151
|
Rackham O, Wang K, Chin JW. Functional epitopes at the ribosome subunit interface. Nat Chem Biol 2006; 2:254-8. [PMID: 16582919 DOI: 10.1038/nchembio783] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Accepted: 03/14/2006] [Indexed: 11/09/2022]
Abstract
The ribosome is a 2.5-MDa molecular machine that synthesizes cellular proteins encoded in mRNAs. The 30S and 50S subunits of the ribosome associate through structurally defined intersubunit bridges burying 6,000 A(2), 80% of which is buried in conserved RNA-RNA interactions. Intersubunit bridges bind translation factors, may coordinate peptide bond formation and translocation and may be actively remodeled in the post-termination complex, but the functional importance of numerous 30S bridge nucleotides had been unknown. We carried out large-scale combinatorial mutagenesis and in vivo selections on 30S nucleotides that form RNA-RNA intersubunit bridges in the Escherichia coli ribosome. We determined the covariation and functional importance of bridge nucleotides, allowing comparison of the structural interface and phylogenetic data to the functional epitope. Our results reveal how information for ribosome function is partitioned across bridges, and suggest a subset of nucleotides that may have measurable effects on individual steps of the translational cycle.
Collapse
Affiliation(s)
- Oliver Rackham
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England, UK
| | | | | |
Collapse
|
152
|
Pulk A, Maiväli U, Remme J. Identification of nucleotides in E. coli 16S rRNA essential for ribosome subunit association. RNA (NEW YORK, N.Y.) 2006; 12:790-6. [PMID: 16556933 PMCID: PMC1440916 DOI: 10.1261/rna.2275906] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The ribosome consists of two unequal subunits, which associate via numerous intersubunit contacts. Medium-resolution structural studies have led to grouping of the intersubunit contacts into 12 directly visualizable intersubunit bridges. Most of the intersubunit interactions involve RNA. We have used an RNA modification interference approach to determine Escherichia coli 16S rRNA positions that are essential for the association of functionally active 70S ribosomes. Modification of the N1 position of A702, A1418, and A1483 with DMS, and of the N3 position of U793, U1414, and U1495 with CMCT in 30S subunits strongly interferes with 70S ribosome formation. Five of these positions localize into previously recognized intersubunit bridges, namely, B2a (U1495), B2b (U793), B3 (A1483), B5 (A1418), and B7a (A702). The remaining position displaying interference, U1414, forms a base pair with G1486, which is a part of bridge B3. We contend that these five intersubunit bridges are essential for reassociation of the 70S ribosome, thus forming the functional core of the intersubunit contacts.
Collapse
MESH Headings
- Centrifugation, Density Gradient
- Dimethyl Sulfoxide/pharmacology
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Models, Biological
- Models, Molecular
- Nucleic Acid Conformation
- Nucleotides/chemistry
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Solvents/pharmacology
Collapse
Affiliation(s)
- Arto Pulk
- Institute of Molecular and Cell Biology, Tartu University, Riia, Estonia
| | | | | |
Collapse
|
153
|
Penczek PA, Yang C, Frank J, Spahn CMT. Estimation of variance in single-particle reconstruction using the bootstrap technique. J Struct Biol 2006; 154:168-83. [PMID: 16510296 DOI: 10.1016/j.jsb.2006.01.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 01/12/2006] [Accepted: 01/17/2006] [Indexed: 11/24/2022]
Abstract
Density maps of a molecule obtained by single-particle reconstruction from thousands of molecule projections exhibit strong changes in local definition and reproducibility, as a consequence of conformational variability of the molecule and non-stoichiometry of ligand binding. These changes complicate the interpretation of density maps in terms of molecular structure. A three-dimensional (3-D) variance map provides an effective tool to assess the structural definition in each volume element. In this work, the different contributions to the 3-D variance in a single-particle reconstruction are discussed, and an effective method for the estimation of the 3-D variance map is proposed, using a bootstrap technique of sampling. Computations with test data confirm the viability, computational efficiency, and accuracy of the method under conditions encountered in practical circumstances.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, MSB 6.218, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
154
|
Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, Harvey SC. A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 2006; 358:193-212. [PMID: 16510155 PMCID: PMC3495566 DOI: 10.1016/j.jmb.2006.01.094] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 01/25/2006] [Accepted: 01/27/2006] [Indexed: 11/30/2022]
Abstract
Protein translation is essential for all forms of life and is conducted by a macromolecular complex, the ribosome. Evolutionary changes in protein and RNA sequences can affect the 3D organization of structural features in ribosomes in different species. The most dramatic changes occur in animal mitochondria, whose genomes have been reduced and altered significantly. The RNA component of the mitochondrial ribosome (mitoribosome) is reduced in size, with a compensatory increase in protein content. Until recently, it was unclear how these changes affect the 3D structure of the mitoribosome. Here, we present a structural model of the large subunit of the mammalian mitoribosome developed by combining molecular modeling techniques with cryo-electron microscopic data at 12.1A resolution. The model contains 93% of the mitochondrial rRNA sequence and 16 mitochondrial ribosomal proteins in the large subunit of the mitoribosome. Despite the smaller mitochondrial rRNA, the spatial positions of RNA domains known to be involved directly in protein synthesis are essentially the same as in bacterial and archaeal ribosomes. However, the dramatic reduction in rRNA content necessitates evolution of unique structural features to maintain connectivity between RNA domains. The smaller rRNA sequence also limits the likelihood of tRNA binding at the E-site of the mitoribosome, and correlates with the reduced size of D-loops and T-loops in some animal mitochondrial tRNAs, suggesting co-evolution of mitochondrial rRNA and tRNA structures.
Collapse
Affiliation(s)
- Jason A Mears
- Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Explicit solvent molecular dynamics (MD) simulations were carried out for sarcin-ricin domain (SRD) motifs from 23S (Escherichia coli) and 28S (rat) rRNAs. The SRD motif consists of GAGA tetraloop, G-bulged cross-strand A-stack, flexible region and duplex part. Detailed analysis of the overall dynamics, base pairing, hydration, cation binding and other SRD features is presented. The SRD is surprisingly static in multiple 25 ns long simulations and lacks any non-local motions, with root mean square deviation (r.m.s.d.) values between averaged MD and high-resolution X-ray structures of 1-1.4 A. Modest dynamics is observed in the tetraloop, namely, rotation of adenine in its apex and subtle reversible shift of the tetraloop with respect to the adjacent base pair. The deformed flexible region in low-resolution rat X-ray structure is repaired by simulations. The simulations reveal few backbone flips, which do not affect positions of bases and do not indicate a force field imbalance. Non-Watson-Crick base pairs are rigid and mediated by long-residency water molecules while there are several modest cation-binding sites around SRD. In summary, SRD is an unusually stiff rRNA building block. Its intrinsic structural and dynamical signatures seen in simulations are strikingly distinct from other rRNA motifs such as Loop E and Kink-turns.
Collapse
MESH Headings
- Animals
- Base Pairing
- Binding Sites
- Carbohydrates/chemistry
- Cations/chemistry
- Computer Simulation
- Crystallography, X-Ray
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Fungal Proteins/metabolism
- Hydrogen Bonding
- Models, Molecular
- Nucleic Acid Conformation
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/metabolism
- Rats
- Ricin/metabolism
- Water/chemistry
Collapse
Affiliation(s)
- Nad'a Špačková
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKrálovopolská 135, 612 65 Brno, Czech Republic
- To whom correspondence should be addressed. Tel: +420 541 517 109; Fax: +420 541 212 179;
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech RepublicKrálovopolská 135, 612 65 Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech RepublicFlemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
156
|
Rawat U, Gao H, Zavialov A, Gursky R, Ehrenberg M, Frank J. Interactions of the release factor RF1 with the ribosome as revealed by cryo-EM. J Mol Biol 2006; 357:1144-53. [PMID: 16476444 DOI: 10.1016/j.jmb.2006.01.038] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 10/25/2022]
Abstract
In eubacteria, termination of translation is signaled by any one of the stop codons UAA, UAG, and UGA moving into the ribosomal A site. Two release factors, RF1 and RF2, recognize and bind to the stop codons with different affinities and trigger the hydrolysis of the ester bond that links the polypeptide with the P-site tRNA. Cryo-electron microscopy (cryo-EM) results obtained in this study show that ribosome-bound RF1 is in an open conformation, unlike the closed conformation observed in the crystal structure of the free factor, allowing its simultaneous access to both the decoding center and the peptidyl-transferase center. These results are similar to those obtained for RF2, but there is an important difference in how the factors bind to protein L11, which forms part of the GTPase-associated center of the large ribosomal subunit. The difference in the binding position, C-terminal domain for RF2 versus N-terminal domain for RF1, explains a body of L11 mutation studies that revealed differential effects on the activity of the two factors. Very recent data obtained with small-angle X-ray scattering now reveal that the solution structure of RF1 is open, as here seen on the ribosome by cryo-EM, and not closed, as seen in the crystal.
