151
|
Huang J, Hsu JM, Laurent BC. The RSC nucleosome-remodeling complex is required for Cohesin's association with chromosome arms. Mol Cell 2004; 13:739-50. [PMID: 15023343 DOI: 10.1016/s1097-2765(04)00103-0] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Revised: 01/12/2004] [Accepted: 01/13/2004] [Indexed: 11/17/2022]
Abstract
The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.
Collapse
Affiliation(s)
- Jian Huang
- Program in Molecular and Cellular Biology, Department of Microbiology and Immunology, Morse Institute of Molecular Biology and Genetics, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
152
|
Scharfenberger M, Ortiz J, Grau N, Janke C, Schiebel E, Lechner J. Nsl1p is essential for the establishment of bipolarity and the localization of the Dam-Duo complex. EMBO J 2004; 22:6584-97. [PMID: 14657030 PMCID: PMC291831 DOI: 10.1093/emboj/cdg636] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We identified a physical complex consisting of Mtw1p, an established kinetochore protein, with Nnf1p, Nsl1p and Dsn1p and have demonstrated that Nnf1p, Nsl1p and Dsn1p localize to the Saccharomyces cerevisiae kinetochore. When challenged prior to metaphase, the temperature-sensitive mutants nsl1-16 and nsl1-42 as well as Nsl1p-depleted cells failed to establish a bipolar spindle-kinetochore interaction and executed monopolar segregation of sister chromatids. In contrast, an nsl1-16 defect could not be evoked after the establishment of bipolarity. The observed phenotype is characteristic of that of mutants with defects in the protein kinase Ipl1p or components of the Dam-Duo kinetochore complex. However nsl1 mutants did not exhibit a defect in microtubule-kinetochore untethering as the ipl1-321 mutant does. Instead, they exhibited a severe defect in the kinetochore localization of the Dam-Duo complex suggesting this to be the cause for the failure of nsl1 cells to establish bipolarity. Moreover the analysis of Nsl1p-depleted cells indicated that Nsl1p is required for the spindle checkpoint and kinetochore integrity.
Collapse
Affiliation(s)
- Maren Scharfenberger
- Biochemie-Zentrum Heidelberg Ruprecht-Karls Universität, Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
153
|
Abstract
Kinetochores are multiprotein complexes that assemble on centromeric DNA and mediate the attachment and movement of chromosomes along the microtubules (MTs) of the mitotic spindle. This review focuses on the simplest eukaryotic centromeres and kinetochores, those found in the budding yeast Saccharomyces cerevisiae. Research on kinetochore function and chromosome segregation is focused on four questions of general significance: what specifies the location of centromeres? What are the protein components of kinetochores, and how do they assemble a MT attachment site? How do MT attachments generate force? How do cells sense the state of attachment via the spindle assembly checkpoint?
Collapse
Affiliation(s)
- Andrew D McAinsh
- Department of Biology, and Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
154
|
Dewar H, Tanaka K, Nasmyth K, Tanaka TU. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 2004; 428:93-7. [PMID: 14961024 DOI: 10.1038/nature02328] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 01/12/2004] [Indexed: 11/09/2022]
Abstract
The movement of sister chromatids to opposite spindle poles during anaphase depends on the prior capture of sister kinetochores by microtubules with opposing orientations (amphitelic attachment or bi-orientation). In addition to proteins necessary for the kinetochore-microtubule attachment, bi-orientation requires the Ipl1 (Aurora B in animal cells) protein kinase and tethering of sister chromatids by cohesin. Syntelic attachments, in which sister kinetochores attach to microtubules with the same orientation, must be either 'avoided' or 'corrected'. Avoidance might be facilitated by the juxtaposition of sister kinetochores such that they face in opposite directions; kinetochore geometry is therefore deemed important. Error correction, by contrast, is thought to stem from the stabilization of kinetochore-spindle pole connections by tension in microtubules, kinetochores, or the surrounding chromatin arising from amphitelic but not syntelic attachment. The tension model predicts that any type of connection between two kinetochores suffices for efficient bi-orientation. Here we show that the two kinetochores of engineered, unreplicated dicentric chromosomes in Saccharomyces cerevisiae bi-orient efficiently, implying that sister kinetochore geometry is dispensable for bi-orientation. We also show that Ipl1 facilitates bi-orientation by promoting the turnover of kinetochore-spindle pole connections in a tension-dependent manner.
Collapse
Affiliation(s)
- Hilary Dewar
- School of Life Sciences, University of Dundee, Wellcome Trust Biocentre, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
155
|
Gillett ES, Espelin CW, Sorger PK. Spindle checkpoint proteins and chromosome-microtubule attachment in budding yeast. ACTA ACUST UNITED AC 2004; 164:535-46. [PMID: 14769859 PMCID: PMC2171994 DOI: 10.1083/jcb.200308100] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Accurate chromosome segregation depends on precise regulation of mitosis by the spindle checkpoint. This checkpoint monitors the status of kinetochore–microtubule attachment and delays the metaphase to anaphase transition until all kinetochores have formed stable bipolar connections to the mitotic spindle. Components of the spindle checkpoint include the mitotic arrest defective (MAD) genes MAD1–3, and the budding uninhibited by benzimidazole (BUB) genes BUB1 and BUB3. In animal cells, all known spindle checkpoint proteins are recruited to kinetochores during normal mitoses. In contrast, we show that whereas Saccharomyces cerevisiae Bub1p and Bub3p are bound to kinetochores early in mitosis as part of the normal cell cycle, Mad1p and Mad2p are kinetochore bound only in the presence of spindle damage or kinetochore lesions that interfere with chromosome–microtubule attachment. Moreover, although Mad1p and Mad2p perform essential mitotic functions during every division cycle in mammalian cells, they are required in budding yeast only when mitosis goes awry. We propose that differences in the behavior of spindle checkpoint proteins in animal cells and budding yeast result primarily from evolutionary divergence in spindle assembly pathways.
Collapse
Affiliation(s)
- Emily S Gillett
- Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Ave., 68-371 Cambridge, MA 02139, USA
| | | | | |
Collapse
|
156
|
Kagansky A, Freeman L, Lukyanov D, Strunnikov A. Histone tail-independent chromatin binding activity of recombinant cohesin holocomplex. J Biol Chem 2004; 279:3382-8. [PMID: 14613943 PMCID: PMC2680671 DOI: 10.1074/jbc.m306078200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cohesin, an SMC (structural maintenance of chromosomes) protein-containing complex, governs several important aspects of chromatin dynamics, including the essential chromosomal process of sister chromatid cohesion. The exact mechanism by which cohesin achieves the bridging of sister chromatids is not known. To elucidate this mechanism, we reconstituted a recombinant cohesin complex and investigated its binding to DNA fragments corresponding to natural chromosomal sites with high and low cohesin occupancy in vivo. Cohesin displayed uniform but nonspecific binding activity with all DNA fragments tested. Interestingly, DNA fragments with high occupancy by cohesin in vivo showed strong nucleosome positioning in vitro. We therefore utilized a defined model chromatin fragment (purified reconstituted dinucleosome) as a substrate to analyze cohesin interaction with chromatin. The four-subunit cohesin holocomplex showed a distinct chromatin binding activity in vitro, whereas the Smc1p-Smc3p dimer was unable to bind chromatin. Histone tails and ATP are dispensable for cohesin binding to chromatin in this reaction. A model for cohesin association with chromatin is proposed.
