151
|
Kang M, Yu S, Li N, Martin CR. Nanowell-array surfaces prepared by argon plasma etching through a nanopore alumina mask. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:8429-38. [PMID: 16114953 DOI: 10.1021/la050146h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A method for preparing a glass surface containing an ordered array of nanowells is described. These nanowell arrays are prepared via a plasma-etch method using a nanopore alumina film as the etch mask. A replica of the pore structure of the alumina mask is etched into the glass. We demonstrate that chemical information in the form of negatively charged latex nanoparticles can be selectively stored within these nanowells and not indiscriminately deposited on the surface surrounding the nanowells. To accomplish this, the chemistry of the glass surfaces within these nanowells (walls and bottoms) must be different from the chemistry of the surface surrounding the nanowells. Two different procedures were developed to make the inside vs. surrounding surface chemistries different. Atomic force microscopy (AFM) was used to image the nanowells and, via friction-force measurements, to prove that the inner nanowell surfaces can be made chemically different from the surface surrounding the nanowells.
Collapse
Affiliation(s)
- Myungchan Kang
- Department of Chemistry and Center for Research at the Bio/Nano Interface, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | |
Collapse
|
152
|
Dahlin A, Zäch M, Rindzevicius T, Käll M, Sutherland DS, Höök F. Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. J Am Chem Soc 2005; 127:5043-8. [PMID: 15810838 DOI: 10.1021/ja043672o] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Supported phospholipid bilayers (SPBs) have emerged as important model systems for studies of the natural cell membrane and its components, which are essential for the integrity and function of cells in all living organisms, and also constitute common targets for therapeutic drugs and in disease diagnosis. However, the preferential occurrence of spontaneous SPB formation on silicon-based substrates, but not on bare noble-metal surfaces, has so far excluded the use of the localized surface plasmon resonance (LSPR) sensing principle for studies of lipid-membrane-mediated biorecognition reactions. This is because the LSPR phenomenon is associated with, and strongly confined to, the interfacial region of nanometric noble-metal particles. This problem has been overcome in this study by a self-assembly process utilizing localized rupture of phospholipid vesicles on silicon dioxide in the bottom of nanometric holes in a thin gold film. The hole-induced localization of the LSPR field to the voids of the holes is demonstrated to provide an extension of the LSPR sensing concept to studies of reactions confined exclusively to SPB-patches supported on SiO2. In particular, we emphasize the possibility of performing label-free studies of lipid-membrane-mediated reaction kinetics, including the compatibility of the assay with array-based reading (approximately 7 x 7 microm2) and detection of signals originating from bound protein in the zeptomole regime.
Collapse
Affiliation(s)
- Andreas Dahlin
- Department of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
153
|
Watanabe S, Miyahara M, Higashitani K. Dynamics of order formation by colloidal adsorption onto a substrate studied with Brownian dynamics. J Chem Phys 2005; 122:104704. [PMID: 15836342 DOI: 10.1063/1.1859279] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Colloidal adsorption and spontaneous ordering of adsorbed particles on a substrate was simulated using a three-dimensional simulation model for colloidal dispersion system with an adsorptive surface under a specified bulk concentration, where the particle-particle and particle-substrate interactions were modeled on the DLVO theory. The key process for order formation is considered to be the adsorption of a particle that induces the transition from incomplete order to perfect order, and is found to involve a stochastic nature due to an energy barrier which must be overcome for the system to reach ordered state. Also, a model was developed to predict the energy barrier for order formation based on direct observation of the key process. Further, a model to describe the stochastic nature of the process was developed and its quantitative validity was demonstrated. Through the examination of the key process, it is concluded that the mechanism of the order formation is composed of two successive processes and the rate-determining step varies depending on the ionic strength.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Department of Chemical Engineering, Kyoto University-Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | |
Collapse
|
154
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Use of nanotopography to study mechanotransduction in fibroblasts--methods and perspectives. Eur J Cell Biol 2005; 83:159-69. [PMID: 15260438 DOI: 10.1078/0171-9335-00369] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The environment around a cell during in vitro culture is unlikely to mimic those in vivo. Preliminary experiments with nanotopography have shown that nanoscale features can strongly influence cell morphology, adhesion, proliferation and gene regulation, but the mechanisms mediating this cell response remain unclear. In this perspective article, we attempt to illustrate that a possible mechanism is direct transmittal of forces encountered by cells during spreading to the nucleus via the cytoskeleton. We further try to illustrate that this 'self-induced' mechanotransduction may alter gene expression by changing interphase chromosome positioning. Whilst the observations described here to show how we think nanotopography can be developed as a tool to look at mechanotransduction are preliminary, we feel they indicate that topography may give cell biologists a non-invasive tool with which to investigate in vitro cellular mechanisms.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
155
|
Organic Static Induction Transistors with Nano-Hole Arrays Fabricated by Colloidal Lithography. E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY 2005. [DOI: 10.1380/ejssnt.2005.327] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
156
|
Denis FA, Hanarp P, Sutherland DS, Dufrêne YF. Nanoscale chemical patterns fabricated by using colloidal lithography and self-assembled monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:9335-9339. [PMID: 15461526 DOI: 10.1021/la049188g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A method for preparing surfaces with well-defined nanoscale chemical patterns is described. The fabrication strategy involves creating nanoscale Au pits surrounded by a TiO2 matrix, or vice versa, using colloidal lithography, followed by selective functionalization of the Au areas by CH3-terminated alkanethiols. Using AFM force spectroscopy with chemically modified tips (OH, CH3), we show that the nanopatterned surfaces display strong chemical contrast, in the form of hydrophobic CH3 nanopatches surrounded by a hydrophilic TiO2 surface, or vice versa. The nanofabrication approach presented here offers several advantages over existing patterning technologies, among which are easiness (no sophisticated instrumentation is required), versatility (patterns with a range of surface functionalities can be prepared), and the possibility to produce patterns over large areas at low cost.
