151
|
Boyer JL, Sofer-Podesta C, Ang J, Hackett NR, Chiuchiolo MJ, Senina S, Perlin D, Crystal RG. Protective immunity against a lethal respiratory Yersinia pestis challenge induced by V antigen or the F1 capsular antigen incorporated into adenovirus capsid. Hum Gene Ther 2010; 21:891-901. [PMID: 20180652 DOI: 10.1089/hum.2009.148] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The aerosol form of the bacterium Yersinia pestis causes pneumonic plague, a rapidly fatal disease that is a biothreat if deliberately released. At present, no plague vaccines are available for use in the United States, but subunit vaccines based on the Y. pestis V antigen and F1 capsular protein show promise when administered with adjuvants. In the context that adenovirus (Ad) gene transfer vectors have a strong adjuvant potential related to the ability to directly infect dendritic cells, we hypothesized that modification of the Ad5 capsid to display either the Y. pestis V antigen or the F1 capsular antigen on the virion surface would elicit high V antigen- or F1-specific antibody titers, permit boosting with the same Ad serotype, and provide better protection against a lethal Y. pestis challenge than immunization with equivalent amounts of V or F1 recombinant protein plus conventional adjuvant. We constructed AdYFP-pIX/V and AdLacZ-pIX/F1, E1(-), E3(-) serotype 5 Ad gene transfer vectors containing a fusion of the sequence for either the Y. pestis V antigen or the F1 capsular antigen to the carboxy-terminal sequence of pIX, a capsid protein that can accommodate the entire V antigen (37 kDa) or F1 protein (15 kDa) without disturbing Ad function. Immunization with AdYFP-pIX/V followed by a single repeat administration of the same vector at the same dose resulted in significantly better protection of immunized animals compared with immunization with a molar equivalent amount of purified recombinant V antigen plus Alhydrogel adjuvant. Similarly, immunization with AdLacZ-pIX/F1 in a prime-boost regimen resulted in significantly enhanced protection of immunized animals compared with immunization with a molar-equivalent amount of purified recombinant F1 protein plus adjuvant. These observations demonstrate that Ad vaccine vectors containing pathogen-specific antigens fused to the pIX capsid protein have strong adjuvant properties and stimulate more robust protective immune responses than equivalent recombinant protein-based subunit vaccines administered with conventional adjuvant, suggesting that F1-and/or V-modified capsid Ad-based recombinant vaccines should be considered for development as anti-plague vaccines.
Collapse
Affiliation(s)
- Julie L Boyer
- Department of Genetic Medicine, Weill Cornell Medical College , New York, NY 10026, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Lin JS, Park S, Adamovicz JJ, Hill J, Bliska JB, Cote CK, Perlin DS, Amemiya K, Smiley ST. TNFα and IFNγ contribute to F1/LcrV-targeted immune defense in mouse models of fully virulent pneumonic plague. Vaccine 2010; 29:357-62. [PMID: 20840834 DOI: 10.1016/j.vaccine.2010.08.099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 08/25/2010] [Accepted: 08/29/2010] [Indexed: 10/19/2022]
Abstract
Immunization with the Yersinia pestis F1 and LcrV proteins improves survival in mouse and non-human primate models of pneumonic plague. F1- and LcrV-specific antibodies contribute to protection, however, the mechanisms of antibody-mediated defense are incompletely understood and serum antibody titers do not suffice as quantitative correlates of protection. Previously we demonstrated roles for tumor necrosis factor-alpha (TNFα) and gamma-interferon (IFNγ) during defense against conditionally attenuated pigmentation (pgm) locus-negative Y. pestis. Here, using intranasal challenge with fully virulent pgm-positive Y. pestis strain CO92, we demonstrate that neutralizing TNFα and IFNγ interferes with the capacity of therapeutically administered F1- or LcrV-specific antibody to reduce bacterial burden and increase survival. Moreover, using Y. pestis strain CO92 in an aerosol challenge model, we demonstrate that neutralizing TNFα and IFNγ interferes with protection conferred by immunization with recombinant F1-LcrV fusion protein vaccine (p<0.0005). These findings establish that TNFα and IFNγ contribute to protection mediated by pneumonic plague countermeasures targeting F1 and LcrV, and suggest that an individual's capacity to produce these cytokines in response to Y. pestis challenge will be an important co-determinant of antibody-mediated defense against pneumonic plague.
Collapse
Affiliation(s)
- Jr-Shiuan Lin
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Gaudart J, Ghassani M, Mintsa J, Rachdi M, Waku J, Demongeot J. Demography and diffusion in epidemics: malaria and black death spread. Acta Biotheor 2010; 58:277-305. [PMID: 20706773 DOI: 10.1007/s10441-010-9103-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 06/28/2010] [Indexed: 01/14/2023]
Abstract
The classical models of epidemics dynamics by Ross and McKendrick have to be revisited in order to incorporate elements coming from the demography (fecundity, mortality and migration) both of host and vector populations and from the diffusion and mutation of infectious agents. The classical approach is indeed dealing with populations supposed to be constant during the epidemic wave, but the presently observed pandemics show duration of their spread during years imposing to take into account the host and vector population changes as well as the transient or permanent migration and diffusion of hosts (susceptible or infected), as well as vectors and infectious agents. Two examples are presented, one concerning the malaria in Mali and the other the plague at the middle-age.
Collapse
Affiliation(s)
- J Gaudart
- LERTIM, EA 3283, Faculty of Medicine, Aix-Marseille University, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
154
|
Fleas and flea-borne diseases. Int J Infect Dis 2010; 14:e667-76. [DOI: 10.1016/j.ijid.2009.11.011] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/02/2009] [Accepted: 11/04/2009] [Indexed: 01/14/2023] Open
|
155
|
Repertoire of HLA-DR1-restricted CD4 T-cell responses to capsular Caf1 antigen of Yersinia pestis in human leukocyte antigen transgenic mice. Infect Immun 2010; 78:4356-62. [PMID: 20660611 DOI: 10.1128/iai.00195-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in "humanized" HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.
Collapse
|
156
|
Abstract
Plague, which is most often caused by the bite of Yersinia pestis-infected fleas, is a rapidly progressing, serious disease that can be fatal without prompt antibiotic treatment. In late December 2007, an outbreak of acute gastroenteritis occurred in Nimroz Province of southern Afghanistan. Of the 83 probable cases of illness, 17 died (case fatality 20·5%). Being a case was associated with consumption or handling of camel meat (adjusted odds ratio 4·4, 95% confidence interval 2·2-8·8, P<0·001). Molecular testing of patient clinical samples and of tissue from the camel using PCR/electrospray ionization-mass spectrometry revealed DNA signatures consistent with Yersinia pestis. Confirmatory testing using real-time PCR and immunological seroconversion of one of the patients confirmed that the outbreak was caused by plague, with a rare gastrointestinal presentation. The study highlights the challenges of identifying infectious agents in low-resource settings; it is the first reported occurrence of plague in Afghanistan.