Collapse
Affiliation(s)
- Urmila Rawat
- Howard Hughes Medical Institute, University of Michigan School of Medicine, 1150 West Medical Ctr. Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
157
|
Mitra K, Schaffitzel C, Shaikh T, Tama F, Jenni S, Brooks CL, Ban N, Frank J. Structure of the E. coli protein-conducting channel bound to a translating ribosome. Nature 2005; 438:318-24. [PMID: 16292303 PMCID: PMC1351281 DOI: 10.1038/nature04133] [Citation(s) in RCA: 192] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 08/08/2005] [Indexed: 11/09/2022]
Abstract
Secreted and membrane proteins are translocated across or into cell membranes through a protein-conducting channel (PCC). Here we present a cryo-electron microscopy reconstruction of the Escherichia coli PCC, SecYEG, complexed with the ribosome and a nascent chain containing a signal anchor. This reconstruction shows a messenger RNA, three transfer RNAs, the nascent chain, and detailed features of both a translocating PCC and a second, non-translocating PCC bound to mRNA hairpins. The translocating PCC forms connections with ribosomal RNA hairpins on two sides and ribosomal proteins at the back, leaving a frontal opening. Normal mode-based flexible fitting of the archaeal SecYEbeta structure into the PCC electron microscopy densities favours a front-to-front arrangement of two SecYEG complexes in the PCC, and supports channel formation by the opening of two linked SecY halves during polypeptide translocation. On the basis of our observation in the translocating PCC of two segregated pores with different degrees of access to bulk lipid, we propose a model for co-translational protein translocation.
Collapse
Affiliation(s)
- Kakoli Mitra
- Howard Hughes Medical Institute, Health Research Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | | | | | |
Collapse
|
158
|
van Heel M, Schatz M. Fourier shell correlation threshold criteria. J Struct Biol 2005; 151:250-62. [PMID: 16125414 DOI: 10.1016/j.jsb.2005.05.009] [Citation(s) in RCA: 528] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 05/16/2005] [Accepted: 05/23/2005] [Indexed: 11/27/2022]
Abstract
The resolution value claimed for an electron microscopical three-dimensional reconstruction indicates the overall quality of the experiment. The Fourier shell correlation (FSC) criterion has now become the standard quality measure. However, what has continued to be controversial is the issue of the FSC threshold level at which one defines the reproducible resolution. Here, we discuss the theoretical behaviour of the FSC in conjunction with the various factors which influence it: the number of "voxels" in a given Fourier shell, the symmetry of the structure, and the size of the structure within the reconstruction volume. Both the theoretical considerations and our model experiments show that fixed-valued FSC threshold (like "0.5") may never be used in a reproducible criterion. Fixed threshold values are-as we show here-simply the result of incorrect assumptions in the basic statistics. Two families of FSC threshold curves are discussed: the sigma-factor curves and the new family of bit-based information threshold curves. Whereas sigma-factor curves indicate the resolution level at which one has collected information significantly above the noise level, the information curves indicate the resolution level at which enough information has been collected for interpretation.
Collapse
Affiliation(s)
- Marin van Heel
- Imperial College London, Department of Biological Sciences, London SW7 2AY, UK.
| | | |
Collapse
|
159
|
Datta PP, Sharma MR, Qi L, Frank J, Agrawal RK. Interaction of the G′ Domain of Elongation Factor G and the C-Terminal Domain of Ribosomal Protein L7/L12 during Translocation as Revealed by Cryo-EM. Mol Cell 2005; 20:723-31. [PMID: 16337596 DOI: 10.1016/j.molcel.2005.10.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2005] [Revised: 09/30/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
During tRNA translocation on the ribosome, an arc-like connection (ALC) is formed between the G' domain of elongation factor G (EF-G) and the L7/L12-stalk base of the large ribosomal subunit in the GDP state. To delineate the boundary of EF-G within the ALC, we tagged an amino acid residue near the tip of the G' domain of EF-G with undecagold, which was then visualized with three-dimensional cryo-electron microscopy (cryo-EM). Two distinct positions for the undecagold, observed in the GTP-state and GDP-state cryo-EM maps of the ribosome bound EF-G, allowed us to determine the movement of the labeled amino acid. Molecular analyses of the cryo-EM maps show: (1) that three structural components, the N-terminal domain of ribosomal protein L11, the C-terminal domain of ribosomal protein L7/L12, and the G' domain of EF-G, participate in formation of the ALC; and (2) that both EF-G and the ribosomal protein L7/L12 undergo large conformational changes to form the ALC.
Collapse
Affiliation(s)
- Partha P Datta
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, P.O. Box 509, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
160
|
Bonicontro A, Risuleo G. Structural studies of E. coli ribosomes by spectroscopic techniques: a specialized review. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 62:1070-80. [PMID: 15950526 DOI: 10.1016/j.saa.2005.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 04/15/2005] [Indexed: 05/02/2023]
Abstract
We present a review on our interdisciplinary line of research based on strategies of molecular biology and biophysics. These have been applied to the study of the prokaryotic ribosome of the bacterium Escherichia coli. Our investigations on this organelle have continued for more than a decade and we have adopted different spectroscopic biophysical techniques such as: dielectric and fluorescence spectroscopy as well as light scattering (photon correlation spectroscopy). Here we report studies on the whole 70S ribosomes and on the separated subunits 30S and 50S. Our results evidence intrinsic structural features of the subunits: the small shows a more "floppy" structure, while the large one appears to be more rigid. Also, an inner "kernel" formed by the RNA/protein association is found within the ribosome. This kernel is surrounded by a ribonucleoprotein complex more exposed to the solvent. Initial analyses were done on the so called Kaldtschmit-Wittmann ribosome: more recently we have extended the studies to the "tight couple" ribosome known for its better functional performance in vitro. Data evidence a phenomenological correlation between the differential biological activity and the intrinsic structural properties of the two-ribosome species. Finally, investigations were also conducted on particles treated at sub-denaturing temperatures and on ribosomes partially deproteinized by salt treatment (ribosomal cores). Results suggest that the thermal treatment and the selective removal of proteins cause analogous structural alterations.
Collapse
Affiliation(s)
- Adalberto Bonicontro
- INFM-CRS SOFT, Dipartimento di Fisica, Università di Roma La Sapienza, P.le A. Moro 2, I-00185 Roma, Italy
| | | |
Collapse
|
161
|
García-Mayoral F, García-Ortega L, Alvarez-García E, Bruix M, Gavilanes JG, del Pozo AM. Modeling the highly specific ribotoxin recognition of ribosomes. FEBS Lett 2005; 579:6859-64. [PMID: 16337202 DOI: 10.1016/j.febslet.2005.11.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2005] [Revised: 10/27/2005] [Accepted: 11/01/2005] [Indexed: 11/16/2022]
Abstract
The three-dimensional structures of the alpha-sarcin ribotoxin and its delta(7-22) deletion mutant, both complexed with a 20-mer oligonucleotide mimicking the sarcin/ricin loop (SRL) of the ribosome, have been docked into the structure of the Halobacterium marismortui ribosome by fitting the nucleotide atomic coordinates into those of the ribosomal SRL. This study has revealed that two regions of the ribotoxin, residues 11-16 and 84-85, contact the ribosomal proteins L14 (residues 99-105) and L6 (residues 88-92), respectively. The first of these two ribotoxin regions appears to be crucial for its specific ribosome recognition.
Collapse
Affiliation(s)
- Flor García-Mayoral
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
162
|
Cheng Y, Wolf E, Larvie M, Zak O, Aisen P, Grigorieff N, Harrison SC, Walz T. Single particle reconstructions of the transferrin-transferrin receptor complex obtained with different specimen preparation techniques. J Mol Biol 2005; 355:1048-65. [PMID: 16343539 DOI: 10.1016/j.jmb.2005.11.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 10/31/2005] [Accepted: 11/07/2005] [Indexed: 11/24/2022]
Abstract
The outcome of three-dimensional (3D) reconstructions in single particle electron microscopy (EM) depends on a number of parameters. We have used the well-characterized structure of the transferrin (Tf)-transferrin receptor (TfR) complex to study how specimen preparation techniques influence the outcome of single particle EM reconstructions. The Tf-TfR complex is small (290kDa) and of low symmetry (2-fold). Angular reconstitution from images of vitrified specimens does not reliably converge on the correct structure. Random conical tilt reconstructions from negatively stained specimens are reliable, but show variable degrees of artifacts depending on the negative staining protocol. Alignment of class averages from vitrified specimens to a 3D negative stain reference model using FREALIGN largely eliminated artifacts in the resulting 3D maps, but not completely. Our results stress the need for critical evaluation of structures determined by single particle EM.
