151
|
SMARCAD1 is an ATP-dependent stimulator of nucleosomal H2A acetylation via CBP, resulting in transcriptional regulation. Sci Rep 2016; 6:20179. [PMID: 26888216 PMCID: PMC4757861 DOI: 10.1038/srep20179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation plays a pivotal role in transcriptional regulation, and ATP-dependent nucleosome remodeling activity is required for optimal transcription from chromatin. While these two activities have been well characterized, how they are coordinated remains to be determined. We discovered ATP-dependent histone H2A acetylation activity in Drosophila nuclear extracts. This activity was column purified and demonstrated to be composed of the enzymatic activities of CREB-binding protein (CBP) and SMARCAD1, which belongs to the Etl1 subfamily of the Snf2 family of helicase-related proteins. SMARCAD1 enhanced acetylation by CBP of H2A K5 and K8 in nucleosomes in an ATP-dependent fashion. Expression array analysis of S2 cells having ectopically expressed SMARCAD1 revealed up-regulated genes. Using native genome templates of these up-regulated genes, we found that SMARCAD1 activates their transcription in vitro. Knockdown analysis of SMARCAD1 and CBP indicated overlapping gene control, and ChIP-seq analysis of these commonly controlled genes showed that CBP is recruited to the promoter prior to SMARCAD1. Moreover, Drosophila genetic experiments demonstrated interaction between SMARCAD1/Etl1 and CBP/nej during development. The interplay between the remodeling activity of SMARCAD1 and histone acetylation by CBP sheds light on the function of chromatin and the genome-integrity network.
Collapse
|
152
|
Eid A, Bihaqi SW, Renehan WE, Zawia NH. Developmental lead exposure and lifespan alterations in epigenetic regulators and their correspondence to biomarkers of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2016; 2:123-31. [PMID: 27239543 PMCID: PMC4879653 DOI: 10.1016/j.dadm.2016.02.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Early life lead (Pb) exposure results in a latent increase in Alzheimer's disease (AD)-related proteins, and cognitive deficits late in life in both rodents and primates. This study was conducted to investigate if these late life changes were accompanied by epigenetic alterations. METHODS Western blot analysis and RT-PCR were used to measure Deoxyribonucleic acid methylation regulators (DNMT1, DNMT3a, MeCP2, MAT2A) and histone proteins (H3K9Ac, H3K4me2, H3K27me3). RESULTS Cerebral levels of DNMT1 and MeCP2 were significantly reduced in mice exposed to Pb early in life, whereas the expression of DNMT3a was not altered. Levels of MAT2a were increased in the Pb-exposed mice across the lifespan. H3K9Ac and H3K4me2, involved in gene activation, were decreased, whereas the repressive mark H3K27me3 was elevated. DISCUSSION Epigenetic modifiers are affected by the developmental exposure to Pb and may play a role in mediating the latent increases in AD-related proteins in the brain.
Collapse
Affiliation(s)
- Aseel Eid
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Syed Waseem Bihaqi
- Department of Pharmacology and Toxicology, University of Hail, Hail, Kingdom of Saudi Arabia
| | - William E. Renehan
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| | - Nasser H. Zawia
- Neurodegeneration Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, USA
- Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
- Geroge and Ann Ryan Institute for Neuroscience, University of Rhode Island, Kingston RI, USA
| |
Collapse
|
153
|
Seidel J, Klockenbusch C, Schwarzer D. Investigating Deformylase and Deacylase Activity of Mammalian and Bacterial Sirtuins. Chembiochem 2016; 17:398-402. [DOI: 10.1002/cbic.201500611] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Julian Seidel
- Interfaculty Institute of Biochemistry (IFIB); University of Tübingen; Hoppe-Seyler-Strasse 4 72076 Tübingen Germany
| | - Cordula Klockenbusch
- Interfaculty Institute of Biochemistry (IFIB); University of Tübingen; Hoppe-Seyler-Strasse 4 72076 Tübingen Germany
| | - Dirk Schwarzer
- Interfaculty Institute of Biochemistry (IFIB); University of Tübingen; Hoppe-Seyler-Strasse 4 72076 Tübingen Germany
| |
Collapse
|
154
|
Xiong Y, Peng X, Cheng Z, Liu W, Wang GL. A comprehensive catalog of the lysine-acetylation targets in rice (Oryza sativa) based on proteomic analyses. J Proteomics 2016; 138:20-9. [PMID: 26836501 DOI: 10.1016/j.jprot.2016.01.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Lysine acetylation is a dynamic and reversible post-translational modification that plays an important role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation (Kac) sites and Kac proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings. About 42% of the sites were predicted to be localized in the chloroplast. Seven putative acetylation motifs were detected. Phenylalanine, located in both the upstream and downstream of the Kac sites, is the most conserved amino acid surrounding the regions. In addition, protein interaction network analysis revealed that a variety of signaling pathways are modulated by protein acetylation. KEGG pathway category enrichment analysis indicated that glyoxylate and dicarboxylate metabolism, carbon metabolism, and photosynthesis pathways are significantly enriched. Our results provide an in-depth understanding of the acetylome in rice seedlings, and the method described here will facilitate the systematic study of how Kac functions in growth, development, and abiotic and biotic stress responses in rice and other plants. BIOLOGICAL SIGNIFICANCE Rice is one of the most important crops consumption and is a model monocot for research. In this study, we combined a highly sensitive immune-affinity purification method (used pan anti-acetyl-lysine antibody conjugated agarose for immunoaffinity acetylated peptide enrichment) with high-resolution LC-MS/MS. In total, we identified 1337 Kac sites on 716 Kac proteins in rice cells. Bioinformatic analysis of the acetylome revealed that the acetylated proteins are involved in a variety of cellular functions and have diverse subcellular localizations. We also identified seven putative acetylation motifs in the acetylated proteins of rice. In addition, protein interaction network analysis revealed that a variety of signaling pathways were modulated by protein acetylation. KEGG pathway category enrichment analysis indicated that glyoxylate and dicarboxylate metabolism, carbon metabolism, and photosynthesis pathways were significantly enriched. To our knowledge, the number of Kac sites we identified was 23-times greater and the number of Kac proteins was 16-times greater than in a previous report. Our results provide an in-depth understanding of the acetylome in rice seedlings, and the method described here will facilitate the systematic study of how Kac functions in growth, development and responses to abiotic and biotic stresses in rice or other plants.