Collapse
|
157
|
Jones A, Bosio C, Duffy A, Goodyear A, Schriefer M, Dow S. Protection against pneumonic plague following oral immunization with a non-replicating vaccine. Vaccine 2010; 28:5924-9. [PMID: 20600517 DOI: 10.1016/j.vaccine.2010.06.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 01/09/2023]
Abstract
Yersinia pestis is a dangerous bacterial pathogen that when inhaled can rapidly induce fatal pneumonic plague. Thus, there is a need for stable, safe, and easily administered mucosal vaccines capable of eliciting effective protection against pulmonary Y. pestis infections. Cationic liposome-nucleic acid complexes (CLDC) have been shown previously to be effective vaccine adjuvants for parenteral immunization, but have not been previously evaluated for use in oral immunization. Therefore, we investigated the ability of an orally administered CLDC adjuvanted vaccine to elicit protective immunity against lethal pneumonic plague. C57Bl/6 mice were vaccinated orally or subcutaneously using 10mug Y. pestis F1 antigen combined with CLDC and immune responses and protection from challenge was assessed. We found that oral immunization elicited high titers of anti-F1 antibodies, equivalent to those generated by parenteral immunization. Importantly, orally immunized mice were protected from lethal pulmonary challenge with virulent Y. pestis for up to 18 weeks following vaccination. Vaccine-induced protection following oral immunization was found to be dependent primarily on CD4+ T cells, with a partial contribution from CD8+ T cells. Thus, CLDC adjuvanted vaccines represent a new type of orally administered, non-replicating vaccine capable of generating effective protection against pulmonary infection with virulent Y. pestis.
Collapse
Affiliation(s)
- Abby Jones
- Dept of Microbiology, Immunology, and Pathology, Colorado State University, Ft. Collins, CO 80523, USA
| | | | | | | | | | | |
Collapse
|
158
|
Tollenaere C, Rahalison L, Ranjalahy M, Duplantier JM, Rahelinirina S, Telfer S, Brouat C. Susceptibility to Yersinia pestis experimental infection in wild Rattus rattus, reservoir of plague in Madagascar. ECOHEALTH 2010; 7:242-247. [PMID: 20443044 DOI: 10.1007/s10393-010-0312-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 03/24/2010] [Accepted: 04/02/2010] [Indexed: 05/29/2023]
Abstract
In Madagascar, the black rat, Rattus rattus, is the main reservoir of plague (Yersinia pestis infection), a disease still responsible for hundreds of cases each year in this country. This study used experimental plague challenge to assess susceptibility in wild-caught rats to better understand how R. rattus can act as a plague reservoir. An important difference in plague resistance between rat populations from the plague focus (central highlands) and those from the plague-free zone (low altitude area) was confirmed to be a widespread phenomenon. In rats from the plague focus, we observed that sex influenced plague susceptibility, with males slightly more resistant than females. Other individual factors investigated (weight and habitat of sampling) did not affect plague resistance. When infected at high bacterial dose (more than 10⁵ bacteria injected), rats from the plague focus died mainly within 3-5 days and produced specific antibodies, whereas after low-dose infection (< 5,000 bacteria), delayed mortality was observed and surviving seronegative rats were not uncommon. These results concerning plague resistance level and the course of infection in the black rat would contribute to a better understanding of plague circulation in Madagascar.
Collapse
Affiliation(s)
- C Tollenaere
- IRD, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de Baillarguet, CS 30016, 34988 Montferrier-Sur-Lez Cedex, France
| | | | | | | | | | | | | |
Collapse
|
159
|
Tinker JK, Davis CT, Arlian BM. Purification and characterization of Yersinia enterocolitica and Yersinia pestis LcrV-cholera toxin A(2)/B chimeras. Protein Expr Purif 2010; 74:16-23. [PMID: 20438844 DOI: 10.1016/j.pep.2010.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 12/17/2022]
Abstract
Yersinia pestis is a virulent human pathogen and potential biological weapon. Despite a long history of research on this organism, there is no licensed vaccine to protect against pneumonic forms of Y. pestis disease. In the present study, plasmids were constructed to express cholera toxin A(2)/B chimeric molecules containing the LcrV protective antigen from Yersinia enterocolitica and Y. pestis. These chimeras were expressed and purified to high yields from the supernatant of transformed Escherichia coli. Western and GM(1) ELISA assays were used to characterize the composition, receptor-binding and relative stability of the LcrV-CTA(2)/B chimera in comparison to cholera toxin. In addition, we investigated the ability of the Y. pestis LcrV-CTA(2)/B chimera to bind to and internalize into cultured epithelial cells and macrophages by confocal microscopy. These studies indicate that the uptake and trafficking of the LcrV antigen from the chimera is comparable to the trafficking of native toxin. Together these findings report that stable, receptor-binding, non-toxic LcrV-cholera toxin A(2)/B chimeras can be expressed at high levels in E. coli and purified from the supernatant. In addition, the internalization of antigen in vitro reported here supports the development of these molecules as novel mucosal vaccine candidates.
Collapse
Affiliation(s)
- Juliette K Tinker
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| | | | | |
Collapse
|
160
|
Genome rearrangements of completely sequenced strains of Yersinia pestis. J Clin Microbiol 2010; 48:1619-23. [PMID: 20200297 DOI: 10.1128/jcm.01473-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yersinia pestis has caused three worldwide plagues in human history that have led to innumerable deaths. We have completely sequenced the genomes of two strains (D106004 and D182038) of Y. pestis isolated from Yunnan Province of China. The most striking finding of our study is that large amounts of genome rearrangement events exist between the genomes of two Yunnan strains despite being isolated from two foci only 50 kilometers apart. When we compared the genome sequences of the Yunnan strains with six strains (CO92, KIM, 91001, Antiqua, Nepal516, and Pestoides F) of Y. pestis sequenced previously, we found that the genomes of Y. pestis were divided into 61 relatively independent segments. Pairwise comparisons of all 61 segments among eight strains showed that the Yunnan strains were most closely related to strain CO92. We concluded that Y. pestis genomes consist of segments that can change their positions and directions within the genomes caused by genome rearrangements, and our study confirmed the inference that the third plague pandemic originated in Yunnan since the genome sequences of Yunnan strains were closest to the strain CO92 isolated from the United States.
Collapse
|
161
|
Alvarez ML, Cardineau GA. Prevention of bubonic and pneumonic plague using plant-derived vaccines. Biotechnol Adv 2010; 28:184-96. [PMID: 19931370 DOI: 10.1016/j.biotechadv.2009.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 01/14/2023]
Abstract
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1-V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.
Collapse
Affiliation(s)
- M Lucrecia Alvarez
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5401, USA.
| | | |
Collapse
|
162
|
The smpB-ssrA mutant of Yersinia pestis functions as a live attenuated vaccine to protect mice against pulmonary plague infection. Infect Immun 2010; 78:1284-93. [PMID: 20065026 DOI: 10.1128/iai.00976-09] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial SmpB-SsrA system is a highly conserved translational quality control mechanism that helps maintain the translational machinery at full capacity. Here we present evidence to demonstrate that the smpB-ssrA genes are required for pathogenesis of Yersinia pestis, the causative agent of plague. We found that disruption of the smpB-ssrA genes leads to reduction in secretion of the type III secretion-related proteins YopB, YopD, and LcrV, which are essential for virulence. Consistent with these observations, the smpB-ssrA mutant of Y. pestis was severely attenuated in a mouse model of infection via both the intranasal and intravenous routes. Most significantly, intranasal vaccination of mice with the smpB-ssrA mutant strain of Y. pestis induced a strong antibody response. The vaccinated animals were well protected against subsequent lethal intranasal challenges with virulent Y. pestis. Taken together, our results indicate that the smpB-ssrA mutant of Y. pestis possesses the desired qualities for a live attenuated cell-based vaccine against pneumonic plague.
