151
|
GlnR and PhoP Directly Regulate the Transcription of Genes Encoding Starch-Degrading, Amylolytic Enzymes in Saccharopolyspora erythraea. Appl Environ Microbiol 2016; 82:6819-6830. [PMID: 27637875 PMCID: PMC5103082 DOI: 10.1128/aem.02117-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 09/07/2016] [Indexed: 11/20/2022] Open
Abstract
Starch-degrading enzymes hydrolyze starch- and starch-derived oligosaccharides to yield glucose. We investigated the transcriptional regulation of genes encoding starch-degrading enzymes in the industrial actinobacterium Saccharopolyspora erythraea We observed that most genes encoding amylolytic enzymes (one α-amylase, one glucoamylase, and four α-glucosidases) were regulated by GlnR and PhoP, which are global regulators of nitrogen and phosphate metabolism, respectively. Electrophoretic mobility shift assays and reverse transcription-PCR (RT-PCR) analyses demonstrated that GlnR and PhoP directly interact with their promoter regions and collaboratively or competitively activate their transcription. Deletion of glnR caused poor growth on starch, maltodextrin, and maltose, whereas overexpression of glnR and phoP increased the total activity of α-glucosidase, resulting in enhanced carbohydrate utilization. Additionally, transcript levels of amylolytic genes and total glucosidase activity were induced in response to nitrogen and phosphate limitation. Furthermore, regulatory effects of GlnR and PhoP on starch-degrading enzymes were conserved in Streptomyces coelicolor A3(2). These results demonstrate that GlnR and PhoP are involved in polysaccharide degradation by mediating the interplay among carbon, nitrogen, and phosphate metabolism in response to cellular nutritional states. Our study reveals a novel regulatory mechanism underlying carbohydrate metabolism, and suggests new possibilities for designing genetic engineering approaches to improve the rate of utilization of starch in actinobacteria.IMPORTANCE The development of efficient strategies for utilization of biomass-derived sugars, such as starch and cellulose, remains a major technical challenge due to the weak activity of associated enzymes. Here, we found that GlnR and PhoP directly regulate the transcription of genes encoding amylolytic enzymes and present insights into the regulatory mechanisms of degradation and utilization of starch in actinobacteria. Two nutrient-sensing regulators may play important roles in creating a direct association between nitrogen/phosphate metabolisms and carbohydrate utilization, as well as modulate the C:N:P balance in response to cellular nutritional states. These findings highlight the interesting possibilities for designing genetic engineering approaches and optimizing the fermentation process to improve the utilization efficiency of sugars in actinobacteria via overexpression of the glnR and phoP genes and nutrient signal stimulation.
Collapse
|
152
|
Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K. Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Protein Sci 2016; 25:2095-2101. [PMID: 27576940 DOI: 10.1002/pro.3031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
The glycoside hydrolase family 31 (GH31) α-glucosidases play vital roles in catabolic and regulated degradation, including the α-subunit of glucosidase II (GIIα), which catalyzes trimming of the terminal glucose residues of N-glycan in glycoprotein processing coupled with quality control in the endoplasmic reticulum (ER). Among the known GH31 enzymes, only GIIα functions with its binding partner, regulatory β-subunit (GIIβ), which harbors a lectin domain for substrate recognition. Although the structural data have been reported for GIIα and the GIIβ lectin domain, the interaction mode between GIIα and GIIβ remains unknown. Here, we determined the structure of a complex formed between GIIα and the GIIα-binding domain of GIIβ, thereby providing a structural basis underlying the functional extension of this unique GH31 enzyme.
Collapse
Affiliation(s)
- Tadashi Satoh
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,JST, PRESTO, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Takayasu Toshimori
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan.,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masanori Noda
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Susumu Uchiyama
- Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.,Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, 467-8603, Japan. .,Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan. .,Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
153
|
Sethi S, Saini JS, Mohan A, Brar NK, Verma S, Sarao NK, Gill KS. Comparative and evolutionary analysis of α-amylase gene across monocots and dicots. Funct Integr Genomics 2016; 16:545-55. [PMID: 27481351 DOI: 10.1007/s10142-016-0505-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 10/21/2022]
Abstract
α-amylase is an important enzyme involved in starch degradation to provide energy to the germinating seedling. The present study was conducted to reveal structural and functional evolution of this gene among higher plants. Discounting polyploidy, most plant species showed only a single copy of the gene making multiple isoforms in different tissues and developmental stages. Genomic length of the gene ranged from 1472 bp in wheat to 2369 bp in soybean, and the size variation was mainly due to differences in the number and size of introns. In spite of this variation, the intron phase distribution and insertion sites were mostly conserved. The predicted protein size ranged from 414 amino acid (aa) in soybean to 449aa in Brachypodium. Overall, the protein sequence similarity among orthologs ranged from 56.4 to 97.4 %. Key motifs and domains along with their relative distances were conserved among plants although several species, genera, and class specific motifs were identified. The glycosyl hydrolase superfamily domain length varied from 342aa in soybean to 384aa in maize and sorghum while length of the C-terminal β-sheet domain was highly conserved with 61aa in all monocots and Arabidopsis but was 59aa in soybean and Medicago. Compared to rice, 3D structure of the proteins showed 89.8 to 91.3 % similarity among the monocots and 72.7 to 75.8 % among the dicots. Sequence and relative location of the five key aa required for the ligand binding were highly conserved in all species except rice.
Collapse
Affiliation(s)
- Sorabh Sethi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Johar S Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Amita Mohan
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Navreet K Brar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Shabda Verma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Navraj K Sarao
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kulvinder S Gill
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
154
|
Immobilization of Glycoside Hydrolase Families GH1, GH13, and GH70: State of the Art and Perspectives. Molecules 2016; 21:molecules21081074. [PMID: 27548117 PMCID: PMC6274110 DOI: 10.3390/molecules21081074] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/20/2022] Open
Abstract
Glycoside hydrolases (GH) are enzymes capable to hydrolyze the glycosidic bond between two carbohydrates or even between a carbohydrate and a non-carbohydrate moiety. Because of the increasing interest for industrial applications of these enzymes, the immobilization of GH has become an important development in order to improve its activity, stability, as well as the possibility of its reuse in batch reactions and in continuous processes. In this review, we focus on the broad aspects of immobilization of enzymes from the specific GH families. A brief introduction on methods of enzyme immobilization is presented, discussing some advantages and drawbacks of this technology. We then review the state of the art of enzyme immobilization of families GH1, GH13, and GH70, with special attention on the enzymes β-glucosidase, α-amylase, cyclodextrin glycosyltransferase, and dextransucrase. In each case, the immobilization protocols are evaluated considering their positive and negative aspects. Finally, the perspectives on new immobilization methods are briefly presented.