Collapse
Affiliation(s)
| | - Lita Freeman
- From the Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Alexander Strunnikov
- From the Laboratory of Gene Regulation and Development, NICHD, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
157
|
De Wulf P, McAinsh AD, Sorger PK. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 2003; 17:2902-21. [PMID: 14633972 PMCID: PMC289150 DOI: 10.1101/gad.1144403] [Citation(s) in RCA: 240] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 10/14/2003] [Indexed: 11/25/2022]
Abstract
Kinetochores are multiprotein complexes that assemble on centromeric DNA and attach chromosomes to spindle microtubules. Over the past six years, the number of proteins known to localize to the Saccharomyces cerevisiae kinetochore has increased from around 10 to over 60. However, relatively little is known about the protein-protein interactions that mediate kinetochore assembly or about the overall structure of microtubule-attachment sites. Here we used biophysical techniques, affinity purification, mass spectrometry, and in vivo assays to examine the state of association of 31 centromere-binding proteins, including six proteins newly identified as kinetochore subunits. We found that yeast kinetochores resemble transcriptional enhancers in being composed of at least 17 discrete subcomplexes that assemble on DNA to form a very large structure with a mass in excess of 5 MD. Critical to kinetochore assembly are proteins that bridge subunits in direct contact with DNA and subunits bound to microtubules. We show that two newly identified kinetochore complexes, COMA (Ctf19p-Okp1p-Mcm21p-Ame1p) and MIND (Mtw1p including Nnf1p-Nsl1p-Dsn1p) function as bridges. COMA, MIND, and the previously described Ndc80 complex constitute three independent and essential platforms onto which outer kinetochore proteins assemble. In addition, we propose that the three complexes have different functions with respect to force generation and MT attachment.
Collapse
Affiliation(s)
- Peter De Wulf
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
158
|
Stead K, Aguilar C, Hartman T, Drexel M, Meluh P, Guacci V. Pds5p regulates the maintenance of sister chromatid cohesion and is sumoylated to promote the dissolution of cohesion. J Cell Biol 2003; 163:729-41. [PMID: 14623866 PMCID: PMC2173684 DOI: 10.1083/jcb.200305080] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2003] [Accepted: 10/02/2003] [Indexed: 12/02/2022] Open
Abstract
Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.
Collapse
Affiliation(s)
- Kristen Stead
- Basic Science Division, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | | | | | | | |
Collapse
|
159
|
Nekrasov VS, Smith MA, Peak-Chew S, Kilmartin JV. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol Biol Cell 2003; 14:4931-46. [PMID: 14565975 PMCID: PMC284796 DOI: 10.1091/mbc.e03-06-0419] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have purified two new complexes from Saccharomyces cerevisiae, one containing the centromere component Mtw1p together with Nnf1p, Nsl1p, and Dsn1p, which we call the Mtw1p complex, and the other containing Spc105p and Ydr532p, which we call the Spc105p complex. Further purifications using Dsn1p tagged with protein A show, in addition to the other components of the Mtw1p complex, the two components of the Spc105p complex and the four components of the previously described Ndc80p complex, suggesting that all three complexes are closely associated. Fluorescence microscopy and immunoelectron microscopy show that Nnf1p, Nsl1p, Dsn1p, Spc105p, and Ydr532p all localize to the nuclear side of the spindle pole body and along short spindles. Chromatin immunoprecipitation assays show that all five proteins are associated with centromere DNA. Homologues of Nsl1p and Spc105p in Schizosaccharomyces pombe also localize to the centromere. Temperature-sensitive mutations of Nsl1p, Dsn1p, and Spc105p all cause defects in chromosome segregation. Synthetic-lethal interactions are found between temperature-sensitive mutations in proteins from all three complexes, in agreement with their close physical association. These results show an increasingly complex structure for the S. cerevisiae centromere and a probable conservation of structure between parts of the centromeres of S. cerevisiae and S. pombe.
Collapse
|
160
|
Espelin CW, Simons KT, Harrison SC, Sorger PK. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 2003; 14:4557-68. [PMID: 13679521 PMCID: PMC266772 DOI: 10.1091/mbc.e02-08-0533] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome segregation at mitosis depends critically on the accurate assembly of kinetochores and their stable attachment to microtubules. Analysis of Saccharomyces cerevisiae kinetochores has shown that they are complex structures containing >/=50 protein components. Many of these yeast proteins have orthologs in animal cells, suggesting that key aspects of kinetochore structure have been conserved through evolution, despite the remarkable differences between the 125-base pair centromeres of budding yeast and the Mb centromeres of animal cells. We describe here an analysis of S. cerevisiae Ndc10p, one of the four protein components of the CBF3 complex. CBF3 binds to the CDEIII element of centromeric DNA and initiates kinetochore assembly. Whereas CDEIII binding by Ndc10p requires the other components of CBF3, Ndc10p can bind on its own to CDEII, a region of centromeric DNA with no known binding partners. Ndc10p-CDEII binding involves a dispersed set of sequence-selective and -nonselective contacts over approximately 80 base pairs of DNA, suggesting formation of a multimeric structure. CDEII-like sites, active in Ndc10p binding, are also present along chromosome arms. We propose that a polymeric Ndc10p complex formed on CDEII and CDEIII DNA is the foundation for recruiting microtubule attachment proteins to kinetochores. A similar type of polymeric structure on chromosome arms may mediate other chromosome-spindle interactions.
Collapse
Affiliation(s)
- Christopher W Espelin
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA
| | | | | | | |
Collapse
|
161
|
Thomann D, Dorn J, Sorger PK, Danuser G. Automatic fluorescent tag localization II: Improvement in super-resolution by relative tracking. J Microsc 2003; 211:230-48. [PMID: 12950472 DOI: 10.1046/j.1365-2818.2003.01223.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present an algorithm for the three-dimensional (3D) tracking of multiple fluorescent subresolution tags with super-resolution in images of living cells. Recently, we described an algorithm for the automatic detection of such tags in single frames and demonstrated its potential in a biological system. The algorithm presented here adds to the tag detector a module for relative tracking of the signals between frames. As with tag detection, the main problem in relative tracking arises when signals of multiple tags interfere. We propose a novel multitemplate matching framework that exploits knowledge of the microscope point spread function to separate the intensity contribution of each tag in image regions with signal interferences. We use this intensity splitting to reconstruct a template for each tag in the source frame and a patch in the target frame, which are both free of intensity contributions from other tag signals. Tag movements between frames are then tracked by seeking, for each template-patch pair, the displacement vector providing the best signal match in terms of the sum of squared intensity differences. Because template and patch generation of tags with overlapping signals are interdependent, the matching is carried out simultaneously for all tags, and in an iterative manner. We have examined the performance of our approach using synthetic 3D data and observed a significant increase in resolution and robustness as compared with our previously described detector. It is now possible to localize and track tags separated by a distance three times smaller than the Rayleigh limit with a relative positional accuracy of better than 50 nm. We have applied the new tracking system to extract metaphase trajectories of fluorescently tagged chromosomes relative to the spindle poles in budding yeast.