Collapse
|
163
|
Gage KL, Beard CB. Plague. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
164
|
|
165
|
Paauw A, Leverstein-van Hall MA, van Kessel KPM, Verhoef J, Fluit AC. Yersiniabactin reduces the respiratory oxidative stress response of innate immune cells. PLoS One 2009; 4:e8240. [PMID: 20041108 PMCID: PMC2795162 DOI: 10.1371/journal.pone.0008240] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 11/16/2009] [Indexed: 01/29/2023] Open
Abstract
Enterobacteriaceae that contain the High Pathogenicity Island (HPI), which encodes the siderophore yersiniabactin, display increased virulence. This increased virulence may be explained by the increased iron scavenging of the bacteria, which would both enhance bacterial growth and limit the availability of iron to cells of the innate immune system, which require iron to catalyze the Haber-Weiss reaction that produces hydroxyl radicals. In this study, we show that yersiniabactin increases bacterial growth when iron-saturated lactoferrin is the main iron source. This suggests that yersiniabactin provides bacteria with additional iron from saturated lactoferrin during infection. Furthermore, the production of ROS by polymorphonuclear leukocytes, monocytes, and a mouse macrophage cell line is blocked by yersiniabactin, as yersiniabactin reduces iron availability to the cells. Importantly, iron functions as a catalyst during the Haber-Weiss reaction, which generates hydroxyl radicals. While the physiologic role of the Haber-Weiss reaction in the production of hydroxyl radicals has been controversial, the siderophores yersiniabactin, aerobactin, and deferoxamine and the iron-chelator deferiprone also reduce ROS production in activated innate immune cells. This suggests that this reaction takes place under physiological conditions. Of the tested iron chelators, yersiniabactin was the most effective in reducing the ROS production in the tested innate immune cells. The likely decreased bacterial killing by innate immune cells resulting from the reduced production of hydroxyl radicals may explain why the HPI-containing Enterobacteriaceae are more virulent. This model centered on the reduced killing capacity of innate immune cells, which is indirectly caused by yersiniabactin, is in agreement with the observation that the highly pathogenic group of Yersinia is more lethal than the weakly pathogenic and the non-pathogenic group.
Collapse
Affiliation(s)
- Armand Paauw
- Department of Medical Microbiology, University Medical Centre Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
166
|
Protection against anthrax and plague by a combined vaccine in mice and rabbits. Vaccine 2009; 27:7436-41. [DOI: 10.1016/j.vaccine.2009.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/27/2009] [Accepted: 07/08/2009] [Indexed: 11/18/2022]
|
167
|
Rocke TE, Iams KP, Dawe S, Smith SR, Williamson JL, Heisey DM, Osorio JE. Further development of raccoon poxvirus-vectored vaccines against plague (Yersinia pestis). Vaccine 2009; 28:338-44. [PMID: 19879228 DOI: 10.1016/j.vaccine.2009.10.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 10/09/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
Abstract
In previous studies, we demonstrated protection against plague in mice and prairie dogs using a raccoon pox (RCN) virus-vectored vaccine that expressed the F1 capsular antigen of Yersinia pestis. In order to improve vaccine efficacy, we have now constructed additional RCN-plague vaccines containing two different forms of the lcrV (V) gene, including full-length (Vfull) and a truncated form (V307). Mouse challenge studies with Y. pestis strain CO92 showed that vaccination with a combination of RCN-F1 and the truncated V construct (RCN-V307) provided the greatest improvement (P=0.01) in protection against plague over vaccination with RCN-F1 alone. This effect was mediated primarily by anti-F1 and anti-V antibodies and both contributed independently to increased survival of vaccinated mice.
Collapse
Affiliation(s)
- Tonie E Rocke
- National Wildlife Health Center, USGS/BRD, 6006 Schroeder Rd., Madison, WI 53711, United States.
| | | | | | | | | | | | | |
Collapse
|
168
|
Effect of MarA-like proteins on antibiotic resistance and virulence in Yersinia pestis. Infect Immun 2009; 78:364-71. [PMID: 19841071 DOI: 10.1128/iai.00904-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MarA, an AraC/XylS transcriptional regulator in Escherichia coli, affects drug susceptibility and virulence. Two MarA-like proteins have been found in Yersinia pestis: MarA47 and MarA48. Deletion or overexpression of these proteins in the attenuated KIM 1001 Deltapgm strain led to a change in multidrug susceptibility (including susceptibility to clinically relevant drugs). Additionally, lung colonization by the marA47 or marA48 deletion mutant was decreased about 10-fold in a pneumonic plague mouse model. Complementation of the deletions by replacing the deleted genes on the chromosome restored wild-type characteristics. These findings show that two MarA homologs in Y. pestis affect antibiotic susceptibility and virulence.
Collapse
|
169
|
Bi Y, Du Z, Yang H, Guo Z, Tan Y, Zhu Z, Yang R. Reduced apoptosis of mouse macrophages induced by yscW mutant of Yersinia pestis results from the reduced secretion of YopJ and relates to caspase-3 signal pathway. Scand J Immunol 2009; 70:358-67. [PMID: 19751270 DOI: 10.1111/j.1365-3083.2009.02297.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that injects six Yersinia outer protein (Yop) effector proteins into the cytosol of macrophages, leading to disruption of host defence mechanisms. Here, we report that a T3SS structural protein YscW of Yersinia pestis contributed to the induction of apoptosis of murine macrophages. The apoptotic percentage of macrophages, from both mouse peritoneal cavity and spleen, and of RAW264.7 cell line, caused by the yscW mutant strain was significantly lower than that by wild type (WT) Y. pestis and yscW complemented strain. Meanwhile, detection of caspase-3 activity in macrophages, a key apoptosis-inducing protein, showed coincident results with the changes of macrophage apoptosis induced by WT, yscW mutant and complemented strains, indicating that macrophage apoptosis was related to caspase-3 signal pathways. However, ectopic expression of YscW in RAW264.7 cells cannot increase the macrophage apoptosis and death, suggesting that YscW itself could not induce macrophage apoptosis directly. To get insight into the mechanism of this phenomenon, we investigated the secretion of YopJ, which has been thought to be the only Yop effector related to apoptosis, in WT, mutant and complemented strains, respectively. Results showed that in yscW mutant strain, secretion of YopJ was decreased significantly in the supernatant than that in WT or complemented strain. This means although YscW does not induce apoptosis directly, it can indirectly affect apoptosis through reducing the secretion of YopJ.