Collapse
Affiliation(s)
- Yifan Cheng
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Gilbert RJC, Beales L, Blond D, Simon MN, Lin BY, Chisari FV, Stuart DI, Rowlands DJ. Hepatitis B small surface antigen particles are octahedral. Proc Natl Acad Sci U S A 2005; 102:14783-8. [PMID: 16203986 PMCID: PMC1253561 DOI: 10.1073/pnas.0505062102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Indexed: 12/16/2022] Open
Abstract
The infectious component of hepatitis B (HB) virus (HBV), the Dane particle, has a diameter of approximately 44 nm and consists of a double-layered capsid particle enclosing a circular, incomplete double-stranded DNA genome. The outer capsid layer is formed from the HB surface antigen (HBsAg) and lipid, whereas the inner layer is formed from the HB core Ag assembled into an icosahedral structure. During chronic infection HBsAg is expressed in large excess as noninfectious quasispherical particles and tubules with approximately 22-nm diameter. Here, we report cryo-EM reconstructions of spherical HBsAg particles at approximately 12-A resolution. We show that the particles possess different diameters and have separated them into two predominant populations, both of which have octahedral symmetry. Despite their differing diameters, the two forms of the particle have the same mass and are built through conformational switching of the same building block, a dimer of HBsAg. We propose that this conformational switching, combined with interactions with the underlying core, leads to the formation of HBV Dane particles of different sizes, dictated by the symmetry of the icosahedral core.
Collapse
Affiliation(s)
- Robert J C Gilbert
- Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Sergiev PV, Kiparisov SV, Burakovsky DE, Lesnyak DV, Leonov AA, Bogdanov AA, Dontsova OA. The Conserved A-site Finger of the 23S rRNA: Just One of the Intersubunit Bridges or a Part of the Allosteric Communication Pathway? J Mol Biol 2005; 353:116-23. [PMID: 16165153 DOI: 10.1016/j.jmb.2005.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 07/12/2005] [Accepted: 08/01/2005] [Indexed: 11/17/2022]
Abstract
During the translocation of tRNAs and mRNA relative to the ribosome, the B1a, B1b and B1c bridges undergo the most extensive conformational changes among the bridges between the large and the small ribosomal subunits. The B1a bridge, also called the "A-site finger" (ASF), is formed by the 23S rRNA helix 38, which is located right above the ribosomal A-site. Here, we deleted part of the ASF so that the B1a intersubunit bridge could not be formed (DeltaB1a). The mutation led to a less efficient subunit association. A number of functional activities of the DeltaB1a ribosomes, such as tRNA binding to the P and A-sites, translocation and EF-G-related GTPase reaction were preserved. A moderate decrease in EF-G-related GTPase stimulation by the P-site occupation by deacylated tRNA was observed. This suggests that the B1a bridge is not involved in the most basic steps of the elongation cycle, but rather in the fine-tuning of the ribosomal activity. Chemical probing of ribosomes carrying the ASF truncation revealed structural differences in the 5S rRNA and in the 23S rRNA helices located between the peptidyltransferase center and the binding site of the elongation factors. Interestingly, reactivity changes were found in the P-loop, an important functional region of the 23S rRNA. It is likely that the A-site finger, in addition to its role in subunit association, forms part of the system of allosteric signal exchanges between the small subunit decoding center and the functional centers on the large subunit.
Collapse
Affiliation(s)
- Petr V Sergiev
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119899, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
165
|
Sergiev PV, Bogdanov AA, Dontsova OA. How can elongation factors EF-G and EF-Tu discriminate the functional state of the ribosome using the same binding site? FEBS Lett 2005; 579:5439-42. [PMID: 16213500 DOI: 10.1016/j.febslet.2005.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 09/07/2005] [Accepted: 09/13/2005] [Indexed: 11/27/2022]
Abstract
Elongation factors EF-G and EF-Tu are structural homologues and share near-identical binding sites on the ribosome, which encompass the GTPase-associated centre (GAC) and the sarcin-ricin loop (SRL). The SRL is fixed structure in the ribosome and contacts elongation factors in the vicinity of their GTP-binding site. In contrast, the GAC is mobile and we hypothesize that it interacts with the alpha helix D of the EF-Tu G-domain in the same way as with the alpha helix A of the G'-domain of EF-G. The mutual locations of these helices and GTP-binding sites in the structures of EF-Tu and EF-G are different. Thus, the orientation of the GAC relative to the SRL determines whether EF-G or EF-Tu will bind to the ribosome.
Collapse
Affiliation(s)
- Petr V Sergiev
- Department of Chemistry, Moscow State University, Russia
| | | | | |
Collapse
|
166
|
Sumita M, Desaulniers JP, Chang YC, Chui HMP, Clos L, Chow CS. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. RNA (NEW YORK, N.Y.) 2005; 11:1420-9. [PMID: 16120833 PMCID: PMC1370825 DOI: 10.1261/rna.2320605] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The helix 69 (H69) region of the large subunit (28S) rRNA of Homo sapiens contains five pseudouridine (Psi) residues out of 19 total nucleotides (26%), three of which are universally or highly conserved. In this study, the effects of this abundant modified nucleotide on the structure and stability of H69 were compared with those of uridine. The role of a loop nucleotide substitution from A in bacteria (position 1918 in Escherichia coli 23S rRNA) to G in eukaryotes (position in 3734 in H. sapiens) was also examined. The thermodynamic parameters were obtained through UV melting studies, and differences in the modified and unmodified RNA structures were examined by 1H NMR and circular dichroism spectroscopy. In addition, a [1,3-15N]Psi phosphoramidite was used to generate H69 analogs with site-specific 15N labels. By using this approach, different Psi residues can be clearly distinguished from one another in 1H NMR experiments. The effects of pseudouridine on H. sapiens H69 are consistent with previous studies on tRNA, rRNA, and snRNA models in which the nucleotide offers stabilization of duplex regions through PsiN1H-mediated hydrogen bonds. The overall secondary structure and base-pairing patterns of human H69 are similar to the bacterial RNA, consistent with the idea that ribosome structure and function are highly conserved. Nonetheless, pseudouridine-containing RNAs have subtle differences in their structures and stabilities compared to the corresponding uridine-containing analogs, suggesting possible roles for Psi such as maintaining translation fidelity.
Collapse
Affiliation(s)
- Minako Sumita
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
167
|
Milazzo AC, Leblanc P, Duttweiler F, Jin L, Bouwer JC, Peltier S, Ellisman M, Bieser F, Matis HS, Wieman H, Denes P, Kleinfelder S, Xuong NH. Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 2005; 104:152-9. [PMID: 15890445 DOI: 10.1016/j.ultramic.2005.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Revised: 02/25/2005] [Accepted: 03/16/2005] [Indexed: 11/22/2022]
Abstract
A new high-resolution recording device for transmission electron microscopy (TEM) is urgently needed. Neither film nor CCD cameras are systems that allow for efficient 3-D high-resolution particle reconstruction. We tested an active pixel sensor (APS) array as a replacement device at 200, 300, and 400 keV using a JEOL JEM-2000 FX II and a JEM-4000 EX electron microscope. For this experiment, we used an APS prototype with an area of 64 x 64 pixels of 20 microm x 20 microm pixel pitch. Single-electron events were measured by using very low beam intensity. The histogram of the incident electron energy deposited in the sensor shows a Landau distribution at low energies, as well as unexpected events at higher absorbed energies. After careful study, we concluded that backscattering in the silicon substrate and re-entering the sensitive epitaxial layer a second time with much lower speed caused the unexpected events. Exhaustive simulation experiments confirmed the existence of these back-scattered electrons. For the APS to be usable, the back-scattered electron events must be eliminated, perhaps by thinning the substrate to less than 30 microm. By using experimental data taken with an APS chip with a standard silicon substrate (300 microm) and adjusting the results to take into account the effect of a thinned silicon substrate (30 microm), we found an estimate of the signal-to-noise ratio for a back-thinned detector in the energy range of 200-400 keV was about 10:1 and an estimate for the spatial resolution was about 10 microm.