Collapse
Affiliation(s)
- D Thomann
- Bio Micro Metrics Group, Laboratory for Biomechanics, Swiss Federal Institute of Technology, Wagistrasse 4, CH - 8952 Schlieren, Switzerland
| | | | | | | |
Collapse
|
162
|
Maddox P, Straight A, Coughlin P, Mitchison TJ, Salmon ED. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J Cell Biol 2003; 162:377-82. [PMID: 12900391 PMCID: PMC2172681 DOI: 10.1083/jcb.200301088] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microtubule plus ends dynamically attach to kinetochores on mitotic chromosomes. We directly imaged this dynamic interface using high resolution fluorescent speckle microscopy and direct labeling of kinetochores in Xenopus extract spindles. During metaphase, kinetochores were stationary and under tension while plus end polymerization and poleward microtubule flux (flux) occurred at velocities varying from 1.5-2.5 micro m/min. Because kinetochore microtubules polymerize at metaphase kinetochores, the primary source of kinetochore tension must be the spindle forces that produce flux and not a kinetochore-based mechanism. We infer that the kinetochore resists translocation of kinetochore microtubules through their attachment sites, and that the polymerization state of the kinetochore acts a "slip-clutch" mechanism that prevents detachment at high tension. At anaphase onset, kinetochores switched to depolymerization of microtubule plus ends, resulting in chromosome-to-pole rates transiently greater than flux. Kinetochores switched from persistent depolymerization to persistent polymerization and back again during anaphase, bistability exhibited by kinetochores in vertebrate tissue cells. These results provide the most complete description of spindle microtubule poleward flux to date, with important implications for the microtubule-kinetochore interface and for how flux regulates kinetochore function.
Collapse
Affiliation(s)
- Paul Maddox
- Cell Division Group, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | | | | | | |
Collapse
|
163
|
Pearson CG, Maddox PS, Zarzar TR, Salmon ED, Bloom K. Yeast kinetochores do not stabilize Stu2p-dependent spindle microtubule dynamics. Mol Biol Cell 2003; 14:4181-95. [PMID: 14517328 PMCID: PMC207010 DOI: 10.1091/mbc.e03-03-0180] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The interaction of kinetochores with dynamic microtubules during mitosis is essential for proper centromere motility, congression to the metaphase plate, and subsequent anaphase chromosome segregation. Budding yeast has been critical in the discovery of proteins necessary for this interaction. However, the molecular mechanism for microtubule-kinetochore interactions remains poorly understood. Using live cell imaging and mutations affecting microtubule binding proteins and kinetochore function, we identify a regulatory mechanism for spindle microtubule dynamics involving Stu2p and the core kinetochore component, Ndc10p. Depleting cells of the microtubule binding protein Stu2p reduces kinetochore microtubule dynamics. Centromeres remain under tension but lack motility. Thus, normal microtubule dynamics are not required to maintain tension at the centromere. Loss of the kinetochore (ndc10-1, ndc10-2, and ctf13-30) does not drastically affect spindle microtubule turnover, indicating that Stu2p, not the kinetochore, is the foremost governor of microtubule dynamics. Disruption of kinetochore function with ndc10-1 does not affect the decrease in microtubule turnover in stu2 mutants, suggesting that the kinetochore is not required for microtubule stabilization. Remarkably, a partial kinetochore defect (ndc10-2) suppresses the decreased spindle microtubule turnover in the absence of Stu2p. These results indicate that Stu2p and Ndc10p differentially function in controlling kinetochore microtubule dynamics necessary for centromere movements.
Collapse
Affiliation(s)
- Chad G Pearson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | | | |
Collapse
|
164
|
Abstract
Two related protein complexes, cohesin and condensin, are essential for separating identical copies of the genome into daughter cells during cell division. Cohesin glues replicated sister chromatids together until they split at anaphase, whereas condensin reorganizes chromosomes into their highly compact mitotic structure. Unexpectedly, mutations in the subunits of these complexes have been uncovered in genetic screens that target completely different processes. Exciting new evidence is emerging that cohesin and condensin influence crucial processes during interphase, and unforeseen aspects of mitosis. Each complex can perform several roles, and individual subunits can associate with different sets of proteins to achieve diverse functions, including the regulation of gene expression, DNA repair, cell-cycle checkpoints and centromere organization.
Collapse
Affiliation(s)
- Kirsten A Hagstrom
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3204, USA.
| | | |
Collapse
|
165
|
Dobles M, Sorger PK. Mitotic checkpoints, genetic instability, and cancer. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:361-8. [PMID: 12760051 DOI: 10.1101/sqb.2000.65.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- M Dobles
- Massachusetts Institute of Technology, Department of Biology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
166
|
Loidl J. Chromosomes of the budding yeast Saccharomyces cerevisiae. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:141-96. [PMID: 12503849 DOI: 10.1016/s0074-7696(02)22014-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mitotic chromosomes of the baker's yeast, Saccharomyces cerevisiae, cannot be visualized by standard cytological methods. Only the study of meiotic bivalents and the synaptonemal complex and the visualization of chromosome-sized DNA molecules on pulsed-field gels have provided some insight into chromosome structure and behavior. More recently, advanced techniques such as in situ hybridization, the illumination of chromosomal loci by GFP-tagged DNA-binding proteins, and immunostaining of chromosomal proteins have promoted our knowledge about yeast chromosomes. These novel cytological approaches in combination with the yeast's advanced biochemistry and genetics have produced a great wealth of information on the interplay between molecular and cytological processes and have strengthened the role of yeast as a leading cell biological model organism. Recent cytological studies have revealed much about the chromosomal organization in interphase nuclei and have contributed significantly to our current understanding of chromosome condensation, sister chromatid cohesion, and centromere orientation in mitosis. Moreover, important details about the biochemistry and ultrastructure of meiotic pairing and recombination have been revealed by combined cytological and molecular approaches. This article covers several aspects of yeast chromosome structure, including their organization within interphase nuclei and their behavior during mitosis and meiosis.
Collapse
Affiliation(s)
- Josef Loidl
- Institute of Botany, University of Vienna, A-1030 Vienna, Austria
| |
Collapse
|
167
|
Sprague BL, Pearson CG, Maddox PS, Bloom KS, Salmon ED, Odde DJ. Mechanisms of microtubule-based kinetochore positioning in the yeast metaphase spindle. Biophys J 2003; 84:3529-46. [PMID: 12770865 PMCID: PMC1302941 DOI: 10.1016/s0006-3495(03)75087-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
It has been hypothesized that spatial gradients in kMT dynamic instability facilitate mitotic spindle formation and chromosome movement. To test this hypothesis requires the analysis of kMT dynamics, which have not been resolved at the single kMT level in living cells. The budding yeast spindle offers an attractive system in which to study kMT dynamics because, in contrast to animal cells, there is only one kMT per kinetochore. To visualize metaphase kMT plus-end dynamics in yeast, a strain containing a green fluorescent protein fusion to the kinetochore protein, Cse4, was imaged by fluorescence microscopy. Although individual kinetochores were not resolvable, we found that models of kMT dynamics could be evaluated by simulating the stochastic kMT dynamics and then simulating the fluorescence imaging of kMT plus-end-associated kinetochores. Statistical comparison of model-predicted images to experimentally observed images demonstrated that a pure dynamic instability model for kMT dynamics in the yeast metaphase spindle was unacceptable. However, when a temporally stable spatial gradient in the catastrophe or rescue frequency was added to the model, there was reasonable agreement between the model and the experiment. These results provide the first evidence of temporally stable spatial gradients of kMT catastrophe and/or rescue frequency in living cells.