Collapse
Affiliation(s)
- Y Bi
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
170
|
Bergman MA, Loomis WP, Mecsas J, Starnbach MN, Isberg RR. CD8(+) T cells restrict Yersinia pseudotuberculosis infection: bypass of anti-phagocytosis by targeting antigen-presenting cells. PLoS Pathog 2009; 5:e1000573. [PMID: 19730693 PMCID: PMC2731216 DOI: 10.1371/journal.ppat.1000573] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Accepted: 08/10/2009] [Indexed: 12/12/2022] Open
Abstract
All Yersinia species target and bind to phagocytic cells, but uptake and destruction of bacteria are prevented by injection of anti-phagocytic Yop proteins into the host cell. Here we provide evidence that CD8+ T cells, which canonically eliminate intracellular pathogens, are important for restricting Yersinia, even though bacteria are primarily found in an extracellular locale during the course of disease. In a model of infection with attenuated Y. pseudotuberculosis, mice deficient for CD8+ T cells were more susceptible to infection than immunocompetent mice. Although exposure to attenuated Y. pseudotuberculosis generated TH1-type antibody responses and conferred protection against challenge with fully virulent bacteria, depletion of CD8+ T cells during challenge severely compromised protective immunity. Strikingly, mice lacking the T cell effector molecule perforin also succumbed to Y. pseudotuberculosis infection. Given that the function of perforin is to kill antigen-presenting cells, we reasoned that cell death marks bacteria-associated host cells for internalization by neighboring phagocytes, thus allowing ingestion and clearance of the attached bacteria. Supportive of this model, cytolytic T cell killing of Y. pseudotuberculosis–associated host cells results in engulfment by neighboring phagocytes of both bacteria and target cells, bypassing anti-phagocytosis. Our findings are consistent with a novel function for cell-mediated immune responses protecting against extracellular pathogens like Yersinia: perforin and CD8+ T cells are critical for hosts to overcome the anti-phagocytic action of Yops. Pathogenic Yersinia are bacteria that cause diverse diseases such as gastroenteritis and plague. Yersinia binds to specialized immune cells called macrophages, which attempt to engulf and destroy the bacteria. The bacteria resist destruction by injecting proteins called Yops into macrophages, which stops the engulfment process. Yersinia thus survives as attached but extracellular bacteria to cause disease. Yersinia disease can be prevented by immunization. In this study, we identified one mechanism of protective immunity—that host cells called CD8+ T lymphocytes are important to restrict Yersinia infection. This observation is unusual because CD8+ T cells generally protect against intracellular pathogens: T cells destroy the host cell harboring the pathogen, thus preventing the pathogen's replication. We present data consistent with the model that CD8+ T cells can also restrict extracellular bacteria by showing that T cells target host cells with extracellularly attached Yersinia, thus allowing the host cells and associated bacteria to be engulfed and removed by neighboring macrophages.
Collapse
Affiliation(s)
- Molly A. Bergman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Wendy P. Loomis
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Michael N. Starnbach
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
171
|
Srivastava SY, de Silva AM. Characterization of Borrelia burgdorferi aggregates. Vector Borne Zoonotic Dis 2009; 9:323-9. [PMID: 19499997 DOI: 10.1089/vbz.2008.0148] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lyme disease is caused by the tick-borne spirochete, Borrelia burgdorferi. It has been documented that B. burgdorferi form aggregates within ticks and during in vitro culture. However, Borrelia aggregates remain poorly characterized, and their functional significance is unknown. Here we have characterized Borrelia aggregates using microscopy and flow cytometry. Borrelia aggregation was temperature, pH, and growth phase dependent. Environmental conditions (high temperature, low pH, and high cell density) favorable for aggregation were similar to the conditions that increased the expression of B. burgdoferi genes, such as outer surface protein C (ospC), that are regulated by the RpoN/RpoS sigma factors. Experiments were conducted to determine if there is a relationship between aggregation and gene regulation through the RpoN/RpoS pathway. ospC Transcript levels were similar between aggregates and free cells. Moreover, no differences were observed in aggregate formation when null mutants of rpoS, rpoN, or ospC were compared to wild-type spirochetes. These results indicated that, despite the similar external signals that promoted aggregation and the RpoN/RpoS pathway, the two processes were not linked at the molecular level. The methods developed here to study B. burgdorferi aggregates will be useful for further studies on spirochete aggregates.
Collapse
Affiliation(s)
- Siddharth Y Srivastava
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA.
| | | |
Collapse
|
172
|
|
173
|
Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. Invited review: Breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2009; 15:67-80. [PMID: 19318417 DOI: 10.1177/1753425909102559] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The omptin family of Gram-negative bacterial transmembrane aspartic proteases comprises surface proteins with a highly conserved beta-barrel fold but differing biological functions. The omptins OmpT of Escherichia coli, PgtE of Salmonella enterica, and Pla of Yersinia pestis differ in their substrate specificity as well as in control of their expression. Their functional differences are in accordance with the differing pathogenesis of the infections caused by E. coli, Salmonella, and Y. pestis, which suggests that the omptins have adapted to the life-styles of their host species. The omptins Pla and PgtE attack on innate immunity by affecting the plasminogen/plasmin, complement, coagulation, fibrinolysis, and matrix metalloproteinase systems, by inactivating antimicrobial peptides, and by enhancing bacterial adhesiveness and invasiveness. Although the mechanistic details of the functions of Pla and PgtE differ, the outcome is the same: enhanced spread and multiplication of Y. pestis and S. enterica in the host. The omptin OmpT is basically a housekeeping protease but it also degrades cationic antimicrobial peptides and may enhance colonization of E. coli at uroepithelia. The catalytic residues in the omptin molecules are spatially conserved, and the differing polypeptide substrate specificities are dictated by minor sequence variations at regions surrounding the catalytic cleft. For enzymatic activity, omptins require association with lipopolysaccharide on the outer membrane. Modification of lipopolysaccharide by in vivo conditions or by bacterial gene loss has an impact on omptin function. Creation of bacterial surface proteolysis is thus a coordinated function involving several surface structures.
Collapse
Affiliation(s)
- Johanna Haiko
- General Microbiology, Faculty of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
174
|
Pujol C, Klein KA, Romanov GA, Palmer LE, Cirota C, Zhao Z, Bliska JB. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun 2009; 77:2251-61. [PMID: 19289509 PMCID: PMC2687347 DOI: 10.1128/iai.00068-09] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/21/2009] [Accepted: 03/10/2009] [Indexed: 01/02/2023] Open
Abstract
Yersinia pestis survives and replicates in phagosomes of murine macrophages. Previous studies demonstrated that Y. pestis-containing vacuoles (YCVs) acquire markers of late endosomes or lysosomes in naïve macrophages and that this bacterium can survive in macrophages activated with the cytokine gamma interferon. An autophagic process known as xenophagy, which destroys pathogens in acidic autophagolysosomes, can occur in naïve macrophages and is upregulated in activated macrophages. Studies were undertaken here to investigate the mechanism of Y. pestis survival in phagosomes of naïve and activated macrophages and to determine if the pathogen avoids or co-opts autophagy. Colocalization of the YCV with markers of autophagosomes or acidic lysosomes and the pH of the YCV were determined by microscopic imaging of infected macrophages. Some YCVs contained double membranes characteristic of autophagosomes, as determined by electron microscopy. Fluorescence microscopy showed that approximately 40% of YCVs colocalized with green fluorescent protein (GFP)-LC3, a marker of autophagic membranes, and that YCVs failed to acidify below pH 7 in naïve macrophages. Replication of Y. pestis in naïve macrophages caused accumulation of LC3-II, as determined by immunoblotting. While activation of infected macrophages increased LC3-II accumulation, it decreased the percentage of GFP-LC3-positive YCVs (approximately 30%). A viable count assay showed that Y. pestis survived equally well in macrophages proficient for autophagy and macrophages rendered deficient for this process by Cre-mediated deletion of ATG5, revealing that this pathogen does not require autophagy for intracellular replication. We conclude that although YCVs can acquire an autophagic membrane and accumulate LC3-II, the pathogen avoids xenophagy by preventing vacuole acidification.
