151
|
Li L, Du J, Zou L, Xia H, Wu T, Kim Y, Lee Y. The Neuroprotective Effects of Decursin Isolated from Angelica gigas Nakai Against Amyloid β-Protein-Induced Apoptosis in PC 12 Cells via a Mitochondria-Related Caspase Pathway. Neurochem Res 2015; 40:1555-62. [PMID: 26077922 DOI: 10.1007/s11064-015-1623-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/24/2022]
Abstract
Decursin, purified from Angelica gigas Nakai, has been proven to exert neuroprotective property. Previous study revealed decursin protected the PC12 cells from Aβ25-35-induced oxidative cytotoxicity. The present study aimed to investigate whether decursin could protect PC12 cells from apoptosis caused by Aβ. Our results indicated that pretreatment of PC12 cells with decursin significantly inhibited Aβ25-35-induced cytotoxicity and apoptosis. The mechanism of action is likely to reverse Aβ25-35-induced mitochondrial dysfunction, including the reduction of mitochondrial membrane potential, the inhibition of reactive oxygen species production, and the decrease of mitochondrial release of cytochrome c in PC12 cells. In addition, decursin significantly suppressed the activity of caspase-3 and moderated the ratio of Bcl-2/Bax induced by Aβ25-35. These findings indicate that decursin exerts a neuroprotective effect against Aβ25-35-induced neurotoxicity in PC12 cells, at least in part, via suppressing the mitochondrial pathway of cellular apoptosis.
Collapse
Affiliation(s)
- Li Li
- Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, 523-808, China,
| | | | | | | | | | | | | |
Collapse
|
152
|
Sandgren V, Belda O, Kvarnström I, Lindberg J, Samuelsson B, Dahlgren A. Design and Synthesis of Novel Arylketo-containing P1-P3 Linked Macro-cyclic BACE-1 Inhibitors. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2015; 9:13-26. [PMID: 25937848 PMCID: PMC4412958 DOI: 10.2174/1874104501509010013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/06/2015] [Accepted: 01/22/2015] [Indexed: 11/22/2022]
Abstract
A series of arylketo-containing P1-P3 linked macrocyclic BACE-1 inhibitors were designed, synthesized, and compared with compounds with a previously known and extensively studied corresponding P2 isophthalamide moiety with the aim to improve on permeability whilst retaining the enzyme- and cell-based activities. Several inhibitors displayed substantial increases in Caco-2 cell-based permeability compared to earlier synthesized inhibitors and notably also with retained activities, showing that this approach might yield BACE-1 inhibitors with improved properties.
Collapse
Affiliation(s)
- Veronica Sandgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | - Oscar Belda
- Medivir AB, Lunastigen 7, S-141 44 Huddinge, Sweden
| | - Ingemar Kvarnström
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| | | | | | - Anders Dahlgren
- Department of Chemistry, Linköping University, S-581 83 Linköping, Sweden
| |
Collapse
|
153
|
MRZ-99030 – A novel modulator of Aβ aggregation: II – Reversal of Aβ oligomer-induced deficits in long-term potentiation (LTP) and cognitive performance in rats and mice. Neuropharmacology 2015; 92:170-82. [DOI: 10.1016/j.neuropharm.2014.12.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/28/2014] [Accepted: 12/02/2014] [Indexed: 11/21/2022]
|
154
|
Akhter R, Sanphui P, Das H, Saha P, Biswas SC. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J Neurochem 2015; 134:1091-103. [PMID: 25891762 DOI: 10.1111/jnc.13128] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/10/2015] [Accepted: 03/31/2015] [Indexed: 12/29/2022]
Abstract
Neuronal loss in selective areas of brain underlies the pathology of Alzheimer's disease (AD). Recent evidences place oligomeric β-amyloid (Aβ) central to the disease. However, mechanism of neuron death in response to Aβ remains elusive. Activation of the c-Jun N-terminal kinase (JNK) pathway and induction of the AP-1 transcription factor c-Jun are reported in AD. However, targets of JNK/c-Jun in Aβ-induced neuron death are mostly unknown. Our study shows that pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-Jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We also find that both JNK and p53 pathways co-operatively regulate Puma expression in Aβ-treated neurons. Moreover, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Finally, we find that knocking down of c-Jun by siRNA provides significant protection from Aβ toxicity and that induction of Bim and Puma by Aβ in neurons requires c-Jun. Taken together, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity. JNK/c-Jun pathway is shown to be activated in neurons of the Alzheimer's disease (AD) brain and plays a vital role in neuron death in AD models. However, downstream targets of c-Jun in this disease have not been thoroughly elucidated. Our study shows that two important pro-apoptotic proteins, Bim (Bcl-2 interacting mediator of cell death) and Puma (p53 up-regulated modulator of apoptosis) are targets of c-Jun in Aβ-treated neurons. We demonstrate that the JNK/c-jun pathway is activated, in cultures of cortical neurons following treatment with oligomeric Aβ and in AD transgenic mice, and that inhibition of this pathway by selective inhibitor blocks induction of Puma by Aβ. We have also observed functional co-operation of both JNK and p53 pathway in regulation of Puma under Aβ toxicity. Most importantly, we identified a novel AP1-binding site on rat puma gene which is necessary for direct binding of c-Jun with Puma promoter. Thus, our results suggest that both Bim and Puma are target of c-Jun and elucidate the intricate regulation of Puma expression by JNK/c-Jun and p53 pathways in neurons upon Aβ toxicity.
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyankar Sanphui
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Hrishita Das
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pampa Saha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
155
|
Abstract
The military conflicts of the last decade have highlighted the growing problem of traumatic brain injury in combatants returning from the battlefield. The considerable evidence pointing at the accumulation of tau aggregates and its recognition as a risk factor in neurodegenerative conditions such as Alzheimer's disease have led to a major effort to develop selective tau ligands that would allow research into the physiopathologic underpinnings of traumatic brain injury and chronic traumatic encephalopathy in military personnel and the civilian population. These tracers will allow new insights into tau pathology in the human brain, facilitating research into causes, diagnosis, and treatment of traumatic encephalopathy and major neurodegenerative dementias, such as Alzheimer's disease and some variants of frontotemporal lobar degeneration, in which tau plays a role. The field of selective tau imaging has to overcome several obstacles, some of them associated with the idiosyncrasies of tau aggregation and others related to radiotracer design. A worldwide effort has focused on the development of imaging agents that will allow selective tau imaging in vivo. Recent progress in the development of these tracers is enabling the noninvasive assessment of the extent of tau pathology in the brain, eventually allowing the quantification of changes in tau pathology over time and its relation to cognitive performance, brain volumetrics, and other biomarkers, as well as assessment of efficacy and patient recruitment for antitau therapeutic trials.
Collapse
Affiliation(s)
- Victor L Villemagne
- Department of Nuclear Medicine and Centre for PET, Austin Health, Melbourne, VIC, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
| | - Nobuyuki Okamura
- Department of Pharmacology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
156
|
Nichols MR, Colvin BA, Hood EA, Paranjape GS, Osborn DC, Terrill-Usery SE. Biophysical Comparison of Soluble Amyloid-β(1–42) Protofibrils, Oligomers, and Protofilaments. Biochemistry 2015; 54:2193-204. [DOI: 10.1021/bi500957g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael R. Nichols
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin A. Colvin
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Elizabeth A. Hood
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Geeta S. Paranjape
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - David C. Osborn
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| | - Shana E. Terrill-Usery
- Department of Chemistry and
Biochemistry and Center for Nanoscience, University of Missouri—St. Louis, One University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
157
|
Xiong N, Dong XY, Zheng J, Liu FF, Sun Y. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:5650-5662. [PMID: 25700145 DOI: 10.1021/acsami.5b00915] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aggregation of amyloid β-protein (Aβ) into amyloid oligomers and fibrils is pathologically linked to Alzheimer's disease (AD). Hence, the inhibition of Aβ aggregation is essential for the prevention and treatment of AD, but the development of potent agents capable of inhibiting Aβ fibrillogenesis has posed significant challenges. Herein, we designed Ac-LVFFARK-NH2 (LK7) by incorporating two positively charged residues, R and K, into the central hydrophobic fragment of Aβ17-21 (LVFFA) and examined its inhibitory effect on Aβ42 aggregation and cytotoxicity by extensive physical, biophysical, and biological analyses. LK7 was observed to inhibit Aβ42 fibrillogenesis in a dose-dependent manner, but its strong self-assembly characteristic also resulted in high cytotoxicity. In order to prevent the cytotoxicity that resulted from the self-assembly of LK7, the peptide was then conjugated to the surface of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) to fabricate a nanosized inhibitor, LK7@PLGA-NPs. It was found that LK7@PLGA-NPs had little cytotoxicity because the self-assembly of the LK7 conjugated on the NPs was completely inhibited. Moreover, the NPs-based inhibitor showed remarkable inhibitory capability against Aβ42 aggregation and significantly alleviated its cytotoxicity at a low LK7@PLGA-NPs concentration of 20 μg/mL. At the same peptide concentration, free LK7 showed little inhibitory effect. It is considered that several synergetic effects contributed to the strong inhibitory ability of LK7@PLGA-NPs, including the enhanced interactions between Aβ42 and LK7@PLGA-NPs brought on by inhibiting LK7 self-assembly, restricting conformational changes of Aβ42, and thus redirecting Aβ42 aggregation into unstructured, off-pathway aggregates. The working mechanisms of the inhibitory effects of LK7 and LK7@PLGA-NPs on Aβ42 aggregation were proposed based on experimental observations. This work provides new insights into the design and development of potent NPs-based inhibitors against Aβ aggregation and cytotoxicity.