Collapse
Affiliation(s)
- Anna-Clare Milazzo
- University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Aramayo R, Mérigoux C, Larquet E, Bron P, Pérez J, Dumas C, Vachette P, Boisset N. Divalent ion-dependent swelling of Tomato Bushy Stunt Virus: A multi-approach study. Biochim Biophys Acta Gen Subj 2005; 1724:345-54. [PMID: 16023788 DOI: 10.1016/j.bbagen.2005.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/13/2005] [Accepted: 05/19/2005] [Indexed: 10/25/2022]
Abstract
Time-resolved small-angle X-ray and neutron scattering (SAXS and SANS) in solution were used to study the swelling reaction of TBSV upon chelation of its constituent calcium at mildly basic pH. SAXS intensities comprise contribution from the protein capsid and the RNA moiety, while neutron scattering, recorded in 72% D2O, is essentially due to the protein capsid. Cryo-electron micrographs of compact and swollen virus were used to produce 3D reconstructions of the initial and final conformations of the virus at a resolution of 13 A and 19 A, respectively. While compact particles appear to be very homogeneous in size, solutions of swollen particles exhibit some size heterogeneity. A procedure has been developed to compute the SAXS pattern from the 3D reconstruction for comparison with experimental data. Cryo-electron microscopy thereby provides an invaluable starting (and ending) point for the analysis of the time-resolved swelling process using the scattering data.
Collapse
Affiliation(s)
- R Aramayo
- Institut de Minéralogie et de Physique de la Matière Condensée, Université Pierre et Marie Curie UMR7590 CNRS P7 IPGP, Case Postale 115-75252 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Liiv A, Karitkina D, Maiväli Ü, Remme J. Analysis of the function of E. coli 23S rRNA helix-loop 69 by mutagenesis. BMC Mol Biol 2005; 6:18. [PMID: 16053518 PMCID: PMC1190176 DOI: 10.1186/1471-2199-6-18] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Accepted: 07/29/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ribosome is a two-subunit enzyme known to exhibit structural dynamism during protein synthesis. The intersubunit bridges have been proposed to play important roles in decoding, translocation, and the peptidyl transferase reaction; yet the physical nature of their contributions is ill understood. An intriguing intersubunit bridge, B2a, which contains 23S rRNA helix 69 as a major component, has been implicated by proximity in a number of catalytically important regions. In addition to contacting the small ribosomal subunit, helix 69 contacts both the A and P site tRNAs and several translation factors. RESULTS We scanned the loop of helix 69 by mutagenesis and analyzed the mutant ribosomes using a plasmid-borne IPTG-inducible expression system. We assayed the effects of 23S rRNA mutations on cell growth, contribution of mutant ribosomes to cellular polysome pools and the ability of mutant ribosomes to function in cell-free translation. Mutations A1912G, and A1919G have very strong growth phenotypes, are inactive during in vitro protein synthesis, and under-represented in the polysomes. Mutation Psi1917C has a very strong growth phenotype and leads to a general depletion of the cellular polysome pool. Mutation A1916G, having a modest growth phenotype, is apparently defective in the assembly of the 70S ribosome. CONCLUSION Mutations A1912G, A1919G, and Psi1917C of 23S rRNA strongly inhibit translation. Mutation A1916G causes a defect in the 50S subunit or 70S formation. Mutations Psi1911C, A1913G, C1914A, Psi1915C, and A1918G lack clear phenotypes.
Collapse
Affiliation(s)
- Aivar Liiv
- Estonian Biocentre, Riia 23, 51010 Tartu, Estonia
| | - Diana Karitkina
- Institute of Molecular Biology and Cell Biology, Tartu University, Riia 23, 51010 Tartu, Estonia
- Clinic for Neurology, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Ülo Maiväli
- Institute of Molecular Biology and Cell Biology, Tartu University, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- Institute of Molecular Biology and Cell Biology, Tartu University, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
170
|
Gao H, Ayub MJ, Levin MJ, Frank J. The structure of the 80S ribosome from Trypanosoma cruzi reveals unique rRNA components. Proc Natl Acad Sci U S A 2005; 102:10206-11. [PMID: 16014419 PMCID: PMC1174928 DOI: 10.1073/pnas.0500926102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present analysis, by cryo-electron microscopy and single-particle reconstruction, of the structure of the 80S ribosome from Trypanosoma cruzi, the kinetoplastid protozoan pathogen that causes Chagas disease. The density map of the T. cruzi 80S ribosome shows the phylogenetically conserved eukaryotic rRNA core structure, together with distinctive structural features in both the small and large subunits. Remarkably, a previously undescribed helical structure appears in the small subunit in the vicinity of the mRNA exit channel. We propose that this rRNA structure likely participates in the recruitment of ribosome onto the 5' end of mRNA, in facilitating and modulating the initiation of translation that is unique to the trypanosomes.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Health Research, Inc., at the Wadsworth Center, Empire State Plaza, Albany, NY 12201-0509, USA
| | | | | | | |
Collapse
|
171
|
Sharma MR, Barat C, Wilson DN, Booth TM, Kawazoe M, Hori-Takemoto C, Shirouzu M, Yokoyama S, Fucini P, Agrawal RK. Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. Mol Cell 2005; 18:319-29. [PMID: 15866174 DOI: 10.1016/j.molcel.2005.03.028] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/16/2005] [Accepted: 03/24/2005] [Indexed: 11/18/2022]
Abstract
Era (E. coliRas-like protein) is a highly conserved and essential GTPase in bacteria. It binds to the 16S ribosomal RNA (rRNA) of the small (30S) ribosomal subunit, and its depletion leads to accumulation of an unprocessed precursor of the 16S rRNA. We have obtained a three-dimensional cryo-electron microscopic map of the Thermus thermophilus 30S-Era complex. Era binds in the cleft between the head and platform of the 30S subunit and locks the subunit in a conformation that is not favorable for association with the large (50S) ribosomal subunit. The RNA binding KH motif present within the C-terminal domain of Era interacts with the conserved nucleotides in the 3' region of the 16S rRNA. Furthermore, Era makes contact with several assembly elements of the 30S subunit. These observations suggest a direct involvement of Era in the assembly and maturation of the 30S subunit.
Collapse
Affiliation(s)
- Manjuli R Sharma
- Division of Molecular Medicine, Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Gao N, Zavialov AV, Li W, Sengupta J, Valle M, Gursky RP, Ehrenberg M, Frank J. Mechanism for the Disassembly of the Posttermination Complex Inferred from Cryo-EM Studies. Mol Cell 2005; 18:663-74. [PMID: 15949441 DOI: 10.1016/j.molcel.2005.05.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 04/13/2005] [Accepted: 05/09/2005] [Indexed: 11/22/2022]
Abstract
Ribosome recycling, the disassembly of the posttermination complex after each round of protein synthesis, is an essential step in mRNA translation, but its mechanism has remained obscure. In eubacteria, recycling is catalyzed by RRF (ribosome recycling factor) and EF-G (elongation factor G). By using cryo-electron microscopy, we have obtained two density maps, one of the RRF bound posttermination complex and one of the 50S subunit bound with both EF-G and RRF. Comparing the two maps, we found domain I of RRF to be in the same orientation, while domain II in the EF-G-containing 50S subunit is extensively rotated (approximately 60 degrees) compared to its orientation in the 70S complex. Mapping the 50S conformation of RRF onto the 70S posttermination complex suggests that it can disrupt the intersubunit bridges B2a and B3, and thus effect a separation of the two subunits. These observations provide the structural basis for the mechanism by which the posttermination complex is split into subunits by the joint action of RRF and EF-G.
Collapse
Affiliation(s)
- Ning Gao
- Wadsworth Center, State University of New York at Albany, Empire State Plaza, Albany, New York 12201, USA
| | | | | | | | | | | | | | | |
Collapse
|
173
|
Hud NV, Vilfan ID. Toroidal DNA Condensates: Unraveling the Fine Structure and the Role of Nucleation in Determining Size. ACTA ACUST UNITED AC 2005; 34:295-318. [PMID: 15869392 DOI: 10.1146/annurev.biophys.34.040204.144500] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Toroidal DNA condensates have attracted the attention of biophysicists, biochemists, and polymer physicists for more than thirty years. In the biological community, the quest to understand DNA toroid formation has been motivated by its relevance to gene packing in certain viruses and by the potential use of DNA toroids in artificial gene delivery (e.g., gene therapy). In the physical sciences, DNA toroids are appreciated as a superb model system for studying particle formation by the collapse of a semiflexible, polyelectrolyte polymer. This review focuses on experimental studies from the past few years that have significantly increased our understanding of DNA toroid structure and the mechanism of their formation. Highlights include structural studies that show the DNA strands within toroids to be packed in an ideal hexagonal lattice, and also in regions with a nonhexagonal lattice that are required by the topological constraints associated with winding DNA into a toroid. Recent studies of DNA toroid formation have also revealed that toroid size limits result from a complex interplay between kinetic and thermodynamic factors that govern both toroid nucleation and growth. The work discussed in this review indicates that it will ultimately be possible to obtain substantial control over DNA toroid dimensions.