Collapse
Affiliation(s)
- Céline Pujol
- Center for Infectious Diseases, Stony Brook University, Stony Brook, NY 11794-5120, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Panzner MJ, Deeraksa A, Smith A, Wright BD, Hindi KM, Kascatan-Nebioglu A, Torres AG, Judy BM, Hovis CE, Hilliard JK, Mallett RJ, Cope E, Estes DM, Cannon CL, Leid JG, Youngs WJ. Synthesis and in vitro Efficacy Studies of Silver Carbene Complexes on Biosafety Level 3 Bacteria. Eur J Inorg Chem 2009; 2009:1739-1745. [PMID: 20160993 DOI: 10.1002/ejic.200801159] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of N-heterocyclic carbene silver complexes have been synthesized and tested against the select group of bio-safety level 3 bacteria Burkholderia pseudomallei, Burkholderia mallei, Bacillus anthracis, methicillin-resistant Staphylococcus aureus and Yersinia pestis. Minimal inhibitory concentrations, minimal bactericidal and killing assays demonstrated the exceptional efficacy of the complexes against these potentially weaponizable pathogens.
Collapse
Affiliation(s)
- Matthew J Panzner
- Department of Chemistry, University of Akron, Akron, OH 44325-3601, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Breban R, Drake JM, Stallknecht DE, Rohani P. The role of environmental transmission in recurrent avian influenza epidemics. PLoS Comput Biol 2009; 5:e1000346. [PMID: 19360126 PMCID: PMC2660440 DOI: 10.1371/journal.pcbi.1000346] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 03/02/2009] [Indexed: 11/18/2022] Open
Abstract
Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2-4 years. Attempts to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission. It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions that have long persisted in the environment. We design a new host-pathogen model that combines within-season transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model yields three major results. First, environmental transmission provides a persistence mechanism within small communities where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size). Second, environmental transmission offers a parsimonious explanation of the 2-4 year periodicity of avian influenza epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to persist in populations where it would otherwise vanish.
Collapse
Affiliation(s)
- Romulus Breban
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | |
Collapse
|
177
|
Daniel C, Sebbane F, Poiret S, Goudercourt D, Dewulf J, Mullet C, Simonet M, Pot B. Protection against Yersinia pseudotuberculosis infection conferred by a Lactococcus lactis mucosal delivery vector secreting LcrV. Vaccine 2009; 27:1141-4. [PMID: 19135495 DOI: 10.1016/j.vaccine.2008.12.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 12/08/2008] [Accepted: 12/17/2008] [Indexed: 11/25/2022]
Abstract
Herein, we sought to evaluate the potential of a recombinant Lactococcus lactis strain secreting the Yersinia pseudotuberculosis low-calcium response V (LcrV) antigen for mucosal vaccination against Yersinia infections. We showed that the recombinant strain induced specific systemic and mucosal antibody and cellular immune responses after intranasal immunization and protected mice against both oral and systemic Y. pseudotuberculosis infections. This constitutes the first proof of principle for a novel anti-Yersinia mucosal vaccination strategy using recombinant lactic acid bacteria.
Collapse
Affiliation(s)
- Catherine Daniel
- Laboratoire des Bactéries Lactiques et Immunité des Muqueuses, Institut Fédératif de Recherche 142, Institut Pasteur de Lille, Lille F-59021, France.
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Adenovirus-mediated delivery of an anti-V antigen monoclonal antibody protects mice against a lethal Yersinia pestis challenge. Infect Immun 2009; 77:1561-8. [PMID: 19124600 DOI: 10.1128/iai.00856-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pneumonic plague, caused by inhalation of Yersinia pestis, represents a major bioterrorism threat for which no vaccine is available. Based on the knowledge that genetic delivery of monoclonal antibodies (MAbs) with adenovirus (Ad) gene transfer vectors results in rapid, high-level antibody expression, we evaluated the hypothesis that Ad-mediated delivery of a neutralizing antibody directed against the Y. pestis V antigen would protect mice against a Y. pestis challenge. MAbs specific for the Y. pestis V antigen were generated, and the most effective in protecting mice against a lethal intranasal Y. pestis challenge was chosen for further study. The coding sequences for the heavy and light chains were isolated from the corresponding hybridoma and inserted into a replication-defective serotype 5 human Ad gene transfer vector (AdalphaV). Western analysis of AdalphaV-infected cell supernatants demonstrated completely assembled antibodies reactive with V antigen. Following AdalphaV administration to mice, high levels of anti-V antigen antibody titers were detectable as early as 1 day postadministration, peaked by day 3, and remained detectable through a 12-week time course. When animals that received AdalphaV were challenged with Y. pestis at day 4 post-AdalphaV administration, 80% of the animals were protected, while 0% of control animals survived (P < 0.01). Ad-mediated delivery of a V antigen-neutralizing antibody is an effective therapy against plague in experimental animals and could be developed as a rapidly acting antiplague therapeutic.
Collapse
|
179
|
Biological and Chemical Weapons of Mass Destruction: Updated Clinical Therapeutic Countermeasures Since 2003. Am J Ther 2009; 16:35-43. [DOI: 10.1097/mjt.0b013e318160c3c8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
180
|
Arbobacteria - Pathogens Transmittable by Arthropods. Transfus Med Hemother 2009; 36:62-78. [PMID: 21048822 PMCID: PMC2928835 DOI: 10.1159/000197341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
181
|
Bliska JB, Casadevall A. Intracellular pathogenic bacteria and fungi--a case of convergent evolution? Nat Rev Microbiol 2008; 7:165-71. [PMID: 19098923 DOI: 10.1038/nrmicro2049] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The bacterium Yersinia pestis and the fungus Cryptococcus neoformans are the causative agents of human plague and cryptococcosis, respectively. Both microorganisms are facultatively intracellular pathogens. A comparison of their pathogenic strategies reveals similar tactics for intracellular survival in Y. pestis and C. neoformans despite their genetic unrelatedness. Both organisms can survive in environments where they are vulnerable to predation by amoeboid protozoal hosts. Here, we propose that the overall similarities in their pathogenic strategies are an example of convergent evolution that has solved the problem of intracellular survival.
Collapse
Affiliation(s)
- James B Bliska
- Department of Molecular Genetics and Microbiology and Center for Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, New York 11794, USA
| | | |
Collapse
|
182
|
Bi Y, Du Z, Han Y, Guo Z, Tan Y, Zhu Z, Yang R. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW. Immunology 2008; 128:e406-17. [PMID: 19191914 DOI: 10.1111/j.1365-2567.2008.02990.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.
Collapse
Affiliation(s)
- Yujing Bi
- State Key laboratory of Pathogen and Biosecurity, National Center for Biomedical Analysis, Army Center for Microbial Detection and Research, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
183
|
Achtman M. Evolution, population structure, and phylogeography of genetically monomorphic bacterial pathogens. Annu Rev Microbiol 2008; 62:53-70. [PMID: 18785837 DOI: 10.1146/annurev.micro.62.081307.162832] [Citation(s) in RCA: 309] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Genetically monomorphic bacteria contain so little sequence diversity that sequencing a few gene fragments yields little or no information. As a result, our understanding of their evolutionary patterns presents greater technical challenges than exist for genetically diverse microbes. These challenges are now being met by analyses at the genomic level for diverse types of genetic variation, the most promising of which are single nucleotide polymorphisms. Many of the most virulent bacterial pathogens are genetically monomorphic, and understanding their evolutionary and phylogeographic patterns will help our understanding of the effects of infectious disease on human history.
