151
|
Hu Y, Lu X, Barnes E, Yan M, Lou H, Luo G. Recql5 and Blm RecQ DNA helicases have nonredundant roles in suppressing crossovers. Mol Cell Biol 2005; 25:3431-42. [PMID: 15831450 PMCID: PMC1084310 DOI: 10.1128/mcb.25.9.3431-3442.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 12/31/2004] [Accepted: 02/02/2005] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, crossovers in mitotic cells can have deleterious consequences and therefore must be suppressed. Mutations in BLM give rise to Bloom syndrome, a disease that is characterized by an elevated rate of crossovers and increased cancer susceptibility. However, simple eukaryotes such as Saccharomyces cerevisiae have multiple pathways for suppressing crossovers, suggesting that mammals also have multiple pathways for controlling crossovers in their mitotic cells. We show here that in mouse embryonic stem (ES) cells, mutations in either the Bloom syndrome homologue (Blm) or the Recql5 genes result in a significant increase in the frequency of sister chromatid exchange (SCE), whereas deleting both Blm and Recql5 lead to an even higher frequency of SCE. These data indicate that Blm and Recql5 have nonredundant roles in suppressing crossovers in mouse ES cells. Furthermore, we show that mouse embryonic fibroblasts derived from Recql5 knockout mice also exhibit a significantly increased frequency of SCE compared with the corresponding wild-type control. Thus, this study identifies a previously unknown Recql5-dependent, Blm-independent pathway for suppressing crossovers during mitosis in mice.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Case Western Reserve University, BRB, 7th floor, 10900 Euclid Ave., Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
152
|
Petukhova GV, Pezza RJ, Vanevski F, Ploquin M, Masson JY, Camerini-Otero RD. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol 2005; 12:449-53. [PMID: 15834424 DOI: 10.1038/nsmb923] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/11/2005] [Indexed: 11/09/2022]
Abstract
During the first meiotic division, homologous chromosomes (homologs) have to separate to opposite poles of the cell to ensure the right complement in the progeny. Homologous recombination provides a mechanism for a genome-wide homology search and physical linkage among the homologs before their orderly segregation. Rad51 and Dmc1 recombinases are the major players in these processes. Disruption of meiosis-specific HOP2 or MND1 genes leads to severe defects in homologous synapsis and an early-stage recombination failure resulting in sterility. Here we show that mouse Hop2 can efficiently form D-loops, the first recombination intermediates, but this activity is abrogated upon association with Mnd1. Furthermore, the Hop2-Mnd1 heterodimer physically interacts with Rad51 and Dmc1 recombinases and stimulates their activity up to 35-fold. Our data reveal an interplay among Hop2, Mnd1 and Rad51 and Dmc1 in the formation of the first recombination intermediates during meiosis.
Collapse
Affiliation(s)
- Galina V Petukhova
- Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Drive, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
153
|
van Veelen LR, Essers J, van de Rakt MWMM, Odijk H, Pastink A, Zdzienicka MZ, Paulusma CC, Kanaar R. Ionizing radiation-induced foci formation of mammalian Rad51 and Rad54 depends on the Rad51 paralogs, but not on Rad52. Mutat Res 2005; 574:34-49. [PMID: 15914205 DOI: 10.1016/j.mrfmmm.2005.01.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 12/08/2004] [Accepted: 01/10/2005] [Indexed: 12/22/2022]
Abstract
Homologous recombination is of major importance for the prevention of genomic instability during chromosome duplication and repair of DNA damage, especially double-strand breaks. Biochemical experiments have revealed that during the process of homologous recombination the RAD52 group proteins, including Rad51, Rad52 and Rad54, are involved in an essential step: formation of a joint molecule between the broken DNA and the intact repair template. Accessory proteins for this reaction include the Rad51 paralogs and BRCA2. The significance of homologous recombination for the cell is underscored by the evolutionary conservation of the Rad51, Rad52 and Rad54 proteins from yeast to humans. Upon treatment of cells with ionizing radiation, the RAD52 group proteins accumulate at the sites of DNA damage into so-called foci. For the yeast Saccharomyces cerevisiae, foci formation of Rad51 and Rad54 is abrogated in the absence of Rad52, while Rad51 foci formation does occur in the absence of the Rad51 paralog Rad55. By contrast, we show here that in mammalian cells, Rad52 is not required for foci formation of Rad51 and Rad54. Furthermore, radiation-induced foci formation of Rad51 and Rad54 is impaired in all Rad51 paralog and BRCA2 mutant cell lines tested, while Rad52 foci formation is not influenced by a mutation in any of these recombination proteins. Despite their evolutionary conservation and biochemical similarities, S. cerevisiae and mammalian Rad52 appear to differentially contribute to the DNA-damage response.
Collapse
Affiliation(s)
- Lieneke R van Veelen
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Center, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Friedberg EC, Meira LB. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage (Version 6). DNA Repair (Amst) 2005; 3:1617-38. [PMID: 15474422 DOI: 10.1016/j.dnarep.2004.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2004] [Indexed: 12/31/2022]
Abstract
We present Version 6 of a database of mouse mutant strains that affect biological responses to DNA damage. This database is also electronically available at http://pathcuric1.swmed.edu/research/research.htm.
Collapse
Affiliation(s)
- Errol C Friedberg
- Laboratory of Molecular Pathology, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9072, USA.
| | | |
Collapse
|
155
|
Abstract
DNA double-strand breaks (DSBs) require a coordinated molecular response to ensure cellular or organism survival. Many factors required for the DSB response, including those involved in non-homologous end joining (NHEJ) and homologous recombination repair (HRR) are essential during nervous system development. Additionally, human syndromes resulting from defective responses to DNA damage often feature overt neuropathology such as neurodegeneration. Thus, appropriate responses to DSBs are critical for the normal development and maintenance of the nervous system.
Collapse
Affiliation(s)
- Clint W Abner
- Department of Genetics & Tumor Cell Biology, St. Jude Children's Research Hospital, 332N Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
156
|
Attardi LD. The role of p53-mediated apoptosis as a crucial anti-tumor response to genomic instability: lessons from mouse models. Mutat Res 2005; 569:145-57. [PMID: 15603759 DOI: 10.1016/j.mrfmmm.2004.04.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2004] [Accepted: 04/12/2004] [Indexed: 05/01/2023]
Abstract
Genomic instability is a major force driving human cancer development. A cellular safeguard against such genetic destabilization, which can ensue from defects in telomere maintenance, DNA repair, and checkpoint function, is activation of the p53 tumor suppressor protein, which commonly responds to these DNA damage signals by inducing apoptosis. If, however, p53 becomes inactivated, as is typical of many tumors and pre-cancerous lesions, then cells with compromised genome integrity pathways survive inappropriately, and the accrual of oncogenic lesions can fuel the carcinogenic process. Studies of mouse models have been instrumental in providing support for this idea. Mouse knockouts in genes important for telomere function, DNA damage checkpoint activation and DNA repair - both non-homologous end joining and homologous recombination - are prone to the development of genomic instability. As a consequence of these DNA damage signals, p53 becomes activated in cells of these mutant mice, leading to the induction of apoptosis, sometimes at the expense of organismal viability. This apoptotic response can be rescued through crosses to p53-deficient mice, but has dire consequences: mice predisposed to genomic instability and lacking p53 are susceptible to tumorigenesis. Thus p53-mediated apoptosis provides a crucial tumor suppressive mechanism to eliminate cells succumbing to genomic instability.
Collapse
Affiliation(s)
- Laura D Attardi
- Stanford University School of Medicine, Departments of Radiation Oncology and Genetics, CCSR South, Room 1255, 269 Campus Drive, Stanford, CA 94305-5152, USA
| |
Collapse
|
157
|
Brunori M, Luciano P, Gilson E, Géli V. The telomerase cycle: normal and pathological aspects. J Mol Med (Berl) 2005; 83:244-57. [PMID: 15630594 DOI: 10.1007/s00109-004-0616-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Accepted: 10/26/2004] [Indexed: 01/22/2023]
Abstract
Telomeres are nucleoprotein complexes that cap the end of eukaryotic chromosomes and are essential for their function and stability. Telomerase, a reverse transcriptase that extends the single-stranded G-rich 3' protruding ends of chromosomes, stabilizes telomere length in germ line cells and regenerative tissues as well as in tumor cells. In the absence of telomerase telomeres shorten with cell division, a process able to trigger cell growth arrest. When telomerase is present in the cell, its activity is tightly regulated at its site of action by factors specifically bound to the telomeric DNA. Recent data indicate that telomeres reorganize during the cell cycle. This review summarizes our current knowledge on how telomeres are dynamically organized and remodeled during cell cycle and stress response, pointing out the conservation and the difference between yeast and human. We then focus on the cellular consequences of telomere modifications in normal and cancer cells. This leads to a discussion of the different roles, seemingly contradictory, of telomeres and telomerase during the initiation and the progression of a cancer.
