a central cavity in which interactions with substrates are thought to occur. Here, we show that a monoclonal antibody recognizing the C terminus of the CCTalpha subunit can bind inside, and partially occlude, both cavities of apo-CCT. Rabbit reticulocyte lysate was programmed to synthesize beta-actin and alpha-tubulin in the presence and absence of anti-CCTalpha antibody. The binding of the antibody inside the cavity and its occupancy of a large part of it does not prevent the folding of beta-actin and alpha-tubulin by CCT, despite the fact that all the CCT in the in vitro translation reactions was continuously bound by two antibody molecules. Furthermore, no differences in the protease susceptibility of actin bound to CCT in the presence and absence of the monoclonal antibody were detected, indicating that the antibody molecules do not perturb the conformation of actin folding intermediates substantially. These data indicate that complete sequestration of substrate by CCT may not be required for productive folding, suggesting that there are differences in its folding mechanism compared with the Group I chaperonins.
Collapse
Affiliation(s)
- J Grantham
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | |
Collapse
|
173
|
Radcliffe PA, Vardy L, Toda T. A conserved small GTP-binding protein Alp41 is essential for the cofactor-dependent biogenesis of microtubules in fission yeast. FEBS Lett 2000; 468:84-8. [PMID: 10683446 DOI: 10.1016/s0014-5793(00)01202-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proper folding of tubulins and their incorporation into microtubules consist of a series of reactions, in which evolutionarily conserved proteins, cofactors A to E, play a vital role. We have cloned a fission yeast gene (alp41(+)) which encodes a highly conserved small GTP-binding protein homologous to budding yeast CIN4 and human ARF-like Arl2. alp41(+) is essential, disruption of which results in microtubule dysfunction and growth polarity defects. Genetic analysis indicates that Alp41 plays a crucial role in the cofactor-dependent pathway, in which it functions upstream of the cofactor D homologue Alp1(D) and possibly in concert with Alp21(E).
Collapse
Affiliation(s)
- P A Radcliffe
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, P.O. Box 123, 44 Lincoln's Inn Fields, London, UK
| | | | | |
Collapse
|
174
|
|
175
|
Kubota H, Matsumoto S, Yokota S, Yanagi H, Yura T. Transcriptional activation of mouse cytosolic chaperonin CCT subunit genes by heat shock factors HSF1 and HSF2. FEBS Lett 1999; 461:125-9. [PMID: 10561509 DOI: 10.1016/s0014-5793(99)01437-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chaperonin containing TCP-1 (CCT) is a eukaryotic molecular chaperone consisting of eight subunit species and assists in the folding of cytosolic proteins. We show here that all eight mouse CCT subunit genes contain sequences called heat shock elements for binding heat shock transcription factors (HSFs) by electrophoretic mobility shift assays and that these genes are transcriptionally activated by HSFs in reporter gene assays using HeLa cells transiently overexpressing HSFs. These results suggest that HSF1 and/or HSF2 play a role in Cct gene expression.
Collapse
Affiliation(s)
- H Kubota
- HSP Research Institute, Kyoto Research Park, 17 Chudoji Minami-machi, Shimogyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
176
|
Gutsche I, Essen LO, Baumeister W. Group II chaperonins: new TRiC(k)s and turns of a protein folding machine. J Mol Biol 1999; 293:295-312. [PMID: 10550210 DOI: 10.1006/jmbi.1999.3008] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In the past decade, the eubacterial group I chaperonin GroEL became the paradigm of a protein folding machine. More recently, electron microscopy and X-ray crystallography offered insights into the structure of the thermosome, the archetype of the group II chaperonins which also comprise the chaperonin from the eukaryotic cytosol TRiC. Some structural differences from GroEL were revealed, namely the existence of a built-in lid provided by the helical protrusions of the apical domains instead of a GroES-like co-chaperonin. These structural studies provide a framework for understanding the differences in the mode of action between the group II and the group I chaperonins. In vitro analyses of the folding of non-native substrates coupled to ATP binding and hydrolysis are progressing towards establishing a functional cycle for group II chaperonins. A protein complex called GimC/prefoldin has recently been found to cooperate with TRiC in vivo, and its characterization is under way.