Collapse
Affiliation(s)
- Mark Achtman
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
184
|
Sun YC, Koumoutsi A, Darby C. The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 2008; 290:85-90. [PMID: 19025559 DOI: 10.1111/j.1574-6968.2008.01409.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A few Yersinia pseudotuberculosis strains form biofilms on the head of the nematode Caenorhabditis elegans, but numerous others do not. We show that a widely used Y. pseudotuberculosis strain, YPIII, is biofilm positive because of a mutation in phoP, which encodes the response regulator of a two-component system. For two wild-type Y. pseudotuberculosis that do not make biofilms on C. elegans, deletion of phoP was sufficient to produce robust biofilms. In Yersinia pestis, a phoP mutant made more extensive biofilms in vitro than did the wild type. Expression of HmsT, a diguanylate cyclase that positively regulates biofilms, is diminished in Y. pseudotuberculosis strains with functional PhoP.
Collapse
Affiliation(s)
- Yi-Cheng Sun
- Department of Cell and Tissue Biology, Program in Microbial Pathogenesis, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
185
|
Isabel S, Leblanc E, Boissinot M, Boudreau DK, Grondin M, Picard FJ, Martel EA, Parham NJ, Chain PSG, Bader DE, Mulvey MR, Bryden L, Roy PH, Ouellette M, Bergeron MG. Divergence among genes encoding the elongation factor Tu of Yersinia Species. J Bacteriol 2008; 190:7548-58. [PMID: 18790860 PMCID: PMC2576667 DOI: 10.1128/jb.01067-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 08/27/2008] [Indexed: 01/02/2023] Open
Abstract
Elongation factor Tu (EF-Tu), encoded by tuf genes, carries aminoacyl-tRNA to the ribosome during protein synthesis. Duplicated tuf genes (tufA and tufB), which are commonly found in enterobacterial species, usually coevolve via gene conversion and are very similar to one another. However, sequence analysis of tuf genes in our laboratory has revealed highly divergent copies in 72 strains spanning the genus Yersinia (representing 12 Yersinia species). The levels of intragenomic divergence between tufA and tufB sequences ranged from 8.3 to 16.2% for the genus Yersinia, which is significantly greater than the 0.0 to 3.6% divergence observed for other enterobacterial genera. We further explored tuf gene evolution in Yersinia and other Enterobacteriaceae by performing directed sequencing and phylogenetic analyses. Phylogenetic trees constructed using concatenated tufA and tufB sequences revealed a monophyletic genus Yersinia in the family Enterobacteriaceae. Moreover, Yersinia strains form clades within the genus that mostly correlate with their phenotypic and genetic classifications. These genetic analyses revealed an unusual divergence between Yersinia tufA and tufB sequences, a feature unique among sequenced Enterobacteriaceae and indicative of a genus-wide loss of gene conversion. Furthermore, they provided valuable phylogenetic information for possible reclassification and identification of Yersinia species.
Collapse
Affiliation(s)
- Sandra Isabel
- Centre de recherche en infectiologie de l'Université Laval, Centre hospitalier universitaire de Québec, Québec, Canada G1V 4G2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Neerinckx SB, Peterson AT, Gulinck H, Deckers J, Leirs H. Geographic distribution and ecological niche of plague in sub-Saharan Africa. Int J Health Geogr 2008; 7:54. [PMID: 18947399 PMCID: PMC2582229 DOI: 10.1186/1476-072x-7-54] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 10/23/2008] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Plague is a rapidly progressing, serious illness in humans that is likely to be fatal if not treated. It remains a public health threat, especially in sub-Saharan Africa. In spite of plague's highly focal nature, a thorough ecological understanding of the general distribution pattern of plague across sub-Saharan Africa has not been established to date. In this study, we used human plague data from sub-Saharan Africa for 1970-2007 in an ecological niche modeling framework to explore the potential geographic distribution of plague and its ecological requirements across Africa. RESULTS We predict a broad potential distributional area of plague occurrences across sub-Saharan Africa. General tests of model's transferability suggest that our model can anticipate the potential distribution of plague occurrences in Madagascar and northern Africa. However, generality and predictive ability tests using regional subsets of occurrence points demonstrate the models to be unable to predict independent occurrence points outside the training region accurately. Visualizations show plague to occur in diverse landscapes under wide ranges of environmental conditions. CONCLUSION We conclude that the typical focality of plague, observed in sub-Saharan Africa, is not related to fragmented and insular environmental conditions manifested at a coarse continental scale. However, our approach provides a foundation for testing hypotheses concerning focal distribution areas of plague and their links with historical and environmental factors.
Collapse
Affiliation(s)
- Simon B Neerinckx
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E, B-3001 Heverlee, Belgium
| | - Andrew T Peterson
- Natural History Museum and Biodiversity Research Center, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 66045-7561, USA
| | - Hubert Gulinck
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E, B-3001 Heverlee, Belgium
| | - Jozef Deckers
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200 E, B-3001 Heverlee, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Danish Pest Infestation Laboratory, University of Aarhus, Faculty of Agricultural Sciences, Department of Integrated Pest Management, Skovbrynet 14, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
187
|
A novel autotransporter adhesin is required for efficient colonization during bubonic plague. Infect Immun 2008; 77:317-26. [PMID: 18936182 DOI: 10.1128/iai.01206-08] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many proteins secreted by the type V secretion system (autotransporters) have been linked to virulence in gram-negative bacteria. Several putative conventional autotransporters are present in the Yersinia pestis genome, but only one, YapE, is conserved in the other pathogenic Yersinia species. Here, we introduce YapE and demonstrate that it is secreted via a type V mechanism. Inactivation of yapE in Y. pestis results in decreased efficiency in colonization of tissues during bubonic infection. Coinfection with wild-type bacteria only partially compensates for this defect. Analysis of the host immune response suggests that YapE is required for either efficient colonization at the inoculation site or dissemination to draining lymph nodes. YapE also demonstrates adhesive properties capable of mediating interactions with bacteria and eukaryotic cells. These findings support a role for YapE in modulating host-pathogen interactions that are important for colonization of the mammalian host.
Collapse
|
188
|
Kummer LW, Szaba FM, Parent MA, Adamovicz JJ, Hill J, Johnson LL, Smiley ST. Antibodies and cytokines independently protect against pneumonic plague. Vaccine 2008; 26:6901-7. [PMID: 18926869 DOI: 10.1016/j.vaccine.2008.09.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 09/24/2008] [Indexed: 10/21/2022]
Abstract
Yersinia pestis causes pneumonic plague, an exceptionally virulent disease for which we lack a safe and effective vaccine. Antibodies specific for the Y. pestis F1 and LcrV proteins can protect mice against pulmonary Y. pestis infection. We demonstrate that neutralizing tumor necrosis factor-alpha (TNFalpha) and gamma-interferon (IFNgamma) abrogates this protection at sub-optimal levels of F1- or LcrV-specific antibody, but not at optimal levels. Moreover, we demonstrate that endogenous TNFalpha and IFNgamma confer measurable protection in the complete absence of protective antibodies. These findings indicate that antibodies and cytokines independently protect against pneumonic plague and suggest that surrogate assays for plague vaccine efficacy should consider both the level of vaccine-induced antibody and the capacity of vaccine recipients to produce TNFalpha and IFNgamma upon exposure to Y. pestis.