Collapse
Affiliation(s)
- Neng Xiong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiao-Yan Dong
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jie Zheng
- ‡Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Fu-Feng Liu
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Sun
- †Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
158
|
Jalkute CB, Sonawane KD. Evaluation of a possible role of Stigmatella aurantiaca ACE in Aβ peptide degradation: a molecular modeling approach. J Mol Microbiol Biotechnol 2015; 25:26-36. [PMID: 25677850 DOI: 10.1159/000370114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid-β (Aβ)-degrading enzymes are known to degrade Aβ peptides, a causative agent of Alzheimer's disease. These enzymes are responsible for maintaining Aβ concentration. However, loss of such enzymes or their Aβ-degrading activity because of certain genetic as well as nongenetic reasons initiates the accumulation of Aβ peptides in the human brain. Considering the limitations of the human enzymes in clearing Aβ peptide, the search for microbial enzymes that could cleave Aβ is necessary. Hence, we built a three-dimensional model of angiotensin-converting enzyme (ACE) from Stigmatella aurantiaca using homology modeling technique. Molecular docking and molecular dynamics simulation techniques were used to outline the possible cleavage mechanism of Aβ peptide. These findings suggest that catalytic residue Glu 434 of the model could play a crucial role to degrade Aβ peptide between Asp 7 and Ser 8. Thus, ACE from S. aurantiaca might cleave Aβ peptides similar to human ACE and could be used to design new therapeutic strategies against Alzheimer's disease.
Collapse
|
159
|
Lee SL, Thomas P, Fenech M. Genome instability biomarkers and blood micronutrient risk profiles associated with mild cognitive impairment and Alzheimer's disease. Mutat Res 2015; 776:54-83. [PMID: 26364206 DOI: 10.1016/j.mrfmmm.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 12/06/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
Successful maintenance of metabolic systems relating to accurate DNA replication and repair is critical for optimal lifelong human health. Should this homeostatic balance become impaired, genomic instability events can arise, compromising the integrity of the genome, which may result in gene expression and human disease. Both genome instability and micronutrient imbalance have been identified and implicated in diseases associated with accelerated ageing which potentially leads to an increased risk for the future development of clinically defined neurodegenerative disorders. Cognitive decline leading to the clinical diagnosis of mild cognitive impairment (MCI) has been shown to predict an increased risk in later life of developing Alzheimer's disease (AD). Knowledge on the impact of dietary factors in relation to MCI and AD risk is improving but incomplete; in particular the role of nutrient combinations (i.e. nutriomes) has not been thoroughly investigated. Currently, there is a need for preventative strategies as well as the identification of robust and reproducible diagnostic biomarkers that will allow identification of those individuals with increased risk for neurodegenerative diseases. Growing evidence suggests cells originating from different somatic tissues derived from individuals that have been clinically diagnosed with neurodegenerative disorders exhibit elevated frequencies of DNA damage compared to tissues of cognitively normal individuals which could be due to malnutrition. The objective of this review is to discuss current evidence and identify knowledge gaps relating to genome instability biomarkers and blood micronutrient profiles from human studies of MCI and AD that may be specific to and contribute to the increased risk of these diseases. This is a vital step in order to create research strategies for the future development of diagnostics that are indicative of dementia risk and to inform preventative therapies.
Collapse
Affiliation(s)
- Sau Lai Lee
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia; Discipline of Physiology, School of Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Philip Thomas
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia
| | - Michael Fenech
- Commonwealth Scientific and Industrial Research Organisation, Animal, Food, and Health Sciences, PO Box 10041, Adelaide BC, Adelaide, SA 5000, Australia.
| |
Collapse
|
160
|
The Ubiquitin-Proteasome System and Molecular Chaperone Deregulation in Alzheimer's Disease. Mol Neurobiol 2015; 53:905-931. [PMID: 25561438 DOI: 10.1007/s12035-014-9063-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/09/2014] [Indexed: 12/18/2022]
Abstract
One of the shared hallmarks of neurodegenerative diseases is the accumulation of misfolded proteins. Therefore, it is suspected that normal proteostasis is crucial for neuronal survival in the brain and that the malfunction of this mechanism may be the underlying cause of neurodegenerative diseases. The accumulation of amyloid plaques (APs) composed of amyloid-beta peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed of misfolded Tau proteins are the defining pathological markers of Alzheimer's disease (AD). The accumulation of these proteins indicates a faulty protein quality control in the AD brain. An impaired ubiquitin-proteasome system (UPS) could lead to negative consequences for protein regulation, including loss of function. Another pivotal mechanism for the prevention of misfolded protein accumulation is the utilization of molecular chaperones. Molecular chaperones, such as heat shock proteins (HSPs) and FK506-binding proteins (FKBPs), are highly involved in protein regulation to ensure proper folding and normal function. In this review, we elaborate on the molecular basis of AD pathophysiology using recent data, with a particular focus on the role of the UPS and molecular chaperones as the defensive mechanism against misfolded proteins that have prion-like properties. In addition, we propose a rational therapy approach based on this mechanism.
Collapse
|
161
|
Jalkute CB, Barage SH, Sonawane KD. Insight into molecular interactions of Aβ peptide and gelatinase from Enterococcus faecalis: a molecular modeling approach. RSC Adv 2015. [DOI: 10.1039/c4ra09354b] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extracellular deposition of amyloid beta (Aβ) peptides.
Collapse
Affiliation(s)
| | - Sagar H. Barage
- Department of Biotechnology
- Shivaji University
- Kolhapur 416004
- India
| | - Kailas D. Sonawane
- Department of Microbiology
- Shivaji University
- Kolhapur 416004
- India
- Structural Bioinformatics Unit
| |
Collapse
|
162
|
Płóciennik A, Prendecki M, Zuba E, Siudzinski M, Dorszewska J. Activated Caspase-3 and Neurodegeneration and Synaptic Plasticity in Alzheimer’s Disease. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/aad.2015.43007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
163
|
Ibrahim T, McLaurin J. Protein seeding in Alzheimer’s disease and Parkinson’s disease: Similarities and differences. World J Neurol 2014; 4:23-35. [DOI: 10.5316/wjn.v4.i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide (Aβ) and alpha-synuclein (α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding effects by both Aβ and α-syn, they emphasize the need for future studies to thoroughly characterize “seeds” as well as analyze changes in the nervous system in response to exogenous insults.
Collapse
|
164
|
Crabtree GW, Gogos JA. Synaptic plasticity, neural circuits, and the emerging role of altered short-term information processing in schizophrenia. Front Synaptic Neurosci 2014; 6:28. [PMID: 25505409 PMCID: PMC4243504 DOI: 10.3389/fnsyn.2014.00028] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/22/2014] [Indexed: 01/01/2023] Open
Abstract
Synaptic plasticity alters the strength of information flow between presynaptic and postsynaptic neurons and thus modifies the likelihood that action potentials in a presynaptic neuron will lead to an action potential in a postsynaptic neuron. As such, synaptic plasticity and pathological changes in synaptic plasticity impact the synaptic computation which controls the information flow through the neural microcircuits responsible for the complex information processing necessary to drive adaptive behaviors. As current theories of neuropsychiatric disease suggest that distinct dysfunctions in neural circuit performance may critically underlie the unique symptoms of these diseases, pathological alterations in synaptic plasticity mechanisms may be fundamental to the disease process. Here we consider mechanisms of both short-term and long-term plasticity of synaptic transmission and their possible roles in information processing by neural microcircuits in both health and disease. As paradigms of neuropsychiatric diseases with strongly implicated risk genes, we discuss the findings in schizophrenia and autism and consider the alterations in synaptic plasticity and network function observed in both human studies and genetic mouse models of these diseases. Together these studies have begun to point toward a likely dominant role of short-term synaptic plasticity alterations in schizophrenia while dysfunction in autism spectrum disorders (ASDs) may be due to a combination of both short-term and long-term synaptic plasticity alterations.