Collapse
Affiliation(s)
- I Gutsche
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, D-82152, Germany
| | | | | |
Collapse
|
177
|
Abstract
The folding pathway of the heavy meromyosin subfragment (HMM) of a skeletal muscle myosin has been investigated by in vitro synthesis of the myosin heavy and light chains in a coupled transcription and translation assay. Analysis of the nascent translation products for folding intermediates has identified a major intermediate that contains all three myosin subunits in a complex with the eukaryotic cytosolic chaperonin. Partially folded HMM is released from this complex in an ATP-dependent manner. However, biochemical and functional assays reveal incomplete folding of the myosin motor domain. Dimerization of myosin heavy chains and association of heavy and light chains are accomplished early in the folding pathway. To test for other factors necessary for the complete folding of myosin, a cytoplasmic extract was prepared from myotubes produced by a mouse myogenic cell line. This extract dramatically enhanced the folding of HMM, suggesting a role for muscle-specific factors in the folding pathway. We conclude that the molecular assembly of myosin is mediated by the eukaryotic cytosolic chaperonin with folding of the motor domain as the slow step in the pathway.
Collapse
Affiliation(s)
- R Srikakulam
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
178
|
Scheel J, Pierre P, Rickard JE, Diamantopoulos GS, Valetti C, van der Goot FG, Häner M, Aebi U, Kreis TE. Purification and analysis of authentic CLIP-170 and recombinant fragments. J Biol Chem 1999; 274:25883-91. [PMID: 10464331 DOI: 10.1074/jbc.274.36.25883] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have purified authentic CLIP-170 (cytoplasmic linker protein of 170 kDa) and fragments comprising functional domains of the protein to characterize the structural basis of the function of CLIP-170. Analysis of authentic CLIP-170 and the recombinant fragments by electron microscopy after glycerol spraying/low angle rotary metal shadowing reveals CLIP-170 as a thin, 135-nm-long molecule with two kinks in its central rod domain, which are approximately equally spaced from the two ends of the protein. The central domain consisting of heptad repeats, which is alpha-helical in nature and forms a 2-stranded coiled-coil, mediates dimerization of CLIP-170. The rod domain harbors two kinks, each spaced approximately 37 nm from the corresponding end of the molecule, thus providing mechanical flexibility to the highly elongated molecule. The N-terminal domain of CLIP-170 binds to microtubules in vitro with a stoichiometry of one dimeric head domain per four tubulin heterodimers. Authentic CLIP-170 binds to microtubules with lower stoichiometry, indicating that the rod and tail domains affect microtubule binding of CLIP-170. These results document that CLIP-170 is a highly elongated polar molecule with the microtubule-binding domain and the organelle-interacting domains at opposite ends of the homodimer, thus providing a structural basis for the function of CLIP-170 as a microtubule-organelle linker protein.