Collapse
Affiliation(s)
- Nicholas V Hud
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA.
| | | |
Collapse
|
174
|
Abstract
During transfer RNA (tRNA) selection, a cognate codon:anticodon interaction triggers a series of events that ultimately results in the acceptance of that tRNA into the ribosome for peptide-bond formation. High-fidelity discrimination between the cognate tRNA and near- and noncognate ones depends both on their differential dissociation rates from the ribosome and on specific acceleration of forward rate constants by cognate species. Here we show that a mutant tRNA(Trp) carrying a single substitution in its D-arm achieves elevated levels of miscoding by accelerating these forward rate constants independent of codon:anticodon pairing in the decoding center. These data provide evidence for a direct role for tRNA in signaling its own acceptance during decoding and support its fundamental role during the evolution of protein synthesis.
Collapse
Affiliation(s)
- Luisa Cochella
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
175
|
Sorzano COS, Marabini R, Velázquez-Muriel J, Bilbao-Castro JR, Scheres SHW, Carazo JM, Pascual-Montano A. XMIPP: a new generation of an open-source image processing package for electron microscopy. J Struct Biol 2005; 148:194-204. [PMID: 15477099 DOI: 10.1016/j.jsb.2004.06.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 06/04/2004] [Indexed: 11/30/2022]
Abstract
X-windows based microscopy image processing package (Xmipp) is a specialized suit of image processing programs, primarily aimed at obtaining the 3D reconstruction of biological specimens from large sets of projection images acquired by transmission electron microscopy. This public-domain software package was introduced to the electron microscopy field eight years ago, and since then it has changed drastically. New methodologies for the analysis of single-particle projection images have been added to classification, contrast transfer function correction, angular assignment, 3D reconstruction, reconstruction of crystals, etc. In addition, the package has been extended with functionalities for 2D crystal and electron tomography data. Furthermore, its current implementation in C++, with a highly modular design of well-documented data structures and functions, offers a convenient environment for the development of novel algorithms. In this paper, we present a general overview of a new generation of Xmipp that has been re-engineered to maximize flexibility and modularity, potentially facilitating its integration in future standardization efforts in the field. Moreover, by focusing on those developments that distinguish Xmipp from other packages available, we illustrate its added value to the electron microscopy community.
Collapse
Affiliation(s)
- C O S Sorzano
- Unidad de Biocomputación, Centro Nacional de Biotecnología (CSIC), Campus Universidad Autónoma s/n, 28049 Cantoblanco, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
176
|
Cukras AR, Green R. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. J Mol Biol 2005; 349:47-59. [PMID: 15876367 PMCID: PMC1687178 DOI: 10.1016/j.jmb.2005.03.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 03/25/2005] [Accepted: 03/25/2005] [Indexed: 11/20/2022]
Abstract
The ribosomal protein S13 is found in the head region of the small subunit, where it interacts with the central protuberance of the large ribosomal subunit and with the P site-bound tRNA through its extended C terminus. The bridging interactions between the large and small subunits are dynamic, and are thought to be critical in orchestrating the molecular motions of the translation cycle. S13 provides a direct link between the tRNA-binding site and the movements in the head of the small subunit seen during translocation, thereby providing a possible pathway of signal transduction. We have created and characterized an rpsM(S13)-deficient strain of Escherichia coli and have found significant defects in subunit association, initiation and translocation through in vitro assays of S13-deficient ribosomes. Targeted mutagenesis of specific bridge and tRNA contact elements in S13 provides evidence that these two interaction domains play critical roles in maintaining the fidelity of translation. This ribosomal protein thus appears to play a non-essential, yet important role by modulating subunit interactions in multiple steps of the translation cycle.
Collapse
|
177
|
Serysheva II. Structural insights into excitation-contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2005; 69:1226-32. [PMID: 15627376 DOI: 10.1007/s10541-005-0068-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In muscle, excitation-contraction coupling is defined as the process linking depolarization of the surface membrane with Ca2+ release from cytoplasmic stores, which activates contraction of striated muscle. This process is primarily controlled by interplay between two Ca2+ channels--the voltage-gated L-type Ca2+ channel (dihydropyridine receptor, DHPR) localized in the t-tubule membrane and the Ca2+-release channel (ryanodine receptor, RyR) of the sarcoplasmic reticulum membrane. The structures of both channels have been extensively studied by several groups using electron cryomicroscopy and single particle reconstruction techniques. The structures of RyR, determined at resolutions of 22-30 A, reveal a characteristic mushroom shape with a bulky cytoplasmic region and the membrane-spanning stem. While the cytoplasmic region exhibits a complex structure comprising a multitude of distinctive domains with numerous intervening cavities, at this resolution no definitive statement can be made about the location of the actual pore within the transmembrane region. Conformational changes associated with functional transitions of the Ca2+ release channel from closed to open states have been characterized. Further experiments determined localization of binding sites for various channel ligands. The structural studies of the DHPR are less developed. Although four 3D maps of the DHPR were reported recently at 24-30 A resolution from studies of frozen-hydrated and negatively stained receptors, there are some discrepancies between reported structures with respect to the overall appearance and dimensions of the channel structure. Future structural studies at higher resolution are needed to refine the structures of both channels and to substantiate a proposed molecular model for their interaction.
Collapse
Affiliation(s)
- I I Serysheva
- Department of Molecular Physiology and Biophysics, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
178
|
Gao H, Frank J. Molding Atomic Structures into Intermediate- Resolution Cryo-EM Density Maps of Ribosomal Complexes Using Real-Space Refinement. Structure 2005; 13:401-6. [PMID: 15766541 DOI: 10.1016/j.str.2005.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 12/30/2004] [Accepted: 01/01/2005] [Indexed: 10/25/2022]
Abstract
Real-space refinement has been previously introduced as a flexible fitting method to interpret medium-resolution cryo-EM density maps in terms of atomic structures. In this way, conformational changes related to functional processes can be analyzed on the molecular level. In the application of the technique to the ribosome, quasiatomic models have been derived that have advanced our understanding of translocation. In this article, the choice of parameters for the fitting procedure is discussed. The quality of the fitting depends critically on the number of rigid pieces into which the model is divided. Suitable quality indicators are crosscorrelation, R factor, and density residual, all of which can also be locally applied. The example of the ribosome may provide some guidelines for general applications of real-space refinement to flexible fitting problems.
Collapse
Affiliation(s)
- Haixiao Gao
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201, USA
| | | |
Collapse
|
179
|
Rázga F, Koca J, Sponer J, Leontis NB. Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. Biophys J 2005; 88:3466-85. [PMID: 15722438 PMCID: PMC1305493 DOI: 10.1529/biophysj.104.054916] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kink-turn (K-turn) motifs are asymmetric internal loops found at conserved positions in diverse RNAs, with sharp bends in phosphodiester backbones producing V-shaped structures. Explicit-solvent molecular dynamics simulations were carried out for three K-turns from 23S rRNA, i.e., Kt-38 located at the base of the A-site finger, Kt-42 located at the base of the L7/L12 stalk, and Kt-58 located in domain III, and for the K-turn of human U4 snRNA. The simulations reveal hinge-like K-turn motions on the nanosecond timescale. The first conserved A-minor interaction between the K-turn stems is entirely stable in all simulations. The angle between the helical arms of Kt-38 and Kt-42 is regulated by local variations of the second A-minor (type I) interaction between the stems. Its variability ranges from closed geometries to open ones stabilized by insertion of long-residency waters between adenine and cytosine. The simulated A-minor geometries fully agree with x-ray data. Kt-58 and Kt-U4 exhibit similar elbow-like motions caused by conformational change of the adenosine from the nominally unpaired region. Despite the observed substantial dynamics of K-turns, key tertiary interactions are stable and no sign of unfolding is seen. We suggest that some K-turns are flexible elements mediating large-scale ribosomal motions during the protein synthesis cycle.