Collapse
Affiliation(s)
- Yehui Xiong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaojun Peng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab (Hangzhou) Co. Ltd., Hangzhou 310018, China
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
155
|
Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol 2016; 17:259-68. [PMID: 26808229 PMCID: PMC4755875 DOI: 10.1038/ni.3347] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/12/2015] [Indexed: 02/05/2023]
Abstract
The proinflammatory cytokines interleukin 12 (IL-12) and IL-23 connect innate and adaptive immune responses and are also involved in autoimmune and inflammatory diseases. Here we describe an epigenetic mechanism of Il12 and Il23 gene regulation involving the deubiquitinase Trabid. Deletion of Zranb1, the gene encoding Trabid, in dendritic cells inhibited the induction of IL-12 and IL-23 expression by Toll-like receptors (TLR), impairing the differentiation of inflammatory T cells and protecting mice from autoimmune inflammation. Trabid facilitated TLR-induced histone modifications at the Il12 and Il23 promoters, which involved deubiqutination and stabilization of the histone demethylase Jmjd2d. These findings highlight an epigenetic mechanism of Il12 and Il23 gene regulation and establish Trabid as an innate immune regulator of inflammatory T cell responses.
Collapse
|
156
|
Sidoli S, Vandamme J, Salcini AE, Jensen ON. Dynamic changes of histone H3 marks during Caenorhabditis elegans lifecycle revealed by middle-down proteomics. Proteomics 2016; 16:459-64. [PMID: 26508544 DOI: 10.1002/pmic.201500285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/10/2015] [Accepted: 10/15/2015] [Indexed: 01/01/2023]
Abstract
We applied a middle-down proteomics strategy for large-scale protein analysis during in vivo development of Caenorhabditis elegans. We characterized PTMs on histone H3 N-terminal tails at eight time points during the C. elegans lifecycle, including embryo, larval stages (L1-L4), dauer, and L1/L4 postdauer. Histones were analyzed by our optimized middle-down protein sequencing platform using high mass accuracy MS/MS. This allows quantification of intact histone tails and detailed characterization of distinct histone tails carrying cooccurring PTMs. We measured temporally distinct combinatorial PTM profiles during C. elegans development. We show that the doubly modified form H3K23me3K27me3, which is rare or nonexistent in mammals, is the most abundant PTM in all stages of C. elegans lifecycle. The abundance of H3K23me3 increased during development and it was mutually exclusive of the active marks H3K18ac, R26me1, and R40me1, suggesting a role for H3K23me3 in silent chromatin. We observed distinct PTM profiles for normal L1 larvae and for L1-postdauer larvae, or L4 and L4 postdauer, suggesting that histone PTMs mediate an epigenetic memory that is transmitted during dauer formation. Collectively, our data describe the dynamics of histone H3 combinatorial code during C. elegans lifecycle and demonstrate the feasibility of using middle-down proteomics to study in vivo development of multicellular organisms. All MS data have been deposited in the ProteomeXchange with identifier PXD002525 (http://proteomecentral.proteomexchange.org/dataset/PXD002525).
Collapse
Affiliation(s)
- Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Julien Vandamme
- Centre for Epigenetics, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Anna Elisabetta Salcini
- Centre for Epigenetics, Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen N, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
157
|
Role of peroxynitrite induced structural changes on H2B histone by physicochemical method. Int J Biol Macromol 2016; 82:31-8. [DOI: 10.1016/j.ijbiomac.2015.10.085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 12/12/2022]
|
158
|
Deng P, Chen QM, Hong C, Wang CY. Histone methyltransferases and demethylases: regulators in balancing osteogenic and adipogenic differentiation of mesenchymal stem cells. Int J Oral Sci 2015; 7:197-204. [PMID: 26674421 PMCID: PMC5153596 DOI: 10.1038/ijos.2015.41] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are characterized by their self-renewing capacity and differentiation potential into multiple tissues. Thus, management of the differentiation capacities of MSCs is important for MSC-based regenerative medicine, such as craniofacial bone regeneration, and in new treatments for metabolic bone diseases, such as osteoporosis. In recent years, histone modification has been a growing topic in the field of MSC lineage specification, in which the Su(var)3–9, enhancer-of-zeste, trithorax (SET) domain-containing family and the Jumonji C (JmjC) domain-containing family represent the major histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs), respectively. In this review, we summarize the current understanding of the epigenetic mechanisms by which SET domain-containing KMTs and JmjC domain-containing KDMs balance the osteogenic and adipogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Peng Deng
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Christine Hong
- Section of Orthodontics, School of Dentistry, University of California at Los Angeles, Los Angeles, USA
| | - Cun-Yu Wang
- Division of Oral Biology and Medicine, School of Dentistry, University of California at Los Angeles, Los Angeles, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California at Los Angeles, Los Angeles, USA
| |
Collapse
|
159
|
Sugatani T, Agapova O, Malluche HH, Hruska KA. SIRT6 deficiency culminates in low-turnover osteopenia. Bone 2015; 81:168-177. [PMID: 26189760 PMCID: PMC4640951 DOI: 10.1016/j.bone.2015.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
Abstract
Deficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss. Mechanistically, SIRT6 interacts with runt-related transcription factor 2 (Runx2) and osterix (Osx), which are the two key transcriptional regulators of osteoblastogenesis, and deacetylates histone H3 at Lysine 9 (H3K9) at their promoters. Hence, excessively elevated Runx2 and Osx in SIRT6(-/-) osteoblasts lead to impaired osteoblastogenesis. In addition, SIRT6 deficiency produces hyperacetylation of H3K9 in the promoter of dickkopf-related protein 1 (Dkk1), a potent negative regulator of osteoblastogenesis, and osteoprotegerin, an inhibitor of osteoclastogenesis. Therefore, the resulting up-regulation of Dkk1 and osteoprotegerin levels contribute to impaired bone remodeling, leading to osteopenia with a low bone turnover in SIRT6-deficient mice. These results establish a new link between SIRT6 and bone remodeling that positively regulates osteoblastogenesis and osteoclastogenesis.