Collapse
Affiliation(s)
- J Scheel
- Department of Cell Biology, Sciences III, Sciences II, University of Geneva, CH-1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Radcliffe PA, Hirata D, Vardy L, Toda T. Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast. Mol Biol Cell 1999; 10:2987-3001. [PMID: 10473641 PMCID: PMC25543 DOI: 10.1091/mbc.10.9.2987] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We describe the isolation of fission yeast homologues of tubulin-folding cofactors B (Alp11) and E (Alp21), which are essential for cell viability and the maintenance of microtubules. Alp11(B) contains the glycine-rich motif (the CLIP-170 domain) involved in microtubular functions, whereas, unlike mammalian cofactor E, Alp21(E) does not. Both mammalian and yeast cofactor E, however, do contain leucine-rich repeats. Immunoprecipitation analysis shows that Alp11(B) interacts with both alpha-tubulin and Alp21(E), but not with the cofactor D homologue Alp1, whereas Alp21(E) also interacts with Alp1(D). The cellular amount of alpha-tubulin is decreased in both alp1 and alp11 mutants. Overproduction of Alp11(B) results in cell lethality and the disappearance of microtubules, which is rescued by co-overproduction of alpha-tubulin. Both full-length Alp11(B) and the C-terminal third containing the CLIP-170 domain localize in the cytoplasm, and this domain is required for efficient binding to alpha-tubulin. Deletion of alp11 is suppressed by multicopy plasmids containing either alp21(+) or alp1(+), whereas alp21 deletion is rescued by overexpression of alp1(+) but not alp11(+). Finally, the alp1 mutant is not complemented by either alp11(+) or alp21(+). The results suggest that cofactors operate in a linear pathway (Alp11(B)-Alp21(E)-Alp1(D)), each with distinct roles.
Collapse
Affiliation(s)
- P A Radcliffe
- Laboratory of Cell Regulation, Imperial Cancer Research Fund, London WC2A 3PX, United Kingdom
| | | | | | | |
Collapse
|
180
|
Tian G, Bhamidipati A, Cowan NJ, Lewis SA. Tubulin folding cofactors as GTPase-activating proteins. GTP hydrolysis and the assembly of the alpha/beta-tubulin heterodimer. J Biol Chem 1999; 274:24054-8. [PMID: 10446175 DOI: 10.1074/jbc.274.34.24054] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo, many proteins must interact with molecular chaperones to attain their native conformation. In the case of tubulin, newly synthesized alpha- and beta-subunits are partially folded by cytosolic chaperonin, a double-toroidal ATPase with homologs in all kingdoms of life and in most cellular compartments. alpha- and beta-tubulin folding intermediates are then brought together by tubulin-specific chaperone proteins (named cofactors A-E) in a cofactor-containing supercomplex with GTPase activity. Here we show that tubulin subunit exchange can only occur by passage through this supercomplex, thus defining it as a dimer-making machine. We also show that hydrolysis of GTP by beta-tubulin in the supercomplex acts as a switch for the release of native tubulin heterodimer. In this folding reaction and in the related reaction of tubulin-folding cofactors with native tubulin, the cofactors behave as GTPase-activating proteins, stimulating the GTP-binding protein beta-tubulin to hydrolyze its GTP.
Collapse
Affiliation(s)
- G Tian
- Department of Biochemistry, New York University Medical Center, New York, New York 10016, USA
| | | | | | | |
Collapse
|
181
|
Yu XC, Margolin W, Gonzalez-Garay ML, Cabral F. Vinblastine induces an interaction between FtsZ and tubulin in mammalian cells. J Cell Sci 1999; 112 ( Pt 14):2301-11. [PMID: 10381386 DOI: 10.1242/jcs.112.14.2301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli cell division protein FtsZ was expressed in Chinese hamster ovary cells, where it formed a striking array of dots that were independent of the mammalian cytoskeleton. Although FtsZ appears to be a bacterial homolog of tubulin, its expression had no detectable effects on the microtubule network or cell growth. However, treatment of the cells with vinblastine at concentrations that caused microtubule disassembly rapidly induced a network of FtsZ filaments that grew from and connected the dots, suggesting that the dots are an active storage form of FtsZ. Cells producing FtsZ also exhibited vinblastine- and calcium-resistant tubulin polymers that colocalized with the FtsZ network. The FtsZ polymers could be selectively disassembled, indicating that the two proteins were not copolymerized. The vinblastine effects were readily reversible by washing out the drug or by treating the cells with the vinblastine competitor, maytansine. These results demonstrate that FtsZ assembly can occur in the absence of bacterial chaperones or cofactors, that FtsZ and tubulin do not copolymerize, and that tubulin-vinblastine complexes have an enhanced ability to interact with FtsZ.