Collapse
|
155
|
Syson K, Stevenson CEM, Miah F, Barclay JE, Tang M, Gorelik A, Rashid AM, Lawson DM, Bornemann S. Ligand-bound Structures and Site-directed Mutagenesis Identify the Acceptor and Secondary Binding Sites of Streptomyces coelicolor Maltosyltransferase GlgE. J Biol Chem 2016; 291:21531-21540. [PMID: 27531751 PMCID: PMC5076824 DOI: 10.1074/jbc.m116.748160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/02/2016] [Indexed: 11/20/2022] Open
Abstract
GlgE is a maltosyltransferase involved in α-glucan biosynthesis in bacteria that has been genetically validated as a target for tuberculosis therapies. Crystals of the Mycobacterium tuberculosis enzyme diffract at low resolution so most structural studies have been with the very similar Streptomyces coelicolor GlgE isoform 1. Although the donor binding site for α-maltose 1-phosphate had been previously structurally defined, the acceptor site had not. Using mutagenesis, kinetics, and protein crystallography of the S. coelicolor enzyme, we have now identified the +1 to +6 subsites of the acceptor/product, which overlap with the known cyclodextrin binding site. The sugar residues in the acceptor subsites +1 to +5 are oriented such that they disfavor the binding of malto-oligosaccharides that bear branches at their 6-positions, consistent with the known acceptor chain specificity of GlgE. A secondary binding site remote from the catalytic center was identified that is distinct from one reported for the M. tuberculosis enzyme. This new site is capable of binding a branched α-glucan and is most likely involved in guiding acceptors toward the donor site because its disruption kinetically compromises the ability of GlgE to extend polymeric substrates. However, disruption of this site, which is conserved in the Streptomyces venezuelae GlgE enzyme, did not affect the growth of S. venezuelae or the structure of the polymeric product. The acceptor subsites +1 to +4 in the S. coelicolor enzyme are well conserved in the M. tuberculosis enzyme so their identification could help inform the design of inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Karl Syson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Clare E M Stevenson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Farzana Miah
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - J Elaine Barclay
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Minhong Tang
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Andrii Gorelik
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Abdul M Rashid
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - David M Lawson
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Stephen Bornemann
- From the Biological Chemistry Department, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
156
|
Soverini M, Rampelli S, Turroni S, Schnorr SL, Quercia S, Castagnetti A, Biagi E, Brigidi P, Candela M. Variations in the Post-weaning Human Gut Metagenome Profile As Result of Bifidobacterium Acquisition in the Western Microbiome. Front Microbiol 2016; 7:1058. [PMID: 27462302 PMCID: PMC4940381 DOI: 10.3389/fmicb.2016.01058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/23/2016] [Indexed: 12/13/2022] Open
Abstract
Studies of the gut microbiome variation among human populations revealed the existence of robust compositional and functional layouts matching the three subsistence strategies that describe a trajectory of changes across our recent evolutionary history: hunting and gathering, rural agriculture, and urban post-industrialized agriculture. In particular, beside the overall reduction of ecosystem diversity, the gut microbiome of Western industrial populations is typically characterized by the loss of Treponema and the acquisition of Bifidobacterium as an abundant inhabitant of the post-weaning gut microbial ecosystem. In order to advance the hypothesis about the possible adaptive nature of this exchange, here we explore specific functional attributes that correspond to the mutually exclusive presence of Treponema and Bifidobacterium using publically available gut metagenomic data from Hadza hunter-gatherers and urban industrial Italians. According to our findings, Bifidobacterium provides the enteric ecosystem with a diverse panel of saccharolytic functions, well suited to the array of gluco- and galacto-based saccharides that abound in the Western diet. On the other hand, the metagenomic functions assigned to Treponema are more predictive of a capacity to incorporate complex polysaccharides, such as those found in unrefined plant foods, which are consistently incorporated in the Hadza diet. Finally, unlike Treponema, the Bifidobacterium metagenome functions include genes that permit the establishment of microbe-host immunological cross-talk, suggesting recent co-evolutionary events between the human immune system and Bifidobacterium that are adaptive in the context of agricultural subsistence and sedentary societies.
Collapse
Affiliation(s)
- Matteo Soverini
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | | | - Sara Quercia
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Andrea Castagnetti
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Patrizia Brigidi
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| |
Collapse
|
157
|
Møller MS, Henriksen A, Svensson B. Structure and function of α-glucan debranching enzymes. Cell Mol Life Sci 2016; 73:2619-41. [PMID: 27137180 PMCID: PMC11108273 DOI: 10.1007/s00018-016-2241-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.
Collapse
Affiliation(s)
- Marie Sofie Møller
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Molecular Protein Science, Department of Chemistry, Lund University, 221 00, Lund, Sweden.
| | - Anette Henriksen
- Global Research Unit, Department of Large Protein Biophysics and Formulation, Novo Nordisk A/S, Novo Nordisk Park, 2760, Måløv, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
158
|
Channale SM, Bhide AJ, Yadav Y, Kashyap G, Pawar PK, Maheshwari VL, Ramasamy S, Giri AP. Characterization of two coleopteran α-amylases and molecular insights into their differential inhibition by synthetic α-amylase inhibitor, acarbose. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 74:1-11. [PMID: 27132147 DOI: 10.1016/j.ibmb.2016.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
Post-harvest insect infestation of stored grains makes them unfit for human consumption and leads to severe economic loss. Here, we report functional and structural characterization of two coleopteran α-amylases viz. Callosobruchus chinensis α-amylase (CcAmy) and Tribolium castaneum α-amylase (TcAmy) along with their interactions with proteinaceous and non-proteinaceous α-amylase inhibitors. Secondary structural alignment of CcAmy and TcAmy with other coleopteran α-amylases revealed conserved motifs, active sites, di-sulfide bonds and two point mutations at spatially conserved substrate or inhibitor-binding sites. Homology modeling and molecular docking showed structural differences between these two enzymes. Both the enzymes had similar optimum pH values but differed in their optimum temperature. Overall, pattern of enzyme stabilities were similar under various temperature and pH conditions. Further, CcAmy and TcAmy differed in their substrate affinity and catalytic efficiency towards starch and amylopectin. HPLC analysis detected common amylolytic products like maltose and malto-triose while glucose and malto-tetrose were unique in CcAmy and TcAmy catalyzed reactions respectively. At very low concentrations, wheat α-amylase inhibitor was found to be superior over the acarbose as far as complete inhibition of amylolytic activities of CcAmy and TcAmy was concerned. Mechanism underlying differential amylolytic reaction inhibition by acarbose was discussed.
Collapse
Affiliation(s)
- Sonal M Channale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Amey J Bhide
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Yashpal Yadav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Garima Kashyap
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur 416 004, MS, India
| | - V L Maheshwari
- School of Life Sciences, North Maharashtra University, Jalgaon 425 001, MS, India
| | - Sureshkumar Ramasamy
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, MS, India.
| |
Collapse
|
159
|
Janeček Š, Gabriško M. Remarkable evolutionary relatedness among the enzymes and proteins from the α-amylase family. Cell Mol Life Sci 2016; 73:2707-25. [PMID: 27154042 PMCID: PMC11108405 DOI: 10.1007/s00018-016-2246-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/17/2022]
Abstract
The α-amylase is a ubiquitous starch hydrolase catalyzing the cleavage of the α-1,4-glucosidic bonds in an endo-fashion. Various α-amylases originating from different taxonomic sources may differ from each other significantly in their exact substrate preference and product profile. Moreover, it also seems to be clear that at least two different amino acid sequences utilizing two different catalytic machineries have evolved to execute the same α-amylolytic specificity. The two have been classified in the Cabohydrate-Active enZyme database, the CAZy, in the glycoside hydrolase (GH) families GH13 and GH57. While the former and the larger α-amylase family GH13 evidently forms the clan GH-H with the families GH70 and GH77, the latter and the smaller α-amylase family GH57 has only been predicted to maybe define a future clan with the family GH119. Sequences and several tens of enzyme specificities found throughout all three kingdoms in many taxa provide an interesting material for evolutionarily oriented studies that have demonstrated remarkable observations. This review emphasizes just the three of them: (1) a close relatedness between the plant and archaeal α-amylases from the family GH13; (2) a common ancestry in the family GH13 of animal heavy chains of heteromeric amino acid transporter rBAT and 4F2 with the microbial α-glucosidases; and (3) the unique sequence features in the primary structures of amylomaltases from the genus Borrelia from the family GH77. Although the three examples cannot represent an exhaustive list of exceptional topics worth to be interested in, they may demonstrate the importance these enzymes possess in the overall scientific context.
Collapse
Affiliation(s)
- Štefan Janeček
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia.
- Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 91701, Trnava, Slovakia.
| | - Marek Gabriško
- Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551, Bratislava, Slovakia
| |
Collapse
|
160
|
Okuyama M, Saburi W, Mori H, Kimura A. α-Glucosidases and α-1,4-glucan lyases: structures, functions, and physiological actions. Cell Mol Life Sci 2016; 73:2727-51. [PMID: 27137181 PMCID: PMC11108350 DOI: 10.1007/s00018-016-2247-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 11/30/2022]
Abstract
α-Glucosidases (AGases) and α-1,4-glucan lyases (GLases) catalyze the degradation of α-glucosidic linkages at the non-reducing ends of substrates to release α-glucose and anhydrofructose, respectively. The AGases belong to glycoside hydrolase (GH) families 13 and 31, and the GLases belong to GH31 and share the same structural fold with GH31 AGases. GH13 and GH31 AGases show diverse functions upon the hydrolysis of substrates, having linkage specificities and size preferences, as well as upon transglucosylation, forming specific α-glucosidic linkages. The crystal structures of both enzymes were determined using free and ligand-bound forms, which enabled us to understand the important structural elements responsible for the diverse functions. A series of mutational approaches revealed features of the structural elements. In particular, amino-acid residues in plus subsites are of significance, because they regulate transglucosylation, which is used in the production of industrially valuable oligosaccharides. The recently solved three-dimensional structure of GLase from red seaweed revealed the amino-acid residues essential for lyase activity and the strict recognition of the α-(1 → 4)-glucosidic substrate linkage. The former was introduced to the GH31 AGase, and the resultant mutant displayed GLase activity. GH13 and GH31 AGases hydrate anhydrofructose to produce glucose, suggesting that AGases are involved in the catabolic pathway used to salvage unutilized anhydrofructose.
Collapse
Affiliation(s)
- Masayuki Okuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Atsuo Kimura
- Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
161
|
Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. Cell Mol Life Sci 2016; 73:2681-706. [PMID: 27155661 PMCID: PMC4919382 DOI: 10.1007/s00018-016-2245-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/13/2022]
Abstract
Lactic acid bacteria (LAB) are known to produce large amounts of α-glucan exopolysaccharides. Family GH70 glucansucrase (GS) enzymes catalyze the synthesis of these α-glucans from sucrose. The elucidation of the crystal structures of representative GS enzymes has advanced our understanding of their reaction mechanism, especially structural features determining their linkage specificity. In addition, with the increase of genome sequencing, more and more GS enzymes are identified and characterized. Together, such knowledge may promote the synthesis of α-glucans with desired structures and properties from sucrose. In the meantime, two new GH70 subfamilies (GTFB- and GTFC-like) have been identified as 4,6-α-glucanotransferases (4,6-α-GTs) that represent novel evolutionary intermediates between the family GH13 and "classical GH70 enzymes". These enzymes are not active on sucrose; instead, they use (α1 → 4) glucans (i.e. malto-oligosaccharides and starch) as substrates to synthesize novel α-glucans by introducing linear chains of (α1 → 6) linkages. All these GH70 enzymes are very interesting biocatalysts and hold strong potential for applications in the food, medicine and cosmetic industries. In this review, we summarize the microbiological distribution and the structure-function relationships of family GH70 enzymes, introduce the two newly identified GH70 subfamilies, and discuss evolutionary relationships between family GH70 and GH13 enzymes.
Collapse
Affiliation(s)
- Xiangfeng Meng
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Joana Gangoiti
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Yuxiang Bai
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Tjaard Pijning
- Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Sander S Van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.
| |
Collapse
|
162
|
Suzuki E, Suzuki R. Distribution of glucan-branching enzymes among prokaryotes. Cell Mol Life Sci 2016; 73:2643-60. [PMID: 27141939 PMCID: PMC11108348 DOI: 10.1007/s00018-016-2243-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
Glucan-branching enzyme plays an essential role in the formation of branched polysaccharides, glycogen, and amylopectin. Only one type of branching enzyme, belonging to glycoside hydrolase family 13 (GH13), is found in eukaryotes, while two types of branching enzymes (GH13 and GH57) occur in prokaryotes (Bacteria and Archaea). Both of these types are the members of protein families containing the diverse specificities of amylolytic glycoside hydrolases. Although similarities are found in the catalytic mechanism between the two types of branching enzyme, they are highly distinct from each other in terms of amino acid sequence and tertiary structure. Branching enzymes are found in 29 out of 30 bacterial phyla and 1 out of 5 archaeal phyla, often along with glycogen synthase, suggesting the existence of α-glucan production and storage in a wide range of prokaryotes. Enormous variability is observed as to which type and how many copies of branching enzyme are present depending on the phylum and, in some cases, even among species of the same genus. Such a variation may have occurred through lateral transfer, duplication, and/or differential loss of genes coding for branching enzyme during the evolution of prokaryotes.
Collapse
Affiliation(s)
- Eiji Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan.
| | - Ryuichiro Suzuki
- Department of Biological Production, Akita Prefectural University, 241-438, Kaidobata-Nishi, Shimoshinjyo-Nakano, Akita, 010-0195, Japan
| |
Collapse
|
163
|
Santorelli M, Maurelli L, Pocsfalvi G, Fiume I, Squillaci G, La Cara F, Del Monaco G, Morana A. Isolation and characterisation of a novel alpha-amylase from the extreme haloarchaeon Haloterrigena turkmenica. Int J Biol Macromol 2016; 92:174-184. [PMID: 27377461 DOI: 10.1016/j.ijbiomac.2016.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
An extracellular halophilic alpha-amylase (AmyA) was produced by the haloarchaeon Haloterrigena turkmenica grown in medium enriched with 0.2% (w/v) starch. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion chromatography (SEC) analyses showed a major band at 66.0kDa and a peak of 54.0kDa, respectively. Analysis of tryptic fragments of the protein present in the major SDS-PAGE band by nano-LC-ESI-MS/MS led to identification of the alpha-amylase catalytic region, encoded by the htur2110 gene, as the protein possessing the described activity. Optimal values for activity were 55°C, pH 8.5 and 2M NaCl, and high thermostability was showed at 55°C and 3M NaCl. AmyA activity was enhanced by Triton X-100 and was not influenced by n-hexane and chloroform. Starch hydrolysis produced different oligomers with maltose as the smallest end-product. The efficiency of AmyA in degrading starch contained in agronomic residues was tested in grape cane chosen as model substrate. Preliminary results showed that starch was degraded making the enzyme a potential candidate for utilization of agro-industrial waste in fuel and chemicals production. AmyA is one of the few investigated amylases produced by haloarchaea, and the first alpha-amylase described among microorganisms belonging to the genus Haloterrigena.