Collapse
Affiliation(s)
- Toshifumi Sugatani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Olga Agapova
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hartmut H Malluche
- University of Kentucky, Albert B. Chandler Medical Center, Lexington, KY 405360298, USA
| | - Keith A Hruska
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
160
|
Bi X, Yang R, Feng X, Rhodes D, Liu CF. Semisynthetic UbH2A reveals different activities of deubiquitinases and inhibitory effects of H2A K119 ubiquitination on H3K36 methylation in mononucleosomes. Org Biomol Chem 2015; 14:835-9. [PMID: 26615908 DOI: 10.1039/c5ob02323h] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a genetically incorporated azidonorleucine for ubiquitin installation, we prepared multi-milligram quantities of H2AK119ub (ubH2A). With a native isopeptide linkage, the synthetic ubH2A was used to study the activity of deubiquitinases and crosstalk between H2A ubiquitination and H3K36 methylation in the context of chemically defined mononucleosomes.
Collapse
Affiliation(s)
- Xiaobao Bi
- Division of Structural Biology and Biochemistry, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | | | | | |
Collapse
|
161
|
Vasudevan D, Hickok JR, Bovee RC, Pham V, Mantell LL, Bahroos N, Kanabar P, Cao XJ, Maienschein-Cline M, Garcia BA, Thomas DD. Nitric Oxide Regulates Gene Expression in Cancers by Controlling Histone Posttranslational Modifications. Cancer Res 2015; 75:5299-308. [PMID: 26542213 DOI: 10.1158/0008-5472.can-15-1582] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/11/2015] [Indexed: 01/05/2023]
Abstract
Altered nitric oxide (•NO) metabolism underlies cancer pathology, but mechanisms explaining many •NO-associated phenotypes remain unclear. We have found that cellular exposure to •NO changes histone posttranslational modifications (PTM) by directly inhibiting the catalytic activity of JmjC-domain containing histone demethylases. Herein, we describe how •NO exposure links modulation of histone PTMs to gene expression changes that promote oncogenesis. Through high-resolution mass spectrometry, we generated an extensive map of •NO-mediated histone PTM changes at 15 critical lysine residues on the core histones H3 and H4. Concomitant microarray analysis demonstrated that exposure to physiologic •NO resulted in the differential expression of over 6,500 genes in breast cancer cells. Measurements of the association of H3K9me2 and H3K9ac across genomic loci revealed that differential distribution of these particular PTMs correlated with changes in the level of expression of numerous oncogenes, consistent with epigenetic code. Our results establish that •NO functions as an epigenetic regulator of gene expression mediated by changes in histone PTMs.
Collapse
Affiliation(s)
- Divya Vasudevan
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Jason R Hickok
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Rhea C Bovee
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Vy Pham
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neil Bahroos
- Center for Research Informatics, University of Illinois at Chicago, Chicago, Illinois
| | - Pinal Kanabar
- Center for Research Informatics, University of Illinois at Chicago, Chicago, Illinois
| | - Xing-Jun Cao
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas D Thomas
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
162
|
Vandamme J, Sidoli S, Mariani L, Friis C, Christensen J, Helin K, Jensen ON, Salcini AE. H3K23me2 is a new heterochromatic mark in Caenorhabditis elegans. Nucleic Acids Res 2015; 43:9694-710. [PMID: 26476455 PMCID: PMC4787770 DOI: 10.1093/nar/gkv1063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/01/2015] [Indexed: 12/05/2022] Open
Abstract
Genome-wide analyses in Caenorhabditis elegans show that post-translational modifications (PTMs) of histones are evolutionary conserved and distributed along functionally distinct genomic domains. However, a global profile of PTMs and their co-occurrence on the same histone tail has not been described in this organism. We used mass spectrometry based middle-down proteomics to analyze histone H3 N-terminal tails from C. elegans embryos for the presence, the relative abundance and the potential cross-talk of co-existing PTMs. This analysis highlighted that the lysine 23 of histone H3 (H3K23) is extensively modified by methylation and that tri-methylated H3K9 (H3K9me3) is exclusively detected on histone tails with di-methylated H3K23 (H3K23me2). Chromatin immunoprecipitation approaches revealed a positive correlation between H3K23me2 and repressive marks. By immunofluorescence analyses, H3K23me2 appears differentially regulated in germ and somatic cells, in part by the action of the histone demethylase JMJD-1.2. H3K23me2 is enriched in heterochromatic regions, localizing in H3K9me3 and heterochromatin protein like-1 (HPL-1)-positive foci. Biochemical analyses indicated that HPL-1 binds to H3K23me2 and interacts with a conserved CoREST repressive complex. Thus, our study suggests that H3K23me2 defines repressive domains and contributes to organizing the genome in distinct heterochromatic regions during embryogenesis.
Collapse
Affiliation(s)
- Julien Vandamme
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Simone Sidoli
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Luca Mariani
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Carsten Friis
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jesper Christensen
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark The Danish Stem Cell Centre (Danstem), University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Ole N Jensen
- Centre for Epigenetics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense M, Denmark
| | - Anna Elisabetta Salcini
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
163
|
Lunning MA, Green MR. Mutation of chromatin modifiers; an emerging hallmark of germinal center B-cell lymphomas. Blood Cancer J 2015; 5:e361. [PMID: 26473533 PMCID: PMC4635197 DOI: 10.1038/bcj.2015.89] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/16/2015] [Indexed: 12/31/2022] Open
Abstract
Subtypes of non-Hodgkin's lymphomas align with different stages of B-cell development. Germinal center B-cell (GCB)-like diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and Burkitt's lymphoma (BL) each share molecular similarities with normal GCB cells. Recent next-generation sequencing studies have gained insight into the genetic etiology of these malignancies and revealed a high frequency of mutations within genes encoding proteins that modifying chromatin. These include activating and inactivating mutations of genes that perform post-translational modification of histones and organize chromatin structure. Here, we discuss the function of histone acetyltransferases (CREBBP, EP300), histone methyltransferases (KDM2C/D, EZH2) and regulators of higher order chromatin structure (HIST1H1C/D/E, ARID1A and SMARCA4) that have been reported to be mutated in ⩾5% of DLBCL, FL or BL. Mutations of these genes are an emerging hallmark of lymphomas with GCB-cell origins, and likely represent the next generation of therapeutic targets for these malignancies.