Collapse
Affiliation(s)
- Gregg W. Crabtree
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| | - Joseph A. Gogos
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
- Department of Neuroscience, College of Physicians and Surgeons, Columbia UniversityNew York, NY, USA
| |
Collapse
|
165
|
Ma F, Liu D. 17β-trenbolone, an anabolic-androgenic steroid as well as an environmental hormone, contributes to neurodegeneration. Toxicol Appl Pharmacol 2014; 282:68-76. [PMID: 25461682 DOI: 10.1016/j.taap.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 01/17/2023]
Abstract
Both genetic and environmental factors contribute to neurodegenerative disorders. In a large number of neurodegenerative diseases (for example, Alzheimer's disease (AD)), patients do not carry the mutant genes. Other risk factors, for example the environmental factors, should be evaluated. 17β-trenbolone is a kind of environmental hormone as well as an anabolic-androgenic steroid. 17β-trenbolone is used as a growth promoter for livestock in the USA. Also, a large portion of recreational exercisers inject 17β-trenbolone in large doses and for very long time to increase muscle and strength. 17β-trenbolone is stable in the environment after being excreted. In the present study, 17β-trenbolone was administered to adult and pregnant rats and the primary hippocampal neurons. 17β-trenbolone's distribution and its effects on serum hormone levels and Aβ42 accumulation in vivo and its effects on AD related parameters in vitro were assessed. 17β-trenbolone accumulated in adult rat brain, especially in the hippocampus, and in the fetus brain. It altered Aβ42 accumulation. 17β-trenbolone induced apoptosis of primary hippocampal neurons in vitro and resisted neuroprotective function of testosterone. Presenilin-1 protein expression was down-regulated while β-amyloid peptide 42 (Aβ42) production and caspase-3 activities were increased. Both androgen and estrogen receptors mediated the processes. 17β-trenbolone played critical roles in neurodegeneration. Exercisers who inject large doses of trenbolone and common people who are exposed to 17β-trenbolone by various ways are all influenced chronically and continually. Identification of such environmental risk factors will help us take early prevention measure to slow down the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Fucui Ma
- Wenzhou Institute of Biomaterials and Engineering, No. 16 Xinshan Road, Hi-tech Industry Park, Wenzhou, PR China; Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China.
| | - Daicheng Liu
- Key Laboratory of Animal Resistance, College of Life Science, Shandong Normal University, 88 East Wenhua Road, Jinan 250014, PR China.
| |
Collapse
|
166
|
Barman A, Prabhakar R. Computational Insights into Substrate and Site Specificities, Catalytic Mechanism, and Protonation States of the Catalytic Asp Dyad of β -Secretase. SCIENTIFICA 2014; 2014:598728. [PMID: 25309776 PMCID: PMC4189502 DOI: 10.1155/2014/598728] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 06/21/2014] [Indexed: 06/04/2023]
Abstract
In this review, information regarding substrate and site specificities, catalytic mechanism, and protonation states of the catalytic Asp dyad of β-secretase (BACE1) derived from computational studies has been discussed. BACE1 catalyzes the rate-limiting step in the generation of Alzheimer amyloid beta peptide through the proteolytic cleavage of the amyloid precursor protein. Due to its biological functioning, this enzyme has been considered as one of the most important targets for finding the cure for Alzheimer's disease. Molecular dynamics (MD) simulations suggested that structural differences in the key regions (inserts A, D, and F and the 10s loop) of the enzyme are responsible for the observed difference in its activities towards the WT- and SW-substrates. The modifications in the flap, third strand, and insert F regions were found to be involved in the alteration in the site specificity of the glycosylphosphatidylinositol bound form of BACE1. Our QM and QM/MM calculations suggested that BACE1 hydrolyzed the SW-substrate more efficiently than the WT-substrate and that cleavage of the peptide bond occurred in the rate-determining step. The results from molecular docking studies showed that the information concerning a single protonation state of the Asp dyad is not enough to run an in silico screening campaign.
Collapse
Affiliation(s)
- Arghya Barman
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Rajeev Prabhakar
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| |
Collapse
|
167
|
Liang H, Zhang Y, Shi X, Wei T, Lou J. Role of Notch-1 signaling pathway in PC12 cell apoptosis induced by amyloid beta-peptide (25-35). Neural Regen Res 2014; 9:1297-302. [PMID: 25221582 PMCID: PMC4160856 DOI: 10.4103/1673-5374.137577] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2014] [Indexed: 11/12/2022] Open
Abstract
Recent studies have demonstrated that Notch-1 expression is increased in the hippocampus of Alzheimer's disease patients. We speculate that Notch-1 signaling may be involved in PC12 cell apoptosis induced by amyloid beta-peptide (25–35) (Aβ25–35). In the present study, PC12 cells were cultured with different doses (0, 0.1, 1.0, 10 and 100 nmol/L) of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester, a Notch-1 signaling pathway inhibitor, for 30 minutes. Then cultured cells were induced with Aβ25–35 for 48 hours. Pretreatment of PC12 cells with high doses of N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (> 10 nmol/L) prolonged the survival of PC12 cells after Aβ25–35 induction, decreased the expression of apoptosis-related proteins caspase-3, -8, -9, increased the activity of oxidative stress-related superoxide dismutase and catalase, inhibited the production of active oxygen, and reduced nuclear factor kappa B expression. This study indicates that the Notch-1 signaling pathway plays a pivotal role in Aβ25–35-induced PC12 apoptosis.
Collapse
Affiliation(s)
- Huimin Liang
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China ; Huaihe Hospital of Henan University, Kaifeng, Henan Province, China
| | - Yaozhou Zhang
- Department of Biotechnology, Xinyang Agricultural College, Xinyang, Henan Province, China
| | - Xiaoyan Shi
- Pharmaceutical College of Henan University, Zhengzhou, Henan Province, China
| | - Tianxiang Wei
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jiyu Lou
- Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
168
|
Miners JS, Palmer JC, Tayler H, Palmer LE, Ashby E, Kehoe PG, Love S. Aβ degradation or cerebral perfusion? Divergent effects of multifunctional enzymes. Front Aging Neurosci 2014; 6:238. [PMID: 25309424 PMCID: PMC4160973 DOI: 10.3389/fnagi.2014.00238] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/20/2014] [Indexed: 12/17/2022] Open
Abstract
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), endothelin-converting enzyme (ECE), and angiotensin-converting enzyme (ACE) reduce Aβ levels and protect against cognitive impairment in mouse models of AD. In post-mortem human brain tissue we have found that the activity of these Aβ-degrading enzymes rise with age and increases still further in AD, perhaps as a physiological response that helps to minimize the build-up of Aβ. ECE-1/-2 and ACE are also rate-limiting enzymes in the production of endothelin-1 (ET-1) and angiotensin II (Ang II), two potent vasoconstrictors, increases in the levels of which are likely to contribute to reduced blood flow in AD. This review considers the possible interdependence between Aβ-degrading enzymes, ischemia and Aβ in AD: ischemia has been shown to increase Aβ production both in vitro and in vivo, whereas increased Aβ probably enhances ischemia by vasoconstriction, mediated at least in part by increased ECE and ACE activity. In contrast, NEP activity may help to maintain cerebral perfusion, by reducing the accumulation of Aβ in cerebral blood vessels and lessening its toxicity to vascular smooth muscle cells. In assessing the role of Aβ-degrading proteases in the pathogenesis of AD and, particularly, their potential as therapeutic agents, it is important to bear in mind the multifunctional nature of these enzymes and to consider their effects on other substrates and pathways.
Collapse
Affiliation(s)
- J Scott Miners
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Jennifer C Palmer
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Hannah Tayler
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Laura E Palmer
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Emma Ashby
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Patrick G Kehoe
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| | - Seth Love
- Dementia Research Group, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol Bristol, UK
| |
Collapse
|
169
|
Herrmann A, Spires-Jones T. Clearing the way for tau immunotherapy in Alzheimer's disease. J Neurochem 2014; 132:1-4. [PMID: 25156069 DOI: 10.1111/jnc.12845] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/28/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Abigail Herrmann
- Centre for Cognitive and Neural Systems and Euan MacDonald Centre for Motorneurone Disease Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
170
|
Shi H, Kang B, Lee JY. Zn2+ Effect on Structure and Residual Hydrophobicity of Amyloid β-Peptide Monomers. J Phys Chem B 2014; 118:10355-61. [DOI: 10.1021/jp504779m] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hu Shi
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon 440-746, South Korea
| | - Baotao Kang
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon 440-746, South Korea
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon 440-746, South Korea
| |
Collapse
|
171
|
Mitochondrial dysfunction: different routes to Alzheimer's disease therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:780179. [PMID: 25221640 PMCID: PMC4158152 DOI: 10.1155/2014/780179] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/29/2014] [Indexed: 01/02/2023]
Abstract
Mitochondria are dynamic ATP-generating organelle which contribute to many cellular functions including bioenergetics processes, intracellular calcium regulation, alteration of reduction-oxidation potential of cells, free radical scavenging, and activation of caspase mediated cell death. Mitochondrial functions can be negatively affected by amyloid β peptide (Aβ), an important component in Alzheimer's disease (AD) pathogenesis, and Aβ can interact with mitochondria and cause mitochondrial dysfunction. One of the most accepted hypotheses for AD onset implicates that mitochondrial dysfunction and oxidative stress are one of the primary events in the insurgence of the pathology. Here, we examine structural and functional mitochondrial changes in presence of Aβ. In particular we review data concerning Aβ import into mitochondrion and its involvement in mitochondrial oxidative stress, bioenergetics, biogenesis, trafficking, mitochondrial permeability transition pore (mPTP) formation, and mitochondrial protein interaction. Moreover, the development of AD therapy targeting mitochondria is also discussed.