Collapse
Affiliation(s)
- Michele Brunori
- Laboratoire de Biologie Moleculaire de la Cellule, l'Ecole Normale de Lyon, CNRS UMR5161, INRA U1237, IFR12846 Allée d'Italie, 69364 Lyon cedex 07, France
| | | | | | | |
Collapse
|
158
|
Yun S, Lie-A-Cheong C, Porter ACG. Discriminatory suppression of homologous recombination by p53. Nucleic Acids Res 2004; 32:6479-89. [PMID: 15601996 PMCID: PMC545454 DOI: 10.1093/nar/gkh986] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 11/19/2004] [Accepted: 11/19/2004] [Indexed: 12/19/2022] Open
Abstract
Homologous recombination (HR) is used in vertebrate somatic cells for essential, RAD51-dependent, repair of DNA double-strand-breaks (DSBs), but inappropriate HR can cause genome instability. A transcriptional transactivation-independent role for p53 in suppressing HR has been established, but is not detected in all HR assays. To address the basis of such exceptions, and the possibility that suppression by p53 may be discriminatory, we have conducted a controlled comparison of the effects of p53 depletion on three different kinds of HR. We show that, within the same cells, p53 depletion promotes both intra-chromosomal HR (ICHR) and extra-chromosomal HR (ECHR), but not homologous DNA integration (gene targeting; GT). This conclusion holds true for both spontaneous and DSB-induced ICHR and GT. We show further that non-conservative ICHR is more susceptible than conservative ICHR to inhibition by p53. These results provide strong evidence that p53 can discriminate between different forms of HR and, despite the fact that GT is used experimentally for gene disruption, is consistent with the possibility that p53 preferentially suppresses genome-destabilizing forms of HR. While the mechanism of suppression by p53 remains unclear, our data suggest that it is independent of mismatch repair and of changes in RAD51 protein levels.
Collapse
Affiliation(s)
- Sheng Yun
- Gene Targeting Group, MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, Du Cane Road, London W12 ONN, UK
| | | | | |
Collapse
|
159
|
Li W, Kessler P, Williams BRG. Transcript profiling of Wilms tumors reveals connections to kidney morphogenesis and expression patterns associated with anaplasia. Oncogene 2004; 24:457-68. [PMID: 15531917 DOI: 10.1038/sj.onc.1208228] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Anaplasia (unfavorable histology) is associated with therapy resistance and poor prognosis of Wilms tumor, but the molecular basis for this phenotype is unclear. Here, we used a cDNA array with 9240 clones relevant to cancer biology and/or kidney development to examine the expression profiles of 54 Wilms tumors, five normal kidneys and fetal kidney. By linking genes differentially expressed between fetal kidney and Wilms tumors to kidney morphogenesis, we found that genes expressed at a higher level in Wilms tumors tend to be expressed more in uninduced metanephrogenic mesenchyme or blastema than in their differentiated structures. Conversely, genes expressed at a lower level in Wilms tumors tend to be expressed less in uninduced metanephrogenic mesenchyme or blastema. We also identified 97 clones representing 76 Unigenes or unclustered ESTs that clearly separate anaplastic Wilms tumors from tumors with favorable histology. Genes in this set provide insight into the nature of the abnormal nuclear morphology of anaplastic tumors and may facilitate identification of molecular targets to improve their responsiveness to treatment.
Collapse
Affiliation(s)
- Wenliang Li
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
160
|
Demuth I, Digweed M, Concannon P. Human SNM1B is required for normal cellular response to both DNA interstrand crosslink-inducing agents and ionizing radiation. Oncogene 2004; 23:8611-8. [PMID: 15467758 DOI: 10.1038/sj.onc.1207895] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DNA interstrand crosslinks (ICLs) are critical lesions for the mammalian cell since they affect both DNA strands and block transcription and replication. The repair of ICLs in the mammalian cell involves components of different repair pathways such as nucleotide-excision repair and the double-strand break/homologous recombination repair pathways. However, the mechanistic details of mammalian ICL repair have not been fully delineated. We describe here the complete coding sequence and the genomic organization of hSNM1B, one of at least three human homologs of the Saccharomyces cerevisiae PSO2 gene. Depletion of hSNM1B by RNA interference rendered cells hypersensitive to ICL-inducing agents. This requirement for hSNM1B in the cellular response to ICL has been hypothesized before but never experimentally verified. In addition, siRNA knockdown of hSNM1B rendered cells sensitive to ionizing radiation, suggesting the possibility of hSNM1B involvement in homologous recombination repair of double-strand breaks arising as intermediates of ICL repair. Monoubiquitination of FANCD2, a key step in the FANC/BRCA pathway, is not affected in hSNM1B-depleted HeLa cells, indicating that hSNM1B is probably not a part of the Fanconi anemia core complex. Nonetheless, similarities in the phenotype of hSNM1B-depleted cells and cultured cells from patients suffering from Fanconi anemia make hSNM1B a candidate for one of the as yet unidentified Fanconi anemia genes not involved in monoubiquitination of FANCD2.
Collapse
Affiliation(s)
- Ilja Demuth
- Molecular Genetics Program, Benaroya Research Institute, Seattle, WA 98101-2795, USA
| | | | | |
Collapse
|
161
|
Budzowska M, Jaspers I, Essers J, de Waard H, van Drunen E, Hanada K, Beverloo B, Hendriks RW, de Klein A, Kanaar R, Hoeijmakers JH, Maas A. Mutation of the mouse Rad17 gene leads to embryonic lethality and reveals a role in DNA damage-dependent recombination. EMBO J 2004; 23:3548-58. [PMID: 15297881 PMCID: PMC516625 DOI: 10.1038/sj.emboj.7600353] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Accepted: 07/13/2004] [Indexed: 01/15/2023] Open
Abstract
Genetic defects in DNA repair mechanisms and cell cycle checkpoint (CCC) genes result in increased genomic instability and cancer predisposition. Discovery of mammalian homologs of yeast CCC genes suggests conservation of checkpoint mechanisms between yeast and mammals. However, the role of many CCC genes in higher eukaryotes remains elusive. Here, we report that targeted deletion of an N-terminal part of mRad17, the mouse homolog of the Schizosaccharomyces pombe Rad17 checkpoint clamp-loader component, resulted in embryonic lethality during early/mid-gestation. In contrast to mouse embryos, embryonic stem (ES) cells, isolated from mRad17(5'Delta/5'Delta) embryos, produced truncated mRad17 and were viable. These cells displayed hypersensitivity to various DNA-damaging agents. Surprisingly, mRad17(5'Delta/5'Delta) ES cells were able to arrest cell cycle progression upon induction of DNA damage. However, they displayed impaired homologous recombination as evidenced by a strongly reduced gene targeting efficiency. In addition to a possible role in DNA damage-induced CCC, based on sequence homology, our results indicate that mRad17 has a function in DNA damage-dependent recombination that may be responsible for the sensitivity to DNA-damaging agents.