Collapse
Affiliation(s)
- M A Lunning
- Lymphoma Precision Medicine Laboratory, Dr James O Armitage Center for Leukemia and Lymphoma Research, University of Nebraska Medical Center, Omaha, NE, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - M R Green
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.,Department of Internal Medicine, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
164
|
Lysine Methyltransferase SETD7 (SET7/9) Regulates ROS Signaling through mitochondria and NFE2L2/ARE pathway. Sci Rep 2015; 5:14368. [PMID: 26435321 PMCID: PMC4593030 DOI: 10.1038/srep14368] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/20/2015] [Indexed: 01/07/2023] Open
Abstract
Reactive oxygen species (ROS) homeostasis requires stringent regulation. ROS imbalance, especially ROS accumulation, has profound implications in various disease pathogenesis. Lysine methylation of histone and non-histone proteins has been implicated in various cellular responses. The main objective of this study is to investigate the role of SET domain containing lysine methyltransferase SETD7 (SET7/9) in the regulation of ROS-mediated signaling. Here we report that inhibition of SETD7 with siRNA or a SETD7 small molecule inhibitor in both macrophages and a human bronchial epithelial cell line (Beas-2B) were able to counter NF-ĸB-induced oxidative stress and pro-inflammatory cytokine production. Meanwhile, inhibition of SETD7 elevates mitochondria antioxidant functions via negative regulation of PPARGC1A and NFE2L2. Using a co-expression system and purified proteins, we detected direct interaction between SETD7 and NFE2L2. These results indicate that lysine methylation by SETD7 is important for the fine-tuning of ROS signaling through its regulation on pro-inflammatory responses, mitochondrial function and the NFE2L2/ARE pathway. Up-regulation of multiple antioxidant genes and improved ROS clearance by inhibition of SETD7 suggests the potential benefit of targeting SETD7 in treating ROS-associated diseases.
Collapse
|
165
|
Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol 2015; 67:65-74. [DOI: 10.1016/j.biocel.2015.05.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 02/01/2023]
|
166
|
Nucleosome competition reveals processive acetylation by the SAGA HAT module. Proc Natl Acad Sci U S A 2015; 112:E5461-70. [PMID: 26401015 DOI: 10.1073/pnas.1508449112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) coactivator complex hyperacetylates histone tails in vivo in a manner that depends upon histone 3 lysine 4 trimethylation (H3K4me3), a histone mark enriched at promoters of actively transcribed genes. SAGA contains a separable subcomplex known as the histone acetyltransferase (HAT) module that contains the HAT, Gcn5, bound to Sgf29, Ada2, and Ada3. Sgf29 contains a tandem Tudor domain that recognizes H3K4me3-containing peptides and is required for histone hyperacetylation in vivo. However, the mechanism by which H3K4me3 recognition leads to lysine hyperacetylation is unknown, as in vitro studies show no effect of the H3K4me3 modification on histone peptide acetylation by Gcn5. To determine how H3K4me3 binding by Sgf29 leads to histone hyperacetylation by Gcn5, we used differential fluorescent labeling of histones to monitor acetylation of individual subpopulations of methylated and unmodified nucleosomes in a mixture. We find that the SAGA HAT module preferentially acetylates H3K4me3 nucleosomes in a mixture containing excess unmodified nucleosomes and that this effect requires the Tudor domain of Sgf29. The H3K4me3 mark promotes processive, multisite acetylation of histone H3 by Gcn5 that can account for the different acetylation patterns established by SAGA at promoters versus coding regions. Our results establish a model for Sgf29 function at gene promoters and define a mechanism governing crosstalk between histone modifications.
Collapse
|
167
|
Zhao Y, Garcia BA. Comprehensive Catalog of Currently Documented Histone Modifications. Cold Spring Harb Perspect Biol 2015; 7:a025064. [PMID: 26330523 DOI: 10.1101/cshperspect.a025064] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Modern techniques in molecular biology, genomics, and mass spectrometry-based proteomics have identified a large number of novel histone posttranslational modifications (PTMs), many of whose functions are still under intense investigation. Here, we catalog histone PTMs under two classes: first, those whose functions have been fairly well studied and, second, those PTMs that have been more recently identified but whose functions remain unclear. We hope that this will be a useful resource for researchers from all biological or technical backgrounds, aiding in their chromatin and epigenetic pursuits.
Collapse
Affiliation(s)
- Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
168
|
Association analysis between the distributions of histone modifications and gene expression in the human embryonic stem cell. Gene 2015; 575:90-100. [PMID: 26302750 DOI: 10.1016/j.gene.2015.08.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/13/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022]
Abstract
It is well known that histone modifications are associated with gene expression. In order to further study this relationship, 16 kinds of Chip-seq histone modification data and mRNA-seq data of the human embryonic stem cell H1 are chosen. The distributions of histone modifications in the regions flanking transcription start sites (TSSs) for highly expressed and lowly expressed genes are computed, respectively. And four types of distributions of histone modifications in regions flanking TSSs and the spatial patterning of the correlations between histone modifications and gene expression are detected. Our results suggest that the correlations between the regions overlapped by peaks are higher than the non-overlapped ones for each histone modification. In addition, to obtain the effect of the cooperative action of histone modification on gene expression, five histone modification clusters are found in highly expressed and lowly expressed genes, histone modification and gene expression interaction network is constructed. To further explore which region is the main target region for the specific histone modification, the human genes are divided into five functional regions. The results indicate that histone modifications are mostly located in the promoters of highly expressed genes versus the exons of lowly expressed genes, and exons have a smaller range of normalized tag counts than other gene elements in the two groups of genes. Finally, the type specificity and regional bias of histone modifications for 11 key transcription factor genes regulating the stem cell renewal are analyzed.