Collapse
Affiliation(s)
- Filip Rázga
- National Centre for Biomolecular Research, Brno, Czech Republic
| | | | | | | |
Collapse
|
180
|
Ludtke SJ, Chen DH, Song JL, Chuang DT, Chiu W. Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 2005; 12:1129-36. [PMID: 15242589 DOI: 10.1016/j.str.2004.05.006] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We present a reconstruction of native GroEL by electron cryomicroscopy (cryo-EM) and single particle analysis at 6 A resolution. alpha helices are clearly visible and beta sheet density is also visible at this resolution. While the overall conformation of this structure is quite consistent with the published X-ray data, a measurable shift in the positions of three alpha helices in the intermediate domain is observed, not consistent with any of the 7 monomeric structures in the Protein Data Bank model (1OEL). In addition, there is evidence for slight rearrangement or flexibility in parts of the apical domain. The 6 A resolution cryo-EM GroEL structure clearly demonstrates the veracity and expanding scope of cryo-EM and the single particle reconstruction technique for macromolecular machines.
Collapse
Affiliation(s)
- Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030 USA
| | | | | | | | | |
Collapse
|
181
|
|
182
|
Hennelly SP, Antoun A, Ehrenberg M, Gualerzi CO, Knight W, Lodmell JS, Hill WE. A time-resolved investigation of ribosomal subunit association. J Mol Biol 2005; 346:1243-58. [PMID: 15713478 DOI: 10.1016/j.jmb.2004.12.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 12/23/2004] [Accepted: 12/29/2004] [Indexed: 11/19/2022]
Abstract
The notion that the ribosome is dynamic has been supported by various biochemical techniques, as well as by differences observed in high-resolution structures of ribosomal complexes frozen in various functional states. Yet, the mechanisms and extent of rRNA dynamics are still largely unknown. We have used a novel, fast chemical-modification technique to provide time-resolved details of 16 S rRNA structural changes that occur as bridges are formed between the ribosomal subunits as they associate. Association of different 16 S rRNA regions was found to be a sequential, multi-step process involving conformational rearrangements within the 30 S subunit. Our results suggest that key regions of 16 S rRNA, necessary for decoding and tRNA A-site binding, are structurally altered in a time-dependent manner by association with the 50 S ribosomal subunits.
Collapse
MESH Headings
- Base Pairing
- Binding Sites
- Crystallography, X-Ray
- Escherichia coli/chemistry
- Escherichia coli/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- Ribosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- Scott P Hennelly
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | | | | | | | | | |
Collapse
|
183
|
Lipkow K, Andrews SS, Bray D. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. J Bacteriol 2005; 187:45-53. [PMID: 15601687 PMCID: PMC538814 DOI: 10.1128/jb.187.1.45-53.2005] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the use of a computational model to study the effects of cellular architecture and macromolecular crowding on signal transduction in Escherichia coli chemotaxis. A newly developed program, Smoldyn, allows the movement and interaction of a large number of individual molecules in a structured environment to be simulated (S. S. Andrews and D. Bray, Phys. Biol., in press). With Smoldyn, we constructed a three-dimensional model of an E. coli cell and examined the diffusion of CheYp from the cluster of receptors to the flagellar motors under control conditions and in response to attractant and repellent stimuli. Our simulations agree well with experimental observations of cell swimming responses and are consistent with the diffusive behavior expected in wild-type and mutant cells. The high resolution available to us in the new program allows us to calculate the loci of individual CheYp molecules in a cell and the distribution of their lifetimes under different cellular conditions. We find that the time delay between stimulus and response differs for flagellar motors located at different positions in the cell. We explore different possible locations for the phosphatase CheZ and show conditions under which a gradient of CheYp exists in the cell. The introduction of inert blocks into the cytoplasm, representing impenetrable structures such as the nucleoid and large protein complexes, produces a fall in the apparent diffusion coefficient of CheYp and enhances the differences between motors. These and other results are left as predictions for future experiments.
Collapse
Affiliation(s)
- Karen Lipkow
- Department of Anatomy, University of Cambridge, Downing St., Cambridge CB2 3DY, United Kingdom.
| | | | | |
Collapse
|
184
|
Yang C, Ng EG, Penczek PA. Unified 3-D structure and projection orientation refinement using quasi-Newton algorithm. J Struct Biol 2005; 149:53-64. [PMID: 15629657 DOI: 10.1016/j.jsb.2004.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 08/26/2004] [Indexed: 11/18/2022]
Abstract
We describe an algorithm for simultaneous refinement of a three-dimensional (3-D) density map and of the orientation parameters of two-dimensional (2-D) projections that are used to reconstruct this map. The application is in electron microscopy, where the 3-D structure of a protein has to be determined from a set of 2-D projections collected at random but initially unknown angles. The design of the algorithm is based on the assumption that initial low resolution approximation of the density map and reasonable guesses for orientation parameters are available. Thus, the algorithm is applicable in final stages of the structure refinement, when the quality of the results is of main concern. We define the objective function to be minimized in real space and solve the resulting nonlinear optimization problem using a Quasi-Newton algorithm. We calculate analytical derivatives with respect to density distribution and the finite difference approximations of derivatives with respect to orientation parameters. We demonstrate that calculation of derivatives is robust with respect to noise in the data. This is due to the fact that noise is annihilated by the back-projection operations. Our algorithm is distinguished from other orientation refinement methods (i) by the simultaneous update of the density map and orientation parameters resulting in a highly efficient computational scheme and (ii) by the high quality of the results produced by a direct minimization of the discrepancy between the 2-D data and the projected views of the reconstructed 3-D structure. We demonstrate the speed and accuracy of our method by using simulated data.
Collapse
Affiliation(s)
- Chao Yang
- Lawrence Berkeley National Laboratory, Computational Research Division, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
185
|
Wilson DN, Schluenzen F, Harms JM, Yoshida T, Ohkubo T, Albrecht R, Buerger J, Kobayashi Y, Fucini P. X-ray crystallography study on ribosome recycling: the mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J 2004; 24:251-60. [PMID: 15616575 PMCID: PMC545814 DOI: 10.1038/sj.emboj.7600525] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2004] [Accepted: 11/26/2004] [Indexed: 11/09/2022] Open
Abstract
This study presents the crystal structure of domain I of the Escherichia coli ribosome recycling factor (RRF) bound to the Deinococcus radiodurans 50S subunit. The orientation of RRF is consistent with the position determined on a 70S-RRF complex by cryoelectron microscopy (cryo-EM). Alignment, however, requires a rotation of 7 degrees and a shift of the cryo-EM RRF by a complete turn of an alpha-helix, redefining the contacts established with ribosomal components. At 3.3 A resolution, RRF is seen to interact exclusively with ribosomal elements associated with tRNA binding and/or translocation. Furthermore, these results now provide a high-resolution structural description of the conformational changes that were suspected to occur on the 70S-RRF complex, which has implications for the synergistic action of RRF with elongation factor G (EF-G). Specifically, the tip of the universal bridge element H69 is shifted by 20 A toward h44 of the 30S subunit, suggesting that RRF primes the intersubunit bridge B2a for the action of EF-G. Collectively, our data enable a model to be proposed for the dual action of EF-G and RRF during ribosome recycling.