Collapse
Affiliation(s)
- Magda Budzowska
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Iris Jaspers
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Jeroen Essers
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Harm de Waard
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Ellen van Drunen
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Katsuhiro Hanada
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Berna Beverloo
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
- MGC-Department of Clinical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | | | - Annelies de Klein
- MGC-Department of Clinical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Roland Kanaar
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC-Daniel, DR Rotterdam, The Netherlands
| | - Jan H Hoeijmakers
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
| | - Alex Maas
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, DR Rotterdam, The Netherlands
- MGC-Department of Cell Biology and Genetics, Center for Biomedical Genetics, Erasmus MC, PO Box 1738, 3000 DR Rotterdam, The Netherlands. Tel.: +31 10 408 7202; Fax: +31 10 408 9468; E-mail:
| |
Collapse
|
162
|
Lio YC, Schild D, Brenneman MA, Redpath JL, Chen DJ. Human Rad51C deficiency destabilizes XRCC3, impairs recombination, and radiosensitizes S/G2-phase cells. J Biol Chem 2004; 279:42313-20. [PMID: 15292210 DOI: 10.1074/jbc.m405212200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, and XRCC3) are expressed in mitotically growing cells and are thought to play mediating roles in homologous recombination, although their precise functions remain unclear. Among the five paralogs, Rad51C was found to be a central component present in two complexes, Rad51C-XRCC3 and Rad51B-Rad51C-Rad51D-XRCC2. We have shown previously that the human Rad51C protein exhibits three biochemical activities, including DNA binding, ATPase, and DNA duplex separation. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA-cross-linking agent mitomycin C and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G(2)/M phases of the cell cycle but not in G(1) phase. Together, these results provide direct cellular evidence for the function of human Rad51C in homologous recombinational repair.
Collapse
Affiliation(s)
- Yi-Ching Lio
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
| | | | | | | | | |
Collapse
|
163
|
Surrallés J, Jackson SP, Jasin M, Kastan MB, West SC, Joenje H. Molecular cross-talk among chromosome fragility syndromes. Genes Dev 2004; 18:1359-70. [PMID: 15198978 PMCID: PMC423188 DOI: 10.1101/gad.1216304] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jordi Surrallés
- Group of Mutagenesis, Department of Genetics and Microbiology, Universitat Autonòma de Barcelona, 08193-Bellaterra, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
164
|
Couëdel C, Mills KD, Barchi M, Shen L, Olshen A, Johnson RD, Nussenzweig A, Essers J, Kanaar R, Li GC, Alt FW, Jasin M. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev 2004; 18:1293-304. [PMID: 15175261 PMCID: PMC420355 DOI: 10.1101/gad.1209204] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Homologous recombination (HR) and nonhomologous end-joining (NHEJ) are mechanistically distinct DNA repair pathways that contribute substantially to double-strand break (DSB) repair in mammalian cells. We have combined mutations in factors from both repair pathways, the HR protein Rad54 and the DNA-end-binding factor Ku80, which has a role in NHEJ. Rad54(-/-)Ku80(-/-) mice were severely compromised in their survival, such that fewer double mutants were born than expected, and only a small proportion of those born reached adulthood. However, double-mutant mice died at lower frequency from tumors than Ku80 single mutant mice, likely as a result of rapid demise at a young age from other causes. When challenged with an exogenous DNA damaging agent, ionizing radiation, double-mutant mice were exquisitely sensitive to low doses. Tissues and cells from double-mutant mice also showed indications of spontaneous DNA damage. Testes from some Rad54(-/-)Ku80(-/-) mice displayed enhanced apoptosis and reduced sperm production, and embryonic fibroblasts from Rad54(-/-)Ku80(-/-) animals accumulated foci of gamma-H2AX, a marker for DSBs. The substantially increased DNA damage response in the double mutants implies a cooperation of the two DSB repair pathways for survival and genomic integrity in the animal.
Collapse
Affiliation(s)
- Chrystelle Couëdel
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Mills KD, Ferguson DO, Essers J, Eckersdorff M, Kanaar R, Alt FW. Rad54 and DNA Ligase IV cooperate to maintain mammalian chromatid stability. Genes Dev 2004; 18:1283-92. [PMID: 15175260 PMCID: PMC420354 DOI: 10.1101/gad.1204304] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nonhomologous end joining (NHEJ) and homologous recombination (HR) represent the two major pathways of DNA double-strand break (DSB) repair in eukaryotic cells. NHEJ repairs DSBs by ligation of cognate broken ends irrespective of homologous flanking sequences, whereas HR repairs DSBs using an undamaged homologous template. Although both NHEJ and HR have been clearly implicated in the maintenance of genome stability, how these apparently independent and mechanistically distinct pathways are coordinated remains largely unexplored. To investigate the relationship between HR and NHEJ modes of DSB repair, we generated cells doubly deficient for the NHEJ factor DNA Ligase IV (Lig4) and the HR factor Rad54. We show that Lig4 and Rad54 cooperate to support cellular proliferation, repair spontaneous DSBs, and prevent chromosome and single chromatid aberrations. These findings demonstrate a role for NHEJ in the repair of DSBs that occur spontaneously during or after DNA replication, and reveal overlapping functions for NHEJ and Rad54-dependent HR in the repair of such DSBs.
Collapse
Affiliation(s)
- Kevin D Mills
- CBR Institute for Biomedical Research, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
166
|
Treuner K, Helton R, Barlow C. Loss of Rad52 partially rescues tumorigenesis and T-cell maturation in Atm-deficient mice. Oncogene 2004; 23:4655-61. [PMID: 15122331 DOI: 10.1038/sj.onc.1207604] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ataxia Telangiectasia (A-T) is an autosomal recessive disease caused by loss of function of the protein kinase ATM. Atm-deficient mice display several phenotypes consistent with the human disease, including predisposition to cancer, growth retardation, cell-proliferation defects and infertility. A-T patients have a several hundred fold increased risk of developing lymphomas and leukemias, which are typically highly invasive. By reducing homologous recombination through genetic deletion of the Rad52 protein, we were able to decrease substantially the development of T-cell lymphomas in Atm-/- mice, resulting in an increased life span of the double mutant mice. Additionally, we were able to partially rescue the T-cell development of Atm-/- mice. Other phenotypes, including growth defects, genomic instability, infertility and radiosensitivity, were not rescued. Our results suggest that excessive recombination is an important contributor to tumorigenesis in A-T.
Collapse
Affiliation(s)
- Kai Treuner
- The Salk Institute for Biological Studies, The Laboratory of Genetics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
167
|
Dudás A, Chovanec M. DNA double-strand break repair by homologous recombination. Mutat Res 2004; 566:131-67. [PMID: 15164978 DOI: 10.1016/j.mrrev.2003.07.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/29/2003] [Accepted: 07/30/2003] [Indexed: 01/06/2023]
Abstract
DNA double-strand breaks (DSB) are presumed to be the most deleterious DNA lesions as they disrupt both DNA strands. Homologous recombination (HR), single-strand annealing, and non-homologous end-joining are considered to be the pathways for repairing DSB. In this review, we focus on DSB repair by HR. The proteins involved in this process as well as the interactions among them are summarized and characterized. The main emphasis is on eukaryotic cells, particularly the budding yeast Saccharomyces cerevisiae and mammals. Only the RAD52 epistasis group proteins are included.
Collapse
Affiliation(s)
- Andrej Dudás
- Laboratory of Molecular Genetics, Cancer Research Institute, Slovak Academy of Sciences, Vlárska 7, 833 91 Bratislava 37, Slovak Republic
| | | |
Collapse
|
168
|
Smirnova M, Van Komen S, Sung P, Klein HL. Effects of tumor-associated mutations on Rad54 functions. J Biol Chem 2004; 279:24081-8. [PMID: 15056673 DOI: 10.1074/jbc.m402719200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast RAD54 gene, a member of the RAD52 epistasis group, plays an important role in homologous recombination and DNA double strand break repair. Rad54 belongs to the Snf2/Swi2 protein family, and it possesses a robust DNA-dependent ATPase activity, uses free energy from ATP hydrolysis to supercoil DNA, and cooperates with the Rad51 recombinase in DNA joint formation. There are two RAD54-homologous genes in human cells, hRAD54 and RAD54B. Mutations in these human genes have been found in tumors. These tumor-associated mutations map to conserved regions of the hRad54 and hRad54B proteins. Here we introduced the equivalent mutations into the Saccharomyces cerevisiae RAD54 gene in an effort to examine the functional consequences of these gene changes. One mutant, rad54 G484R, showed sensitivity to DNA-damaging agents and reduced homologous recombination rates, indicating a loss of function. Even though the purified rad54 G484R mutant protein retained the ability to bind DNA and interact with Rad51, it was nearly devoid of ATPase activity and was similarly defective in DNA supercoiling and D-loop formation. Two other mutants, rad54 N616S and rad54 D442Y, were not sensitive to genotoxic agents and behaved like the wild type allele in homologous recombination assays. Consistent with the mild phenotype associated with the rad54 N616S allele, its encoded protein was similar to wild type Rad54 protein in biochemical attributes. Because dysfunctional homologous recombination gives rise to genome instability, our results are consistent with the premise that tumor-associated mutations in hRad54 and Rad54B could contribute to the tumor phenotype or enhance the genome instability seen in tumor cells.