Collapse
Affiliation(s)
- Brian L Sprague
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
168
|
Abstract
Spindle microtubules interact with mitotic chromosomes, binding to their kinetochores to generate forces that are important for accurate chromosome segregation. Motor enzymes localized both at kinetochores and spindle poles help to form the biologically significant attachments between spindle fibers and their cargo, but microtubule-associated proteins without motor activity contribute to these junctions in important ways. This review examines the molecules necessary for chromosome-microtubule interaction in a range of well-studied organisms, using biological diversity to identify the factors that are essential for organized chromosome movement. We conclude that microtubule dynamics and the proteins that control them are likely to be more important for mitosis than the current enthusiasm for motor enzymes would suggest.
Collapse
Affiliation(s)
- J Richard McIntosh
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder 80309-0347, USA.
| | | | | |
Collapse
|
169
|
Abstract
Accurate chromosome segregation is essential to ensure genomic stability because the aneuploidy that results from segregation errors leads to birth defects and contributes to the development of cancer. Chromosome segregation is directed by the kinetochore, the chromosomal site of attachment to dynamic polymers called microtubules (MTs). Although the fidelity of chromosome segregation depends on precise interactions between kinetochores and MTs, it is still unclear how this interaction is mediated and regulated. Here we discuss current progress in determining how kinetochores assemble and attach to MTs during mitosis as well as how they correct errors.
Collapse
Affiliation(s)
- Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave. North, A2-168, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
170
|
Hsu JM, Huang J, Meluh PB, Laurent BC. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 2003; 23:3202-15. [PMID: 12697820 PMCID: PMC153182 DOI: 10.1128/mcb.23.9.3202-3215.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.
Collapse
Affiliation(s)
- Jing-Mei Hsu
- Department of Microbiology and Immunology, Morse Institute of Molecular Biology and Genetics, and Program in Molecular and Cellular Biology, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
171
|
Abstract
Meiosis is a specialized cell division in which two chromosome segregation phases follow a single DNA replication phase. The budding yeast Polo-like kinase Cdc5 was found to be instrumental in establishing the meiosis I chromosome segregation program. Cdc5 was required to phosphorylate and remove meiotic cohesin from chromosomes. Furthermore, in the absence of CDC5 kinetochores were bioriented during meiosis I, and Mam1, a protein essential for coorientation, failed to associate with kinetochores. Thus, sister-kinetochore coorientation and chromosome segregation during meiosis I are coupled through their dependence on CDC5.
Collapse
Affiliation(s)
- Brian H Lee
- Center for Cancer Research, Howard Hughes Medical Institute, Massachusetts Institute of Technology, E17-233, 40 Ames Street, Cambridge, MA 02139, USA
| | | |
Collapse
|
172
|
Müller-Reichert T, Sassoon I, O'Toole E, Romao M, Ashford AJ, Hyman AA, Antony C. Analysis of the distribution of the kinetochore protein Ndc10p in Saccharomyces cerevisiae using 3-D modeling of mitotic spindles. Chromosoma 2003; 111:417-28. [PMID: 12707779 DOI: 10.1007/s00412-002-0220-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 10/21/2002] [Accepted: 10/30/2002] [Indexed: 10/22/2022]
Abstract
Ndc10p is one of the DNA-binding constituents of the kinetochore in Saccharomyces cerevisiae but light microscopy analysis suggests that Ndc10p is not limited to kinetochore regions. We examined the localization of Ndc10p using immunoelectron microscopy and showed that Ndc10p is associated with spindle microtubules from S-phase through anaphase. By serial section reconstruction of mitotic spindles combined with immunogold detection, we showed that Ndc10p interacts with microtubules laterally as well as terminally. About 50% of the gold label in serial section reconstructions of short mitotic spindles was associated with the walls of spindle microtubules. Interaction of kinetochore components with microtubule walls was also shown for kinetochore protein Ndc80p. Our data suggest that at least a subset of kinetochore-associated protein is dispersed throughout the mitotic spindle.
Collapse
Affiliation(s)
- Thomas Müller-Reichert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | | | | | | | | | | | | |
Collapse
|
173
|
Rabitsch KP, Petronczki M, Javerzat JP, Genier S, Chwalla B, Schleiffer A, Tanaka TU, Nasmyth K. Kinetochore recruitment of two nucleolar proteins is required for homolog segregation in meiosis I. Dev Cell 2003; 4:535-48. [PMID: 12689592 DOI: 10.1016/s1534-5807(03)00086-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Halving of the chromosome number during meiosis I depends on the segregation of maternal and paternal centromeres. This process relies on the attachment of sister centromeres to microtubules emanating from the same spindle pole. We describe here the identification of a protein complex, Csm1/Lrs4, that is essential for monoorientation of sister kinetochores in Saccharomyces cerevisiae. Both proteins are present in vegetative cells, where they reside in the nucleolus. Only shortly before meiosis I do they leave the nucleolus and form a "monopolin" complex with the meiosis-specific Mam1 protein, which binds to kinetochores. Surprisingly, Csm1's homolog in Schizosaccharomyces pombe, Pcs1, is essential for accurate chromosome segregation during mitosis and meiosis II. Csm1 and Pcs1 might clamp together microtubule binding sites on the same (Pcs1) or sister (Csm1) kinetochores.
Collapse
Affiliation(s)
- Kirsten P Rabitsch
- Research Institute of Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
The centromere is the locus responsible for the segregation of chromosomes during mitosis and meiosis. The number of newly characterised centromere-associated proteins continues to increase. The kinetochore complex assembles at this site and in many organisms is visible as the primary constriction. In several systems the location of the site of kinetochore assembly is known to vary and the site is not specified by a strict cis-acting primary sequence. It is proposed that tension between bioriented sister centromeres may act to imprint the site.