Collapse
Affiliation(s)
- Marco Santorelli
- Department of Chemical, Materials and Production Engineering, University of Naples "Federico II", P.le Tecchio 80, 80125 Napoli, Italy
| | - Luisa Maurelli
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Gabriella Pocsfalvi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Immacolata Fiume
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Squillaci
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Francesco La Cara
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni Del Monaco
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Alessandra Morana
- Institute of Agro-environmental and Forest Biology, National Research Council of Italy, Via Pietro Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
164
|
Gangoiti J, van Leeuwen SS, Vafiadi C, Dijkhuizen L. The Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 employs a new glycoside hydrolase family 70 4,6-α-glucanotransferase enzyme (GtfD) to synthesize a reuteran like polymer from maltodextrins and starch. Biochim Biophys Acta Gen Subj 2016; 1860:1224-36. [DOI: 10.1016/j.bbagen.2016.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
|
165
|
Eş I, Ribeiro MC, dos Santos Júnior SR, Khaneghah AM, Rodriguez AG, Amaral AC. Production of cyclodextrin glycosyltransferase by immobilized Bacillus sp. on chitosan matrix. Bioprocess Biosyst Eng 2016; 39:1487-500. [DOI: 10.1007/s00449-016-1625-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2016] [Indexed: 12/29/2022]
|
166
|
Nisha M, Satyanarayana T. Characteristics, protein engineering and applications of microbial thermostable pullulanases and pullulan hydrolases. Appl Microbiol Biotechnol 2016; 100:5661-79. [DOI: 10.1007/s00253-016-7572-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/17/2022]
|
167
|
Kelly ED, Bottacini F, O'Callaghan J, Motherway MO, O'Connell KJ, Stanton C, van Sinderen D. Glycoside hydrolase family 13 α-glucosidases encoded by Bifidobacterium breve UCC2003; A comparative analysis of function, structure and phylogeny. Int J Food Microbiol 2016; 224:55-65. [DOI: 10.1016/j.ijfoodmicro.2016.02.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 02/15/2016] [Accepted: 02/21/2016] [Indexed: 01/16/2023]
|
168
|
Harlow BE, Lawrence LM, Hayes SH, Crum A, Flythe MD. Effect of Dietary Starch Source and Concentration on Equine Fecal Microbiota. PLoS One 2016; 11:e0154037. [PMID: 27128793 PMCID: PMC4851386 DOI: 10.1371/journal.pone.0154037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assigned to treatments: control (hay only), HC (high corn), HO (high oats), LC (low corn), LO (low oats), and LW (low pelleted wheat middlings). Horses received an all-forage diet (2 wk; d -14 to d -1) before the treatment diets (2 wk; d 1 to 14). Starch was introduced gradually so that horses received 50% of the assigned starch amount (high = 2 g starch/kg BW; low = 1 g starch/kg BW) by d 4 and 100% by d 11. Fecal samples were obtained at the end of the forage-only period (S0; d -2), and on d 6 (S1) and d 13 (S2) of the treatment period. Cellulolytics, lactobacilli, Group D Gram-positive cocci (GPC), lactate-utilizers and amylolytics were enumerated. Enumeration data were log transformed and analyzed by repeated measures ANOVA. There were sample day × treatment interactions (P < 0.0001) for all bacteria enumerated. Enumerations from control horses did not change during the sampling period (P > 0.05). All treatments except LO resulted in increased amylolytics and decreased cellulolytics, but the changes were larger in horses fed corn and wheat middlings (P < 0.05). Feeding oats resulted in increased lactobacilli and decreased GPC (P < 0.05), while corn had the opposite effects. LW had increased lactobacilli and GPC (P < 0.05). The predominant amylolytic isolates from HC, LC and LW on S2 were identified by 16S RNA gene sequencing as Enterococcus faecalis, but other species were found in oat fed horses. These results demonstrate that starch source can have a differential effect on the equine fecal microbiota.
Collapse
Affiliation(s)
- Brittany E. Harlow
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Laurie M. Lawrence
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Susan H. Hayes
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Andrea Crum
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Michael D. Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, 40546, United States of America
| |
Collapse
|
169
|
Azzopardi E, Lloyd C, Teixeira SR, Conlan RS, Whitaker IS. Clinical applications of amylase: Novel perspectives. Surgery 2016; 160:26-37. [PMID: 27117578 DOI: 10.1016/j.surg.2016.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/20/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Amylase was the first enzyme to be characterized, and for the previous 200 years, its clinical role has been restricted to a diagnostic aid. Recent interface research has led to a substantial expansion of its role into novel, viable diagnostic, and therapeutic applications to cancer, infection, and wound healing. This review provides a concise "state-of-the-art" overview of the genetics, structure, distribution, and localization of amylase in humans. METHOD A first-generation literature search was performed with the MeSH search string "Amylase AND (diagnost∗ OR therapeut$)" on OVIDSP and PUBMED platforms. A second-generation search was then performed by forward and backward referencing on Web of Knowledge™ and manual indexing, limited to the English Language. RESULTS "State of the Art" in amylase genetics, structure, function distribution, localisation and detection of amylase in humans is provided. To the 4 classic patterns of hyperamylasemia (pancreatic, salivary, macroamylasemia, and combinations) a fifth, the localized targeting of amylase to specific foci of infection, is proposed. CONCLUSIONS The implications are directed at novel therapeutic and diagnostic clinical applications of amylase such as the novel therapeutic drug classes capable of targeted delivery and "smart release" in areas of clinical need. Future directions of research in areas of high clinical benefit are reported.
Collapse
Affiliation(s)
- Ernest Azzopardi
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom.
| | - Catherine Lloyd
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; Centre for Nanohealth, Swansea University, Swansea, United Kingdom
| | | | - R Steven Conlan
- Centre for Nanohealth, Swansea University, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Iain S Whitaker
- Reconstructive Surgery and Regenerative Medicine Group, Swansea University, Swansea, United Kingdom; The Welsh Centre for Burns and Plastic Surgery, Morriston Hospital, Swansea, United Kingdom; Swansea University Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
170
|
Xu Q, Cao Y, Li X, Liu L, Qin S, Wang Y, Cao Y, Xu H, Qiao D. Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1. Protein Expr Purif 2016; 144:62-70. [PMID: 27108054 DOI: 10.1016/j.pep.2016.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/11/2016] [Accepted: 04/17/2016] [Indexed: 11/25/2022]
Abstract
Intracellular α-amylase was a special glycoside hydrolase in the cytoplasm. We cloned and expressed an intracellular α-amylase, Amy, from Paenibacillus sp. SSG-1. The recombinant enzyme was purified by metal-affinity chromatography, exhibited a molecular mass of 71.7 kDa. Amy exhibited unexpectedly sequence similarity and evolutionary relationships with alpha-glucanotransferase. The docked results of Amy with maltose showed it had similar catalytic residues with α-amylase and glucanotransferase. The substrate specificity experiment showed that Amy could hydrolyze typical substrates into glucose and maltose. It was noteworthy that Amy showed the catalytic capacity of cyclomaltodextrinase and pullulanase. Meanwhile, Amy could transfer sugar molecules and form maltotetraose upon the hydrolysis of substrates. These results indicated that Amy was a novel intracellular α-amylase with distinct catalytic ability characteristics of hydrolyzing glycogen/cyclodextrin/pullulan and transglycosylation. We deduced that Amy may play an important role in utilizing maltooligosaccharides that released from extracellular α-glucan or storage α-glucan (glycogen) in Paenibacillus sp. SSG-1.
Collapse
Affiliation(s)
- Qingrui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yu Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China; National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Xi Li
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Lin Liu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Shishang Qin
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yuhao Wang
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Hui Xu
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, 610065, PR China.
| |
Collapse
|
171
|
Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat Commun 2016; 7:11229. [PMID: 27088557 PMCID: PMC4837477 DOI: 10.1038/ncomms11229] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/24/2016] [Indexed: 01/07/2023] Open
Abstract
Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII. Debranching of glycogen is an important step in its use as an energy source. Here, the authors describe the crystal structures of glycogen debranching enzyme alone and in complex with oligosaccharides and provide molecular insights into the function, and into associated diseases.
Collapse
|
172
|
Richards L, Li M, van Esch B, Garssen J, Folkerts G. The effects of short-chain fatty acids on the cardiovascular system. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
173
|
Fang S, Chang J, Lee YS, Hwang EJ, Heo JB, Choi YL. Immobilization of α-amylase from Exiguobacterium sp. DAU5 on Chitosan and Chitosan-carbon Bead: Its Properties. ACTA ACUST UNITED AC 2016. [DOI: 10.3839/jabc.2016.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
174
|
Chai KP, Othman NFB, Teh AH, Ho KL, Chan KG, Shamsir MS, Goh KM, Ng CL. Crystal structure of Anoxybacillus α-amylase provides insights into maltose binding of a new glycosyl hydrolase subclass. Sci Rep 2016; 6:23126. [PMID: 26975884 PMCID: PMC4791539 DOI: 10.1038/srep23126] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca2+ ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca2+ ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.