Collapse
Affiliation(s)
- Marina Smirnova
- Department of Biochemistry and Kaplan Comprehensive Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | |
Collapse
|
169
|
Fukao T, Chen P, Ren J, Kaneko H, Zhang GX, Kondo M, Yamamoto KI, Furuichi Y, Takeda S, Kondo N, Lavin MF. Disruption of the BLM gene in ATM-null DT40 cells does not exacerbate either phenotype. Oncogene 2004; 23:1498-506. [PMID: 14985700 DOI: 10.1038/sj.onc.1207276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bloom syndrome and ataxia-telangiectasia are autosomal recessive human disorders characterized by immunodeficiency, genome instability and predisposition to develop cancer. Recent data reveal that the products of these two genes, BLM and ATM, interact and function together in recognizing abnormal DNA structures. To investigate the function of these two molecules in DNA damage recognition, we generated double knockouts of ATM(-/-) BLM(-/-) in the DT40 chicken B-lymphocyte cell line. The double mutant cells were viable and exhibited a variety of characteristics of both ATM(-/-) and BLM(-/-) cells. There was no evidence for exacerbation of either phenotype; however, the more extreme radiosensitivity seen in ATM(-/-) and the elevated sister chromatid exchange seen in BLM(-/-) cells were retained in the double mutants. These results suggest that ATM and BLM have largely distinct roles in recognizing different forms of damage in DNA, but are also compatible with partially overlapping functions in recognizing breaks in radiation-damaged DNA.
Collapse
Affiliation(s)
- Toshiyuki Fukao
- Department of Pediatrics, Gifu University School of Medicine, Gifu 500-8076, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Abraham J, Lemmers B, Hande MP, Moynahan ME, Chahwan C, Ciccia A, Essers J, Hanada K, Chahwan R, Khaw AK, McPherson P, Shehabeldin A, Laister R, Arrowsmith C, Kanaar R, West SC, Jasin M, Hakem R. Eme1 is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J 2004; 22:6137-47. [PMID: 14609959 PMCID: PMC275438 DOI: 10.1093/emboj/cdg580] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Yeast and human Eme1 protein, in complex with Mus81, constitute an endonuclease that cleaves branched DNA structures, especially those arising during stalled DNA replication. We identified mouse Eme1, and show that it interacts with Mus81 to form a complex that preferentially cleaves 3'-flap structures and replication forks rather than Holliday junctions in vitro. We demonstrate that Eme1-/- embryonic stem (ES) cells are hypersensitive to the DNA cross-linking agents mitomycin C and cisplatin, but only mildly sensitive to ionizing radiation, UV radiation and hydroxyurea treatment. Mammalian Eme1 is not required for the resolution of DNA intermediates that arise during homologous recombination processes such as gene targeting, gene conversion and sister chromatid exchange (SCE). Unlike Blm-deficient ES cells, increased SCE was seen only following induced DNA damage in Eme1-deficient cells. Most importantly, Eme1 deficiency led to spontaneous genomic instability. These results reveal that mammalian Eme1 plays a key role in DNA repair and the maintenance of genome integrity.
Collapse
Affiliation(s)
- Jacinth Abraham
- Advanced Medical Discovery Institute, Ontario Cancer Institute, 620 University Avenue, Suite 706, Toronto, Ontario M5G 2C1, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Petukhova GV, Romanienko PJ, Camerini-Otero RD. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev Cell 2004; 5:927-36. [PMID: 14667414 DOI: 10.1016/s1534-5807(03)00369-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The S. cerevisiae Hop2 protein and its fission yeast homolog Meu13 are required for proper homologous chromosome pairing and recombination during meiosis. The mechanism of this requirement is, however, not understood. The previous studies in Saccharomyces suggested that Hop2 is a guardian of meiotic chromosome synapsis with the ability to prevent or resolve deleterious associations between nonhomologous chromosomes. We have generated a Hop2 knockout mouse that shows profound meiotic defects with a distinct and novel phenotype. Hop2(-/-) spermatocytes arrest at the stage of pachytene-like chromosome condensation. Axial elements are fully developed, but synapsis of any kind is very limited. Immunofluorescence analysis of meiotic chromosome spreads indicates that while meiotic double-stranded breaks are formed and processed in the Hop2 knockout, they fail to be repaired. In aggregate, the Hop2 phenotype is consistent with a direct role for the mouse Hop2 protein in promoting homologous chromosome synapsis.
Collapse
Affiliation(s)
- Galina V Petukhova
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
172
|
Modesti M, Junop MS, Ghirlando R, van de Rakt M, Gellert M, Yang W, Kanaar R. Tetramerization and DNA ligase IV interaction of the DNA double-strand break repair protein XRCC4 are mutually exclusive. J Mol Biol 2003; 334:215-28. [PMID: 14607114 DOI: 10.1016/j.jmb.2003.09.031] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XRCC4 protein is of critical importance for the repair of broken chromosomal DNA by non-homologous end joining (NHEJ). The absence of XRCC4 abolishes chromosomal NHEJ almost completely. One reason for this severe phenotype is that XRCC4 binds and modulates the stability and activity of the NHEJ-specific ligase, DNA ligase IV. XRCC4 in solution is in equilibrium between the dimeric and tetrameric forms. Previous structural studies have shown that the interface between dimers is located in the same region as that implicated in DNA ligase IV interaction. With the use of equilibrium sedimentation analysis, we show here that only the XRCC4 dimer can associate with DNA ligase IV, forming a monodisperse complex of 2:1 stoichiometry in solution. In addition, physical analysis of XRCC4/DNA ligase IV complex formation, combined with mutational analysis of XRCC4, indicates that tetramerization and DNA ligase IV binding are mutually exclusive. We propose that the putative function of the XRCC4 tetramer is distinct from its DNA ligase IV-associated function.
Collapse
Affiliation(s)
- Mauro Modesti
- Department of Cell Biology and Genetics, Erasmus Medical Center, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
173
|
Wijnhoven SWP, van Steeg H. Transgenic and knockout mice for DNA repair functions in carcinogenesis and mutagenesis. Toxicology 2003; 193:171-87. [PMID: 14599776 DOI: 10.1016/s0300-483x(03)00295-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Genetically modified mouse models with defects in DNA repair pathways, especially in nucleotide excision repair (NER) and mismatch repair (MMR), are powerful tools to study processes like carcinogenesis and mutagenesis. The use of mutant mice in these studies has many advantages over using normal wild type mice with respect to costs, number of animals, predictive value towards carcinogenic compounds and the duration of study. Short-term carcinogenicity assays still require considerable number of animals and extensive pathological analyses. Therefore, alternatives demanding less animals and shorter exposure times would be desirable. In this respect, one approach could be the use of transgenic mice harbouring marker genes, that can easily detect mutagenic features of carcinogenic compounds, especially when such models are in a DNA repair deficient background. Here, we review the progress made in the development and use of DNA repair deficient mouse models as replacements for long-term cancer assays and discuss the applicability of enhanced gene mutant frequencies as early indicators of tumourigenesis. Although promising models exist, there is still a need for more universally responding and highly sensitive mouse models, since it is likely that non-genotoxic carcinogens will go undetected in a DNA repair deficient mouse. One attractive candidate mouse model, having a presumptive broad detective range, is the Xpa/p53 mutant mouse model, which will be discussed in more detail.