Collapse
Affiliation(s)
- Barbara G Mellone
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Institute of Cell and Molecular Biology, Edinburgh, EH9 3JR, UK
| | | |
Collapse
|
175
|
Eijpe M, Offenberg H, Jessberger R, Revenkova E, Heyting C. Meiotic cohesin REC8 marks the axial elements of rat synaptonemal complexes before cohesins SMC1beta and SMC3. J Cell Biol 2003; 160:657-70. [PMID: 12615909 PMCID: PMC2173354 DOI: 10.1083/jcb.200212080] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Accepted: 01/21/2003] [Indexed: 11/25/2022] Open
Abstract
In meiotic prophase, the sister chromatids of each chromosome develop a common axial element (AE) that is integrated into the synaptonemal complex (SC). We analyzed the incorporation of sister chromatid cohesion proteins (cohesins) and other AE components into AEs. Meiotic cohesin REC8 appeared shortly before premeiotic S phase in the nucleus and formed AE-like structures (REC8-AEs) from premeiotic S phase on. Subsequently, meiotic cohesin SMC1beta, cohesin SMC3, and AE proteins SCP2 and SCP3 formed dots along REC8-AEs, which extended and fused until they lined REC8-AEs along their length. In metaphase I, SMC1beta, SMC3, SCP2, and SCP3 disappeared from the chromosome arms and accumulated around the centromeres, where they stayed until anaphase II. In striking contrast, REC8 persisted along the chromosome arms until anaphase I and near the centromeres until anaphase II. We propose that REC8 provides a basis for AE formation and that the first steps in AE assembly do not require SMC1beta, SMC3, SCP2, and SCP3. Furthermore, SMC1beta, SMC3, SCP2, and SCP3 cannot provide arm cohesion during metaphase I. We propose that REC8 then provides cohesion. RAD51 and/or DMC1 coimmunoprecipitates with REC8, suggesting that REC8 may also provide a basis for assembly of recombination complexes.
Collapse
Affiliation(s)
- Maureen Eijpe
- Molecular Genetics Group, Botanical Center, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, Netherlands
| | | | | | | | | |
Collapse
|
176
|
Cleveland DW, Mao Y, Sullivan KF. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 2003; 112:407-21. [PMID: 12600307 DOI: 10.1016/s0092-8674(03)00115-6] [Citation(s) in RCA: 775] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The centromere is a chromosomal locus that ensures delivery of one copy of each chromosome to each daughter at cell division. Efforts to understand the nature and specification of the centromere have demonstrated that this central element for ensuring inheritance is itself epigenetically determined. The kinetochore, the protein complex assembled at each centromere, serves as the attachment site for spindle microtubules and the site at which motors generate forces to power chromosome movement. Unattached kinetochores are also the signal generators for the mitotic checkpoint, which arrests mitosis until all kinetochores have correctly attached to spindle microtubules, thereby representing the major cell cycle control mechanism protecting against loss of a chromosome (aneuploidy).
Collapse
Affiliation(s)
- Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | |
Collapse
|
177
|
Buvelot S, Tatsutani SY, Vermaak D, Biggins S. The budding yeast Ipl1/Aurora protein kinase regulates mitotic spindle disassembly. J Cell Biol 2003; 160:329-39. [PMID: 12566427 PMCID: PMC2172676 DOI: 10.1083/jcb.200209018] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ipl1p is the budding yeast member of the Aurora family of protein kinases, critical regulators of genomic stability that are required for chromosome segregation, the spindle checkpoint, and cytokinesis. Using time-lapse microscopy, we found that Ipl1p also has a function in mitotic spindle disassembly that is separable from its previously identified roles. Ipl1-GFP localizes to kinetochores from G1 to metaphase, transfers to the spindle after metaphase, and accumulates at the spindle midzone late in anaphase. Ipl1p kinase activity increases at anaphase, and ipl1 mutants can stabilize fragile spindles. As the spindle disassembles, Ipl1p follows the plus ends of the depolymerizing spindle microtubules. Many Ipl1p substrates colocalize with Ipl1p to the spindle midzone, identifying additional proteins that may regulate spindle disassembly. We propose that Ipl1p regulates both the kinetochore and interpolar microtubule plus ends to regulate its various mitotic functions.
Collapse
|
178
|
Abstract
New evidence that cortical actin patches and the endocytic machinery share components supports the idea that actin patches are in fact transient membrane coats at the initial stage of endocytosis. Recent studies of actin cables have identified formins as the core of a novel actin-filament-assembling machine. Meanwhile, microtubule-binding proteins have been found in the kinetochore, and factors affecting microtubule dynamic instability have been identified.
Collapse
Affiliation(s)
- Daniel Schott
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
179
|
Gentry MS, Hallberg RL. Localization of Saccharomyces cerevisiae protein phosphatase 2A subunits throughout mitotic cell cycle. Mol Biol Cell 2002; 13:3477-92. [PMID: 12388751 PMCID: PMC129960 DOI: 10.1091/mbc.02-05-0065] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2002] [Accepted: 07/10/2002] [Indexed: 11/11/2022] Open
Abstract
Protein phosphatase 2A (PP2A) regulates a broad spectrum of cellular processes. This enzyme is a collection of varied heterotrimeric complexes, each composed of a catalytic (C) and regulatory (B) subunit bound together by a structural (A) subunit. To understand the cell cycle dynamics of this enzyme population, we carried out quantitative and qualitative analyses of the PP2A subunits of Saccharomyces cerevisiae. We found the following: the level of each subunit remained constant throughout the cell cycle; there is at least 10 times more of one of the regulatory subunits (Rts1p) than the other (Cdc55p); Tpd3p, the structural subunit, is limiting for both catalytic and regulatory subunit binding. Using green fluorescent protein-tagged forms of each subunit, we monitored the sites of significant accumulation of each protein throughout the cell cycle. The two regulatory subunits displayed distinctly different dynamic localization patterns that overlap with the A and C subunits at the bud tip, kinetochore, bud neck, and nucleus. Using strains null for single subunit genes, we confirmed the hypothesis that regulatory subunits determine sites of PP2A accumulation. Although Rts1p and Tpd3p required heterotrimer formation to achieve normal localization, Cdc55p achieved its normal localization in the absence of either an A or C subunit.
Collapse
Affiliation(s)
- Matthew S Gentry
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|
180
|
Sanyal K, Carbon J. The CENP-A homolog CaCse4p in the pathogenic yeast Candida albicans is a centromere protein essential for chromosome transmission. Proc Natl Acad Sci U S A 2002; 99:12969-74. [PMID: 12271118 PMCID: PMC130570 DOI: 10.1073/pnas.162488299] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gene encoding CaCse4p, a homolog of the evolutionarily conserved histone H3-like kinetochore protein CENP-A, has been cloned from the human pathogenic diploid yeast Candida albicans. To study the phenotype of C. albicans diploid cells depleted of CaCse4p, we deleted one copy of CaCSE4 and brought the other copy under control of a regulated PCK1 promoter (repressed by glucose and induced by succinate). Inability of this strain to grow on glucose medium indicates that CaCse4p is essential for cell viability. Shutdown of CaCSE4 expression resulted in a sharp decline of CaCse4p levels with concomitant loss of cell viability. Examination of these CaCse4p-depleted cells revealed a mitosis-specific arrest phenotype with accumulation of large-budded cells containing single G(2) nuclei at or near the bud neck along with short mitotic spindles. Subcellular localization of CaCse4p by anti-CaCse4p antibodies in both budding and filamentous C. albicans cells revealed an intense dot-like signal always colocalized with 4',6-diamidino-2-phenylindole-stained nuclei. Unlike higher eukaryotes but similar to the budding yeast Saccharomyces cerevisiae, centromere separation in the budding yeast form of C. albicans occurs before anaphase, at a very early stage of the cell cycle. In the filamentous mode of cell division, however, centromere separation appears to occur in early anaphase. Coimmunostaining with anti-CaCse4p and antitubulin antibodies shows that CaCse4p localizes near spindle pole bodies, analogous to the localization pattern observed for kinetochore proteins in S. cerevisiae. CaCse4p promises to be a highly useful reagent for the study of centromere/kinetochore structure in C. albicans.