Collapse
Affiliation(s)
- Daniel N Wilson
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
| | - Frank Schluenzen
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- These authors contributed equally to this work
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 40 8998 2809; Fax: +49 (0) 40 8971 6848; E-mail:
| | - Joerg M Harms
- Riboworld.com, Hamburg, Germany
- These authors contributed equally to this work
| | - Takuya Yoshida
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Tadayasu Ohkubo
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Renate Albrecht
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Joerg Buerger
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Yuji Kobayashi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Paola Fucini
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Ihnestr. 73, Berlin 14195, Germany. Tel.: +49 (0) 30 8413 1691; Fax: +49 (0) 30 8413 1690; E-mail:
| |
Collapse
|
186
|
Zhao Q, Ofverstedt LG, Skoglund U, Isaksson LA. Morphological variation of individual Escherichia coli 50S ribosomal subunits in situ, as revealed by cryo-electron tomography. Exp Cell Res 2004; 300:190-201. [PMID: 15383326 DOI: 10.1016/j.yexcr.2004.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 07/08/2004] [Indexed: 10/26/2022]
Abstract
Electron tomography (ET) has been used to reconstruct in situ individual 50S ribosomal subunits in Escherichia coli rifampicin-treated cells. Rifampicin inhibits transcription initiation. As a result, rapid degradation of preformed mRNA and dissociation of 70S ribosomes give accumulation of free subunits. In the 50S subunit, the L1 stalk, the L7/L12 stalk, the central protuberance (CP), and the peptidyl transferase center (PTC) cleft are the most dynamic and flexible parts in the reconstructed structures with clear movements indicated. Different locations of the tunnel in the central cross-sections through the in situ 50S subunits indicate the flexible nature of the pathway inside the large ribosomal subunit. In addition, gross morphological heterogeneity was observed in the reconstructions. Our results demonstrate a considerable structural variability among individual 50S subunits in the intracellular environment.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Genetics, Microbiology and Toxicology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
187
|
Nicholson WV. Object detection by correlation coefficients using azimuthally averaged reference projections. IEEE Trans Biomed Eng 2004; 51:2006-12. [PMID: 15536902 DOI: 10.1109/tbme.2004.834271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A method of computing correlation coefficients for object detection that takes advantage of using azimuthally averaged reference projections is described and compared with two alternative methods-computing a cross-correlation function or a local correlation coefficient versus the azimuthally averaged reference projections. Two examples of an application from structural biology involving the detection of projection views of biological macromolecules in electron micrographs are discussed. It is found that a novel approach to computing a local correlation coefficient versus azimuthally averaged reference projections, using a rotational correlation coefficient, outperforms using a cross-correlation function and a local correlation coefficient in object detection from simulated images with a range of levels of simulated additive noise. The three approaches perform similarly in detecting macromolecular views in electron microscope images of a globular macrolecular complex (the ribosome). The rotational correlation coefficient outperforms the other methods in detection of keyhole limpet hemocyanin macromolecular views in electron micrographs.
Collapse
Affiliation(s)
- William V Nicholson
- School of Biomedical Sciences, University of Leeds, Worsley Building, Leeds LS2 9JT, UK.
| |
Collapse
|
188
|
Serysheva II. Structural insights into excitation—contraction coupling by electron cryomicroscopy. BIOCHEMISTRY (MOSCOW) 2004. [DOI: 10.1007/pl00021759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
189
|
Spahn CMT, Jan E, Mulder A, Grassucci RA, Sarnow P, Frank J. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Cell 2004; 118:465-75. [PMID: 15315759 DOI: 10.1016/j.cell.2004.08.001] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/22/2004] [Accepted: 06/23/2004] [Indexed: 01/28/2023]
Abstract
Internal initiation of protein synthesis in eukaryotes is accomplished by recruitment of ribosomes to structured internal ribosome entry sites (IRESs), which are located in certain viral and cellular messenger RNAs. An IRES element in cricket paralysis virus (CrPV) can directly assemble 80S ribosomes in the absence of canonical initiation factors and initiator tRNA. Here we present cryo-EM structures of the CrPV IRES bound to the human ribosomal 40S subunit and to the 80S ribosome. The CrPV IRES adopts a defined, elongate structure within the ribosomal intersubunit space and forms specific contacts with components of the ribosomal A, P, and E sites. Conformational changes in the ribosome as well as within the IRES itself show that CrPV IRES actively manipulates the ribosome. CrPV-like IRES elements seem to act as RNA-based translation factors.
Collapse
Affiliation(s)
- Christian M T Spahn
- Howard Hughes Medical Institute, Health Research Inc. at, Albany, NY 10012, USA
| | | | | | | | | | | |
Collapse
|
190
|
Sengupta J, Nilsson J, Gursky R, Spahn CMT, Nissen P, Frank J. Identification of the versatile scaffold protein RACK1 on the eukaryotic ribosome by cryo-EM. Nat Struct Mol Biol 2004; 11:957-62. [PMID: 15334071 DOI: 10.1038/nsmb822] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 06/23/2004] [Indexed: 11/08/2022]
Abstract
RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a beta-propeller architecture with seven blades like a Gbeta protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome.
Collapse
Affiliation(s)
- Jayati Sengupta
- Health Research, Inc., Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, New York 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
191
|
Jiang QX, Wang DN, MacKinnon R. Electron microscopic analysis of KvAP voltage-dependent K+ channels in an open conformation. Nature 2004; 430:806-10. [PMID: 15306816 DOI: 10.1038/nature02735] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Accepted: 06/03/2004] [Indexed: 11/09/2022]
Abstract
Voltage-dependent ion channels serve as field-effect transistors by opening a gate in response to membrane voltage changes. The gate's response to voltage is mediated by voltage sensors, which are arginine-containing structures that must move with respect to the membrane electric field. We have analysed by electron microscopy a voltage-dependent K(+) channel from Aeropyrum pernix (KvAP). Fab fragments were attached to 'voltage sensor paddles' and identified in the electron microscopy map at 10.5 A resolution. The extracellular surface location of the Fab fragments in the map is consistent with the membrane-depolarized, open conformation of the channel in electrophysiological experiments. Comparison of the map with a crystal structure demonstrates that the voltage sensor paddles are 'up' (that is, near the channel's extracellular surface) and situated at the protein-lipid interface. This finding supports the hypothesis that in response to changes in voltage the sensors move at the protein-lipid interface rather than in a gating pore surrounded by protein.
Collapse
Affiliation(s)
- Qiu-Xing Jiang
- Howard Hughes Medical Institute and Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, New York 10021,USA
| | | | | |
Collapse
|
192
|
Henrick K, Newman R, Tagari M, Chagoyen M. EMDep: a web-based system for the deposition and validation of high-resolution electron microscopy macromolecular structural information. J Struct Biol 2004; 144:228-37. [PMID: 14643225 DOI: 10.1016/j.jsb.2003.09.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper describes the design and implementation of a Web-based deposition system, EMDep, for macro-molecular volumes determined by electron microscopy and deposited at the European Bioinformatics Institute (EBI) for inclusion in the Electron Microscopy Data Base (EMDB). EMDep is a flexible and portable system (http://www.ebi.ac.uk/msd-srv/emdep/) that allows for the acceptance and validation of data, by an interactive depositor-driven operation. The system takes full advantage of the knowledge and expertise of the experimenters, rather than relying on the database curators, for the complete and accurate description of the structural experiment and its results.
Collapse
Affiliation(s)
- K Henrick
- EMBL Outstation, The European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | | | | | | |
Collapse
|
193
|
Abstract
Emerging methods in cryo-electron microscopy allow determination of the three-dimensional architectures of objects ranging in size from small proteins to large eukaryotic cells, spanning a size range of more than 12 orders of magnitude. Advances in determining structures by "single particle" microscopy and by "electron tomography" provide exciting opportunities to describe the structures of subcellular assemblies that are either too large or too heterogeneous to be investigated by conventional crystallographic methods. Here, we review selected aspects of progress in structure determination by cryo-electron microscopy at molecular resolution, with a particular emphasis on topics at the interface of single particle and tomographic approaches. The rapid pace of development in this field suggests that comprehensive descriptions of the structures of whole cells and organelles in terms of the spatial arrangements of their molecular components may soon become routine.
Collapse
Affiliation(s)
- Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
194
|
Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM, Spahn CMT, Grassucci RA, Kaji A, Frank J. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc Natl Acad Sci U S A 2004; 101:8900-5. [PMID: 15178758 PMCID: PMC428444 DOI: 10.1073/pnas.0401904101] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
After the termination step of protein synthesis, a deacylated tRNA and mRNA remain associated with the ribosome. The ribosome-recycling factor (RRF), together with elongation factor G (EF-G), disassembles this posttermination complex into mRNA, tRNA, and the ribosome. We have obtained a three-dimensional cryo-electron microscopic map of a complex of the Escherichia coli 70S ribosome and RRF. We find that RRF interacts mainly with the segments of the large ribosomal subunit's (50S) rRNA helices that are involved in the formation of two central intersubunit bridges, B2a and B3. The binding of RRF induces considerable conformational changes in some of the functional domains of the ribosome. As compared to its binding position derived previously by hydroxyl radical probing study, we find that RRF binds further inside the intersubunit space of the ribosome such that the tip of its domain I is shifted (by approximately 13 A) toward protein L5 within the central protuberance of the 50S subunit, and domain II is oriented more toward the small ribosomal subunit (30S). Overlapping binding sites of RRF, EF-G, and the P-site tRNA suggest that the binding of EF-G would trigger the removal of deacylated tRNA from the P site by moving RRF toward the ribosomal E site, and subsequent removal of mRNA may be induced by a shift in the position of 16S rRNA helix 44, which harbors part of the mRNA.