Collapse
Affiliation(s)
- Susan W P Wijnhoven
- National Institute of Public Health and Environment, RIVM/TOX pb12, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.
| | | |
Collapse
|
174
|
Gorski MM, Eeken JCJ, de Jong AWM, Klink I, Loos M, Romeijn RJ, van Veen BL, Mullenders LH, Ferro W, Pastink A. TheDrosophila melanogasterDNALigase IVGene Plays a Crucial Role in the Repair of Radiation-Induced DNA Double-Strand Breaks and Acts Synergistically WithRad54. Genetics 2003; 165:1929-41. [PMID: 14704177 PMCID: PMC1462910 DOI: 10.1093/genetics/165.4.1929] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AbstractDNA Ligase IV has a crucial role in double-strand break (DSB) repair through nonhomologous end joining (NHEJ). Most notably, its inactivation leads to embryonic lethality in mammals. To elucidate the role of DNA Ligase IV (Lig4) in DSB repair in a multicellular lower eukaryote, we generated viable Lig4-deficient Drosophila strains by P-element-mediated mutagenesis. Embryos and larvae of mutant lines are hypersensitive to ionizing radiation but hardly so to methyl methanesulfonate (MMS) or the crosslinking agent cis-diamminedichloroplatinum (cisDDP). To determine the relative contribution of NHEJ and homologous recombination (HR) in Drosophila, Lig4; Rad54 double-mutant flies were generated. Survival studies demonstrated that both HR and NHEJ have a major role in DSB repair. The synergistic increase in sensitivity seen in the double mutant, in comparison with both single mutants, indicates that both pathways partially overlap. However, during the very first hours after fertilization NHEJ has a minor role in DSB repair after exposure to ionizing radiation. Throughout the first stages of embryogenesis of the fly, HR is the predominant pathway in DSB repair. At late stages of development NHEJ also becomes less important. The residual survival of double mutants after irradiation strongly suggests the existence of a third pathway for the repair of DSBs in Drosophila.
Collapse
Affiliation(s)
- Marcin M Gorski
- Department of Toxicogenetics, Leiden University Medical Center, 2333 AL, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Ward JO, Reinholdt LG, Hartford SA, Wilson LA, Munroe RJ, Schimenti KJ, Libby BJ, O'Brien M, Pendola JK, Eppig J, Schimenti JC. Toward the genetics of mammalian reproduction: induction and mapping of gametogenesis mutants in mice. Biol Reprod 2003; 69:1615-25. [PMID: 12855593 DOI: 10.1095/biolreprod.103.019877] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The genetic control of mammalian gametogenesis is inadequately characterized because of a lack of mutations causing infertility. To further the discovery of genes required for mammalian gametogenesis, phenotype-driven screens were performed in mice using random chemical mutagenesis of whole animals and embryonic stem cells. Eleven initial mutations are reported here that affect proliferation of germ cells, meiosis, spermiogenesis, and spermiation. Nine of the mutations have been mapped genetically. These preliminary studies provide baselines for estimating the number of genes required for gametogenesis and offer guidance in conducting new genetic screens that will accelerate and optimize mutant discovery. This report demonstrates the efficacy and expediency of mutagenesis to identify new genes required for mammalian gamete development.
Collapse
Affiliation(s)
- Jeremy O Ward
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Wachters FM, van Putten JWG, Maring JG, Zdzienicka MZ, Groen HJM, Kampinga HH. Selective targeting of homologous DNA recombination repair by gemcitabine. Int J Radiat Oncol Biol Phys 2003; 57:553-62. [PMID: 12957269 DOI: 10.1016/s0360-3016(03)00503-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE Gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) is a potent radiosensitizer. The mechanism of dFdC-mediated radiosensitization is yet poorly understood. We recently excluded inhibition of DNA double-strand break (DSB) repair by nonhomologous end-joining (NHEJ) as a means of radiosensitization. In the current study, we addressed the possibility that dFdC might affect homologous recombination (HR)-mediated DSB repair or base excision repair (BER). METHODS AND MATERIALS DFdC-mediated radiosensitization in cell lines deficient in BER and in HR was compared with that in their BER-proficient and HR-proficient parental counterparts. Sensitization to mitomycin C (MMC) was also investigated in cell lines deficient and proficient in HR. Additionally, the effect of dFdC on Rad51 foci formation after irradiation was studied. RESULTS DFdC did induce radiosensitization in BER-deficient cells; however, the respective mutant cells deficient in HR did not show dFdC-mediated radiosensitization. In HR-proficient, but not in HR-deficient, cells dFdC also induced substantial enhancement of the cytotoxic effect of MMC. Finally, we found that dFdC interferes with Rad51 foci formation after irradiation. CONCLUSION DFdC causes radiosensitization by specific interference with HR.
Collapse
Affiliation(s)
- Floris M Wachters
- Department of Pulmonary Diseases, University Hospital Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
177
|
Abstract
The double-strand break (DSB) is believed to be one of the most severe types of DNA damage, and if left unrepaired is lethal to the cell. Several different types of repair act on the DSB. The most important in mammalian cells are nonhomologous end-joining (NHEJ) and homologous recombination repair (HRR). NHEJ is the predominant type of DSB repair in mammalian cells, as opposed to lower eucaryotes, but HRR has recently been implicated in critical cell signaling and regulatory functions that are essential for cell viability. Whereas NHEJ repair appears constitutive, HRR is regulated by the cell cycle and inducible signal transduction pathways. More is known about the molecular details of NHEJ than HRR in mammalian cells. This review focuses on the mechanisms and regulation of DSB repair in mammalian cells, the signaling pathways that regulate these processes and the potential crosstalk between NHEJ and HRR, and between repair and other stress-induced pathways with emphasis on the regulatory circuitry associated with the ataxia telangiectasia mutated (ATM) protein.
Collapse
Affiliation(s)
- Kristoffer Valerie
- Department of Radiation Oncology, Medical College of Virginia Commonwealth University, Richmond, VA 23298-0058, USA.
| | | |
Collapse
|
178
|
Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA, Eckhaus M, Ried T, Bonner WM, Nussenzweig A. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 2003; 114:371-383. [PMID: 12914701 PMCID: PMC4737479 DOI: 10.1016/s0092-8674(03)00567-1] [Citation(s) in RCA: 493] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Histone H2AX becomes phosphorylated in chromatin domains flanking sites of DNA double-strand breakage associated with gamma-irradiation, meiotic recombination, DNA replication, and antigen receptor rearrangements. Here, we show that loss of a single H2AX allele compromises genomic integrity and enhances the susceptibility to cancer in the absence of p53. In comparison with heterozygotes, tumors arise earlier in the H2AX homozygous null background, and H2AX(-/-) p53(-/-) lymphomas harbor an increased frequency of clonal nonreciprocal translocations and amplifications. These include complex rearrangements that juxtapose the c-myc oncogene to antigen receptor loci. Restoration of the H2AX null allele with wild-type H2AX restores genomic stability and radiation resistance, but this effect is abolished by substitution of the conserved serine phosphorylation sites in H2AX with alanine or glutamic acid residues. Our results establish H2AX as genomic caretaker that requires the function of both gene alleles for optimal protection against tumorigenesis.
Collapse
Affiliation(s)
- Arkady Celeste
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Simone Difilippantonio
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Oscar Fernandez-Capetillo
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Duane R Pilch
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Olga A Sedelnikova
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Eckhaus
- Veterinary Resources Program, Office of Research Services, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - William M Bonner
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| | - André Nussenzweig
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
179
|
Jaco I, Muñoz P, Goytisolo F, Wesoly J, Bailey S, Taccioli G, Blasco MA. Role of mammalian Rad54 in telomere length maintenance. Mol Cell Biol 2003; 23:5572-80. [PMID: 12897131 PMCID: PMC166323 DOI: 10.1128/mcb.23.16.5572-5580.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The homologous recombination (HR) DNA repair pathway participates in telomere length maintenance in yeast but its putative role at mammalian telomeres is unknown. Mammalian Rad54 is part of the HR machinery, and Rad54-deficient mice show a reduced HR capability. Here, we show that Rad54-deficient mice also show significantly shorter telomeres than wild-type controls, indicating that Rad54 activity plays an essential role in telomere length maintenance in mammals. Rad54 deficiency also resulted in an increased frequency of end-to-end chromosome fusions involving telomeres compared to the controls, suggesting a putative role of Rad54 in telomere capping. Finally, the study of mice doubly deficient for Rad54 and DNA-PKcs showed that telomere fusions due to DNA-PKcs deficiency were not rescued in the absence of Rad54, suggesting that they are not mediated by Rad54 activity.