Collapse
|
169
|
Cucinotta CE, Young AN, Klucevsek KM, Arndt KM. The Nucleosome Acidic Patch Regulates the H2B K123 Monoubiquitylation Cascade and Transcription Elongation in Saccharomyces cerevisiae. PLoS Genet 2015; 11:e1005420. [PMID: 26241481 PMCID: PMC4524731 DOI: 10.1371/journal.pgen.1005420] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/05/2015] [Indexed: 02/06/2023] Open
Abstract
Eukaryotes regulate gene expression and other nuclear processes through the posttranslational modification of histones. In S. cerevisiae, the mono-ubiquitylation of histone H2B on lysine 123 (H2B K123ub) affects nucleosome stability, broadly influences gene expression and other DNA-templated processes, and is a prerequisite for additional conserved histone modifications that are associated with active transcription, namely the methylation of lysine residues in H3. While the enzymes that promote these chromatin marks are known, regions of the nucleosome required for the recruitment of these enzymes are undefined. To identify histone residues required for H2B K123ub, we exploited a functional interaction between the ubiquitin-protein ligase, Rkr1/Ltn1, and H2B K123ub in S. cerevisiae. Specifically, we performed a synthetic lethal screen with cells lacking RKR1 and a comprehensive library of H2A and H2B residue substitutions, and identified H2A residues that are required for H2B K123ub. Many of these residues map to the nucleosome acidic patch. The substitutions in the acidic patch confer varying histone modification defects downstream of H2B K123ub, indicating that this region contributes differentially to multiple histone modifications. Interestingly, substitutions in the acidic patch result in decreased recruitment of H2B K123ub machinery to active genes and defects in transcription elongation and termination. Together, our findings reveal a role for the nucleosome acidic patch in recruitment of histone modification machinery and maintenance of transcriptional integrity. Chromatin, a complex of DNA wrapped around histone proteins, impacts all DNA-templated processes, including gene expression. Cells employ various strategies to alter chromatin structure and control access to the genetic material. Nucleosomes, the building blocks of chromatin, are subject to a myriad of modifications on their constituent histone proteins. One highly conserved modification with important connections to human health is the addition of ubiquitin to histone H2B. H2B ubiquitylation modulates chromatin structure during gene transcription and acts as a master regulator for downstream histone modifications. The proteins that promote H2B ubiquitylation have been identified; however, little is known about how these proteins interface with the nucleosome. Here, we exploited the genetic tools of budding yeast to reveal features of the nucleosome that are required for H2B ubiquitylation. Our genetic screen identified amino acids on the nucleosome acidic patch, a negatively charged region on the nucleosome surface, as being important for this process. The acidic patch is critical for regulating chromatin transactions, and, in our study, we identified roles for the acidic patch throughout transcription. Our data reveal that the acidic patch recruits histone modifiers, regulates histone modifications within the H2B ubiquitylation cascade, and maintains transcriptional fidelity.
Collapse
Affiliation(s)
- Christine E. Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexandria N. Young
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kristin M. Klucevsek
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karen M. Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
170
|
Saikusa K, Shimoyama S, Asano Y, Nagadoi A, Sato M, Kurumizaka H, Nishimura Y, Akashi S. Charge-neutralization effect of the tail regions on the histone H2A/H2B dimer structure. Protein Sci 2015; 24:1224-31. [PMID: 25752661 PMCID: PMC4534173 DOI: 10.1002/pro.2673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/18/2015] [Accepted: 03/03/2015] [Indexed: 12/18/2022]
Abstract
It is well known that various modifications of histone tails play important roles in the regulation of transcription initiation. In this study, some lysine (Lys) and arginine (Arg) residues were acetylated and deiminated, respectively, in the histone H2A/H2B dimer, and charge-neutralization effects on the dimer structure were studied by native mass spectrometry. Given that both acetylation and deimination neutralize the positive charges of basic amino acid residues, it had been expected that these modifications would correspondingly affect the gas-phase behavior of the histone H2A/H2B dimer. Contrary to this expectation, it was found that Arg deimination led to greater difficulty of dissociation of the dimer by gas-phase collision, whereas acetylation of Lys residues did not cause such a drastic change in the dimer stability. In contrast, ion mobility-mass spectrometry (IM-MS) experiments showed that arrival times in the mobility cell both of acetylated and of deiminated dimer ions changed little from those of the unmodified dimer ions, indicating that the sizes of the dimer ions did not change by modification. Charge neutralization of Arg, basicity of which is higher than Lys, might have triggered some alteration of the dimer structure that cannot be found in IM-MS but can be detected by collision in the gas phase.
Collapse
Affiliation(s)
- Kazumi Saikusa
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Singo Shimoyama
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuuki Asano
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Aritaka Nagadoi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Mamoru Sato
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hitoshi Kurumizaka
- Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda UniversityShinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshifumi Nishimura
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Satoko Akashi
- Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City UniversityTsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
171
|
|
172
|
Abstract
Pulmonary arterial hypertension (PAH) includes a heterogeneous group of diseases characterized by pulmonary vasoconstriction and remodeling of the lung circulation. Although PAH is a disease of the lungs, patients with PAH frequently die of right heart failure. Indeed, survival of patients with PAH depends on the adaptive response of the right ventricle (RV) to the changes in the lung circulation. PAH-specific drugs affect the function of the RV through afterload reduction and perhaps also through direct effects on the myocardium. Prostacyclins, type 5 phosphodiesterase inhibitors, and guanylyl cyclase stimulators may directly enhance myocardial contractility through increased cyclic adenosine and guanosine monophosphate availability. Although this may initially improve cardiac performance, the long-term effects on myocardial oxygen consumption and function are unclear. Cardiac effects of endothelin receptor antagonists may be opposite, as endothelin-1 is known to suppress cardiac contractility. Because PAH is increasingly considered as a disease with quasimalignant growth of cells in the pulmonary vascular wall, therapies are being developed that inhibit hypertrophy and angiogenesis, and promote apoptosis. The inherent danger of these therapies is a further compromise to the already ischemic, fibrotic, and dysfunctional RV. More recently, the right heart has been identified as a direct treatment target in PAH. The effects of well established therapies for left heart failure, such as β-adrenergic receptor blockers, inhibitors of the renin-angiotensin system, exercise training, and assist devices, are currently being investigated in PAH. Future treatment of patients with PAH will likely consist of a multifaceted approaches aiming to reduce the pressure in the lung circulation and improving right heart adaptation simultaneously.