Collapse
|
172
|
Lu Y, Qin X, Li S, Zhang X, He Y, Peng Q, Deng Y, Wang J, Xie L, Li T, Zeng Z. Quantitative assessment of CYP2D6 polymorphisms and risk of Alzheimer's disease: A meta-analysis. J Neurol Sci 2014; 343:15-22. [DOI: 10.1016/j.jns.2014.05.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/27/2014] [Accepted: 05/14/2014] [Indexed: 11/24/2022]
|
173
|
Is Alzheimer's disease related to metabolic syndrome? A Wnt signaling conundrum. Prog Neurobiol 2014; 121:125-46. [PMID: 25084549 DOI: 10.1016/j.pneurobio.2014.07.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 07/23/2014] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting more than 36 million people worldwide. AD is characterized by a progressive loss of cognitive functions. For years, it has been thought that age is the main risk factor for AD. Recent studies suggest that life style factors, including nutritional behaviors, play a critical role in the onset of dementia. Evidence about the relationship between nutritional behavior and AD includes the role of conditions such as obesity, hypertension, dyslipidemia and elevated glucose levels. The coexistence of some of these cardio-metabolic risk factors is generally known as metabolic syndrome (MS). Some clinical studies support the role of MS in the onset of AD. However, the cross-talk between the molecular signaling implicated in these disorders is unknown. In the present review, we focus on the molecular correlates that support the relationship between MS and the onset of AD. We also discuss relevant issues such as the role of leptin, insulin and renin-angiotensin signaling in the brain and the possible role of Wnt signaling in both MS and AD. We discuss the evidence supporting the use of ob/ob mice, high-fructose diets, aortic coarctation-induced hypertension and Octodon degus, which spontaneously develops β-amyloid deposits and metabolic derangements, as suitable animal models to address the relationships between MS and AD. Finally, we examine emergent data supporting the role of Wnt signaling in the modulation of AD and MS, implicating this pathway as a therapeutic target in both conditions.
Collapse
|
174
|
Wu CC, Ku BC, Ko CH, Chiu CC, Wang GJ, Yang YH, Wu SJ. Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.04.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
175
|
Ma B, Meng X, Wang J, Sun J, Ren X, Qin M, Sun J, Sun G, Sun X. Notoginsenoside R1 attenuates amyloid-β-induced damage in neurons by inhibiting reactive oxygen species and modulating MAPK activation. Int Immunopharmacol 2014; 22:151-9. [PMID: 24975829 DOI: 10.1016/j.intimp.2014.06.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 06/07/2014] [Accepted: 06/11/2014] [Indexed: 11/19/2022]
Abstract
Progressive accumulation of amyloid-β (Aβ) is a pathological hallmark of Alzheimer's disease (AD). Aβ increases free radical production in neuronal cells, leading to oxidative stress and cell death. An intervention that would reduce Aβ-related neurotoxicity through free radical reduction could advance the treatment of AD. Notoginsenoside R1 (NR1), the major and most active ingredient in the herb Panax notoginseng, can reduce reactive oxygen species and confer some neuroprotective effects. Here, NR1 was applied in a cell-based model of Alzheimer's disease. Cell viability, cell death, reactive oxygen species generation, and mitochondrial membrane potential were assessed in cultured PC12 neuronal cells incubated with Aβ(25-35). In this model, Aβ was neurotoxic and induced necrosis and apoptosis; however, NR1 significantly counteracted the effects of Aβ by increasing cell viability, reducing oxidative damage (including apoptosis), restoring mitochondrial membrane potential, and suppressing stress-activated MAPK signaling pathways. These results promise a great potential agent for Alzheimer's disease and other Aβ pathology-related neuronal degenerative disease.
Collapse
Affiliation(s)
- Bo Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jing Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jing Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Xiaoyu Ren
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China; Eastern Liaoning University, No. 325 Wenhua Street, Yuanbao District, Dandong Liaoning 118003, PR China
| | - Meng Qin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Jie Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 151, Malianwa North Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
176
|
Dursun E, Gezen-Ak D, Yilmazer S. The Influence of Vitamin D Treatment on the Inducible Nitric Oxide Synthase (INOS) Expression in Primary Hippocampal Neurons. Noro Psikiyatr Ars 2014; 51:163-168. [PMID: 28360617 DOI: 10.4274/npa.y7089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/27/2013] [Indexed: 12/01/2022] Open
Abstract
INTRODUCTION Neurodegeneration is a process that is characterized by the loss of neuronal structure and function and eventually ends with neuronal death. An elevated level of inducible nitric oxide synthase (iNOS) is suggested to accompany this process by inducing oxidative and nitrosative damage. Vitamin D is reported to protect glial cells against neurotoxicity via suppressing iNOS synthesis. Though there was no data about whether iNOS is regulated by vitamin D in hippocampal neurons. In this study our aim was to determine any alteration in iNOS expression of hippocampal neurons in response to vitamin D treatment. METHOD Twenty four and 48 hours of vitamin D treatments were performed on primary hippocampal neuron cultures that were prepared from Sprague dawley rat embryos (E18). The alterations in the iNOS mRNA expression were determined with quantative real time polymerase chain reaction (qRT-PCR). The cytotoxicity levels of each group were investigated by the measurement of lactate dehydrogenase (LDH) that is released to culture medium. RESULTS No difference was observed between groups in 24 hours of treatment regarding the iNOS expression. Though the iNOS mRNA level of vitamin D treated group was significantly lower than that of control group on the 48th hours of treatment (p<.001). Vitamin D treatment also attenuated the LDH release which is an indicator of cytotoxicity (p<.001). CONCLUSION Our results indicated that vitamin D has the potential to prevent oxidative damage by suppressing iNOS expression.
Collapse
Affiliation(s)
- Erdinç Dursun
- Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Duygu Gezen-Ak
- Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| | - Selma Yilmazer
- Department of Medical Biology, İstanbul University Cerrahpaşa Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
177
|
Yang K, Tan Y, Wang F, Zhang Q, Sun P, Zhang Y, Yao N, Zhao Y, Wang X, Fan A, Hua Q. The improvement of spatial memory deficits in APP/V717I transgenic mice by chronic anti-stroke herb treatment. Exp Biol Med (Maywood) 2014; 239:1007-1017. [PMID: 24872438 DOI: 10.1177/1535370214532757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In China, herbal medicine has an extensive history for the treatment of cerebrovascular diseases. Clinical studies have shown that stroke patients are more likely to experience significant memory decline in comparison to their healthy counterparts. Cognition is improved in stroke patients treated with herbal medicine active components, Geniposide (GP) and Geniposide Rg1 (GRg1) (together, called TLJN). However, the effect of TLJN in Alzheimer disease remains unknown. Therefore, we investigated the behavioral effect of TLJN in male and female APP/V717I transgenic (Tg) mice. We conducted two different treatment strategies: (1) pretreatment strategy: medically treated at the age of 3 months which lasted for 3 months; (2) early treatment strategy: medically treated at the age of 6 months which lasted for 4 months. In open field test, locomotor activity and anxiety-like behavior were not affected after TLJN administration in Tg mice. In Morris Water Maze test, spatial learning processes in both genders were improved by TLJN treatments. Furthermore, retrieval processes were significantly improved in the pretreatment strategy for only male mice, which also showed a trend for improved retrieval processes with early treatment. In the inhibitory avoidance test, TLJN enhanced learning processes. In addition, gender differences were found in Tg mice exposed to TLJN treatments. In Tg male mice, significant efficacy was seen at high and middle doses, and in Tg female mice, a low dose was more effective.
Collapse
Affiliation(s)
- Kaiyu Yang
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China Dalian No.4 people hospital, Pharmacy, Dalian 210200, China
| | - Yan Tan
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Feng Wang
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Qi Zhang
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Ping Sun
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Ying Zhang
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China Nankai hospital, Tianjin 300100, China
| | - Na Yao
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Yanan Zhao
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Xu Wang
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Angran Fan
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| | - Qian Hua
- Beijing University of Chinese Medicine, School of Preclinical Medicine, No.11 N.3 Ring Eastern Road, Beijing 100029, China
| |
Collapse
|
178
|
Yoon JH, Youn K, Ho CT, Karwe MV, Jeong WS, Jun M. p-Coumaric acid and ursolic acid from Corni fructus attenuated β-amyloid(25-35)-induced toxicity through regulation of the NF-κB signaling pathway in PC12 cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4911-6. [PMID: 24815946 DOI: 10.1021/jf501314g] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neuroinflammatory responses induced by amyloid-beta peptide (Aβ) are important causes in the pathogenesis of Alzheimer's disease (AD). Blockade of Aβ has emerged as a possible therapeutic approach to control the onset of AD. This study investigated the neuroprotective effects and molecular mechanisms of p-coumaric acid (p-CA) and ursolic acid (UA) from Corni fructus against Aβ(25-35)-induced toxicity in PC12 cells. p-CA and UA significantly inhibited the expression of iNOS and COX-2 in Aβ(25-35)-injured PC12 cells. Blockade of nuclear translocation of the p65 subunit of nuclear factor κB (NF-κB) and phosphorylation of IκB-α was also observed after p-CA and UA treatment. For the upstream kinases, UA exclusively reduced ERK1/2, p-38, and JNK phosphorylation, but p-CA suppressed ERK1/2 and JNK phosphorylation. Both compounds comprehensively inhibited NF-κB activity, but possibly with different upstream pathways. The results provide new insight into the pharmacological modes of p-CA and UA and their potential therapeutic application to AD.