Collapse
Affiliation(s)
- Isabel Jaco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Purificación Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Fermín Goytisolo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joanna Wesoly
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Susan Bailey
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Guillermo Taccioli
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - María A. Blasco
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain, Department of Genetics, Erasmus University, Rotterdam, The Netherlands, Department of Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118
- Corresponding author. Mailing address: Department of Immunology and Oncology, Centro Nacional de Biotecnología, Madrid E-28049, Spain. Phone: 34-915854846. Fax: 34-913720493. E-mail:
| |
Collapse
|
180
|
Rothkamm K, Krüger I, Thompson LH, Löbrich M. Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 2003; 23:5706-15. [PMID: 12897142 PMCID: PMC166351 DOI: 10.1128/mcb.23.16.5706-5715.2003] [Citation(s) in RCA: 896] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the quantitative contributions of nonhomologous end joining (NHEJ) and homologous recombination (HR) to DNA double-strand break (DSB) repair in different cell cycle phases after physiologically relevant doses of ionizing radiation. Using immunofluorescence detection of gamma-H2AX nuclear foci as a novel approach for monitoring the repair of DSBs, we show here that NHEJ-defective hamster cells (CHO mutant V3 cells) have strongly reduced repair in all cell cycle phases after 1 Gy of irradiation. In contrast, HR-defective CHO irs1SF cells have a minor repair defect in G(1), greater impairment in S, and a substantial defect in late S/G(2). Furthermore, the radiosensitivity of irs1SF cells is slight in G(1) but dramatically higher in late S/G(2), while V3 cells show high sensitivity throughout the cell cycle. These findings show that NHEJ is important in all cell cycle phases, while HR is particularly important in late S/G(2), where both pathways contribute to repair and radioresistance. In contrast to DSBs produced by ionizing radiation, DSBs produced by the replication inhibitor aphidicolin are repaired entirely by HR. irs1SF, but not V3, cells show hypersensitivity to aphidicolin treatment. These data provide the first evaluation of the cell cycle-specific contributions of NHEJ and HR to the repair of radiation-induced versus replication-associated DSBs.
Collapse
Affiliation(s)
- Kai Rothkamm
- Fachrichtung Biophysik, Universität des Saarlandes, D-66421 Homburg/Saar, Germany
| | | | | | | |
Collapse
|
181
|
Abstract
Homologous recombination mediates the transfer or exchange of genetic information between homologous DNA molecules. It plays important roles in central processes in the cell such as genome duplication and DNA damage repair. Recent experiments reveal the surprising versatility of one of its central actors, the Rad54 protein.
Collapse
Affiliation(s)
- T L Raoul Tan
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
182
|
Richardson C, Jasin M. Recombination between two chromosomes: implications for genomic integrity in mammalian cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:553-60. [PMID: 12760073 DOI: 10.1101/sqb.2000.65.553] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- C Richardson
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, Cornell University Graduate School of Medical Sciences, New York, New York, USA
| | | |
Collapse
|
183
|
Sonoda E, Okada T, Zhao GY, Tateishi S, Araki K, Yamaizumi M, Yagi T, Verkaik NS, van Gent DC, Takata M, Takeda S. Multiple roles of Rev3, the catalytic subunit of polzeta in maintaining genome stability in vertebrates. EMBO J 2003; 22:3188-97. [PMID: 12805232 PMCID: PMC162160 DOI: 10.1093/emboj/cdg308] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major postreplicational repair (PRR) pathways. The REV3 gene of Saccharomyces cerevisiae encodes the catalytic subunit of DNA polymerase zeta, which is involved in mutagenic TLS. To investigate the role of REV3 in vertebrates, we disruped the gene in chicken DT40 cells. REV3(-/-) cells are sensitive to various DNA-damaging agents, including UV, methyl methanesulphonate (MMS), cisplatin and ionizing radiation (IR), consistent with its role in TLS. Interestingly, REV3(-/-) cells showed reduced gene targeting efficiencies and significant increase in the level of chromosomal breaks in the subsequent M phase after IR in the G(2) phase, suggesting the involvement of Rev3 in HR-mediated double-strand break repair. REV3(-/-) cells showed significant increase in sister chromatid exchange events and chromosomal breaks even in the absence of exogenous genotoxic stress. Furthermore, double mutants of REV3 and RAD54, genes involved in HR, are synthetic lethal. In conclusion, Rev3 plays critical roles in PRR, which accounts for survival on naturally occurring endogenous as well as induced damages during replication.
Collapse
Affiliation(s)
- Eiichiro Sonoda
- CREST Research Project, Japan Science and Technology, Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Affiliation(s)
- Randy J Legerski
- Department of Molecular Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
185
|
Savouret C, Brisson E, Essers J, Kanaar R, Pastink A, te Riele H, Junien C, Gourdon G. CTG repeat instability and size variation timing in DNA repair-deficient mice. EMBO J 2003; 22:2264-73. [PMID: 12727892 PMCID: PMC156074 DOI: 10.1093/emboj/cdg202] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Type 1 myotonic dystrophy is caused by the expansion of an unstable CTG repeat in the DMPK gene. We have investigated the molecular mechanisms underlying the CTG repeat instability by crossing transgenic mice carrying >300 unstable CTG repeats in their human chromatin environment with mice knockout for genes involved in various DNA repair pathways: Msh2 (mismatch repair), Rad52 and Rad54 (homologous recombination) and DNA-PKcs (non-homologous end-joining). Genes of the non-homologous end-joining and homologous recombination pathways did not seem to affect repeat instability. Only lack of Rad52 led to a slight decrease in expansion range. Unexpectedly, the absence of Msh2 did not result in stabilization of the CTG repeats in our model. Instead, it shifted the instability towards contractions rather than expansions, both in tissues and through generations. Furthermore, we carefully analyzed repeat transmissions with different Msh2 genotypes to determine the timing of intergenerational instability. We found that instability over generations depends not only on parental germinal instability, but also on a second event taking place after fertilization.
Collapse
Affiliation(s)
- Cédric Savouret
- INSERM UR383, Hôpital Necker-Enfants Malades, Université Paris V, 149-161 rue de Sèvres, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Miller DG, Petek LM, Russell DW. Human gene targeting by adeno-associated virus vectors is enhanced by DNA double-strand breaks. Mol Cell Biol 2003; 23:3550-7. [PMID: 12724413 PMCID: PMC164770 DOI: 10.1128/mcb.23.10.3550-3557.2003] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of adeno-associated virus (AAV) to package gene-targeting vectors as single-stranded linear molecules has led to significant improvements in mammalian gene-targeting frequencies. However, the molecular basis for the high targeting frequencies obtained is poorly understood, and there could be important mechanistic differences between AAV-mediated gene targeting and conventional gene targeting with transfected double-stranded DNA constructs. Conventional gene targeting is thought to occur by the double-strand break (DSB) model of homologous recombination, as this can explain the higher targeting frequencies observed when DSBs are present in the targeting construct or target locus. Here we compare AAV-mediated gene-targeting frequencies in the presence and absence of induced target site DSBs. Retroviral vectors were used to introduce a mutant lacZ gene containing an I-SceI cleavage site and to efficiently deliver the I-SceI endonuclease, allowing us to carry out these studies with normal and transformed human cells. Creation of DSBs by I-SceI increased AAV-mediated gene-targeting frequencies 60- to 100-fold and resulted in a precise correction of the mutant lacZ reporter gene. These experiments demonstrate that AAV-mediated gene targeting can result in repair of a DNA DSB and that this form of gene targeting exhibits fundamental similarities to conventional gene targeting. In addition, our findings suggest that the selective creation of DSBs by using viral delivery systems can increase gene-targeting frequencies in scientific and therapeutic applications.
Collapse
Affiliation(s)
- Daniel G Miller
- Department of Medicine, Division of Hematology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | | | |
Collapse
|
187
|
Abstract
Cancer develops when cells no longer follow their normal pattern of controlled growth. In the absence or disregard of such regulation, resulting from changes in their genetic makeup, these errant cells acquire a growth advantage, expanding into precancerous clones. Over the past decade many studies have revealed the relevance of genomic mutation in this process, be it by misreplication, environmental damage, or a deficiency in repairing endogenous and exogenous damage. Here we discuss the possibility of homologous recombination as an errant DNA repair mechanism that can result in loss of heterozygosity or genetic rearrangements. Some of these genetic alterations may play a primary role in carcinogenesis, but they are more likely to be involved in secondary and subsequent steps of carcinogenesis by which recessive oncogenic mutations are revealed. Patients, whose cells display an increased frequency of recombination, also have an elevated frequency of cancer, further supporting the link between recombination and carcinogenesis.