Collapse
|
173
|
Ooi JYY, Tuano NK, Rafehi H, Gao XM, Ziemann M, Du XJ, El-Osta A. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics 2015; 10:418-30. [PMID: 25941940 DOI: 10.1080/15592294.2015.1024406] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Pharmacological histone deacetylase (HDAC) inhibitors attenuate pathological cardiac remodeling and hypertrophic gene expression; yet, the direct histone targets remain poorly characterized. Since the inhibition of HDAC activity is associated with suppressing hypertrophy, we hypothesized histone acetylation would target genes implicated in cardiac remodeling. Trichostatin A (TSA) regulates cardiac gene expression and attenuates transverse aortic constriction (TAC) induced hypertrophy. We used chromatin immunoprecipitation (ChIP) coupled with massive parallel sequencing (ChIP-seq) to map, for the first time, genome-wide histone acetylation changes in a preclinical model of pathological cardiac hypertrophy and attenuation of pathogenesis with TSA. Pressure overload-induced cardiac hypertrophy was associated with histone acetylation of genes implicated in cardiac contraction, collagen deposition, inflammation, and extracellular matrix identified by ChIP-seq. Gene set enrichment analysis identified NF-kappa B (NF-κB) transcription factor activation with load induced hypertrophy. Increased histone acetylation was observed on the promoters of NFκB target genes (Icam1, Vcam1, Il21r, Il6ra, Ticam2, Cxcl10) consistent with gene activation in the hypertrophied heart. Surprisingly, TSA attenuated pressure overload-induced cardiac hypertrophy and the suppression of NFκB target genes by broad histone deacetylation. Our results suggest a mechanism for cardioprotection subject to histone deacetylation as a previously unknown target, implicating the importance of inflammation by pharmacological HDAC inhibition. The results of this study provides a framework for HDAC inhibitor function in the heart and argues the long held views of acetylation is subject to more flexibility than previously thought.
Collapse
Key Words
- ANP, Atrial natriuretic peptide
- BNP, Brain natriuretic peptide
- BW, Body Weight
- ChIP, Chromatin Immunoprecipitation
- Ct, threshold cycle number
- Cxcl10, Chemokine (C-X-C Motif) ligand 10
- ENCODE, Encyclopedia of DNA Elements Consortium
- FDR, False Discovery Rate
- FS, Fractional Shortening
- GAIIx, Genome Analyzer IIx
- HDAC inhibitor
- HDAC, Histone deacetylase
- Icam1, Intercellular adhesion molecule 1
- Il21r, Interleukin-21 receptor
- Il6ra, Interleukin-6 receptor
- LV, Left Ventricle
- LVDd, Left Ventricular Diastolic Dimension
- LVH, Left Ventricle Hypertrophy
- MACs, Model-based Analysis of ChIP-seq
- NES, normalized enrichment score
- NFκB, Nuclear factor of kappa light polypeptide gene enhancer in B-cells
- NGS, Next Generation Sequencing
- SEM, Standard Error of the Mean
- Serca2a, Sarcoplasmic reticulum Ca2+ ATPase
- TAC veh, TAC vehicle
- TAC, Transverse Aortic Constriction
- TF, transcription factor
- TL, Tibia Length
- TSA, Trichostatin A
- TSS, Transcription Start Site
- Ticam2, Toll-like receptor adaptor molecule 2
- Traf3, TNF receptor-associated factor 3
- UTR, Untranslated region
- Vcam1, Vascular cell adhesion molecule 1
- cDNA, complementary DNA
- cardiac hypertrophy
- chromatin
- epigenetics
- histone acetylation
- next generation sequencing
- α/βMHC, Alpha/Beta myosin heavy chain
Collapse
Affiliation(s)
- Jenny Y Y Ooi
- a Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute ; Melbourne , Victoria , Australia
| | | | | | | | | | | | | |
Collapse
|
174
|
Sofo V, Götte M, Laganà AS, Salmeri FM, Triolo O, Sturlese E, Retto G, Alfa M, Granese R, Abrão MS. Correlation between dioxin and endometriosis: an epigenetic route to unravel the pathogenesis of the disease. Arch Gynecol Obstet 2015; 292:973-86. [DOI: 10.1007/s00404-015-3739-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
175
|
Rios ECS, Szczesny B, Soriano FG, Olah G, Szabo C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med 2015; 35:1741-6. [PMID: 25873160 PMCID: PMC4432924 DOI: 10.3892/ijmm.2015.2176] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 03/19/2015] [Indexed: 01/18/2023] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous biological mediator, which regulates, among others, the oxidative balance of cells under normal physiological conditions, as well as in various diseases. Several previous studies have reported that H2S attenuates inflammatory mediator production. In this study, we investigated the role of H2S in chromatin modulation in an in vitro model of lipopolysaccharide (LPS)-induced inflammation and evaluated its effects on inflammatory cytokine production. Tamm-Horsfall protein 1 (THP-1) differentiated macrophages were pre-treated with sodium hydrosulfide (NaHS) (an H2S donor) at 0.01, 0.1, 0.5 or 1 mM for 30 min. To stimulate cytokine production, the cells were challenged with bacterial LPS (1 µg/ml) for 1, 4, 8 or 24 h. Histone H3 acetylation was analyzed by chromatin immunoprecipitation (ChIP), cytokine production was measured by ELISA and histone deacetylase (HDAC) activity was analyzed using a standard biochemical assay. H2S inhibited the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner; it was most effective at the two highest concentrations used. This effect was associated with a decrease in histone H3 acetylation at the IL-6 and TNF-α promoters in the cells exposed to H2S or H2S + LPS. The findings of the present study suggest that H2S suppresses histone acetylation, which, in turn, inhibits chromatin openness, leading to a decrease in the gene transcription of various pro-inflammatory cytokines. Therefore, this mechanism may contribute to the previously demonstrated anti-inflammatory effects of H2S and various H2S donors.