Collapse
Affiliation(s)
- Jeong-Hyun Yoon
- Department of Food Science and Nutrition, Dong-A University , Busan 604-714, Korea
| | | | | | | | | | | |
Collapse
|
179
|
The effects of dietary restriction and aging on amyloid precursor protein and presenilin-1 mRNA and protein expression in rat brain. Neuroreport 2014; 25:398-403. [PMID: 24346258 DOI: 10.1097/wnr.0000000000000107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The objective of this study was to examine the effects of aging and long-term dietary restriction (DR) on the level of amyloid precursor protein (APP) and presenilin-1 (PS-1), proteins that are critically involved in Alzheimer's disease. Changes in mRNA and protein expression were assessed by real-time PCR and western blot analysis during aging and long-term DR in the cortex and hippocampus of 6-, 12-, 18-, and 24-month-old rats. Prominent regional changes in expression were observed in response to aging and DR. Although the hippocampus displayed significant alterations in APP mRNA and protein expression and no significant changes in PS-1 expression, an opposite pattern was observed in the cortex. DR counteracted the age-related changes in APP mRNA expression in both structures of old animals. The observed DR-induced increase in mRNA levels in the hippocampus was accompanied by an increase in the level of full-length protein APP. These results indicate that although both structures are very sensitive to aging, a specific spatial pattern of changes in APP and PS-1 occurs during aging. Furthermore, these findings provide evidence that DR can affect APP and PS-1 expression in a manner consistent with its proposed 'antiaging' effect.
Collapse
|
180
|
Descamps O, Spilman P, Zhang Q, Libeu CP, Poksay K, Gorostiza O, Campagna J, Jagodzinska B, Bredesen DE, John V. AβPP-selective BACE inhibitors (ASBI): novel class of therapeutic agents for alzheimer's disease. J Alzheimers Dis 2014; 37:343-55. [PMID: 23948888 DOI: 10.3233/jad-130578] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A systematic approach was used to identify AβPP-selective BACE inhibitors (ASBI) and to evaluate their in vivo ability to modulate AβPP processing selectively. We identified a bioflavonoid nutritional supplement as a molecular lead that acts as an ASBI in cell models, and show that increasing brain levels of this bioflavonoid through a pro-drug approach leads to reduction of Aβ42 in an Alzheimer's disease mouse model. ASBIs represent a novel class of candidate therapeutic agents for Alzheimer's disease.
Collapse
|
181
|
Beharry C, Cohen LS, Di J, Ibrahim K, Briffa-Mirabella S, Alonso ADC. Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull 2014; 30:346-58. [PMID: 24733656 DOI: 10.1007/s12264-013-1414-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/03/2014] [Indexed: 11/28/2022] Open
Abstract
The accumulation of hyperphosphorylated tau is a common feature of several dementias. Tau is one of the brain microtubule-associated proteins. Here we discuss tau's functions in microtubule assembly and stabilization and with regard to its interactions with other proteins. We describe and analyze important post-translational modifications: hyperphosphorylation, ubiquitination, glycation, glycosylation, nitration, polyamination, proteolysis, acetylation, and methylation. We discuss how these post-translational modifications can alter tau's biological function. We analyze the role of mitochondrial health in neurodegeneration. We propose that microtubules could be a therapeutic target and review different approaches. Finally, we consider whether tau accumulation or its conformational change is related to tau-induced neurodegeneration, and propose a mechanism of neurodegeneration.
Collapse
Affiliation(s)
- Cindy Beharry
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, Graduate Center, The City University of New York, Staten Island, NY, 10314, USA
| | | | | | | | | | | |
Collapse
|
182
|
Novel presenilin mutations within Moroccan patients with Early-Onset Alzheimer's Disease. Neuroscience 2014; 269:215-22. [PMID: 24704512 DOI: 10.1016/j.neuroscience.2014.03.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 03/06/2014] [Accepted: 03/26/2014] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is a progressive brain disorder that causes gradual and irreversible loss of higher brain functions and is the most common cause of dementia in the elderly, as assessed by autopsy and clinical series. Furthermore, it has an annual incidence of approximately 3% in the 65-74-year-old age group. This incidence rate doubles with every increment of 5 years above the age of 65. In Morocco, AD affects almost 30,000 individuals and this number will possibly increase to 75,000 by 2020 (projections of the World Health Organization (WHO)). Genetically, AD is caused by a mutation in one of at least 3 genes: presenilin 1 (PS1), presenilin 2 (PS2) and the amyloid precursor protein (APP). Most cases are late onset and apparently sporadic, most likely as a result of a combination of environmental and non-dominant genetic factors. In Morocco, the genes predisposing individuals to AD and predicting disease incidence remain elusive. The purpose of the present study was to evaluate the genetic contribution of mutations in PS1 and PS2 genes to familial early-onset AD cases and sporadic late-onset AD cases. Seventeen sporadic late-onset AD cases and eight familial early-onset AD cases were seen at the memory clinic of the University of Casablanca Neurology Department. These patients underwent standard somatic neurological examination, cognitive function assessment, brain imaging and laboratory tests. Direct sequencing of each exon in PS1 and PS2 genes was performed on genomic DNA of AD patients. Further, we identified 1 novel frameshift mutation in the PS1 gene and 2 novel frameshift mutations in the PS2 gene. Our mutational analysis reports a correlation between clinical symptoms and genetic factors in our cases of Early-Onset Alzheimer's Disease (EOAD). These putative mutations cosegregate with affected family members suggesting a direct mutagenic effect.
Collapse
|
183
|
Dursun E, Gezen-Ak D, Yilmazer S. Beta amyloid suppresses the expression of the vitamin d receptor gene and induces the expression of the vitamin d catabolic enzyme gene in hippocampal neurons. Dement Geriatr Cogn Disord 2014; 36:76-86. [PMID: 23752060 DOI: 10.1159/000350319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND/AIMS The beta amyloid aggregations present in Alzheimer's disease affect neurons through various toxic alterations. The aim of this study was to determine the expression of the vitamin D receptor (VDR), 25-hydroxyvitamin D3 24-hydroxylase (an accelerator of vitamin D catabolism), and the L-type voltage-sensitive calcium channel A1C (LVSCC-A1C) in hippocampal neurons in response to beta amyloid and vitamin D treatments to test the protective effects of vitamin D and the probable effects of beta amyloid on vitamin D catabolism. METHODS The expression of the VDR, 24-hydroxylase (24OHase) and LVSCC-A1C mRNAs were studied using quantitative real-time polymerase chain reaction, and the cytotoxicity levels were determined by an ELISA in primary hippocampal neuron cultures prepared from Sprague-Dawley rat embryos. RESULTS Our results demonstrated that beta amyloid suppressed the expression of VDR mRNA and induced the expression of 24OHase and LVSCC-A1C mRNAs. CONCLUSION Beta amyloid may disrupt the vitamin D-VDR pathway and cause defective utilization of vitamin D by suppressing the level of the VDR and elevating the level of 24OHase.