Collapse
Affiliation(s)
- Frédéric A Denis
- Unité de Chimie des interfaces, Université Catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
157
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 2004; 25:5415-22. [PMID: 15130726 DOI: 10.1016/j.biomaterials.2003.12.049] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2003] [Accepted: 12/19/2003] [Indexed: 01/07/2023]
Abstract
In designing new biomaterials, specific chemical and topographical cues will be important in guiding cell response. Filopodia are actin-driven structures produced by cells and speculated to be involved in cell sensing of the three-dimensional environment. This report quantifies filopodia response to cylindrical nano-columns (100 nm diameter, 160 nm high) produced by colloidal lithography. Also observed were actin cytoskeleton morphology by fluorescence microscopy and filopodia morphology by electron microscopy (scanning and transmission). The results showed that the fibroblasts used produced more filopodia per microm of cell perimeter and that filopodia could often be seen to interact with the cells' nano-environment. By understanding as to which features evoke spatial reactions in cells, it may be possible to design better biomaterials.
Collapse
Affiliation(s)
- Matthew John Dalby
- Centre for Cell Engineering Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
158
|
Dalby MJ, Gadegaard N, Riehle MO, Wilkinson CDW, Curtis ASG. Investigating filopodia sensing using arrays of defined nano-pits down to 35 nm diameter in size. Int J Biochem Cell Biol 2004; 36:2005-15. [PMID: 15203114 DOI: 10.1016/j.biocel.2004.03.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 03/11/2004] [Accepted: 03/15/2004] [Indexed: 11/16/2022]
Abstract
In order for cells to react to topography, they must be able to sense shape. When considering nano-topography, these shapes are much smaller than the cell, but still strong responses to nano-topography have been seen. Filopodia, or microspikes, presented by cells at their leading edges are thought to be involved in gathering of special information. In order to investigate this, and to develop an understanding of what size of feature can be sensed by cells, morphological observation (electron and fluorescent microscopy) of fibroblasts reacting to nano-pits with 35, 75 and 120 nm diameters has been used in this study. The nano-pits are especially interesting because unlike many of the nanofeatures cited in the literature, they have no height for the cells to react to. The results showed that cell filopodia, and retraction fibres, interacted with all pit sizes, although direct interaction was hard to image on the 35 nm pits. This suggests that cells are extremely sensitive to their nanoevironment and that should be taken in to consideration when designing next-generation tissue engineering materials. We suggest that this may occur through nanocontact guidance as filopodia are moved over the pits.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
159
|
Gustavsson M, Fredriksson H, Kasemo B, Jusys Z, Kaiser J, Jun C, Behm R. Nanostructured platinum-on-carbon model electrocatalysts prepared by colloidal lithography. J Electroanal Chem (Lausanne) 2004. [DOI: 10.1016/j.jelechem.2004.01.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res 2004; 295:387-94. [PMID: 15093738 DOI: 10.1016/j.yexcr.2004.02.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 01/29/2004] [Accepted: 02/02/2004] [Indexed: 12/23/2022]
Abstract
Control of the cells' nanoenvironment is likely to be important in the future of cell and tissue engineering. Microtopography has been shown to provide cues to cells that elicit a large range of cell responses, including control of adhesion, morphology, apoptosis and gene regulations. Now, researchers are focusing on nanotopography as techniques such as colloidal and electron beam lithography and polymer demixing have become available. In this study, human fibroblast response to nanocolumns (160-nm high, 100-nm diameter, 230-nm centre-centre spacing) produced by colloidal lithography are considered. Using electron microscopy and immunofluorescence to image the cytoskeleton, clathrin and dynamin, it was observed that the cells try to endocytose the nanocolumns. It also appeared that a small population of the cells changed to unusual morphologies with macrophage-like processes and highly disrupted cytoskeleton. These observations could have implications for nanomaterials science in areas such as cell transfection and drug delivery.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | |
Collapse
|
161
|
Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis ASG. Fibroblast response to a controlled nanoenvironment produced by colloidal lithography. ACTA ACUST UNITED AC 2004; 69:314-22. [PMID: 15058004 DOI: 10.1002/jbm.a.20138] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