Collapse
Affiliation(s)
- Ester C S Rios
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bartosz Szczesny
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Francisco G Soriano
- Department of Emergency Medicine, University of São Paulo Medical School, São Paulo, Brazil
| | - Gabor Olah
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
176
|
Rao SG, Janiszewski MM, Duca E, Nelson B, Abhinav K, Panagakou I, Vass S, Heck MMS. Invadolysin acts genetically via the SAGA complex to modulate chromosome structure. Nucleic Acids Res 2015; 43:3546-62. [PMID: 25779050 PMCID: PMC4402531 DOI: 10.1093/nar/gkv211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/28/2015] [Indexed: 11/24/2022] Open
Abstract
Identification of components essential to chromosome structure and behaviour remains a vibrant area of study. We have previously shown that invadolysin is essential in Drosophila, with roles in cell division and cell migration. Mitotic chromosomes are hypercondensed in length, but display an aberrant fuzzy appearance. We additionally demonstrated that in human cells, invadolysin is localized on the surface of lipid droplets, organelles that store not only triglycerides and sterols but also free histones H2A, H2Av and H2B. Is there a link between the storage of histones in lipid droplets and the aberrantly structured chromosomes of invadolysin mutants? We have identified a genetic interaction between invadolysin and nonstop, the de-ubiquitinating protease component of the SAGA (Spt-Ada-Gcn5-acetyltransferase) chromatin-remodelling complex. invadolysin and nonstop mutants exhibit phenotypic similarities in terms of chromosome structure in both diploid and polyploid cells. Furthermore, IX-141/not1 transheterozygous animals accumulate mono-ubiquitinated histone H2B (ubH2B) and histone H3 tri-methylated at lysine 4 (H3K4me3). Whole mount immunostaining of IX-141/not1 transheterozygous salivary glands revealed that ubH2B accumulates surprisingly in the cytoplasm, rather than the nucleus. Over-expression of the Bre1 ubiquitin ligase phenocopies the effects of mutating either the invadolysin or nonstop genes. Intriguingly, nonstop and mutants of other SAGA subunits (gcn5, ada2b and sgf11) all suppress an invadolysin-induced rough eye phenotype. We conclude that the abnormal chromosome phenotype of invadolysin mutants is likely the result of disrupting the histone modification cycle, as accumulation of ubH2B and H3K4me3 is observed. We further suggest that the mislocalization of ubH2B to the cytoplasm has additional consequences on downstream components essential for chromosome behaviour. We therefore propose that invadolysin plays a crucial role in chromosome organization via its interaction with the SAGA complex.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Michal M Janiszewski
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Edward Duca
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Bryce Nelson
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Kanishk Abhinav
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Ioanna Panagakou
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Sharron Vass
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Margarete M S Heck
- University of Edinburgh, Queen's Medical Research Institute, University/BHF Centre for Cardiovascular Science, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
177
|
Epigenetic control of myeloid cell differentiation, identity and function. Nat Rev Immunol 2015; 15:7-17. [PMID: 25534619 DOI: 10.1038/nri3777] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Myeloid cells are crucial effectors of the innate immune response and important regulators of adaptive immunity. The differentiation and activation of myeloid cells requires the timely regulation of gene expression; this depends on the interplay of a variety of elements, including transcription factors and epigenetic mechanisms. Epigenetic control involves histone modifications and DNA methylation, and is coupled to lineage-specifying transcription factors, upstream signalling pathways and external factors released in the bone marrow, blood and tissue environments. In this Review, we highlight key epigenetic events controlling myeloid cell biology, focusing on those related to myeloid cell differentiation, the acquisition of myeloid identity and innate immune memory.
Collapse
|
178
|
Ashraf JM, Ahmad S, Rabbani G, Hasan Q, Jan AT, Lee EJ, Khan RH, Alam K, Choi I. 3-Deoxyglucosone: a potential glycating agent accountable for structural alteration in H3 histone protein through generation of different AGEs. PLoS One 2015; 10:e0116804. [PMID: 25689368 PMCID: PMC4331494 DOI: 10.1371/journal.pone.0116804] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/15/2014] [Indexed: 01/25/2023] Open
Abstract
Advanced glycation end-products (AGEs) are heterogeneous group of compounds, known to be implicated in diabetic complications. One of the consequences of the Maillard reaction is attributed to the production of reactive intermediate products such as α-oxoaldehydes. 3-deoxyglucosone (3-DG), an α-oxoaldehyde has been found to be involved in accelerating vascular damage during diabetes. In the present study, calf thymus histone H3 was treated with 3-deoxyglucosone to investigate the generation of AGEs (Nε-carboxymethyllysine, pentosidine), by examining the degree of side chain modifications and formation of different intermediates and employing various physicochemical techniques. The results clearly indicate the formation of AGEs and structural changes upon glycation of H3 by 3-deoxyglucosone, which may hamper the normal functioning of H3 histone, that may compromise the veracity of chromatin structures and function in secondary complications of diabetes.
Collapse
Affiliation(s)
| | - Saheem Ahmad
- Department of Biotechnology, Integral University, Lucknow, India
| | - Gulam Rabbani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Qambar Hasan
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Arif Tasleem Jan
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Eun Ju Lee
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Khursheed Alam
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
179
|
Sepsa A, Levidou G, Gargalionis A, Adamopoulos C, Spyropoulou A, Dalagiorgou G, Thymara I, Boviatsis E, Themistocleous MS, Petraki K, Vrettakos G, Samaras V, Zisakis A, Patsouris E, Piperi C, Korkolopoulou P. Emerging role of linker histone variant H1x as a biomarker with prognostic value in astrocytic gliomas. A multivariate analysis including trimethylation of H3K9 and H4K20. PLoS One 2015; 10:e0115101. [PMID: 25602259 PMCID: PMC4300227 DOI: 10.1371/journal.pone.0115101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/18/2014] [Indexed: 11/26/2022] Open
Abstract
Although epigenetic alterations play an essential role in gliomagenesis, the relevance of aberrant histone modifications and the respective enzymes has not been clarified. Experimental data implicates histone H3 lysine (K) methyltransferases SETDB1 and SUV39H1 into glioma pathobiology, whereas linker histone variant H1.0 and H4K20me3 reportedly affect prognosis. We investigated the expression of H3K9me3 and its methyltransferases along with H4K20me3 and H1x in 101 astrocytic tumors with regard to clinicopathological characteristics and survival. The effect of SUV39H1 inhibition by chaetocin on the proliferation, colony formation and migration of T98G cells was also examined. SETDB1 and cytoplasmic SUV39H1 levels increased from normal brain through low-grade to high-grade tumors, nuclear SUV39H1 correlating inversely with grade. H3K9me3 immunoreactivity was higher in normal brain showing no association with grade, whereas H1x and H4K20me3 expression was higher in grade 2 than in normal brain or high grades. These expression patterns of H1x, H4K20me3 and H3K9me3 were verified by Western immunoblotting. Chaetocin treatment significantly reduced proliferation, clonogenic potential and migratory ability of T98G cells. H1x was an independent favorable prognosticator in glioblastomas, this effect being validated in an independent set of 66 patients. Diminished nuclear SUV39H1 expression adversely affected survival in univariate analysis. In conclusion, H4K20me3 and H3K9 methyltransferases are differentially implicated in astroglial tumor progression. Deregulation of H1x emerges as a prognostic biomarker.