Collapse
Affiliation(s)
- Kian Piaw Chai
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Noor Farhan Binti Othman
- Universiti Kebangsaan Malaysia, Institute of Systems Biology, 43600 UKM Bangi, Selangor, Malaysia
| | - Aik-Hong Teh
- Universiti Sains Malaysia, Centre for Chemical Biology, 11800 Penang, Malaysia
| | - Kok Lian Ho
- Universiti Putra Malaysia, Department of Pathology, Faculty of Medicine and Health Sciences, 43400 Serdang, Selangor, Malaysia
| | - Kok-Gan Chan
- University of Malaya, Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, 50603 Kuala Lumpur, Malaysia
| | - Mohd Shahir Shamsir
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Kian Mau Goh
- Universiti Teknologi Malaysia, Faculty of Biosciences and Medical Engineering, 81310 Skudai, Johor, Malaysia
| | - Chyan Leong Ng
- Universiti Kebangsaan Malaysia, Institute of Systems Biology, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
175
|
Truncation of the unique N-terminal domain improved the thermos-stability and specific activity of alkaline α-amylase Amy703. Sci Rep 2016; 6:22465. [PMID: 26926401 PMCID: PMC4772547 DOI: 10.1038/srep22465] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/11/2016] [Indexed: 11/08/2022] Open
Abstract
High pH condition is of special interest for the potential applications of alkaline α-amylase in textile and detergent industries. Thus, there is a continuous demand to improve the amylase's properties to meet the requirements set by specific applications. Here we reported the systematic study of modular domain engineering to improve the specific activity and stability of the alkaline α-amylase from Bacillus pseudofirmus 703. The specific activity of the N-terminal domain truncated mutant (N-Amy) increased by ~35-fold with a significantly improved thermo-stability. Kinetic analysis demonstrated that the Kcat and Kcat/Kmof N-Amy were enhanced by 1300-fold and 425.7-fold, respectively, representing the largest catalytic activity improvement of the engineered α-amylases through the methods of domain deletion, fusion or swapping. In addition, different from the wild-type Amy703, no exogenous Ca(2+) were required for N-Amy to maintain its full catalytic activity, implying its superior potential for many industrial processes. Circular dichroism analysis and structure modeling revealed that the increased compactness and α-helical content were the main contributors for the improved thermo-stability of N-Amy, while the improved catalytic efficiency was mainly attributed by the increased conformational flexibility around the active center.
Collapse
|
176
|
Li C, Gilbert RG. Progress in controlling starch structure by modifying starch-branching enzymes. PLANTA 2016; 243:13-22. [PMID: 26486516 DOI: 10.1007/s00425-015-2421-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/10/2015] [Indexed: 06/05/2023]
Abstract
This paper reviews the progress of development of plants with desirable starch structure by modifying starch branching enzymes. Starch-branching enzyme (SBE) is responsible for the creation of branches during starch biosynthesis in plastids, and is a major determinant of the final fine structure and physical properties of the starch. Multiple isoforms of SBE have been found in plants, with each playing a different role in amylopectin synthesis. Different methods have been used to develop desirable starch structures by modifying the SBE activity. These can involve changing its expression level (either up-regulation or down-regulation), genetically modifying the activity of the SBE itself, and varying the length of its transferred chains. Changing the activity and the transferred chain length of SBE has been less studied than changing the expression level of SBE in vivo. This article reviews and summarizes new tools for developing plants producing the next generation of starches.
Collapse
|
177
|
Kumar S, Grewal J, Sadaf A, Hemamalini R, K. Khare S. Halophiles as a source of polyextremophilic α-amylase for industrial applications. AIMS Microbiol 2016. [DOI: 10.3934/microbiol.2016.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
178
|
A novel GH13 subfamily of α-amylases with a pair of tryptophans in the helix α3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
179
|
Ahmad N, Mehboob S, Rashid N. Starch-processing enzymes — emphasis on thermostable 4-α-glucanotransferases. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
180
|
Seddigh S, Darabi M. Structural and phylogenetic analysis of α-glucosidase protein in insects. Biologia (Bratisl) 2015. [DOI: 10.1515/biolog-2015-0096] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
181
|
Mendes V, Blaszczyk M, Maranha A, Empadinhas N, Blundell TL. Structure of Mycobacterium thermoresistibile GlgE defines novel conformational states that contribute to the catalytic mechanism. Sci Rep 2015; 5:17144. [PMID: 26616850 PMCID: PMC4663749 DOI: 10.1038/srep17144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/07/2015] [Indexed: 11/16/2022] Open
Abstract
GlgE, an enzyme of the pathway that converts trehalose to α-glucans, is essential for Mycobacterium tuberculosis. Inhibition of GlgE, which transfers maltose from a maltose-1-phosphate donor to α-glucan/maltooligosaccharide chain acceptor, leads to a toxic accumulation of maltose-1-phosphate that culminates in cellular death. Here we describe the first high-resolution mycobacterial GlgE structure from Mycobacterium thermoresistibile at 1.96 Å. We show that the structure resembles that of M. tuberculosis and Streptomyces coelicolor GlgEs, reported before, with each protomer in the homodimer comprising five domains. However, in M. thermoresistibile GlgE we observe several conformational states of the S domain and provide evidence that its high flexibility is important for enzyme activity. The structures here reported shed further light on the interactions between the N-terminal domains and the catalytic domains of opposing chains and how they contribute to the catalytic reaction. Importantly this work identifies a useful surrogate system to aid the development of GlgE inhibitors against opportunistic and pathogenic mycobacteria.
Collapse
Affiliation(s)
- Vitor Mendes
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Michal Blaszczyk
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Ana Maranha
- Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Nuno Empadinhas
- Molecular Mycobacteriology Group, CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
182
|
The Exiguobacterium sibiricum 255-15 GtfC Enzyme Represents a Novel Glycoside Hydrolase 70 Subfamily of 4,6-α-Glucanotransferase Enzymes. Appl Environ Microbiol 2015; 82:756-66. [PMID: 26590275 DOI: 10.1128/aem.03420-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/13/2015] [Indexed: 11/20/2022] Open
Abstract
The glycoside hydrolase 70 (GH70) family originally was established for glucansucrase enzymes found solely in lactic acid bacteria synthesizing α-glucan polysaccharides from sucrose (e.g., GtfA). In recent years, we have characterized GtfB and related Lactobacillus enzymes as 4,6-α-glucanotransferase enzymes. These GtfB-type enzymes constitute the first GH70 subfamily of enzymes that are unable to act on sucrose as a substrate but are active with maltodextrins and starch, cleave α1→4 linkages, and synthesize linear α1→6-glucan chains. The GtfB disproportionating type of activity results in the conversion of malto-oligosaccharides into isomalto/malto-polysaccharides with a relatively high percentage of α1→6 linkages. This paper reports the identification of the members of a second GH70 subfamily (designated GtfC enzymes) and the characterization of the Exiguobacterium sibiricum 255-15 GtfC enzyme, which is also inactive with sucrose and displays 4,6-α-glucanotransferase activity with malto-oligosaccharides. GtfC differs from GtfB in synthesizing isomalto/malto-oligosaccharides. Biochemically, the GtfB- and GtfC-type enzymes are related, but phylogenetically, they clearly constitute different GH70 subfamilies, displaying only 30% sequence identity. Whereas the GtfB-type enzyme largely has the same domain order as glucansucrases (with α-amylase domains A, B, and C plus domains IV and V), this GtfC-type enzyme differs in the order of these domains and completely lacks domain V. In GtfC, the sequence of conserved regions I to IV of clan GH-H is identical to that in GH13 (I-II-III-IV) but different from that in GH70 (II-III-IV-I because of a circular permutation of the (β/α)8 barrel. The GtfC 4,6-α-glucanotransferase enzymes thus represent structurally and functionally very interesting evolutionary intermediates between α-amylase and glucansucrase enzymes.