Collapse
|
189
|
Abstract
SUMMARY Yersinia pestis is one of the world's most virulent human pathogens. Inhalation of this Gram-negative bacterium causes pneumonic plague, a rapidly progressing and usually fatal disease. Extensively antibiotic-resistant strains of Y. pestis exist and have significant potential for exploitation as agents of terrorism and biowarfare. Subunit vaccines comprised of the Y. pestis F1 and LcrV proteins are well-tolerated and immunogenic in humans but cannot be tested for efficacy, because pneumonic plague outbreaks are uncommon and intentional infection of humans is unethical. In animal models, F1/LcrV-based vaccines protect mice and cynomolgus macaques but have failed, thus far, to adequately protect African green monkeys. We lack an explanation for this inconsistent efficacy. We also lack reliable correlate assays for protective immunity. These deficiencies are hampering efforts to improve vaccine efficacy. Here, I review the immunology of pneumonic plague, focusing on evidence that humoral and cellular defense mechanisms collaborate to defend against pulmonary Y. pestis infection.
Collapse
|
190
|
Gürtler L, Blümel J, Burger R, Drosten C, Gröner A, Heiden M, Hitzler W, Jansen B, Klamm H, Ludwig WD, Montag-Lessing T, Offergeld R, Pauli G, Seitz R, Schlenkrich U, Schottstedt V, Willkommen H. Arbobacteria - Pathogens Transmittable by Arthropods. Transfus Med Hemother 2008; 35:374-390. [PMID: 21512627 PMCID: PMC3076330 DOI: 10.1159/000112812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 11/28/2007] [Indexed: 01/05/2023] Open
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Rainer Seitz
- Arbeitskreis Blut, Untergruppe «Bewertung Blutassoziierter Krankheitserreger»
| | | | | | | |
Collapse
|
191
|
Bianucci R, Rahalison L, Massa ER, Peluso A, Ferroglio E, Signoli M. Technical note: a rapid diagnostic test detects plague in ancient human remains: an example of the interaction between archeological and biological approaches (southeastern France, 16th-18th centuries). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2008; 136:361-7. [PMID: 18350578 DOI: 10.1002/ajpa.20818] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A rapid diagnostic test (RDT) that detects Yersinia pestis F1 antigen was applied to 28 putative plague victims exhumed from seven burial sites in southeastern France dating to the 16th-18th centuries. Yersinia pestis F1 antigen was detected in 19 of the 28 (67.9%) samples. The 27 samples used as negative controls yielded negative results. Soil samples taken from archeological sites related to both positive and negative samples tested negative for F1 antigen. The detection threshold of the RDT for plague (0.5 ng/ml) is sufficient for a preliminary retrospective diagnosis of Y. pestis infection in human remains. The high specificity and sensitivity of the assay were confirmed. For two sites positive to F1 antigen (Lambesc and Marseille), Y. pestis-specific DNA (pla gene) had been identified previously by PCR-sequence based analyses. Specifically, the positive results for two samples, from the Lambesc cemetery and the Marseille pit burial, matched those previously reported using PCR. Independent analyses in Italy and France of different samples taken from the same burial sites (Draguignan and Martigues) led to the identification of both Y. pestis F1 antigen and Y. pestis pla and gplD genes. These data are clear evidence of the presence of Y. pestis in the ancient human remains examined in this study.
Collapse
Affiliation(s)
- Raffaella Bianucci
- Università di Torino, Dipartimento di Biologia Animale e dell'Uomo, Laboratorio di Antropologia, 10123 Turin, Italy.
| | | | | | | | | | | |
Collapse
|
192
|
Vaccination of mice with a Yop translocon complex elicits antibodies that are protective against infection with F1- Yersinia pestis. Infect Immun 2008; 76:5181-90. [PMID: 18765742 DOI: 10.1128/iai.00189-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Yersinia pestis, the bacterial agent of plague, secretes several proteins important for pathogenesis or host protection. The F1 protein forms a capsule on the bacterial cell surface and is a well-characterized protective antigen but is not essential for virulence. A type III secretion system that is essential for virulence exports Yop proteins, which function as antiphagocytic or anti-inflammatory factors. Yop effectors (e.g., YopE) are delivered across the host cell plasma membrane by a translocon, composed of YopB and YopD. Complexes of YopB, YopD, and YopE (BDE) secreted by Yersinia pseudotuberculosis were purified by affinity chromatography and used as immunogens to determine if antibodies to the translocon could provide protection against Y. pestis in mice. Mice vaccinated with BDE generated high-titer immunoglobulin G antibodies specific for BDE, as shown by enzyme-linked immunosorbent assay and immunoblotting, and were protected against lethal intravenous challenge with F1(-) but not F1(+) Y. pestis. Mice passively immunized with anti-BDE serum were protected from lethal challenge with F1(-) Y. pestis. The YopB protein or a complex of YopB and YopD (BD) was purified and determined by vaccination to be immunogenic in mice. Mice actively vaccinated with BD or passively vaccinated with anti-BD serum were protected against lethal challenge with F1(-) Y. pestis. These results indicate that anti-translocon antibodies can be used as immunotherapy to treat infections by F1(-) Y. pestis.
Collapse
|
193
|
Tollenaere C, Rahalison L, Ranjalahy M, Rahelinirina S, Duplantier JM, Brouat C. CCR5 polymorphism and plague resistance in natural populations of the black rat in Madagascar. INFECTION GENETICS AND EVOLUTION 2008; 8:891-7. [PMID: 18703167 DOI: 10.1016/j.meegid.2008.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 07/11/2008] [Accepted: 07/12/2008] [Indexed: 12/11/2022]
Abstract
Madagascar remains one of the world's largest plague foci. The black rat, Rattus rattus, is the main reservoir of plague in rural areas. This species is highly susceptible to plague in plague-free areas (low-altitude regions), whereas rats from the plague focus areas (central highlands) have evolved a disease-resistance polymorphism. We used the candidate gene CCR5 to investigate the genetic basis of plague resistance in R. rattus. We found a unique non-synonymous substitution (H184R) in a functionally important region of the gene. We then compared (i) CCR5 genotypes of dying and surviving plague-challenged rats and (ii) CCR5 allelic frequencies in plague focus and plague-free populations. Our results suggested a higher prevalence of the substitution in resistant animals compared to susceptible individuals, and a tendency for higher frequencies in plague focus areas compared to plague-free areas. Therefore, the CCR5 polymorphism may be involved in Malagasy black rat plague resistance. CCR5 and other undetermined plague resistance markers may provide useful biological information about host evolution and disease dynamics.