Collapse
|
188
|
Wang H, Wang X, Iliakis G, Wang Y. Caffeine could not efficiently sensitize homologous recombination repair-deficient cells to ionizing radiation-induced killing. Radiat Res 2003; 159:420-5. [PMID: 12600245 DOI: 10.1667/0033-7587(2003)159[0420:ccnesh]2.0.co;2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Caffeine inhibits ATM and ATR, two important checkpoint regulators, abolishes ionizing radiation-induced checkpoint response, and radiosensitizes cells. Radiation-induced DNA double-strand breaks (DSBs) are repaired by two major processes, homologous recombination repair (HRR) and nonhomologous end joining (NHEJ). It remains unclear which repair process, HRR or NHEJ, is affected when the checkpoint responses are abolished by caffeine. In this study we observed the effect of caffeine on gene-targeted DT40 chicken lymphoblast cells. We show that caffeine efficiently abolishes S- and G(2)-phase checkpoint responses after irradiation in all cell lines tested and greatly radiosensitizes wild-type and ATM(-/-) cells, the partially checkpoint-deficient cells. However, caffeine has a much smaller radiosensitizing effect on RAD54(-/-) cells and has no effect on RAD51-deficient cells. RAD51 and RAD54 are the important factors for HRR. Our results indicate that the checkpoint responses abolished by caffeine (S and G(2)) mainly affect HRR, which results in cell radiosensitization.
Collapse
Affiliation(s)
- Huichen Wang
- Department of Radiation Oncology, Kimmel Cancer Center of Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | |
Collapse
|
189
|
Chadwick KH, Leenhouts HP, Brugmans MJP. A contribution to the linear no-threshold discussion. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2003; 23:53-77. [PMID: 12729419 DOI: 10.1088/0952-4746/23/1/304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The paper approaches the linear no-threshold (LNT) hypothesis, currently used as the basis for recommendations in radiological protection, from the point of view of the radiation mechanism. All considerations of the validity of the LNT hypothesis based on experiment or epidemiology are dismissed because of the impossibility of deriving statistically significant data at very low doses. Instead, the LNT hypothesis is assessed from a consideration of the mechanism of radiation action. The DNA double-strand break is proposed to be the crucial radiation-induced molecular lesion. A trace is made using a series of correlations that link the DNA double-strand break to effects at the cellular level and these cellular effects are linked to the induction of cancer. Multistep modelling of carcinogenesis is used to take the link through to a consideration of radiation risk. It is concluded that, from the point of view of radiation mechanism, at very low doses the LNT hypothesis of radiation action is valid, that is, the risk function has a positive slope from zero dose.
Collapse
Affiliation(s)
- K H Chadwick
- Department of Biological Sciences, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | | |
Collapse
|
190
|
Schmuckli-Maurer J, Rolfsmeier M, Nguyen H, Heyer WD. Genome instability in rad54 mutants of Saccharomyces cerevisiae. Nucleic Acids Res 2003; 31:1013-23. [PMID: 12560498 PMCID: PMC149210 DOI: 10.1093/nar/gkg190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The RAD54 gene of Saccharomyces cerevisiae encodes a conserved dsDNA-dependent ATPase of the Swi2/Snf2 family with a specialized function during recombinational DNA repair. Here we analyzed the consequences of the loss of Rad54 function in vegetative (mitotic) cells. Mutants in RAD54 exhibited drastically reduced rates of spontaneous intragenic recombination but were proficient for spontaneous intergenic recombinant formation. The intergenic recombinants likely arose by a RAD54-independent pathway of break-induced replication. Significantly increased rates of spontaneous chromosome loss for diploid rad54/rad54 cells were identified in several independent assays. Inter estingly, the increase in chromosome loss appeared to depend on the presence of a homolog. In addition, the rate of complex genetic events involving chromosome loss were drastically increased in diploid rad54/rad54 cells. Together, these data suggest a role for Rad54 protein in the repair of spontaneous damage, where in the absence of Rad54 protein, homologous recombination is initiated but not properly terminated, leading to misrepair and chromosome loss.
Collapse
|
191
|
Abstract
Gene therapy and the production of mutated cell lines or model animals both require the development of efficient, controlled gene-targeting strategies. Classical approaches are based on the ability of cells to use homologous recombination to integrate exogenous DNA into their own genome. The low frequency of homologous recombination in mammalian cells leads to inefficient targeting. Here, we review the limiting steps of classical approaches and the new strategies developed to improve the efficiency of homologous recombination in gene-targeting experiments.
Collapse
Affiliation(s)
- Elodie Biet
- UMR 2027 CNRS-Institut Curie, bâtiment 110, 15, rue Georges-Clémenceau, 91405 Orsay, France
| | | | | |
Collapse
|
192
|
Kitao H, Yuan ZM. Regulation of ionizing radiation-induced Rad52 nuclear foci formation by c-Abl-mediated phosphorylation. J Biol Chem 2002; 277:48944-8. [PMID: 12379650 DOI: 10.1074/jbc.m208151200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RAD52 epistasis group of proteins, including Rad51, Rad52, and Rad54, plays an important role in the homologous recombination repair of double strand breaks. A well characterized feature associated with the ability of these proteins to repair double strand breaks is inducible nuclear foci formation at the sites of damage. How the process is functionally regulated in response to DNA damage, however, remains elusive. We show here that c-Abl tyrosine kinase associates with and phosphorylates Rad52 on tyrosine 104. Importantly, the very same site of Rad52 is phosphorylated on exposure of cells to ionizing radiation (IR). The functional significance of c-Abl-dependent phosphorylation of Rad52 is underscored by our findings that cells that express the phosphorylation-resistant Rad52 mutant, in which tyrosine 104 is replaced by phenylalanine, exhibit compromised nuclear foci formation in response to IR. Furthermore, IR-induced Rad52 nuclear foci formation is markedly suppressed by the expression of dominant-negative c-Abl. Together our data support a mode of post-translational regulation of Rad52 mediated by the c-Abl tyrosine kinase.
Collapse
Affiliation(s)
- Hiroyuki Kitao
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
193
|
Symington LS. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 2002; 66:630-70, table of contents. [PMID: 12456786 PMCID: PMC134659 DOI: 10.1128/mmbr.66.4.630-670.2002] [Citation(s) in RCA: 804] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The process of homologous recombination is a major DNA repair pathway that operates on DNA double-strand breaks, and possibly other kinds of DNA lesions, to promote error-free repair. Central to the process of homologous recombination are the RAD52 group genes (RAD50, RAD51, RAD52, RAD54, RDH54/TID1, RAD55, RAD57, RAD59, MRE11, and XRS2), most of which were identified by their requirement for the repair of ionizing-radiation-induced DNA damage in Saccharomyces cerevisiae. The Rad52 group proteins are highly conserved among eukaryotes, and Rad51, Mre11, and Rad50 are also conserved in prokaryotes and archaea. Recent studies showing defects in homologous recombination and double-strand break repair in several human cancer-prone syndromes have emphasized the importance of this repair pathway in maintaining genome integrity. Although sensitivity to ionizing radiation is a universal feature of rad52 group mutants, the mutants show considerable heterogeneity in different assays for recombinational repair of double-strand breaks and spontaneous mitotic recombination. Herein, I provide an overview of recent biochemical and structural analyses of the Rad52 group proteins and discuss how this information can be incorporated into genetic studies of recombination.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology and Institute of Cancer Research, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
194
|
Yamashita YM, Okada T, Matsusaka T, Sonoda E, Zhao GY, Araki K, Tateishi S, Yamaizumi M, Takeda S. RAD18 and RAD54 cooperatively contribute to maintenance of genomic stability in vertebrate cells. EMBO J 2002; 21:5558-66. [PMID: 12374756 PMCID: PMC129066 DOI: 10.1093/emboj/cdf534] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Translesion DNA synthesis (TLS) and homologous DNA recombination (HR) are two major pathways that account for survival after post-replicational DNA damage. TLS functions by filling gaps on a daughter strand that remain after DNA replication caused by damage on the mother strand, while HR can repair gaps and breaks using the intact sister chromatid as a template. The RAD18 gene, which is conserved from lower eukaryotes to vertebrates, is essential for TLS in Saccharomyces cerevisiae. To investigate the role of RAD18, we disrupted RAD18 by gene targeting in the chicken B-lymphocyte line DT40. RAD18(-/-) cells are sensitive to various DNA-damaging agents including ultraviolet light and the cross-linking agent cisplatin, consistent with its role in TLS. Interestingly, elevated sister chromatid exchange, which reflects HR- mediated post-replicational repair, was observed in RAD18(-/-) cells during the cell cycle. Strikingly, double mutants of RAD18 and RAD54, a gene involved in HR, are synthetic lethal, although the single mutant in either gene can proliferate with nearly normal kinetics. These data suggest that RAD18 plays an essential role in maintaining chromosomal DNA in cooperation with the RAD54-dependent DNA repair pathway.