Collapse
Affiliation(s)
- X C Yu
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
182
|
Affiliation(s)
- K E Sawin
- Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London, WC2A 3PX, United Kingdom
| |
Collapse
|
183
|
Grishchuk EL, McIntosh JR. Sto1p, a fission yeast protein similar to tubulin folding cofactor E, plays an essential role in mitotic microtubule assembly. J Cell Sci 1999; 112 ( Pt 12):1979-88. [PMID: 10341216 DOI: 10.1242/jcs.112.12.1979] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The proper functioning of microtubules depends crucially on the availability of polymerizable alpha/beta tubulin dimers. Their production occurs concomitant with the folding of the tubulin polypeptides and is accomplished in part by proteins known as Cofactors A through E. In the fission yeast, Schizosaccharomyces pombe, this tubulin folding pathway is essential. We have taken advantage of the excellent cytology available in S. pombe to examine the phenotypic consequences of a deletion of sto1(+), a gene that encodes a protein similar to Cofactor E, which is required for the folding of alpha-tubulin. The interphase microtubule cytoskeleton in sto1-delta cells is severely disrupted, and as cells enter mitosis their spindles fail to form. After a transient arrest with condensed chromosomes, the cells exit mitosis and resume DNA synthesis, whereupon they septate abnormally and die. Overexpression of Spo1p is toxic to cells carrying a cold-sensitive allele of the alpha- but not the beta-tubulin gene, consistent with the suggestion that this protein plays a role like that of Cofactor E. Unlike its presumptive partner Cofactor D (Alp1p), however, Sto1p does not localize to microtubules but is found throughout the cell. Overexpression of Sto1p has no toxic effects in wild-type cells, suggesting that it is unable to disrupt alpha/beta tubulin dimers in vivo.
Collapse
|
184
|
Kubota H, Yokota S, Yanagi H, Yura T. Structures and co-regulated expression of the genes encoding mouse cytosolic chaperonin CCT subunits. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:492-500. [PMID: 10336634 DOI: 10.1046/j.1432-1327.1999.00405.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chaperonin-containing TCP-1 (CCT) is a hetero-oligomeric molecular chaperone that mediates protein folding in the cytosol of eukaryotes. Eight (or nine in testis) subunit species are assembled in the CCT hexadecamer complex. We have cloned seven CCT subunit genes, Cctb, Cctd, Ccte, Cctz-1, Cctz-2 (testis specific), Ccth and Cctq, from mouse genomic DNA libraries, in addition to the Ccta and Cctg genes reported previously, and the entire nucleotide sequences of these DNA clones were determined. These genes are approximately 15-20 kb in length except for Cctz-2 which is longer than 35 kb, and all the Cct genes consist of 11-16 exons. Primer extension analyses of testis RNA indicate one to several potential transcription start sites 50-150 bp upstream from the translation start codon of each Cct gene. There are several possible Sp1-binding sequences, but no obvious TATA box was observed around the potential start sites. From 5'-flanking regions to the first introns, the Cct genes are rich in CpG dinucleotides. In reporter gene assays using these regions, five of eight Cct genes showed strong transcriptional activity comparable with the combination of SV40 promoter and enhancer in HeLa cells. We also show, by Western and Northern blot analyses, that CCT expression levels vary widely among different tissues but the expression patterns are very similar among the eight subunit species. It is likely that expression levels of the eight different subunits are tightly co-regulated to maintain a constant ratio of these subunits which constitute the CCT hexadecamer complex with a fixed subunit arrangement.