Collapse
|
183
|
Zhou C, Xue Y, Ma Y. Evaluation and directed evolution for thermostability improvement of a GH 13 thermostable α-glucosidase from Thermus thermophilus TC11. BMC Biotechnol 2015; 15:97. [PMID: 26490269 PMCID: PMC4618444 DOI: 10.1186/s12896-015-0197-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 08/19/2015] [Indexed: 11/24/2022] Open
Abstract
Background Thermal stable α-glucosidases with transglycosylation activity could be applied to the industrial production of oligosaccharides as well as conjugation of sugars to biologically useful materials. Therefore, α-glucosidases isolated from thermophiles have gained attention over the past decade. In this study, the characterization of a highly thermostable α-glucosidase and its thermostability improved mutant from newly isolated strain Thermus thermophilus TC11 were investigated. Results The recombinant α-glucosidase (TtAG) from Thermus thermophilus TC11 was expressed in Escherichia coli BL21 (DE3) and purified. The purified enzyme had a molecular mass of 184 kDa and consisted of 59-kDa subunits; it showed hydrolytic activity for pNP-α-d-glucopyranoside (pNPG), sucrose, trehalose, panose, and isomaltooligosaccharides and very low activity for maltose. The highest specific activity of 288.96 U/mg was observed for pNPG at 90 °C and pH 5.0; Pb2+ provided a 20 % activity increase. TtAG was stable at 70 °C for more than 7 h and had a half-life of 195 min at 80 °C and 130 min at 90 °C. Transglycosylation activity was also observed with sucrose and trehalose as substrates. TtAG showed differences on substrate specificity, transglycosylation, multimerization, effects of metal ions and optimal pH from other reported Thermus α-glucosidases. One single-substitution TtAG mutant Q10Y with improved thermostability was also obtained from random mutagenesis library. The site-saturation mutagenesis and structural modelling analysis indicated that Q10Y substitution stabilized TtAG structure via additional hydrogen bonding and hydrophobic interactions. Conclusion Our findings indicate that TtAG is a highly thermostable and more acidic α-glucosidase distinct from other reported Thermus α-glucosidases. And this work also provides new insights into the catalytic and thermal tolerance mechanisms of α-glucosidases, which may guide molecular engineering of α-glucosidase and other thermostable enzymes for industrial application. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China. .,National Engineering Lab for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
184
|
Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4. Appl Environ Microbiol 2015; 81:8489-99. [PMID: 26431973 DOI: 10.1128/aem.02756-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/30/2015] [Indexed: 01/10/2023] Open
Abstract
Resistant starch (RS) exacerbates health benefits on the host via modulation of the gut bacterial community. By far, these effects have been less well explored for RS of type 4. This study aimed at gaining a community-wide insight into the impact of enzymatically modified starch (EMS) on the cecal microbiota and hindgut fermentation in growing pigs. Castrated male pigs (n = 12/diet; 29-kg body weight) were fed diets with either 70% EMS or control starch for 10 days. The bacterial profile of each cecal sample was determined by sequencing of the V345 region of the 16S rRNA gene using the Illumina MiSeq platform. EMS diet reduced short-chain fatty acid concentrations in cecum and proximal colon compared to the control diet. Linear discriminant analyses and K means clustering indicated diet-specific cecal community profiles, whereby diversity and species richness were not different among diets. Pigs showed host-specific variation in their most abundant phyla, Firmicutes (55%), Proteobacteria (35%), and Bacteroidetes (10%). The EMS diet decreased abundance of Ruminococcus, Parasutterella, Bilophila, Enterococcus, and Lactobacillus operational taxonomic units (OTU), whereas Meniscus and Actinobacillus OTU were increased compared to those with the control diet (P < 0.05). Quantitative PCR confirmed results for host effect on Enterobacteriaceae and diet effect on members of the Lactobacillus group. The presence of less cecal short-chain fatty acids and the imputed metabolic functions of the cecal microbiome suggested that EMS was less degradable for cecal bacteria than the control starch. The present EMS effects on the bacterial community profiles were different than the previously reported RS effects and can be linked to the chemical structure of EMS.
Collapse
|
185
|
Koo YS, Lee HW, Jeon HY, Choi HJ, Choung WJ, Shim JH. Development and characterization of cyclodextrin glucanotransferase as a maltoheptaose-producing enzyme using site-directed mutagenesis. Protein Eng Des Sel 2015; 28:531-7. [DOI: 10.1093/protein/gzv044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 11/14/2022] Open
|
186
|
Identification and characterization of a novel raw-starch-degrading α-amylase (AmyASS) from the marine fish pathogen Aeromonas salmonicida ssp. salmonicida. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
187
|
Froese DS, Michaeli A, McCorvie TJ, Krojer T, Sasi M, Melaev E, Goldblum A, Zatsepin M, Lossos A, Álvarez R, Escribá PV, Minassian BA, von Delft F, Kakhlon O, Yue WW. Structural basis of glycogen branching enzyme deficiency and pharmacologic rescue by rational peptide design. Hum Mol Genet 2015. [PMID: 26199317 PMCID: PMC4581599 DOI: 10.1093/hmg/ddv280] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycogen branching enzyme 1 (GBE1) plays an essential role in glycogen biosynthesis by generating α-1,6-glucosidic branches from α-1,4-linked glucose chains, to increase solubility of the glycogen polymer. Mutations in the GBE1 gene lead to the heterogeneous early-onset glycogen storage disorder type IV (GSDIV) or the late-onset adult polyglucosan body disease (APBD). To better understand this essential enzyme, we crystallized human GBE1 in the apo form, and in complex with a tetra- or hepta-saccharide. The GBE1 structure reveals a conserved amylase core that houses the active centre for the branching reaction and harbours almost all GSDIV and APBD mutations. A non-catalytic binding cleft, proximal to the site of the common APBD mutation p.Y329S, was found to bind the tetra- and hepta-saccharides and may represent a higher-affinity site employed to anchor the complex glycogen substrate for the branching reaction. Expression of recombinant GBE1-p.Y329S resulted in drastically reduced protein yield and solubility compared with wild type, suggesting this disease allele causes protein misfolding and may be amenable to small molecule stabilization. To explore this, we generated a structural model of GBE1-p.Y329S and designed peptides ab initio to stabilize the mutation. As proof-of-principle, we evaluated treatment of one tetra-peptide, Leu-Thr-Lys-Glu, in APBD patient cells. We demonstrate intracellular transport of this peptide, its binding and stabilization of GBE1-p.Y329S, and 2-fold increased mutant enzymatic activity compared with untreated patient cells. Together, our data provide the rationale and starting point for the screening of small molecule chaperones, which could become novel therapies for this disease.