Collapse
Affiliation(s)
- Rajendra K Agrawal
- Wadsworth Center, New York State Department of Health, Empire State Plaza, Albany, NY 12201-0509, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
After providing some background material to establish the interest content of this subject, we summarize the many different ways in which water can be prepared in the amorphous state, making clear that there seems to be more than one distinct amorphous state to be considered. We then give some space to structural and spectroscopic characterization of the distinct states, recognizing that whereas there seems to be unambiguously two distinct states, there may be in fact be more, the additional states mimicking the structures of the higher-density crystalline polymorphs. The low-frequency vibrational properties of the amorphous solid states are then examined in some detail because of the gathering evidence that glassy water, while difficult to form directly from the liquid like other glasses, may have some unusual and almost ideal glassy features, manifested by unusually low states of disorder. This notion is pursued in the following section dealing with thermodynamic and relaxational properties, where the uniquely low excess entropy of the vitreous state of water is confirmed by three different estimates. The fact that the most nearly ideal glass known has no properly established glass transition temperature is highlighted, using known dielectric loss data for amorphous solid water (ASW) and relevant molecular glasses. Finally, the polyamorphism of glassy water, and the kinetic aspects of transformation from one form to the other, are reviewed.
Collapse
Affiliation(s)
- C Austen Angell
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA.
| |
Collapse
|
196
|
Bélanger F, Gagnon MG, Steinberg SV, Cunningham PR, Brakier-Gingras L. Study of the Functional Interaction of the 900 Tetraloop of 16S Ribosomal RNA with Helix 24 within the Bacterial Ribosome. J Mol Biol 2004; 338:683-93. [PMID: 15099737 DOI: 10.1016/j.jmb.2004.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 10/26/2022]
Abstract
The 900 tetraloop that caps helix 27 of 16S ribosomal RNA (rRNA) is amongst the most conserved regions of rRNA. This tetraloop forms a GNRA motif that docks into the minor groove of three base-pairs at the bottom of helix 24 of 16S rRNA in the 30S subunit. Both the tetraloop and its receptor in helix 24 contact the 23S rRNA, forming the intersubunit bridge B2c. Here, we investigated the interaction between the 900 tetraloop and its receptor by genetic complementation. We used a specialized ribosome system in combination with an in vivo instant evolution approach to select mutations in helix 24 compensating for a mutation in the 900 tetraloop (A900G) that severely decreases ribosomal activity, impairing subunit association and translational fidelity. We selected two mutants where the G769-C810 base-pair of helix 24 was substituted with either U-A or C x A. When these mutations in helix 24 were investigated in the context of a wild-type 900 tetraloop, the C x A but not the U-A mutation severely impaired ribosome activity, interfering with subunit association and decreasing translational fidelity. In the presence of the A900G mutation, both mutations in helix 24 increased the ribosome activity to the same extent. Subunit association and translational fidelity were increased to the same level. Computer modeling was used to analyze the effect of the mutations in helix 24 on the interaction between the tetraloop and its receptor. This study demonstrates the functional importance of the interaction between the 900 tetraloop and helix 24.
Collapse
Affiliation(s)
- François Bélanger
- Département de Biochimie, Université de Montréal, Montréal, Qué., Canada H3T 1J4
| | | | | | | | | |
Collapse
|
197
|
Chan YL, Correll CC, Wool IG. The location and the significance of a cross-link between the sarcin/ricin domain of ribosomal RNA and the elongation factor-G. J Mol Biol 2004; 337:263-72. [PMID: 15003445 DOI: 10.1016/j.jmb.2004.01.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 01/13/2004] [Accepted: 01/14/2004] [Indexed: 11/20/2022]
Abstract
During translocation peptidyl-tRNA moves from the A-site to the P-site and mRNA is displaced by three nucleotides in the 3' direction. This reaction is catalyzed by elongation factor-G (EF-G) and is associated with ribosome-dependent hydrolysis of GTP. The molecular basis of translocation is the most important unsolved problem with respect to ribosome function. A critical question, one that might provide a clue to the mechanism of translocation, is the precise identity of the contacts between EF-G and ribosome components. To make the identification, a covalent bond was formed, by ultraviolet irradiation, between EF-G and a sarcin/ricin domain (SRD) oligoribonucleotide containing 5-iodouridine. The cross-link was established, by mass spectroscopy and by Edman degradation, to be between a tryptophan at position 127 in the G domain in EF-G and either one of two 5-iodouridine nucleotides in the sequence UAG2655U in the SRD. G2655 is a critical identity element for the recognition of the factor's ribosomal binding site. The site of the cross-link provides the first direct evidence that the SRD is in close proximity to the EF-G catalytic center. The proximity suggests that the SRD RNA has a role in the activation of GTP hydrolysis that leads to a transition in the conformation of the factor and to its release from the ribosome.
Collapse
Affiliation(s)
- Yuen-Ling Chan
- Department of Biochemistry and Molecular Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
198
|
Penczek PA, Renka R, Schomberg H. Gridding-based direct Fourier inversion of the three-dimensional ray transform. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2004; 21:499-509. [PMID: 15078020 DOI: 10.1364/josaa.21.000499] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We describe a fast and accurate direct Fourier method for reconstructing a function f of three variables from a number of its parallel beam projections. The main application of our method is in single particle analysis, where the goal is to reconstruct the mass density of a biological macromolecule. Typically, the number of projections is extremely large, and each projection is extremely noisy. The projection directions are random and initially unknown. However, it is possible to determine both the directions and f by an iterative procedure; during each stage of the iteration, one has to solve a reconstruction problem of the type considered here. Our reconstruction algorithm is distinguished from other direct Fourier methods by the use of gridding techniques that provide an efficient means to compute a uniformly sampled version of a function g from a nonuniformly sampled version of Fg, the Fourier transform of g, or vice versa. We apply the two-dimensional reverse gridding method to each available projection of f, the function to be reconstructed, in order to obtain Ff on a special spherical grid. Then we use the three-dimensional gridding method to reconstruct f from this sampled version of Ff. This stage requires a proper weighting of the samples of Ff to compensate for their nonuniform distribution. We use a fast method for computing appropriate weights that exploits the special properties of the spherical sampling grid for Ff and involves the computation of a Voronoi diagram on the unit sphere. We demonstrate the excellent speed and accuracy of our method by using simulated data.
Collapse
Affiliation(s)
- Pawel A Penczek
- Department of Biochemistry and Molecular Biology, The University of Texas-Houston Medical School, 6431 Fannin, MSB6.218, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
199
|
Maiväli U, Remme J. Definition of bases in 23S rRNA essential for ribosomal subunit association. RNA (NEW YORK, N.Y.) 2004; 10:600-4. [PMID: 15037769 PMCID: PMC1370550 DOI: 10.1261/rna.5220504] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2003] [Accepted: 01/09/2004] [Indexed: 05/20/2023]
Abstract
The ribosome is a two-subunit molecular machine, sporting a working cycle that involves coordinated movements of the subunits. Recent structural studies of the 70S ribosome describe a rather large number of intersubunit contacts, some of which are dynamic during translocation. We set out to determine which intersubunit contacts are functionally indispensable for the association of ribosome subunits by using a modification interference approach. Modification of the N-1 position of A715, A1912, or A1918 in Escherichia coli 50S subunits is strongly detrimental to 70S ribosome formation. This result points to 23S rRNA helices 34 and 69, and thus bridges B2a and B4, as essential for ensuring stability of the 70S ribosome.
Collapse
Affiliation(s)
- Ulo Maiväli
- Department of Molecular Biology, Tartu University, Tartu, Estonia
| | | |
Collapse
|
200
|
Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J 2004; 23:1008-19. [PMID: 14976550 DOI: 10.1038/sj.emboj.7600102] [Citation(s) in RCA: 318] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 01/08/2004] [Indexed: 11/09/2022] Open
Abstract
An 11.7-A-resolution cryo-EM map of the yeast 80S.eEF2 complex in the presence of the antibiotic sordarin was interpreted in molecular terms, revealing large conformational changes within eEF2 and the 80S ribosome, including a rearrangement of the functionally important ribosomal intersubunit bridges. Sordarin positions domain III of eEF2 so that it can interact with the sarcin-ricin loop of 25S rRNA and protein rpS23 (S12p). This particular conformation explains the inhibitory action of sordarin and suggests that eEF2 is stalled on the 80S ribosome in a conformation that has similarities with the GTPase activation state. A ratchet-like subunit rearrangement (RSR) occurs in the 80S.eEF2.sordarin complex that, in contrast to Escherichia coli 70S ribosomes, is also present in vacant 80S ribosomes. A model is suggested, according to which the RSR is part of a mechanism for moving the tRNAs during the translocation reaction.
Collapse
|