Collapse
Affiliation(s)
- Kaustuv Sanyal
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
181
|
Abstract
Faithful transmission of chromosomes during mitosis is ensured by the spindle assembly checkpoint. This molecular safeguard examines whether prerequisites for chromosome segregation have been satisfied and thereby determines whether to execute or to delay chromosome segregation. Only when all the chromosomes are attached by kinetochore microtubules from two opposite spindle poles and proper tension is placed on the paired kinetochores does anaphase take place, allowing the physical splitting of sister chromatids. Recent studies have provided novel insights into the molecular mechanisms through which the spindle assembly checkpoint is regulated by both the attachment of chromosomes to kinetochore microtubules and the tension exerted on kinetochores.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
182
|
Vazquez J, Belmont AS, Sedat JW. The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol 2002; 12:1473-83. [PMID: 12225662 DOI: 10.1016/s0960-9822(02)01090-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Meiotic pairing is essential for the proper orientation of chromosomes at the metaphase plate and their subsequent disjunction during anaphase I. In male Drosophila melanogaster, meiosis occurs in the absence of recombination or a recognizable synaptonemal complex (SC). Due to limitations in available cytological techniques, the early stages of homologous chromosome pairing in male Drosophila have not been observed, and the mechanisms involved are poorly understood. RESULTS Chromosome tagging with GFP-Lac repressor protein allowed us to track, for the first time, the behavior of meiotic chromosomes at high resolution, live, at all stages of male Drosophila meiosis. Homologous chromosomes pair throughout the euchromatic regions in spermatogonia and during the early phases of spermatocyte development. Extensive separation of homologs and sister chromatids along the chromosome arms occurs in mid-G2, several hours before the first meiotic division, and before the G2/M transition. Centromeres, on the other hand, show complex association patterns, with specific homolog pairing taking place in mid-G2. These changes in chromosome pairing parallel changes in large-scale chromosome organization. CONCLUSIONS Our results suggest that widespread interactions along the euchromatin are required for the initiation, but not the maintenance, of meiotic pairing of autosomes in male Drosophila. We propose that heterochromatic associations, or chromatid entanglement, may be responsible for the maintenance of homolog association during late G2. Our data also suggest that the formation of chromosome territories in the spermatocyte nucleus may play an active role in ensuring the specificity of meiotic pairing in late prophase by disrupting interactions between nonhomologous chromosomes.
Collapse
Affiliation(s)
- Julio Vazquez
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | |
Collapse
|
183
|
Affiliation(s)
- Daniel R Rines
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | |
Collapse
|
184
|
Abstract
During cell division, each daughter cell inherits one copy of every chromosome. Accurate transmission of chromosomes requires that the sister DNA molecules created during DNA replication are disentangled and then pulled to opposite poles of the cell before division. Defects in chromosome segregation produce cells that are aneuploid (containing an abnormal number of chromosomes)-a situation that can have dire consequences. Aneuploidy is a leading cause of spontaneous miscarriages in humans and is also a hallmark of many human cancer cells. Recent work with yeast, Xenopus, and other model systems has provided new information about the proteins that control chromosome segregation during cell division and how the activities of these proteins are coordinated with the cell cycle.
Collapse
Affiliation(s)
- Kim Nasmyth
- IMP, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
| |
Collapse
|
185
|
Joglekar AP, Hunt AJ. A simple, mechanistic model for directional instability during mitotic chromosome movements. Biophys J 2002; 83:42-58. [PMID: 12080099 PMCID: PMC1302126 DOI: 10.1016/s0006-3495(02)75148-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule "tracks" as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by "directional instability" (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement). To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
186
|
Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ. The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell 2002; 9:1169-82. [PMID: 12086615 DOI: 10.1016/s1097-2765(02)00543-9] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In S. cerevisiae, posttranslational modification by the ubiquitin-like Smt3/SUMO-1 protein is essential for survival, but functions and cellular targets for this modification are largely unknown. We find that one function associated with the Smt3/SUMO-1 isopeptidase Smt4 is to control chromosome cohesion at centromeric regions and that a key Smt3/SUMO-1 substrate underlying this function is Top2, DNA Topoisomerase II. Top2 modification by Smt3/SUMO-1 is misregulated in smt4 strains, and top2 mutants resistant to Smt3/SUMO-1 modification suppress the smt4 cohesion defect. top2 mutants display aberrant chromatid stretching at the centromere in response to mitotic spindle tension and altered chromatid reassociation following microtubule depolymerization. These results suggest Top2 modification by Smt3/SUMO-1 regulates a component of chromatin structure or topology required for centromeric cohesion.
Collapse
Affiliation(s)
- Jeff Bachant
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
187
|
Abstract
For the proper segregation of sister chromatids before cell division, each sister kinetochore must attach to microtubules that extend to opposite spindle poles. This process is called bipolar microtubule attachment or chromosome bi-orientation. The mechanism for chromosome bi-orientation lies at the heart of chromosome segregation, but is still poorly understood. Recent studies suggest that cells can promote bi-orientation by re-orienting kinetochore-spindle pole connections.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- School of Life Sciences, University of Dundee, MSI/WTB complex, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
188
|
Meluh PB, Strunnikov AV. Beyond the ABCs of CKC and SCC. Do centromeres orchestrate sister chromatid cohesion or vice versa? EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2300-14. [PMID: 11985612 DOI: 10.1046/j.1432-1033.2002.02886.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g. CENP-A). Centromere-proximal regions usually correspond to sites of avid and persistent sister chromatid cohesion mediated by the conserved cohesin complex. In budding yeast, there is a substantial body of evidence indicating centromeres direct formation and/or stabilization of centromere-proximal cohesion. In other organisms, the dependency of cohesion on centromere function is not as clear. Indeed, it appears that pericentromeric heterochromatin recruits cohesion proteins independent of centromere function. Nonetheless, aspects of centromere function are impaired in the absence of sister chromatid cohesion, suggesting the two are interdependent. Here we review the nature of centromeric chromatin, the dynamics and regulation of sister chromatid cohesion, and the relationship between the two.
Collapse
Affiliation(s)
- Pamela B Meluh
- Memorial Sloan-Kettering Cancer Center, Laboratory of Mechanism and Regulation of Mitosis, New York, NY 10021, USA.
| | | |
Collapse
|
189
|
Bloom K. Yeast weighs in on the elusive spindle matrix: New filaments in the nucleus. Proc Natl Acad Sci U S A 2002; 99:4757-9. [PMID: 11959926 PMCID: PMC122661 DOI: 10.1073/pnas.092136999] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Kerry Bloom
- Department of Biology, 623 Fordham Hall, CB#3280, University of North Carolina, Chapel Hill, NC 27599-3280, USA.
| |
Collapse
|
190
|
Cheeseman IM, Drubin DG, Barnes G. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 2002; 157:199-203. [PMID: 11956223 PMCID: PMC2199245 DOI: 10.1083/jcb.200201052] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Although the budding yeast centromere is extremely short (125 bp) compared to those of other eukaryotes, the kinetochore that assembles on this DNA displays a rich molecular complexity. Here, we describe recent advances in our understanding of kinetochore function in budding yeast and present a model describing the attachment that is formed between spindle microtubules and centromeric DNA. This analysis may provide general principles for kinetochore function and regulation.