Collapse
Affiliation(s)
- H Kubota
- HSP Research Institute, Kyoto Research Park, Japan.
| | | | | | | |
Collapse
|
185
|
Abstract
As an organizer of the microtubule cytoskeleton in animals, the centrosome has an important function. From the early light microscopic observation of the centrosome to examination by electron microscopy, the centrosome field is now in an era of molecular identification and precise functional analyses. Tables compiling centrosomal proteins and reviews on the centrosome are presented here and demonstrate how active the field is. However, despite this intense research activity, many classical questions are still unanswered. These include those regarding the precise function of centrioles, the mechanism of centrosome duplication and assembly, the origin of the centrosome, and the regulation and mechanism of the centrosomal microtubule nucleation activity. Fortunately, these questions are becoming elucidated based on experimental data discussed here. Given the fact that the centrosome is primarily a site of microtubule nucleation, special focus is placed on the process of microtubule nucleation and on the regulation of centrosomal microtubule nucleation capacity during the cell cycle and in some tissues.
Collapse
Affiliation(s)
- S S Andersen
- Department of Molecular Biology, Princeton University, New Jersey 08540-1014, USA
| |
Collapse
|
186
|
Abstract
In vitro transcription/translation of actin cDNA and analysis of the translation products by native-PAGE was used to study the maturation pathway of actin. During the course of actin synthesis, several distinct actin-containing species were observed and the composition of each determined by immunological procedures. After synthesis of the first approximately 145 amino acids, the nascent ribosome-associated actin chain binds to the recently identified heteromeric chaperone protein, prefoldin (PFD). PFD remains bound to the relatively unfolded actin polypeptide until its posttranslational delivery to cytosolic chaperonin (CCT). We show that alpha- and beta-tubulin follow a similar maturation pathway, but to date find no evidence for an interaction between PFD and several noncytoskeletal proteins. We conclude that PFD functions by selectively targeting nascent actin and tubulin chains pending their transfer to CCT for final folding and/or assembly.
Collapse
Affiliation(s)
- W J Hansen
- Surgical Research Laboratory, San Francisco General Hospital, Departments of Surgery, Medicine, and Physiology, University of California, San Francisco, California 94143, USA.
| | | | | |
Collapse
|
187
|
Abstract
The folding of most newly synthesized proteins in the cell requires the interaction of a variety of protein cofactors known as molecular chaperones. These molecules recognize and bind to nascent polypeptide chains and partially folded intermediates of proteins, preventing their aggregation and misfolding. There are several families of chaperones; those most involved in protein folding are the 40-kDa heat shock protein (HSP40; DnaJ), 60-kDa heat shock protein (HSP60; GroEL), and 70-kDa heat shock protein (HSP70; DnaK) families. The availability of high-resolution structures has facilitated a more detailed understanding of the complex chaperone machinery and mechanisms, including the ATP-dependent reaction cycles of the GroEL and HSP70 chaperones. For both of these chaperones, the binding of ATP triggers a critical conformational change leading to release of the bound substrate protein. Whereas the main role of the HSP70/HSP40 chaperone system is to minimize aggregation of newly synthesized proteins, the HSP60 chaperones also facilitate the actual folding process by providing a secluded environment for individual folding molecules and may also promote the unfolding and refolding of misfolded intermediates.