It is thought that by understanding how cells respond to topography, that better tissue engineering may be achievable. An important consideration in the cellular environment is topography. The effects of microtopography have been well documented, but the effects of nanotopography are less well known. Previously, methods of nanofabrication have been costly and time-consuming, but research by engineers, physicists, and chemists is starting to allow the production of nanostructures using low-cost techniques. In this report, nanotopography is specifically considered. Controlled patterns of 160 nm high nanocolumns were produced for in vitro cell culture using colloidal lithography. By studying cell adhesion with time and cytoskeletal (actin, tubulin, and vimentin) maturity, insight has been gained as to how fibroblasts adhere to these nanofeatures.
Collapse
Affiliation(s)
- Matthew J Dalby
- Centre for Cell Engineering, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
162
|
Andersson AS, Bäckhed F, von Euler A, Richter-Dahlfors A, Sutherland D, Kasemo B. Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 2003; 24:3427-36. [PMID: 12809771 DOI: 10.1016/s0142-9612(03)00208-4] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Available, easy and fast fabrication methods of nanostructured surfaces, and the knowledge that cells in vivo interacts with nanometer-sized structures/objects, led us to study the impact of nanotopography on cell morphology and cytokine production. Uroepithelial cells were seeded on three different substrate types: two with defined nanometer topographies and a flat control, all three having identical surface chemistry. The nanostructured substrates contained hemispherical pillars or step edges, the latter in the form of parallel grooves and ridges. Qualitative and quantitative analysis of cell morphology and cytokine production were studied. Both quantities were significantly different between cells cultured on hemispherically structured surfaces compared to flat control surfaces. Cells cultured on hemispherically structured surfaces showed a decrease in IL-6 and IL-8 production and were less spread, less round and more stellate (larger dispersion). Only cell morphology differed between cells cultured on grooved surfaces and flat control surfaces. These findings suggest that epithelial cell morphology and cytokine production are dependent on the underlying nanotopography.
Collapse
Affiliation(s)
- Ann-Sofie Andersson
- Department of Applied Physics, Chalmers University of Technology, Göteborg SE-412 96, Sweden
| | | | | | | | | | | |
Collapse
|
163
|
Andersson AS, Brink J, Lidberg U, Sutherland DS. Influence of systematically varied nanoscale topography on the morphology of epithelial cells. IEEE Trans Nanobioscience 2003; 2:49-57. [PMID: 15382658 DOI: 10.1109/tnb.2003.813934] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With the knowledge that cells can react to lithographically manufactured nanometer-sized surface objects, our interest concerned whether cells would respond to surface structures of systematically increasing size. Our approach to answer this question was to fabricate surfaces with the same surface chemistry and similar surface roughness but increasing size of structural features. To fabricate large areas of patterned surfaces, required for cell culture studies, we used colloidal lithography utilizing colloidal particles as a template for surface nanostructuring. The fabricated surfaces contained hemispherical nanopillars with diameters ranging from 60 to 170 nm. Changes in cell morphology of a pancreatic epithelial cell line (AR4-2J) were studied by evaluating cell area and cell shape. The latter was studied by applying the cell shape classification method using three shape descriptors. The pancreatic cells responded in a systematic way to the surface nanostructures. The cells spread more and became more nonround when cultured on surfaces with increasing size of the topographic features. Index Terms-Biological cells, image analysis, nanotechnology, shape measurement, surfaces.
Collapse
Affiliation(s)
- Ann-Sofie Andersson
- Department of Applied Physics, Chalmers University of Technology, S-412 96 Göteborg, Sweden.
| | | | | | | |
Collapse
|
164
|
Hanarp P, Käll M, Sutherland DS. Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography. J Phys Chem B 2003. [DOI: 10.1021/jp027562k] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Per Hanarp
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | - Mikael Käll
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden
| | - Duncan S. Sutherland
- Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden
| |
Collapse
|