Collapse
Affiliation(s)
- D Sean Froese
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | | | - Thomas J McCorvie
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Tobias Krojer
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Meitav Sasi
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Esther Melaev
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Amiram Goldblum
- Pepticom LTD, Jerusalem, Israel, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Lossos
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - Rafael Álvarez
- Department of Biology, University of the Balearic Islands, Palma de Mallorca E-07122, Spain and
| | - Pablo V Escribá
- Department of Biology, University of the Balearic Islands, Palma de Mallorca E-07122, Spain and
| | - Berge A Minassian
- Program in Genetics and Genomic Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Frank von Delft
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK
| | - Or Kakhlon
- Department of Neurology, Hadassah-Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel,
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, UK,
| |
Collapse
|
188
|
Degradation of Granular Starch by the Bacterium Microbacterium aurum Strain B8.A Involves a Modular α-Amylase Enzyme System with FNIII and CBM25 Domains. Appl Environ Microbiol 2015; 81:6610-20. [PMID: 26187958 DOI: 10.1128/aem.01029-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/16/2015] [Indexed: 11/20/2022] Open
Abstract
The bacterium Microbacterium aurum strain B8.A, originally isolated from a potato plant wastewater facility, is able to degrade different types of starch granules. Here we report the characterization of an unusually large, multidomain M. aurum B8.A α-amylase enzyme (MaAmyA). MaAmyA is a 1,417-amino-acid (aa) protein with a predicted molecular mass of 148 kDa. Sequence analysis of MaAmyA showed that its catalytic core is a family GH13_32 α-amylase with the typical ABC domain structure, followed by a fibronectin (FNIII) domain, two carbohydrate binding modules (CBM25), and another three FNIII domains. Recombinant expression and purification yielded an enzyme with the ability to degrade wheat and potato starch granules by introducing pores. Characterization of various truncated mutants of MaAmyA revealed a direct relationship between the presence of CBM25 domains and the ability of MaAmyA to form pores in starch granules, while the FNIII domains most likely function as stable linkers. At the C terminus, MaAmyA carries a 300-aa domain which is uniquely associated with large multidomain amylases; its function remains to be elucidated. We concluded that M. aurum B8.A employs a multidomain enzyme system to initiate degradation of starch granules via pore formation.
Collapse
|
189
|
Weiss SC, Skerra A, Schiefner A. Structural Basis for the Interconversion of Maltodextrins by MalQ, the Amylomaltase of Escherichia coli. J Biol Chem 2015; 290:21352-64. [PMID: 26139606 DOI: 10.1074/jbc.m115.667337] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Indexed: 11/06/2022] Open
Abstract
Amylomaltase MalQ is essential for the metabolism of maltose and maltodextrins in Escherichia coli. It catalyzes transglycosylation/disproportionation reactions in which glycosyl or dextrinyl units are transferred among linear maltodextrins of various lengths. To elucidate the molecular basis of transglycosylation by MalQ, we have determined three crystal structures of this enzyme, i.e. the apo-form, its complex with maltose, and an inhibitor complex with the transition state analog acarviosine-glucose-acarbose, at resolutions down to 2.1 Å. MalQ represents the first example of a mesophilic bacterial amylomaltase with known structure and exhibits an N-terminal extension of about 140 residues, in contrast with previously described thermophilic enzymes. This moiety seems unique to amylomaltases from Enterobacteriaceae and folds into two distinct subdomains that associate with different parts of the catalytic core. Intriguingly, the three MalQ crystal structures appear to correspond to distinct states of this enzyme, revealing considerable conformational changes during the catalytic cycle. In particular, the inhibitor complex highlights the requirement of both a 3-OH group and a 4-OH group (or α1-4-glycosidic bond) at the acceptor subsite +1 for the catalytically competent orientation of the acid/base catalyst Glu-496. Using an HPLC-based MalQ enzyme assay, we could demonstrate that the equilibrium concentration of maltodextrin products depends on the length of the initial substrate; with increasing numbers of glycosidic bonds, less glucose is formed. Thus, both structural and enzymatic data are consistent with the extremely low hydrolysis rates observed for amylomaltases and underline the importance of MalQ for the metabolism of maltodextrins in E. coli.
Collapse
Affiliation(s)
- Simon C Weiss
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - Arne Skerra
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| | - André Schiefner
- From the Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85350 Freising-Weihenstephan, Germany
| |
Collapse
|
190
|
Wildberger P, Aish GA, Jakeman DL, Brecker L, Nidetzky B. Interplay of catalytic subsite residues in the positioning of α-d-glucose 1-phosphate in sucrose phosphorylase. Biochem Biophys Rep 2015; 2:36-44. [PMID: 26380381 PMCID: PMC4554294 DOI: 10.1016/j.bbrep.2015.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 12/01/2022] Open
Abstract
Kinetic and molecular docking studies were performed to characterize the binding of α-d-glucose 1-phosphate (αGlc 1-P) at the catalytic subsite of a family GH-13 sucrose phosphorylase (from L. mesenteroides) in wild-type and mutated form. The best-fit binding mode of αGlc 1-P dianion had the phosphate group placed anti relative to the glucosyl moiety (adopting a relaxed 4C1 chair conformation) and was stabilized mainly by hydrogen bonds from residues of the enzyme׳s catalytic triad (Asp196, Glu237 and Asp295) and from Arg137. Additional feature of the αGlc 1-P docking pose was an intramolecular hydrogen bond (2.7 Å) between the glucosyl C2-hydroxyl and the phosphate oxygen. An inactive phosphonate analog of αGlc 1-P did not show binding to sucrose phosphorylase in different experimental assays (saturation transfer difference NMR, steady-state reversible inhibition), consistent with evidence from molecular docking study that also suggested a completely different and strongly disfavored binding mode of the analog as compared to αGlc 1-P. Molecular docking results also support kinetic data in showing that mutation of Phe52, a key residue at the catalytic subsite involved in transition state stabilization, had little effect on the ground-state binding of αGlc 1-P by the phosphorylase. However, when combined with a second mutation involving one of the catalytic triad residues, the mutation of Phe52 by Ala caused complete (F52A_D196A; F52A_E237A) or very large (F52A_D295A) disruption of the proposed productive binding mode of αGlc 1-P with consequent effects on the enzyme activity. Effects of positioning of αGlc 1-P for efficient glucosyl transfer from phosphate to the catalytic nucleophile of the enzyme (Asp196) are suggested. High similarity between the αGlc 1-P conformers bound to sucrose phosphorylase (modeled) and the structurally and mechanistically unrelated maltodextrin phosphorylase (experimental) is revealed.
Collapse
Affiliation(s)
- Patricia Wildberger
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
| | - Gaia A. Aish
- College of Pharmacy, Dalhousie University, PO Box 15,000, 5968 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - David L. Jakeman
- College of Pharmacy, Dalhousie University, PO Box 15,000, 5968 College Street, Halifax, Nova Scotia, Canada B3H 4R2
| | - Lothar Brecker
- Institute of Organic Chemistry, University of Vienna, Währingerstraße 38, A-1090 Vienna, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, A-8010 Graz, Austria
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| |
Collapse
|
191
|
Chen J, Chen X, Dai J, Xie G, Yan L, Lu L, Chen J. Cloning, enhanced expression and characterization of an α-amylase gene from a wild strain in B. subtilis WB800. Int J Biol Macromol 2015; 80:200-7. [PMID: 26092061 DOI: 10.1016/j.ijbiomac.2015.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/30/2022]
Abstract
A Bacillus strain with high productivity of α-amylase isolated from a starch farm was identified as Bacillus amyloliquefaciens. The α-amylase encoding gene amy1 was cloned into pMD18-T vector and amplified in E. coli DH5α. Shuttle vector pP43MNX was reconstructed to obtain vector pP43X for heterologous expression of the α-amylase in B. subtilis WB800. Recombinant enzyme was sufficiently purified by precipitation, gel filtration and anion exchange with a specific activity of 5566 U/mg. The α-amylase sequence contains an open reading frame of 1545 bp, which encodes a protein of 514 amino acid residues with a predicted molecular mass of 58.4 kDa. The enzyme exhibited maximal activity at pH 6.0 and 60 °C. Catalytic efficiency of the recombinant α-amylase was inhibited by Hg(2+), Pb(2+) and Cu(2+), but stimulated by Li(+), Mn(2+) and Ca(2+). The purified enzyme showed decreased activity toward detergents (SDS, Tween 20 and Triton X-100). Compared with production by the wild strain, there was a 1.48-fold increase in the productivity of α-amylase in recombinant B. subtilis WB800.