Collapse
Affiliation(s)
- C Tollenaere
- IRD UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International Baillarguet, CS 30016, 34988 Montferrier sur Lez Cedex, France.
| | | | | | | | | | | |
Collapse
|
194
|
Stirrett KL, Ferreras JA, Rossi SM, Moy RL, Fonseca FV, Quadri LE. A multicopy suppressor screening approach as a means to identify antibiotic resistance determinant candidates in Yersinia pestis. BMC Microbiol 2008; 8:122. [PMID: 18644132 PMCID: PMC2500020 DOI: 10.1186/1471-2180-8-122] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 07/21/2008] [Indexed: 11/29/2022] Open
Abstract
Background Yersinia pestis is the causative agent of plague and a potential agent of bioterrorism and biowarfare. The plague biothreat and the emergence of multidrug-resistant plague underscore the need to increase our understanding of the intrinsic potential of Y. pestis for developing antimicrobial resistance and to anticipate the mechanisms of resistance that may emerge in Y. pestis. Identification of Y. pestis genes that, when overexpressed, are capable of reducing antibiotic susceptibility is a useful strategy to expose genes that this pathogen may rely upon to evolve antibiotic resistance via a vertical modality. In this study, we explored the use of a multicopy suppressor, Escherichia coli host-based screening approach as a means to expose antibiotic resistance determinant candidates in Y. pestis. Results We constructed a multicopy plasmid-based, Y. pestis genome-wide expression library of nearly 16,000 clones in E. coli and screened the library for suppressors of the antimicrobial activity of ofloxacin, a fluoroquinolone antibiotic. The screen permitted the identification of a transcriptional regulator-encoding gene (robAYp) that increased the MIC99 of ofloxacin by 23-fold when overexpressed from a multicopy plasmid in Y. pestis. Additionally, we found that robAYp overexpression in Y. pestis conferred low-level resistance to many other antibiotics and increased organic solvent tolerance. Overexpression of robAYp also upregulated the expression of several efflux pumps in Y. pestis. Conclusion Our study provides proof of principle for the use of multicopy suppressor screening based on the tractable and easy-to-manipulate E. coli host as a means to identify antibiotic resistance determinant candidates of Y. pestis.
Collapse
Affiliation(s)
- Karen L Stirrett
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, 1300 York Avenue, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|
195
|
Gluckman SJ. Acute respiratory infections in a recently arrived traveler to your part of the world. Chest 2008; 134:163-71. [PMID: 18628219 PMCID: PMC7094426 DOI: 10.1378/chest.07-2954] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2007] [Accepted: 02/25/2008] [Indexed: 11/20/2022] Open
Abstract
Many acute infectious pulmonary diseases have incubation periods that are long enough for travelers to have symptoms after returning home to a health-care system that is not familiar with "foreign" infections. Respiratory infections have a relatively limited repertoire of clinical manifestations, so that there is often nothing characteristic enough about a specific infection to make the diagnosis obvious. Thus, the pathway to the diagnosis of infections that are not endemic in a region relies heavily on taking a thorough history of both itinerary and of specific exposures. One important caveat is that on occasion, the history of a recent trip creates an element of "tunnel vision" in the evaluating health-care provider. It is tempting to relate a person's problem to that recent trip; however, when evaluating recent returnees, it is always important to remember that the travel may have nothing to do with the patient's presentation. Recent travel may add diagnostic considerations to the list of possibilities, but an astute clinician must not disregard the possibility that the patient's illness has nothing to do with the recent trip.
Collapse
Affiliation(s)
- Stephen J Gluckman
- University of Pennsylvania School of Medicine, Medical Arts Building, Ste 102, Thirty-Eighth and Filbert Streets, Philadelphia, PA 19104, USA.
| |
Collapse
|
196
|
Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 2008; 105:8097-101. [PMID: 18523005 DOI: 10.1073/pnas.0803525105] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Yersinia pestis, the agent of bubonic plague, evolved from the enteric pathogen Yersinia pseudotuberculosis within the past 20,000 years. Because ancestor and descendant both exist, it is possible to infer steps in molecular evolution by direct experimental approaches. The Y. pestis life cycle includes establishment of a biofilm within its vector, the flea. Although Y. pseudotuberculosis makes biofilms in other environments, it fails to do so in the insect. We show that rcsA, a negative regulator of biofilms that is functional in Y. pseudotuberculosis, is a pseudogene in Y. pestis. Replacement of the pseudogene with the functional Y. pseudotuberculosis rcsA allele strongly represses biofilm formation and essentially abolishes flea biofilms. The conversion of rcsA to a pseudogene during Y. pestis evolution, therefore, was a case of negative selection rather than neutral genetic drift.
Collapse
|
197
|
Tournier JN, Mohamadzadeh M. Microenvironmental impact on lung cell homeostasis and immunity during infection. Expert Rev Vaccines 2008; 7:457-66. [PMID: 18444892 DOI: 10.1586/14760584.7.4.457] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The lung is a vital organ devoted mainly to gas exchange with an external environment that may be contaminated with various life-threatening pathogens and inert particles. Lung immunity must be permanently balanced between costimulatory and coinhibitory signals, thus controlling potential pathogens while avoiding detrimental inflammation. The lung harbors macrophages and dendritic cells (myeloid and plasmacytoid), which orchestrate the primary defense against microbial invaders. During an infection involving host-microbial synapses, microbes either escape by using host cell physiology or are eliminated by a robust immune response. We thus focus on the dynamics of such cellular interactions within the lung and stress the critical role played by airway epithelial cells in modulating immunity.
Collapse
Affiliation(s)
- Jean-Nicolas Tournier
- Centre de Recherches du Service de Santédes Armées, Unité Interactions Hôte-Pathogéne, La Tronche, France.
| | | |
Collapse
|
198
|
Darby C. Uniquely insidious: Yersinia pestis biofilms. Trends Microbiol 2008; 16:158-64. [PMID: 18339547 DOI: 10.1016/j.tim.2008.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 01/16/2008] [Accepted: 01/23/2008] [Indexed: 11/30/2022]
Abstract
Bubonic plague, one of history's deadliest infections, is transmitted by fleas infected with Yersinia pestis. The bacteria can starve fleas by blocking their digestive tracts, which stimulates the insects to bite repeatedly and thereby infect new hosts. Direct examination of infected fleas, aided by in vitro studies and experiments with the nematode Caenorhabditis elegans, have established that Y. pestis forms a biofilm in the insect. The extracellular matrix of the biofilm seems to contain a homopolymer of N-acetyl-d-glucosamine, which is a constituent of many bacterial biofilms. A regulatory mechanism involved in Y. pestis biofilm formation, cyclic-di-GMP signaling, is also widespread in bacteria; yet only Y. pestis forms biofilms in fleas. Here, the historical background of bubonic plague is briefly described and recent studies investigating the mechanisms by which these unique and deadly biofilms are formed are discussed.
Collapse
Affiliation(s)
- Creg Darby
- Department of Cell and Tissue Biology, University of California, San Francisco, Box 0640/Room C-734, San Francisco, CA 94143-0640, USA.
| |
Collapse
|
199
|
Abstract
This article reviews principles of recognition and management of a selection of commonly encountered infectious disease emergencies, including sepsis, necrotizing soft tissue infections, acute meningitis, and the emerging issue of severe Clostridium difficile colitis. Less common but potentially deadly environmentally acquired or zoonotic pathogens are discussed, as are special patient populations, including the febrile returning traveler and the asplenic patient.
Collapse
Affiliation(s)
- Nelson Nicolasora
- Division of Infectious Disease, University of Michigan Medical School, 3120 Taubman Center 0378, Ann Arbor, MI 48109-0378, USA
| | | |
Collapse
|
200
|
Abstract
Inhalation of Yersinia pestis bacilli causes pneumonic plague, a rapidly progressing and exceptionally virulent disease. Extensively antibiotic-resistant Y. pestis strains exist and we currently lack a safe and effective pneumonic plague vaccine. These facts raise concern that Y. pestis may be exploited as a bioweapon. Here, I review the history and status of plague vaccine research and advocate that pneumonic plague vaccines should strive to prime both humoral and cellular immunity.
Collapse
Affiliation(s)
- Stephen T Smiley
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA.
| |
Collapse
|