Collapse
Affiliation(s)
- Iain M Cheeseman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, USA
| | | | | |
Collapse
|
191
|
Abstract
Kinetochore components have catalytic as well as structural activities. New evidence illustrates how these proteins integrate spindle morphogenesis with regulation of the timing and accuracy of chromosome segregation.
Collapse
Affiliation(s)
- Soni L Shimoda
- Department of Biology and Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
192
|
Euskirchen GM. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:229-40. [PMID: 12455957 PMCID: PMC118027 DOI: 10.1128/ec.1.2.229-240.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, antibodies were raised against a nuclear envelope-enriched fraction of yeast, and the essential gene NNF1 was cloned by reverse genetics. Here it is shown that the conditional nnf1-17 mutant has decreased stability of a minichromosome in addition to mitotic spindle defects. I have identified the novel essential genes DSN1, DSN3, and NSL1 through genetic interactions with nnf1-17. Dsn3p was found to be equivalent to the kinetochore protein Mtw1p. By indirect immunofluorescence, all four proteins, Nnf1p, Mtw1p, Dsn1p, and Nsl1p, colocalize and are found in the region of the spindle poles. Based on the colocalization of these four proteins, the minichromosome instability and the spindle defects seen in nnf1 mutants, I propose that Nnf1p is part of a new group of proteins necessary for chromosome segregation.
Collapse
Affiliation(s)
- Ghia M Euskirchen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
193
|
Tanaka TU, Rachidi N, Janke C, Pereira G, Galova M, Schiebel E, Stark MJR, Nasmyth K. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 2002; 108:317-29. [PMID: 11853667 DOI: 10.1016/s0092-8674(02)00633-5] [Citation(s) in RCA: 561] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
How sister kinetochores attach to microtubules from opposite spindle poles during mitosis (bi-orientation) remains poorly understood. In yeast, the ortholog of the Aurora B-INCENP protein kinase complex (Ipl1-Sli15) may have a role in this crucial process, because it is necessary to prevent attachment of sister kinetochores to microtubules from the same spindle pole. We investigated IPL1 function in cells that cannot replicate their chromosomes but nevertheless duplicate their spindle pole bodies (SPBs). Kinetochores detach from old SPBs and reattach to old and new SPBs with equal frequency in IPL1+ cells, but remain attached to old SPBs in ipl1 mutants. This raises the possibility that Ipl1-Sli15 facilitates bi-orientation by promoting turnover of kinetochore-SPB connections until traction of sister kinetochores toward opposite spindle poles creates tension in the surrounding chromatin.
Collapse
Affiliation(s)
- Tomoyuki U Tanaka
- School of Life Sciences, University of Dundee, MSI/WTB complex, DD1 5EH, Dundee, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
194
|
Nasmyth K. Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 2002; 35:673-745. [PMID: 11700297 DOI: 10.1146/annurev.genet.35.102401.091334] [Citation(s) in RCA: 570] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The separation of sister chromatids at the metaphase to anaphase transition is one of the most dramatic of all cellular events and is a crucial aspect of all sexual and asexual reproduction. The molecular basis for this process has until recently remained obscure. New research has identified proteins that hold sisters together while they are aligned on the metaphase plate. It has also shed insight into the mechanisms that dissolve sister chromatid cohesion during both mitosis and meiosis. These findings promise to provide insights into defects in chromosome segregation that occur in cancer cells and into the pathological pathways by which aneuploidy arises during meiosis.
Collapse
Affiliation(s)
- K Nasmyth
- Institute of Molecular Pathology, Dr. Bohr-Gasse 7, Vienna, A-1030 Austria.
| |
Collapse
|
195
|
Li Y, Bachant J, Alcasabas AA, Wang Y, Qin J, Elledge SJ. The mitotic spindle is required for loading of the DASH complex onto the kinetochore. Genes Dev 2002; 16:183-97. [PMID: 11799062 PMCID: PMC155319 DOI: 10.1101/gad.959402] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A role for the mitotic spindle in the maturation of the kinetochore has not been defined previously. Here we describe the isolation of a novel and conserved essential gene, ASK1, from Saccharomyces cerevisiae involved in this process. ask1 mutants display either G(2)/M arrest or segregation of DNA masses without the separation of sister chromatids, resulting in massive nondisjunction and broken spindles. Ask1 localizes along mitotic spindles and to kinetochores, and cross-links to centromeric DNA. Microtubules are required for Ask1 binding to kinetochores, and are partially required to maintain its association. We found Ask1 is part of a multisubunit complex, DASH, that contains approximately 10 components, including several proteins essential for mitosis including Dam1, Duo1, Spc34, Spc19, and Hsk1. The Ipl1 kinase controls the phosphorylation of Dam1 in the DASH complex and may regulate its function. We propose that DASH is a microtubule-binding complex that is transferred to the kinetochore prior to mitosis, thereby defining a new step in kinetochore maturation.
Collapse
Affiliation(s)
- Yumei Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
196
|
Janke C, Ortíz J, Tanaka TU, Lechner J, Schiebel E. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. EMBO J 2002; 21:181-93. [PMID: 11782438 PMCID: PMC125813 DOI: 10.1093/emboj/21.1.181] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We show here that Ask1p, Dad2p, Spc19p and Spc34p are subunits of the budding yeast Duo1p-Dam1p- Dad1p complex, which associate with kinetochores and localize along metaphase and anaphase spindles. Analysis of spc34-3 cells revealed three novel functions of the Duo1-Dam1p-Dad1p subunit Spc34p. First, SPC34 is required to establish biorientation of sister kinetochores. Secondly, SPC34 is essential to maintain biorientation. Thirdly, SPC34 is necessary to maintain an anaphase spindle independently of chromosome segregation. Moreover, we show that in spc34-3 cells, sister centromeres preferentially associate with the pre-existing, old spindle pole body (SPB). A similar preferential attachment of sister centromeres to the old SPB occurs in cells depleted of the cohesin Scc1p, a protein with a known role in facilitating biorientation. Thus, the two SPBs are not equally active in early S phase. We suggest that not only in spc34-3 and Deltascc1 cells but also in wild-type cells, sister centromeres bind after replication preferentially to microtubules organized by the old SPB. Monopolar attached sister centromeres are resolved to bipolar attachment in wild-type cells but persist in spc34-3 cells.