Collapse
Affiliation(s)
- Jing Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xianghua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jun Dai
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Guangrong Xie
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Luying Yan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lina Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China
| | - Jianhua Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
192
|
Shen X, Saburi W, Gai Z, Kato K, Ojima-Kato T, Yu J, Komoda K, Kido Y, Matsui H, Mori H, Yao M. Structural analysis of the α-glucosidase HaG provides new insights into substrate specificity and catalytic mechanism. ACTA ACUST UNITED AC 2015; 71:1382-91. [DOI: 10.1107/s139900471500721x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/10/2015] [Indexed: 11/10/2022]
Abstract
α-Glucosidases, which catalyze the hydrolysis of the α-glucosidic linkage at the nonreducing end of the substrate, are important for the metabolism of α-glucosides. Halomonas sp. H11 α-glucosidase (HaG), belonging to glycoside hydrolase family 13 (GH13), only has high hydrolytic activity towards the α-(1→4)-linked disaccharide maltose among naturally occurring substrates. Although several three-dimensional structures of GH13 members have been solved, the disaccharide specificity and α-(1→4) recognition mechanism of α-glucosidase are unclear owing to a lack of corresponding substrate-bound structures. In this study, four crystal structures of HaG were solved: the apo form, the glucosyl-enzyme intermediate complex, the E271Q mutant in complex with its natural substrate maltose and a complex of the D202N mutant with D-glucose and glycerol. These structures explicitly provide insights into the substrate specificity and catalytic mechanism of HaG. A peculiar long β→α loop 4 which exists in α-glucosidase is responsible for the strict recognition of disaccharides owing to steric hindrance. Two residues, Thr203 and Phe297, assisted with Gly228, were found to determine the glycosidic linkage specificity of the substrate at subsite +1. Furthermore, an explanation of the α-glucosidase reaction mechanism is proposed based on the glucosyl-enzyme intermediate structure.
Collapse
|
193
|
In silico analysis of family GH77 with focus on amylomaltases from borreliae and disproportionating enzymes DPE2 from plants and bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1260-8. [PMID: 26006747 DOI: 10.1016/j.bbapap.2015.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/14/2015] [Accepted: 05/17/2015] [Indexed: 11/21/2022]
Abstract
The CAZy glycoside hydrolase (GH) family GH77 is a monospecific family containing 4-α-glucanotransferases that if from prokaryotes are known as amylomaltases and if from plants including algae are known as disproportionating enzymes (DPE). The family GH77 is a member of the α-amylase clan GH-H. The main difference discriminating a GH77 4-α-glucanotransferase from the main GH13 α-amylase family members is the lack of domain C succeeding the catalytic (β/α)8-barrel. Of more than 2400 GH77 members, bacterial amylomaltases clearly dominate with more than 2300 sequences; the rest being approximately equally represented by Archaea and Eucarya. The main goal of the present study was to deliver a detailed bioinformatics study of family GH77 (416 collected sequences) focused on amylomaltases from borreliae (containing unique sequence substitutions in functionally important positions) and plant DPE2 representatives (possessing an insert of ~140 residues between catalytic nucleophile and proton donor). The in silico analysis reveals that within the genus of Borrelia a gradual evolutionary transition from typical bacterial Thermus-like amylomaltases may exist to family-GH77 amylomaltase versions that currently possess progressively mutated the most important and otherwise invariantly conserved positions. With regard to plant DPE2, a large group of bacterial amylomaltases represented by the amylomaltase from Escherichia coli with a longer N-terminus was identified as a probable intermediary connection between Thermus-like and DPE2-like (existing also among bacteria) family GH77 members. The presented results concerning both groups, i.e. amylomaltases from borreliae and plant DPE2 representatives (with their bacterial counterpart), may thus indicate the direction for future experimental studies.
Collapse
|
194
|
Suzuki R, Koide K, Hayashi M, Suzuki T, Sawada T, Ohdan T, Takahashi H, Nakamura Y, Fujita N, Suzuki E. Functional characterization of three (GH13) branching enzymes involved in cyanobacterial starch biosynthesis from Cyanobacterium sp. NBRC 102756. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:476-84. [DOI: 10.1016/j.bbapap.2015.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/09/2015] [Accepted: 02/19/2015] [Indexed: 12/24/2022]
|
195
|
Rather MY, Ara KZG, Nordberg Karlsson E, Adlercreutz P. Characterization of cyclodextrin glycosyltransferases (CGTases) and their application for synthesis of alkyl glycosides with oligomeric head group. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
196
|
Li C, Wu AC, Go RM, Malouf J, Turner MS, Malde AK, Mark AE, Gilbert RG. The characterization of modified starch branching enzymes: toward the control of starch chain-length distributions. PLoS One 2015; 10:e0125507. [PMID: 25874689 PMCID: PMC4395411 DOI: 10.1371/journal.pone.0125507] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/21/2015] [Indexed: 11/18/2022] Open
Abstract
Starch is a complex branched glucose polymer whose branch molecular weight distribution (the chain-length distribution, CLD) influences nutritionally important properties such as digestion rate. Chain-stopping in starch biosynthesis is by starch branching enzyme (SBE). Site-directed mutagenesis was used to modify SBEIIa from Zea mays (mSBEIIa) to produce mutants, each differing in a single conserved amino-acid residue. Products at different times from in vitro branching were debranched and the time evolution of the CLD measured by size-exclusion chromatography. The results confirm that Tyr352, Glu513, and Ser349 are important for mSBEIIa activity while Arg456 is important for determining the position at which the linear glucan is cut. The mutant mSBEIIa enzymes have different activities and suggest the length of the transferred chain can be varied by mutation. The work shows analysis of the molecular weight distribution can yield information regarding the enzyme branching sites useful for development of plants yielding starch with improved functionality.
Collapse
Affiliation(s)
- Cheng Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Alex Chi Wu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Rob Marc Go
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Jacob Malouf
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Mark S. Turner
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alpeshkumar K. Malde
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alan E. Mark
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Robert G. Gilbert
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Centre for Nutrition and Food Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
- * E-mail:
| |
Collapse
|
197
|
Zhang Y, Zhao Z, Liu H. Deriving Chemically Essential Interactions Based on Active Site Alignments and Quantum Chemical Calculations: A Case Study on Glycoside Hydrolases. ACS Catal 2015. [DOI: 10.1021/cs501709d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yinliang Zhang
- School
of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China
| | - Zheng Zhao
- Hefei
Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Haiyan Liu
- School
of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China
- Hefei National Laboratory for Physical Sciences at the Microscales, Hefei, Anhui 230027, China
- Hefei
Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
198
|
Møller MS, Vester-Christensen MB, Jensen JM, Hachem MA, Henriksen A, Svensson B. Crystal structure of barley limit dextrinase-limit dextrinase inhibitor (LD-LDI) complex reveals insights into mechanism and diversity of cereal type inhibitors. J Biol Chem 2015; 290:12614-29. [PMID: 25792743 DOI: 10.1074/jbc.m115.642777] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.
Collapse
Affiliation(s)
- Marie S Møller
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Malene B Vester-Christensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Johanne M Jensen
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Maher Abou Hachem
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| | - Anette Henriksen
- the Protein Chemistry Group, Carlsberg Laboratory, DK-1799 København V, Denmark
| | - Birte Svensson
- From Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark and
| |
Collapse
|
199
|
Oligosaccharide and Substrate Binding in the Starch Debranching Enzyme Barley Limit Dextrinase. J Mol Biol 2015; 427:1263-1277. [DOI: 10.1016/j.jmb.2014.12.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 12/20/2014] [Accepted: 12/27/2014] [Indexed: 11/21/2022]
|
200
|
Saburi W, Rachi-Otsuka H, Hondoh H, Okuyama M, Mori H, Kimura A. Structural elements responsible for the glucosidic linkage-selectivity of a glycoside hydrolase family 13 exo-glucosidase. FEBS Lett 2015; 589:865-9. [DOI: 10.1016/j.febslet.2015.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/19/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022]
|