Collapse
Affiliation(s)
- Erdinç Dursun
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | | | | |
Collapse
|
184
|
JAKUBÍK J, ŠANTRŮČKOVÁ E, RANDÁKOVÁ A, JANÍČKOVÁ H, ZIMČÍK P, RUDAJEV V, MICHAL P, EL-FAKAHANY EE, DOLEŽAL V. Outline of Therapeutic Interventions With Muscarinic Receptor-Mediated Transmission. Physiol Res 2014; 63:S177-89. [DOI: 10.33549/physiolres.932675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Muscarinc receptor-mediated signaling takes part in many physiological functions ranging from complex higher nervous activity to vegetative responses. Specificity of action of the natural muscarinic agonist acetylcholine is effected by action on five muscarinic receptor subtypes with particular tissue and cellular localization, and coupling preference with different G-proteins and their signaling pathways. In addition to physiological roles it is also implicated in pathologic events like promotion of carcinoma cells growth, early pathogenesis of neurodegenerative diseases in the central nervous system like Alzheimer´s disease and Parkinson´s disease, schizophrenia, intoxications resulting in drug addiction, or overactive bladder in the periphery. All of these disturbances demonstrate involvement of specific muscarinic receptor subtypes and point to the importance to develop selective pharmacotherapeutic interventions. Because of the high homology of the orthosteric binding site of muscarinic receptor subtypes there is virtually no subtype selective agonist that binds to this site. Activation of specific receptor subtypes may be achieved by developing allosteric modulators of acetylcholine binding, since ectopic binding domains on the receptor are less conserved compared to the orthosteric site. Potentiation of the effects of acetylcholine by allosteric modulators would be beneficial in cases where acetylcholine release is reduced due to pathological conditions. When presynaptic function is severly compromised, the utilization of ectopic agonists can be a thinkable solution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - V. DOLEŽAL
- Department of Neurochemistry, Institute of Physiology Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
185
|
Lerner B, Roberts JS, Shwartz M, Roter DL, Green RC, Clark JA. Distinct communication patterns during genetic counseling for late-onset Alzheimer's risk assessment. PATIENT EDUCATION AND COUNSELING 2014; 94:170-9. [PMID: 24316056 PMCID: PMC3927403 DOI: 10.1016/j.pec.2013.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/08/2013] [Accepted: 10/26/2013] [Indexed: 05/22/2023]
Abstract
OBJECTIVE To identify and characterize patient-provider communication patterns during disclosure of Alzheimer's disease genetic susceptibility test results and to assess whether these patterns reflect differing models of genetic counseling. METHODS 262 genetic counseling session audio-recordings were coded using the Roter Interactional Analysis System. Cluster analysis was used to distinguish communication patterns. Bivariate analyses were used to identify characteristics associated with the patterns. RESULTS Three patterns were identified: Biomedical-Provider-Teaching (40%), Biomedical-Patient-Driven (34.4%), and Psychosocial-Patient-Centered (26%). Psychosocial-Patient-Centered and Biomedical-Provider-Teaching sessions included more female participants while the Biomedical-Patient-Driven sessions included more male participants (p=0.04). CONCLUSION Communication patterns observed reflected the teaching model primarily, with genetic counseling models less frequently used. The emphasis on biomedical communication may potentially be at the expense of more patient-centered approaches. PRACTICE IMPLICATIONS To deliver more patient-centered care, providers may need to better balance the ratio of verbal exchange with their patients, as well as their educational and psychosocial discussions. The delineation of these patterns provides insights into the genetic counseling process that can be used to improve the delivery of genetic counseling care. These results can also be used in future research designed to study the association between patient-centered genetic counseling communication and improved patient outcomes.
Collapse
Affiliation(s)
| | - J Scott Roberts
- University of Michigan School of Public Health, Ann Arbor, USA
| | | | - Debra L Roter
- Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Robert C Green
- Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Jack A Clark
- Edith Nourse Rogers Memorial Veterans Hospital, Bedford, USA
| |
Collapse
|
186
|
Evin G, Barakat A. Critical analysis of the use of β-site amyloid precursor protein-cleaving enzyme 1 inhibitors in the treatment of Alzheimer's disease. Degener Neurol Neuromuscul Dis 2014; 4:1-19. [PMID: 32669897 PMCID: PMC7337240 DOI: 10.2147/dnnd.s41056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 03/06/2014] [Indexed: 01/18/2023] Open
Abstract
Alzheimer’s disease (AD) is the major cause of dementia in the elderly and an unmet clinical challenge. A variety of therapies that are currently under development are directed to the amyloid cascade. Indeed, the accumulation and toxicity of amyloid-β (Aβ) is believed to play a central role in the etiology of the disease, and thus rational interventions are aimed at reducing the levels of Aβ in the brain. Targeting β-site amyloid precursor protein-cleaving enzyme (BACE)-1 represents an attractive strategy, as this enzyme catalyzes the initial and rate-limiting step in Aβ production. Observation of increased levels of BACE1 and enzymatic activity in the brain, cerebrospinal fluid, and platelets of patients with AD and mild cognitive impairment supports the potential benefits of BACE1 inhibition. Numerous potent inhibitors have been generated, and many of these have been proved to lower Aβ levels in the brain of animal models. Over 10 years of intensive research on BACE1 inhibitors has now culminated in advancing half a dozen of these drugs into human trials, yet translating the in vitro and cellular efficacy of BACE1 inhibitors into preclinical and clinical trials represents a challenge. This review addresses the promises and also the potential problems associated with BACE1 inhibitors for AD therapy, as the complex biological function of BACE1 in the brain is becoming unraveled.
Collapse
Affiliation(s)
- Genevieve Evin
- Oxidation Biology Laboratory, Mental Health Research Institute, Florey Institute of Neuroscience and Mental Health, University of Melbourne.,Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Adel Barakat
- Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
187
|
Nakajima T, Aratani S, Nakazawa M, Hirose T, Fujita H, Nishioka K. Implications of transcriptional coactivator CREB binding protein complexes in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
188
|
Solberg NO, Chamberlin R, Vigil JR, Deck LM, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA, Garwood M, Bisoffi M, Severns V, Vander Jagt DL, Sillerud LO. Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer's disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2014; 40:191-212. [PMID: 24413613 PMCID: PMC4407807 DOI: 10.3233/jad-131031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is associated with a microglia-dependent neuroinflammatory response against plaques containing the fibrous protein amyloid-β (Aβ). Activation of microglia, which closely associate with Aβ plaques, engenders the release of pro-inflammatory cytokines and the internalization of Aβ fibrils. Since the pro-inflammatory transcription factor NF-κB is one of the major regulators of Aβ-induced inflammation, we treated transgenic amyloid-β protein protein/presenilin-1 (AβPP/PS1) mice for one year with a low dose (0.01% by weight in the diet) of either of two trans-stilbene NF-κB inhibitors, resveratrol or a synthetic analog LD55. The 3D distribution of Aβ plaques was measured ex vivo in intact brains at 60 μm resolution by quantitative magnetic resonance imaging (MRI) using blood-brain barrier-permeable, anti-AβPP-conjugated superparamagentic iron oxide nanoparticles (SPIONs). The MRI measurements were confirmed by optical microscopy of thioflavin-stained brain tissue sections and indicated that supplementation with either of the two trans-stilbenes lowered Aβ plaque density in the cortex, caudoputamen, and hippocampus by 1.4 to 2-fold. The optical measurements also included the hippocampus and indicated that resveratrol and LD55 reduced average Aβ plaque density by 2.3-fold and 3.1-fold, respectively. Ex vivo measurements of the regional distribution of microglial activation by Iba-1 immunofluorescence of brain tissue sections showed that resveratrol and LD55 reduced average microglial activation by 4.2- fold and 3.5-fold, respectively. Since LD55 lacked hydroxyl groups but both resveratrol and LD55 concomitantly reduced both Aβ plaque burden and neuroinflammation to a similar extent, it appears that the antioxidant potential of resveratrol is not an important factor in plaque reduction.
Collapse
Affiliation(s)
- Nathan O. Solberg
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Ryan Chamberlin
- The Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Jenette R. Vigil
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lorraine M. Deck
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM, USA
| | | | - David C. Brown
- Departments of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Christina I. Brady
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Michael Garwood
- The Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Marco Bisoffi
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Virginia Severns
- Departments of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - David L. Vander Jagt
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Quatros LLC, Albuquerque, NM, USA
| | - Laurel O. Sillerud
- Departments of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
189
|
Grimm MOW, Mett J, Stahlmann CP, Haupenthal VJ, Zimmer VC, Hartmann T. Neprilysin and Aβ Clearance: Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease. Front Aging Neurosci 2013; 5:98. [PMID: 24391587 PMCID: PMC3870290 DOI: 10.3389/fnagi.2013.00098] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 12/09/2013] [Indexed: 12/18/2022] Open
Abstract
One of the characteristic hallmarks of Alzheimer's disease (AD) is an accumulation of amyloid β (Aβ) leading to plaque formation and toxic oligomeric Aβ complexes. Besides the de novo synthesis of Aβ caused by amyloidogenic processing of the amyloid precursor protein (APP), Aβ levels are also highly dependent on Aβ degradation. Several enzymes are described to cleave Aβ. In this review we focus on one of the most prominent Aβ degrading enzymes, the zinc-metalloprotease Neprilysin (NEP). In the first part of the review we discuss beside the general role of NEP in Aβ degradation the alterations of the enzyme observed during normal aging and the progression of AD. In vivo and cell culture experiments reveal that a decreased NEP level results in an increased Aβ level and vice versa. In a pathological situation like AD, it has been reported that NEP levels and activity are decreased and it has been suggested that certain polymorphisms in the NEP gene result in an increased risk for AD. Conversely, increasing NEP activity in AD mouse models revealed an improvement in some behavioral tests. Therefore it has been suggested that increasing NEP might be an interesting potential target to treat or to be protective for AD making it indispensable to understand the regulation of NEP. Interestingly, it is discussed that the APP intracellular domain (AICD), one of the cleavage products of APP processing, which has high similarities to Notch receptor processing, might be involved in the transcriptional regulation of NEP. However, the mechanisms of NEP regulation by AICD, which might be helpful to develop new therapeutic strategies, are up to now controversially discussed and summarized in the second part of this review. In addition, we review the impact of AICD not only in the transcriptional regulation of NEP but also of further genes.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| | - Janine Mett
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | | | | | - Valerie C Zimmer
- Experimental Neurology, Saarland University , Homburg, Saar , Germany
| | - Tobias Hartmann
- Experimental Neurology, Saarland University , Homburg, Saar , Germany ; Neurodegeneration and Neurobiology, Saarland University , Homburg, Saar , Germany ; Deutsches Institut für DemenzPrävention, Saarland University , Homburg, Saar , Germany
| |
Collapse
|
190
|
Kruppa AJ, Ott S, Chandraratna DS, Irving JA, Page RM, Speretta E, Seto T, Camargo LM, Marciniak SJ, Lomas DA, Crowther DC. Suppression of Aβ toxicity by puromycin-sensitive aminopeptidase is independent of its proteolytic activity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:2115-26. [PMID: 23911349 PMCID: PMC3898073 DOI: 10.1016/j.bbadis.2013.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 07/08/2013] [Accepted: 07/25/2013] [Indexed: 12/12/2022]
Abstract
The accumulation of β-amyloid (Aβ) peptide in the brain is one of the pathological hallmarks of Alzheimer's disease and is thought to be of primary aetiological significance. In an unbiased genetic screen, we identified puromycin-sensitive aminopeptidase (PSA) as a potent suppressor of Aβ toxicity in a Drosophila model system. We established that coexpression of Drosophila PSA (dPSA) in the flies' brains improved their lifespan, protected against locomotor deficits, and reduced brain Aβ levels by clearing the Aβ plaque-like deposits. However, confocal microscopy and subcellular fractionation of amyloid-expressing 7PA2 cells demonstrated that PSA localizes to the cytoplasm. Therefore, PSA and Aβ are unlikely to be in the same cellular compartment; moreover, when we artificially placed them in the same compartment in flies, we could not detect a direct epistatic interaction. The consequent hypothesis that PSA's suppression of Aβ toxicity is indirect was supported by the finding that Aβ is not a proteolytic substrate for PSA in vitro. Furthermore, we showed that the enzymatic activity of PSA is not required for rescuing Aβ toxicity in neuronal SH-SY5Y cells. We investigated whether the stimulation of autophagy by PSA was responsible for these protective effects. However PSA's promotion of autophagosome fusion with lysosomes required proteolytic activity and so its effect on autophagy is not identical to its protection against Aβ toxicity.