Collapse
Affiliation(s)
- A L Fink
- Department of Chemistry and Biochemistry, The University of California, Santa Cruz, California, USA
| |
Collapse
|
188
|
Hardcastle AJ, Thiselton DL, Van Maldergem L, Saha BK, Jay M, Plant C, Taylor R, Bird AC, Bhattacharya S. Mutations in the RP2 gene cause disease in 10% of families with familial X-linked retinitis pigmentosa assessed in this study. Am J Hum Genet 1999; 64:1210-5. [PMID: 10090907 PMCID: PMC1377846 DOI: 10.1086/302325] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
189
|
Mears AJ, Gieser L, Yan D, Chen C, Fahrner S, Hiriyanna S, Fujita R, Jacobson SG, Sieving PA, Swaroop A. Protein-truncation mutations in the RP2 gene in a North American cohort of families with X-linked retinitis pigmentosa. Am J Hum Genet 1999; 64:897-900. [PMID: 10053026 PMCID: PMC1377809 DOI: 10.1086/302298] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
190
|
Young TL, Penney L, Woods MO, Parfrey PS, Green JS, Hefferton D, Davidson WS. A fifth locus for Bardet-Biedl syndrome maps to chromosome 2q31. Am J Hum Genet 1999; 64:900-4. [PMID: 10053027 PMCID: PMC1377810 DOI: 10.1086/302301] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
191
|
Dumontet C, Sikic BI. Mechanisms of action of and resistance to antitubulin agents: microtubule dynamics, drug transport, and cell death. J Clin Oncol 1999; 17:1061-70. [PMID: 10071301 DOI: 10.1200/jco.1999.17.3.1061] [Citation(s) in RCA: 416] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To analyze the available data concerning mechanisms of action of and mechanisms of resistance to the antitubulin agents, vinca alkaloids and taxanes, and more recently described compounds. DESIGN We conducted a review of the literature on classic and recent antitubulin agents, focusing particularly on the relationships between antitubulin agents and their intracellular target, the soluble tubulin/microtubule complex. RESULTS AND CONCLUSION Although it is widely accepted that antitubulin agents block cell division by inhibition of the mitotic spindle, the mechanism of action of antitubulin agents on microtubules remains to be determined. The classic approach is that vinca alkaloids depolymerize microtubules, thereby increasing the soluble tubulin pool, whereas taxanes stabilize microtubules and increase the microtubular mass. More recent data suggest that both classes of agents have a similar mechanism of action, involving the inhibition of microtubule dynamics. These data suggest that vinca alkaloids and taxanes may act synergistically as antitumor agents and may be administered as combination chemotherapy in the clinic. However, enhanced myeloid and neurologic toxicity, as well as a strong dependence on the sequence of administration, presently exclude these combinations outside the context of clinical trials. Although the multidrug resistance phenotype mediated by Pgp appears to be an important mechanism of resistance to these agents, alterations of microtubule structure resulting in altered microtubule dynamics and/or altered binding of antitubulin agents may constitute a significant mechanism of drug resistance.
Collapse
Affiliation(s)
- C Dumontet
- Service d'Hématologie, Centre Hospitalier Lyon Sud, Pierre Bénite, France.
| | | |
Collapse
|
192
|
Abstract
A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin.
Collapse
Affiliation(s)
- F Perez
- Department of Cell Biology, Sciences III, University of Geneva, Switzerland.
| | | | | | | |
Collapse
|
193
|
Roobol A, Sahyoun ZP, Carden MJ. Selected subunits of the cytosolic chaperonin associate with microtubules assembled in vitro. J Biol Chem 1999; 274:2408-15. [PMID: 9891010 DOI: 10.1074/jbc.274.4.2408] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molecular chaperone activities of the only known chaperonin in the eukaryotic cytosol (cytosolic chaperonin containing T-complex polypeptide 1 (CCT)) appear to be relatively specialized; the main folding substrates in vivo and in vitro are identified as tubulins and actins. CCT is unique among chaperonins in the complexity of its hetero-oligomeric structure, containing eight different, although related, gene products. In addition to their known ability to bind to and promote correct folding of newly synthesized and denatured tubulins, we show here that CCT subunits alpha, gamma, zeta, and theta also associated with in vitro assembled microtubules, i.e. behaved as microtubule-associated proteins. This nucleotide-dependent association between microtubules and CCT polypeptides (Kd approximately 0.1 microM CCT subunit) did not appear to involve whole oligomeric chaperonin particles, but rather free CCT subunits. Removal of the tubulin COOH termini by subtilisin digestion caused all eight CCT subunits to associate with the microtubule polymer, thus highlighting the non-chaperonin nature of the selective CCT subunit association with normal microtubules.