Collapse
Affiliation(s)
| | - Jennifer Ortíz
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Science, Wellcome Trust Biocentre, University of Dundee, UK, Biochemie-Zentrum, Ruprecht-Karls University, D-69120 Heidelberg, Germany and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Tomoyuki U. Tanaka
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Science, Wellcome Trust Biocentre, University of Dundee, UK, Biochemie-Zentrum, Ruprecht-Karls University, D-69120 Heidelberg, Germany and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Johannes Lechner
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Science, Wellcome Trust Biocentre, University of Dundee, UK, Biochemie-Zentrum, Ruprecht-Karls University, D-69120 Heidelberg, Germany and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| | - Elmar Schiebel
- The Beatson Institute for Cancer Research, CRC Beatson Laboratories, Glasgow G61 1BD,
School of Life Science, Wellcome Trust Biocentre, University of Dundee, UK, Biochemie-Zentrum, Ruprecht-Karls University, D-69120 Heidelberg, Germany and Research Institute for Molecular Pathology, Dr Bohr-Gasse 7, A-1030 Vienna, Austria Corresponding author e-mail:
| |
Collapse
|
197
|
Measday V, Hailey DW, Pot I, Givan SA, Hyland KM, Cagney G, Fields S, Davis TN, Hieter P. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 2002; 16:101-13. [PMID: 11782448 PMCID: PMC155308 DOI: 10.1101/gad.949302] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The budding yeast kinetochore is composed of an inner and outer protein complex, which binds to centromere (CEN) DNA and attaches to microtubules. We performed a genetic synthetic dosage lethality screen to identify novel kinetochore proteins in a collection of chromosome transmission fidelity mutants. Our screen identified several new kinetochore-related proteins including YLR381Wp/Ctf3p, which is a member of a conserved family of centromere-binding proteins. Ctf3p interacts with Mcm22p, Mcm16p, and the outer kinetochore protein Ctf19p. We used chromatin immunoprecipitation to demonstrate that Ctf3p, Mcm22p, and Mcm16p bind to CEN DNA in a Ctf19p-dependent manner. In addition, Ctf3p, Mcm22p, and Mcm16p have a localization pattern similar to other kinetochore proteins. The fission yeast Ctf3p homolog, Mis6, is required for loading of a CENP-A centromere specific histone, Cnp1, onto centromere DNA. We find however that Ctf3p is not required for loading of the budding yeast CENP-A homolog, Cse4p, onto CEN DNA. In contrast, Ctf3p and Ctf19p fail to bind properly to the centromere in a cse4-1 mutant strain. We conclude that the requirements for CENP-A loading onto centromere DNA differ in fission versus budding yeast.
Collapse
Affiliation(s)
- Vivien Measday
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Sharp JA, Franco AA, Osley MA, Kaufman PD. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 2002; 16:85-100. [PMID: 11782447 PMCID: PMC155315 DOI: 10.1101/gad.925302] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Budding yeast centromeres are comprised of approximately 125-bp DNA sequences that direct formation of the kinetochore, a specialized chromatin structure that mediates spindle attachment to chromosomes. We report here a novel role for the histone deposition complex chromatin assembly factor I (CAF-I) in building centromeric chromatin. The contribution of CAF-I to kinetochore function overlaps that of the Hir proteins, which have also been implicated in nucleosome formation and heterochromatic gene silencing. cacDelta hirDelta double mutant cells lacking both CAF-I and Hir proteins are delayed in anaphase entry in a spindle assembly checkpoint-dependent manner. Further, cacDelta and hirDelta deletions together cause increased rates of chromosome missegregation, genetic synergies with mutations in kinetochore protein genes, and alterations in centromeric chromatin structure. Finally, CAF-I subunits and Hir1 are enriched at centromeres, indicating that these proteins make a direct contribution to centromeric chromatin structures.
Collapse
Affiliation(s)
- Judith A Sharp
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
199
|
Lin H, de Carvalho P, Kho D, Tai CY, Pierre P, Fink GR, Pellman D. Polyploids require Bik1 for kinetochore-microtubule attachment. J Cell Biol 2001; 155:1173-84. [PMID: 11756471 PMCID: PMC2199317 DOI: 10.1083/jcb.200108119] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The attachment of kinetochores to spindle microtubules (MTs) is essential for maintaining constant ploidy in eukaryotic cells. Here, biochemical and imaging data is presented demonstrating that the budding yeast CLIP-170 orthologue Bik1is a component of the kinetochore-MT binding interface. Strikingly, Bik1 is not required for viability in haploid cells, but becomes essential in polyploids. The ploidy-specific requirement for BIK1 enabled us to characterize BIK1 without eliminating nonhomologous genes, providing a new approach to circumventing the overlapping function that is a common feature of the cytoskeleton. In polyploid cells, Bik1 is required before anaphase to maintain kinetochore separation and therefore contributes to the force that opposes the elastic recoil of attached sister chromatids. The role of Bik1 in kinetochore separation appears to be independent of the role of Bik1 in regulating MT dynamics. The finding that a protein involved in kinetochore-MT attachment is required for the viability of polyploids has potential implications for cancer therapeutics.
Collapse
Affiliation(s)
- H Lin
- Department of Pediatric Oncology, The Dana-Farber Cancer Institute, The Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
200
|
Fraschini R, Beretta A, Sironi L, Musacchio A, Lucchini G, Piatti S. Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. EMBO J 2001; 20:6648-59. [PMID: 11726501 PMCID: PMC125326 DOI: 10.1093/emboj/20.23.6648] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The kinetochore checkpoint pathway, involving the Mad1, Mad2, Mad3, Bub1, Bub3 and Mps1 proteins, prevents anaphase entry and mitotic exit by inhibiting the anaphase promoting complex activator Cdc20 in response to monopolar attachment of sister kinetochores to spindle fibres. We show here that Cdc20, which had previously been shown to interact physically with Mad2 and Mad3, associates also with Bub3 and association is up-regulated upon checkpoint activation. Moreover, co-fractionation experiments suggest that Mad2, Mad3 and Bub3 may be concomitantly present in protein complexes with Cdc20. Formation of the Bub3-Cdc20 complex requires all kinetochore checkpoint proteins but, surprisingly, not intact kinetochores. Conversely, point mutations altering the conserved WD40 motifs of Bub3, which might be involved in the formation of a beta-propeller fold devoted to protein-protein interactions, disrupt its association with Mad2, Mad3 and Cdc20, as well as proper checkpoint response. We suggest that Bub3 could serve as a platform for interactions between kinetochore checkpoint proteins, and its association with Mad2, Mad3 and Cdc20 might be instrumental for checkpoint activation.
Collapse
Affiliation(s)
| | | | - Lucia Sironi
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano and
Department of Experimental Oncology, European Institute of Oncology, 20141 Milano, Italy Corresponding author e-mail: R.Fraschini and A.Beretta contributed equally to this work
| | - Andrea Musacchio
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano and
Department of Experimental Oncology, European Institute of Oncology, 20141 Milano, Italy Corresponding author e-mail: R.Fraschini and A.Beretta contributed equally to this work
| | | | - Simonetta Piatti
- Dipartimento di Biotecnologie e Bioscienze, Piazza della Scienza 2, 20126 Milano and
Department of Experimental Oncology, European Institute of Oncology, 20141 Milano, Italy Corresponding author e-mail: R.Fraschini and A.Beretta contributed equally to this work
| |
Collapse
|