Collapse
Affiliation(s)
- Yukiko M. Yamashita
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takashi Okada
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Takahiro Matsusaka
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Eiichiro Sonoda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Guang Yu Zhao
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Kasumi Araki
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Satoshi Tateishi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Masaru Yamaizumi
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto 606-8501, Urology, Graduate School of Medicine, Kyoto University Konoe, Sakyo-ku, Kyoto 606-8507, Graduate School of Biostudies, Kyoto University, Kitashirakawa Oiwake, Sakyo-ku, Kyoto 606-8502 and Institute of Molecular Embryology and Genetics, Kumamoto University, Kuhonji 4-24-1, Kumamoto 862-0976, Japan Present address: Department of Developmental Biology, Stanford University, 279 Campus Drive, Beckman Center, B300, Stanford University School of Medicine, Stanford, CA 94305, USA Corresponding author e-mail:
| |
Collapse
|
195
|
Essers J, Hendriks RW, Wesoly J, Beerens CEMT, Smit B, Hoeijmakers JHJ, Wyman C, Dronkert MLG, Kanaar R. Analysis of mouse Rad54 expression and its implications for homologous recombination. DNA Repair (Amst) 2002; 1:779-93. [PMID: 12531026 DOI: 10.1016/s1568-7864(02)00110-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Homologous recombination is one of the major pathways for repair of DNA double-strand breaks (DSBs). Important proteins in this pathway are Rad51 and Rad54. Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) that mediates pairing with and strand invasion of homologous duplex DNA with the assist of Rad54. We estimated that the nucleus of a mouse embryonic stem (ES) cells contains on average 4.7x10(5) Rad51 and 2.4x10(5) Rad54 molecules. Furthermore, we showed that the amount of Rad54 was subject to cell cycle regulation. We discuss our results with respect to two models that describe how Rad54 stimulates Rad51-mediated DNA strand invasion. The models differ in whether Rad54 functions locally or globally. In the first model, Rad54 acts in cis relative to the site of strand invasion. Rad54 coats the Rad51 nucleoprotein filament in stoichiometric amounts and binds to the target duplex DNA at the site that is homologous to the ssDNA in the Rad51 nucleoprotein filament. Subsequently, it promotes duplex DNA unwinding. In the second model, Rad54 acts in trans relative to the site of strand invasion. Rad54 binds duplex DNA distant from the site that will be unwound. Translocation of Rad54 along the duplex DNA increases superhelical stress thereby promoting duplex DNA unwinding.
Collapse
Affiliation(s)
- Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus MC, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
D'Avirro N, Truong D, Luong M, Kanaar R, Selsing E. Gene conversion-like sequence transfers between transgenic antibody V genes are independent of RAD54. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:3069-75. [PMID: 12218123 DOI: 10.4049/jimmunol.169.6.3069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Homology-based Ig gene conversion is a major mechanism for Ab diversification in chickens and the Rad54 DNA repair protein plays an important role in this process. In mice, although gene conversion appears to be rare among endogenous Ig genes, Ab H chain transgenes undergo isotype switching and gene conversion-like sequence transfer processes that also appear to involve homologous recombination or gene conversion. Furthermore, homology-based DNA repair has been suggested to be important for somatic mutation of endogenous mouse Ig genes. To assess the role of Rad54 in these mouse B cell processes, we have analyzed H chain transgene isotype switching, sequence transfer, and somatic hypermutation in mice that lack RAD54. We find that Rad54 is not required for either transgene switching or transgene hypermutation. Furthermore, even transgene sequence transfers that are known to require homology-based recombinations are Rad54 independent. These results indicate that mouse B cells must use factors for promoting homologous recombination that are distinct from the Rad54 proteins important in homology-based chicken Ab gene recombinations. Our findings also suggest that mouse H chain transgene sequence transfers might be more closely related to an error-prone homology-based somatic hypermutational mechanism than to the hyperconversion mechanism that operates in chicken B cells.
Collapse
Affiliation(s)
- Nicole D'Avirro
- Genetics Program, Immunology Program, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
197
|
Difilippantonio MJ, Petersen S, Chen HT, Johnson R, Jasin M, Kanaar R, Ried T, Nussenzweig A. Evidence for replicative repair of DNA double-strand breaks leading to oncogenic translocation and gene amplification. J Exp Med 2002; 196:469-80. [PMID: 12186839 PMCID: PMC2196056 DOI: 10.1084/jem.20020851] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Nonreciprocal translocations and gene amplifications are commonly found in human tumors. Although little is known about the mechanisms leading to such aberrations, tissue culture models predict that they can arise from DNA breakage, followed by cycles of chromatid fusion, asymmetric mitotic breakage, and replication. Mice deficient in both a nonhomologous end joining (NHEJ) DNA repair protein and the p53 tumor suppressor develop lymphomas at an early age harboring amplification of an IgH/c-myc fusion. Here we report that these chromosomal rearrangements are initiated by a recombination activating gene (RAG)-induced DNA cleavage. Subsequent DNA repair events juxtaposing IgH and c-myc are mediated by a break-induced replication pathway. Cycles of breakage-fusion-bridge result in amplification of IgH/c-myc while chromosome stabilization occurs through telomere capture. Thus, mice deficient in NHEJ provide excellent models to study the etiology of unbalanced translocations and amplification events during tumorigenesis.
Collapse
|
198
|
Affiliation(s)
- Alberto Martin
- Department of Cell Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 403, Bronx, New York 10461, USA.
| | | |
Collapse
|
199
|
Zhu C, Mills KD, Ferguson DO, Lee C, Manis J, Fleming J, Gao Y, Morton CC, Alt FW. Unrepaired DNA breaks in p53-deficient cells lead to oncogenic gene amplification subsequent to translocations. Cell 2002; 109:811-21. [PMID: 12110179 DOI: 10.1016/s0092-8674(02)00770-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amplification of large genomic regions associated with complex translocations (complicons) is a basis for tumor progression and drug resistance. We show that pro-B lymphomas in mice deficient for both p53 and nonhomologous end-joining (NHEJ) contain complicons that coamplify c-myc (chromosome 15) and IgH (chromosome 12) sequences. While all carry a translocated (12;15) chromosome, coamplified sequences are located within a separate complicon that often involves a third chromosome. Complicon formation is initiated by recombination of RAG1/2-catalyzed IgH locus double-strand breaks with sequences downstream of c-myc, generating a dicentric (15;12) chromosome as an amplification intermediate. This recombination event employs a microhomology-based end-joining repair pathway, as opposed to classic NHEJ or homologous recombination. These findings suggest a general model for oncogenic complicon formation.
Collapse
Affiliation(s)
- Chengming Zhu
- Howard Hughes Medical Institute, The Children's Hospital and The Center for Blood Research, Boston MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, Monroe BC, Ciccone DN, Yan C, Vlasakova K, Livingston DM, Ferguson DO, Scully R, Alt FW. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 2002; 99:8173-8. [PMID: 12034884 PMCID: PMC123040 DOI: 10.1073/pnas.122228699] [Citation(s) in RCA: 410] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In mammalian cells, DNA double-strand breaks (DSBs) cause rapid phosphorylation of the H2AX core histone variant (to form gamma-H2AX) in megabase chromatin domains flanking sites of DNA damage. To investigate the role of H2AX in mammalian cells, we generated H2AX-deficient (H2AX(Delta)/Delta) mouse embryonic stem (ES) cells. H2AX(Delta)/Delta ES cells are viable. However, they are highly sensitive to ionizing radiation (IR) and exhibit elevated levels of spontaneous and IR-induced genomic instability. Notably, H2AX is not required for NHEJ per se because H2AX(Delta)/Delta ES cells support normal levels and fidelity of V(D)J recombination in transient assays and also support lymphocyte development in vivo. However, H2AX(Delta)/Delta ES cells exhibit altered IR-induced BRCA1 focus formation. Our findings indicate that H2AX function is essential for mammalian DNA repair and genomic stability.
Collapse
Affiliation(s)
- Craig H Bassing
- Howard Hughes Medical Institute, Department of Genetics, Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|