Collapse
Affiliation(s)
- A Roobol
- Department of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, United Kingdom.
| | | | | |
Collapse
|
194
|
Feierbach B, Nogales E, Downing KH, Stearns T. Alf1p, a CLIP-170 domain-containing protein, is functionally and physically associated with alpha-tubulin. J Cell Biol 1999; 144:113-24. [PMID: 9885248 PMCID: PMC2148126 DOI: 10.1083/jcb.144.1.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Revised: 12/07/1998] [Indexed: 11/25/2022] Open
Abstract
Tubulin is a heterodimer of alpha- and beta-tubulin polypeptides. Assembly of the tubulin heterodimer in vitro requires the CCT chaperonin complex, and a set of five proteins referred to as the tubulin cofactors (Tian, F., Y. Huang, H. Rommelaere, J. Vandekerckhove, C. Ampe, and N.J. Cowan. 1996. Cell. 86:287-296; Tian, G., S.A. Lewis, B. Feierbach, T. Stearns, H. Rommelaere, C. Ampe, and N.J. Cowan. 1997. J. Cell Biol. 138:821-832). We report the characterization of Alf1p, the yeast ortholog of mammalian cofactor B. Alf1p interacts with alpha-tubulin in both two-hybrid and immunoprecipitation assays. Alf1p and cofactor B contain a single CLIP-170 domain, which is found in several microtubule-associated proteins. Mutation of the CLIP-170 domain in Alf1p disrupts the interaction with alpha-tubulin. Mutations in alpha-tubulin that disrupt the interaction with Alf1p map to a domain on the cytoplasmic face of alpha-tubulin; this domain is distinct from the region of interaction between alpha-tubulin and beta-tubulin. Alf1p-green fluorescent protein (GFP) is able to associate with microtubules in vivo, and this localization is abolished either by mutation of the CLIP-170 domain in Alf1p, or by mutation of the Alf1p-binding domain in alpha-tubulin. Analysis of double mutants constructed between null alleles of ALF1 and PAC2, which encodes the other yeast alpha-tubulin cofactor, suggests that Alf1p and Pac2p act in the same pathway leading to functional alpha-tubulin. The phenotype of overexpression of ALF1 suggests that Alf1p can act to sequester alpha-tubulin from interaction with beta-tubulin, raising the possibility that it plays a regulatory role in the formation of the tubulin heterodimer.
Collapse
Affiliation(s)
- B Feierbach
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA
| | | | | | | |
Collapse
|
195
|
Diamantopoulos GS, Perez F, Goodson HV, Batelier G, Melki R, Kreis TE, Rickard JE. Dynamic localization of CLIP-170 to microtubule plus ends is coupled to microtubule assembly. J Cell Biol 1999; 144:99-112. [PMID: 9885247 PMCID: PMC2148115 DOI: 10.1083/jcb.144.1.99] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
CLIP-170 is a cytoplasmic linker protein that localizes to plus ends of microtubules in vivo. In this study, we have characterized the microtubule-binding properties of CLIP-170, to understand the mechanism of its plus end targeting. We show that the NH2-terminal microtubule-interacting domain of CLIP-170 alone localizes to microtubule plus ends when transfected into cells. Association of CLIP-170 with newly-formed microtubules was observed in cells microinjected with biotinylated tubulin, used as a tracer for growing microtubules. Using in vitro assays, association of CLIP-170 with recently polymerized tubulin is also seen. Cross-linking and sedimentation velocity experiments suggest association of CLIP-170 with nonpolymerized tubulin. We conclude from these experiments that the microtubule end targeting of CLIP-170 is closely linked to tubulin polymerization.