Collapse
Affiliation(s)
- Antonina J. Kruppa
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Stanislav Ott
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Dhia S. Chandraratna
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - James A. Irving
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Richard M. Page
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Elena Speretta
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Tiffany Seto
- Merck Research Labs, Merck & Co., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Luiz Miguel Camargo
- Merck Research Labs, Merck & Co., 33 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Stefan J. Marciniak
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - David A. Lomas
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Medicine, University of Cambridge, Box 157, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Damian C. Crowther
- Cambridge Institute for Medical Research, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
191
|
Sillerud LO, Solberg NO, Chamberlain R, Orlando RA, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA, Garwood M, Vander Jagt DL. SPION-enhanced magnetic resonance imaging of Alzheimer's disease plaques in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis 2013; 34:349-65. [PMID: 23229079 DOI: 10.3233/jad-121171] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In our program to develop non-invasive magnetic resonance imaging (MRI) methods for the diagnosis of Alzheimer's disease (AD), we have synthesized antibody-conjugated, superparamagnetic iron oxide nanoparticles (SPIONs) for use as an in vivo agent for MRI detection of amyloid-β plaques in AD. Here we report studies in AβPP/PS1 transgenic mice, which demonstrate the ability of novel anti-AβPP conjugated SPIONs to penetrate the blood-brain barrier to act as a contrast agent for MR imaging of plaques. The conspicuity of the plaques increased from an average Z-score of 5.1 ± 0.5 to 8.3 ± 0.2 when the plaque contrast to noise ratio was compared in control AD mice with AD mice treated with SPIONs. The number of MRI-visible plaques per brain increased from 347 ± 45 in the control AD mice, to 668 ± 86 in the SPION treated mice. These results indicated that our SPION enhanced amyloid-β detection method delivers an efficacious, non-invasive MRI detection method in transgenic mice.
Collapse
Affiliation(s)
- Laurel O Sillerud
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Liu JP, Feng L, Zhang MH, Ma DY, Wang SY, Gu J, Fu Q, Qu R, Ma SP. Neuroprotective effect of Liuwei Dihuang decoction on cognition deficits of diabetic encephalopathy in streptozotocin-induced diabetic rat. JOURNAL OF ETHNOPHARMACOLOGY 2013; 150:371-81. [PMID: 24041458 DOI: 10.1016/j.jep.2013.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liuwei Dihuang decoction (LWDHD) is a well-known prescription of traditional Chinese medicine (TCM) and consists of six crude drugs including Rehmannia glutinosa Libosch. (family: Scrophulariaceae), Cornus officinalis Sieb. (family: Cornaceae), Dioscorea oppositifolia L. (family: Dioscoreaceae), Paoenia ostii (family: Paeoniaceae), Alisma orientale (G. Samuelsson) Juz (family: Alismataceae) and Poria cocos (Schw.) Wolf (family: Polyporaceae). It has been used for the treatment of "Kidney-Yin" deficiency syndrome in clinic in China for a long time. Recent studies found that LWDHD had a potential benefit for the treatment of diabetic complications. The aim of the present study is to investigate the neuroprotective effect of LWDHD on memory and cognition deficits in streptozotocin (STZ)-induced diabetic encephalopathy (DE) rats. MATERIALS AND METHODS Adult male Sprague Dawley (SD) rats were fed with high-glucose-fat diet for 50 days and then received an intraperitoneal injection of STZ (40 mg/kg) to induce DE model. Morris water maze test was used to evaluate the memory and cognition capability of DE rats. Choline acetyltransferase (ChAT), acetylcholinesterase (AChE), Na(+)-K(+)-ATP enzyme, iNOS and GSH kits were used to determine their activities or content in hippocampus. TUNEL staining, immunohistochemistry and Congo red staining were conducted to evaluate the apoptosis, caspase-3 protein expression, insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) expressions, as well as Aβ deposition. RESULTS The treatment with LWDHD (1 and 2g/kg, p.o., once daily, 30 days) could significantly reduce the escape latency time and path length, and obviously enhance the spent time in the target quadrant and platform crossings in Morris water maze test compared with model group (P<0.05, P<0.01). LWDHD could also significantly decrease the level of fasting blood glucose, increase Na(+)-K(+)-ATP enzyme and ChAT activities, enhance remarkedly GSH level while decrease significantly AChE and iNOS activities in hippocampus (P<0.05, P<0.01). Furthermore, TUNEL staining, Congo red staining and immunohistochemistry showed that LWDHD significantly improved the expressions of IGF-1 and BDNF, attenuated the neural apoptosis, overexpression of caspase-3 and Aβ deposition in the hippocampus and cerebral cortex of STZ-induced DE rats (P<0.01). CONCLUSION Our findings suggested that LWDHD had a neuroprotective effect on DE rats. LWDHD may be of benefit in the treatment of DE.
Collapse
Affiliation(s)
- Ji-ping Liu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Jiangsu, Nanjing 210009, PR China; Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Kitazume S, Yoshihisa A, Yamaki T, Oikawa M, Tachida Y, Ogawa K, Imamaki R, Takeishi Y, Yamamoto N, Taniguchi N. Soluble amyloid precursor protein 770 is a novel biomarker candidate for acute coronary syndrome. Proteomics Clin Appl 2013; 7:657-63. [PMID: 23857744 DOI: 10.1002/prca.201200135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/08/2013] [Accepted: 04/16/2013] [Indexed: 01/02/2023]
Abstract
Most Alzheimer disease patients show deposition of amyloid β (Aβ) peptide in blood vessels as well as the brain parenchyma. We previously found that vascular endothelial cells express amyloid β precursor protein (APP) 770, a different APP isoform from neuronal APP695, and that they produce amyloid β peptide. We analyzed the glycosylation of APP770 and found that O-glycosylated sAPP770 is preferentially processed by proteases for Aβ production. Because the soluble APP cleavage product sAPP is considered to be a possible marker for Alzheimer disease diagnosis, sAPP, consisting of a mixture of these variants, has been widely measured. We hypothesized that measurement of the endothelial APP770 cleavage product in patients separately from that of neuronal APP695 would enable us to discriminate between endothelial and neurological dysfunctions. Our recent findings, showing that the level of plasma sAPP770 is significantly higher in patients with acute coronary syndrome, raise the possibility that sAPP770 could be an indicator of endothelial dysfunction. In this review, we first describe the expression, glycosylation, and processing of APP770, and then discuss sAPP770 as a novel biomarker candidate of acute coronary syndrome.
Collapse
Affiliation(s)
- Shinobu Kitazume
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan.
| | - Akiomi Yoshihisa
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Takayoshi Yamaki
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Masayoshi Oikawa
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Yuriko Tachida
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Kazuko Ogawa
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Rie Imamaki
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| | - Yasuchika Takeishi
- Department of Advanced Cardiac Therapeutics, Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Naomasa Yamamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, Ohu University, Tomita, Koriyama, Fukushima, Japan
| | - Naoyuki Taniguchi
- Disease Glycomics Team, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
194
|
Chen DL, Zhang P, Lin L, Shuai O, Zhang HM, Liu SH, Wang JY. Protective effect of Bajijiasu against β-amyloid-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 2013; 33:837-50. [PMID: 23812758 DOI: 10.1007/s10571-013-9950-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/07/2013] [Indexed: 02/06/2023]
Abstract
Beta-amyloid peptide (Aβ), a major protein component of senile plaques associated with Alzheimer's disease (AD), is also directly neurotoxic. Mitigation of Aβ-induced neurotoxicity is thus a possible therapeutic approach to delay or prevent onset and progression of AD. This study evaluated the protective effect of Bajijiasu (β- D-fructofuranosyl (2-2) β- D-fructofuranosyl), a dimeric fructose isolated from the Chinese herb Radix Morinda officinalis, on Aβ-induced neurotoxicity in pheochromocytoma (PC12) cells. Bajijiasu alone had no endogenous neurotoxicity up to 200 μM. Brief pretreatment with 10-40 μM Bajijiasu (2 h) significantly reversed the reduction in cell viability induced by subsequent 24 h exposure to Aβ25-35 (21 μM) as measured by MTT and LDH assays, and reduced Aβ25-35-induced apoptosis as indicated by reduced annexin V-EGFP staining. Bajijiasu also decreased the accumulation of intracellular reactive oxygen species and the lipid peroxidation product malondialdehyde in PC12 cells, upregulated expression of glutathione reductase and superoxide dismutase, prevented depolarization of the mitochondrial membrane potential (Ψm), and blocked Aβ25-35-induced increases in [Ca(2+)] i . Furthermore, Bajijiasu reversed Aβ25-35-induced changes in the expression levels of p21, CDK4, E2F1, Bax, NF-κB p65, and caspase-3. Bajijiasu is neuroprotective against Aβ25-35-induced neurotoxicity in PC12 cells, likely by protecting against oxidative stress and ensuing apoptosis.
Collapse
Affiliation(s)
- Di-Ling Chen
- Southern Institute of Pharmaceutical Research, South China Normal University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
195
|
Abstract
Protein misfolding disorders, such as Alzheimer's disease and Parkinson's disease, have in common that a protein accumulates in an insoluble form in the affected tissue. The process of aggregation follows a mechanism of seeded polymerization. Although the toxic species is still not well defined, the process, rather than the end product, of fibril formation is likely the main culprit in amyloid toxicity. These findings suggest that therapeutic strategies directed against the protein misfolding cascade should focus on depleting aggregation intermediates rather than on large fibrillar aggregates. Recent studies involving natural compounds have suggested new intervention strategies. The polyphenol epi-gallocatechine-3-gallate (EGCG), the main polyphenol in Camilla sinensis, binds directly to a large number of proteins that are involved in protein misfolding diseases and inhibits their fibrillization. Instead, it promotes the formation of stable, spherical aggregates. These spherical aggregates are not cytotoxic, have a lower β-sheet content than fibrils, and do not catalyze fibril formation. Correspondingly, epi-gallocatechine-3-gallate remodels amyloid fibrils into aggregates with the same properties. Derivatives of Orcein, which is a phenoxazine dye that can be isolated from the lichen Roccella tinctoria, form a second promising class of natural compounds. They accelerate fibril formation of the Alzheimer's disease-related amyloid-beta peptide. At the same time these compounds deplete oligomeric and protofibrillar forms of the peptide. These compounds may serve as proof-of-principle for the strategies of promoting and redirecting fibril formation. Both may emerge as two promising new therapeutic approaches to intervening into protein misfolding processes.
Collapse
Affiliation(s)
- Jan Bieschke
- Department of Biomedical Engineering, Washington University in St Louis, One Brookings Drive, St Louis, MO 63130, USA.
| |
Collapse
|
196
|
Abstract
Mesenchymal stem cells (MSC) show great promise in a wide array of therapeutic applications due mainly to their capacity to suppress immune and inflammatory reactions and instigate normal tissue repair processes. The secretion of bioactive factors is thought to play a predominant role in the mechanisms of action for these clinically relevant functions. As such, a large body of MSC research has focussed on characterization of the MSC secretome; including both soluble factors and factors released in extracellular vesicles (e.g., exosomes and microvesicles). This review provides an overview of our current knowledge of the MSC secretome in the context of determining the clinical relevance of these cells. In addition, the review summarizes various approaches that have been utilized to identify proteins secreted by MSC and discusses the advantages and limitations of different proteomic methods. Finally, we discuss issues that must be addressed before the clinical relevance of research into the MSC secretome can be realized.
Collapse
|
197
|
Pacheco-Quinto J, Herdt A, Eckman CB, Eckman EA. Endothelin-converting enzymes and related metalloproteases in Alzheimer's disease. J Alzheimers Dis 2013; 33 Suppl 1:S101-10. [PMID: 22903130 DOI: 10.3233/jad-2012-129043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The efficient clearance of amyloid-β (Aβ) is essential to modulate levels of the peptide in the brain and to prevent it from accumulating in senile plaques, a hallmark of Alzheimer's disease (AD) pathology.We and others have shown that failure in Aβ catabolism can produce elevations in Aβ concentration similar to those observed in familial forms of AD. Based on the available evidence, it remains plausible that in late-onset AD, disturbances in the activity of Aβ degrading enzymes could induce Aβ accumulation, and that this increase could result in AD pathology. The following review presents a historical perspective of the parallel discovery of three vasopeptidases (neprilysin and endothelin-converting enzymes-1 and -2) as important Aβ degrading enzymes. The recognition of the role of these vasopeptidases in Aβ degradation, beyond bringing to light a possible explanation of how cardiovascular risk factors may influence AD risk, highlights a possible risk of the use of inhibitors of these enzymes for other clinical indications such as hypertension. We will discuss in detail the experiments conducted to assess the impact of vasopeptidase deficiency (through pharmacological inhibition or genetic mutation) on Aβ accumulation, as well as the cooperative effect of multiple Aβ degrading enzymes to regulate the concentration of the peptide at multiple sites, both intracellular and extracellular, throughout the brain.
Collapse
Affiliation(s)
- Javier Pacheco-Quinto
- Biomedical Research Institute of New Jersey, MidAtlantic Neonatology Associates, and Atlantic Health System, Morristown, NJ, USA
| | | | | | | |
Collapse
|
198
|
Sadler JBA, Bryant NJ, Gould GW, Welburn CR. Posttranslational modifications of GLUT4 affect its subcellular localization and translocation. Int J Mol Sci 2013; 14:9963-78. [PMID: 23665900 PMCID: PMC3676823 DOI: 10.3390/ijms14059963] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 01/05/2023] Open
Abstract
The facilitative glucose transporter type 4 (GLUT4) is expressed in adipose and muscle and plays a vital role in whole body glucose homeostasis. In the absence of insulin, only ~1% of cellular GLUT4 is present at the plasma membrane, with the vast majority localizing to intracellular organelles. GLUT4 is retained intracellularly by continuous trafficking through two inter-related cycles. GLUT4 passes through recycling endosomes, the trans Golgi network and an insulin-sensitive intracellular compartment, termed GLUT4-storage vesicles or GSVs. It is from GSVs that GLUT4 is mobilized to the cell surface in response to insulin, where it increases the rate of glucose uptake into the cell. As with many physiological responses to external stimuli, this regulated trafficking event involves multiple posttranslational modifications. This review outlines the roles of posttranslational modifications of GLUT4 on its function and insulin-regulated trafficking.
Collapse
Affiliation(s)
| | - Nia J. Bryant
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Gwyn W. Gould
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; E-Mails: (J.B.A.S.); (N.J.B.); (G.W.G.)
| | - Cassie R. Welburn
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +44-141-330-6454; Fax: +44-141-330-5481
| |
Collapse
|
199
|
Zhao J, Gao T, Yan Y, Chen G, Li G. Probing into the interaction of β-amyloid peptides with bilayer lipid membrane by electrochemical techniques. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
200
|
Abstract
In vivo imaging of amyloid-β (Aβ) with positron emission tomography has moved from the research arena into clinical practice. Clinicians working with cognitive decline and dementia must become familiar with its benefits and limitations. Amyloid imaging allows earlier diagnosis of Alzheimer disease and better differential diagnosis of dementia and provides prognostic information for mild cognitive impairment. It also has an increasingly important role in therapeutic trial recruitment and for evaluation of anti-Aβ treatments. Longitudinal observations are required to elucidate the role of Aβ deposition in the course of Alzheimer disease and provide information needed to fully use the prognostic power of this investigation.
Collapse
Affiliation(s)
- Christopher C Rowe
- Department of Nuclear Medicine, Centre for PET, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia.
| | | |
Collapse
|