Collapse
Affiliation(s)
- G S Diamantopoulos
- Department of Cell Biology, Sciences III, University of Geneva, CH-1211 Geneva 4, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
196
|
Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU. Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 1999; 18:75-84. [PMID: 9878052 PMCID: PMC1171104 DOI: 10.1093/emboj/18.1.75] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The functional coupling of protein synthesis and chaperone-assisted folding in vivo has remained largely unexplored. Here we have analysed the chaperonin-dependent folding pathway of actin in yeast. Remarkably, overexpression of a heterologous chaperonin which traps non-native polypeptides does not interfere with protein folding in the cytosol, indicating a high-level organization of folding reactions. Newly synthesized actin avoids the chaperonin trap and is effectively channelled from the ribosome to the endogenous chaperonin TRiC. Efficient actin folding on TRiC is critically dependent on the hetero-oligomeric co-chaperone GimC. By interacting with folding intermediates and with TRiC, GimC accelerates actin folding at least 5-fold and prevents the premature release of non-native protein from TRiC. We propose that TRiC and GimC form an integrated 'folding compartment' which functions in cooperation with the translation machinery. This compartment sequesters newly synthesized actin and other aggregation-sensitive polypeptides from the crowded macromolecular environment of the cytosol, thereby allowing their efficient folding.
Collapse
Affiliation(s)
- K Siegers
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD, UK
| | | | | | | | | | | | | |
Collapse
|
197
|
Forreiter C, Nover L. Heat induced stress proteins and the concept of molecular chaperones. J Biosci 1998. [DOI: 10.1007/bf02936122] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
198
|
Vega LR, Fleming J, Solomon F. An alpha-tubulin mutant destabilizes the heterodimer: phenotypic consequences and interactions with tubulin-binding proteins. Mol Biol Cell 1998; 9:2349-60. [PMID: 9725898 PMCID: PMC25501 DOI: 10.1091/mbc.9.9.2349] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Many effectors of microtubule assembly in vitro enhance the polymerization of subunits. However, several Saccharomyces cerevisiae genes that affect cellular microtubule-dependent processes appear to act at other steps in assembly and to affect polymerization only indirectly. Here we use a mutant alpha-tubulin to probe cellular regulation of microtubule assembly. tub1-724 mutant cells arrest at low temperature with no assembled microtubules. The results of several assays reported here demonstrate that the heterodimer formed between Tub1-724p and beta-tubulin is less stable than wild-type heterodimer. The unstable heterodimer explains several conditional phenotypes conferred by the mutation. These include the lethality of tub1-724 haploid cells when the beta-tubulin-binding protein Rbl2p is either overexpressed or absent. It also explains why the TUB1/tub1-724 heterozygotes are cold sensitive for growth and why overexpression of Rbl2p rescues that conditional lethality. Both haploid and heterozygous tub1-724 cells are inviable when another microtubule effector, PAC2, is overexpressed. These effects are explained by the ability of Pac2p to bind alpha-tubulin, a complex we demonstrate directly. The results suggest that tubulin-binding proteins can participate in equilibria between the heterodimer and its components.
Collapse
Affiliation(s)
- L R Vega
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
199
|
|
200
|
Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, Kirschner R, Hemberger M, Bergen AA, Rosenberg T, Pinckers AJ, Fundele R, Rosenthal A, Cremers FP, Ropers HH, Berger W. Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 1998; 19:327-32. [PMID: 9697692 DOI: 10.1038/1214] [Citation(s) in RCA: 250] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
X-linked retinitis pigmentosa (XLRP) results from mutations in at least two different loci, designated RP2 and RP3, located at Xp11.3 and Xp21.1, respectively. The RP3 gene was recently isolated by positional cloning, whereas the RP2 locus was mapped genetically to a 5-cM interval. We have screened this region for genomic rearrangements by the YAC representation hybridization (YRH) technique and detected a LINE1 (L1) insertion in one XLRP patient. The L1 retrotransposition occurred in an intron of a novel gene that consisted of five exons and encoded a polypeptide of 350 amino acids. Subsequently, nonsense, missense and frameshift mutations, as well as two small deletions, were identified in six additional patients. The predicted gene product shows homology with human cofactor C, a protein involved in the ultimate step of beta-tubulin folding. Our data provide evidence that mutations in this gene, designated RP2, are responsible for progressive retinal degeneration.
Collapse
Affiliation(s)
- U Schwahn
- Max-Planck-Institute for Molecular Genetics, Berlin (Dahlem), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|