Collapse
Affiliation(s)
- Athanasia Sepsa
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Georgia Levidou
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Antonis Gargalionis
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Christos Adamopoulos
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Anastasia Spyropoulou
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Georgia Dalagiorgou
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Irene Thymara
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Efstathios Boviatsis
- Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens 106 76, Greece
| | - Marios S. Themistocleous
- Department of Neurosurgery, Medical School, National and Kapodistrian University of Athens, Evangelismos Hospital, Athens 106 76, Greece
| | - Kalliopi Petraki
- Department of Pathology, Metropolitan Hospital, Athens 185 47, Greece
| | - George Vrettakos
- Department of Neurosurgery, Metropolitan Hospital, Athens 185 47, Greece
| | - Vassilis Samaras
- Department of Pathology, Red Cross Hospital, Athens 115 26, Greece
| | | | - Efstratios Patsouris
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Athens University Medical School, Athens 115 27, Greece
| | - Penelope Korkolopoulou
- First Department of Pathology, Laikon General Hospital, Athens University Medical School, Athens 115 27, Greece
| |
Collapse
|
180
|
Klingberg R, Jost JO, Schümann M, Gelato KA, Fischle W, Krause E, Schwarzer D. Analysis of phosphorylation-dependent protein-protein interactions of histone h3. ACS Chem Biol 2015; 10:138-45. [PMID: 25330109 DOI: 10.1021/cb500563n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple posttranslational modifications (PTMs) of histone proteins including site-specific phosphorylation of serine and threonine residues govern the accessibility of chromatin. According to the histone code theory, PTMs recruit regulatory proteins or block their access to chromatin. Here, we report a general strategy for simultaneous analysis of both of these effects based on a SILAC MS scheme. We applied this approach for studying the biochemical role of phosphorylated S10 of histone H3. Differential pull-down experiments with H3-tails synthesized from l- and d-amino acids uncovered that histone acetyltransferase 1 (HAT1) and retinoblastoma-binding protein 7 (RBBP7) are part of the protein network, which interacts with the unmodified H3-tail. An additional H3-derived bait containing the nonhydrolyzable phospho-serine mimic phosphonomethylen-alanine (Pma) at S10 recruited several isoforms of the 14-3-3 family and blocked the recruitment of HAT1 and RBBP7 to the unmodified H3-tail. Our observations provide new insights into the many functions of H3S10 phosphorylation. In addition, the outlined methodology is generally applicable for studying specific binding partners of unmodified histone tails.
Collapse
Affiliation(s)
| | - Jan Oliver Jost
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Strasse
4, 72076 Tübingen, Germany
| | | | - Kathy Ann Gelato
- Laboratory
of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Wolfgang Fischle
- Laboratory
of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | - Dirk Schwarzer
- Interfaculty
Institute of Biochemistry (IFIB), University of Tübingen, Hoppe-Seyler-Strasse
4, 72076 Tübingen, Germany
| |
Collapse
|
181
|
Feller C, Forné I, Imhof A, Becker PB. Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell 2015; 57:559-71. [PMID: 25578876 DOI: 10.1016/j.molcel.2014.12.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023]
Abstract
Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the responsible enzymes. Our knowledge of the histone acetylation system is patchy because we so far lacked the methodology to describe acetylation patterns and their genesis by integrated enzyme activities. We devised a generally applicable, mass spectrometry-based strategy to precisely and accurately quantify combinatorial modification motifs. This was applied to generate a comprehensive inventory of acetylation motifs on histones H3 and H4 in Drosophila cells. Systematic depletion of known or suspected acetyltransferases and deacetylases revealed specific alterations of histone acetylation signatures, established enzyme-substrate relationships, and unveiled an extensive crosstalk between neighboring modifications. Unexpectedly, overall histone acetylation levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the acetylation level is adjusted to maintain the global charge neutralization of chromatin and the stability of nuclei.
Collapse
Affiliation(s)
- Christian Feller
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Ignasi Forné
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Axel Imhof
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter B Becker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
182
|
PXD101 significantly improves nuclear reprogramming and the in vitro developmental competence of porcine SCNT embryos. Biochem Biophys Res Commun 2015; 456:156-61. [DOI: 10.1016/j.bbrc.2014.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/13/2014] [Indexed: 01/06/2023]
|
183
|
Abstract
Epigenetic and genetic alterations contribute to cancer initiation and progression. Epigenetics refers to the study of heritable changes in gene expression without alterations in DNA sequences. Epigenetic changes are reversible and include key processes of DNA methylation, chromatin modifications, nucleosome positioning, and alterations in noncoding RNA profiles. Disruptions in epigenetic processes can lead to altered gene function and cellular neoplastic transformation. Epigenetic modifications precede genetic changes and usually occur at an early stage in neoplastic development. Recent technological advances offer a better understanding of the underlying epigenetic alterations during carcinogenesis and provide insight into the discovery of putative epigenetic biomarkers for detection, prognosis, risk assessment, and disease monitoring. In this chapter we provide information on various epigenetic mechanisms and their role in carcinogenesis, in particular, epigenetic modifications causing genetic changes and the potential clinical impact of epigenetic research in the future.
Collapse
Affiliation(s)
- Rajnee Kanwal
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | | | | |
Collapse
|
184
|
Sadakierska-Chudy A, Filip M. A comprehensive view of the epigenetic landscape. Part II: Histone post-translational modification, nucleosome level, and chromatin regulation by ncRNAs. Neurotox Res 2014; 27:172-97. [PMID: 25516120 PMCID: PMC4300421 DOI: 10.1007/s12640-014-9508-6] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/31/2022]
Abstract
The complexity of the genome is regulated by epigenetic mechanisms, which act on the level of DNA, histones, and nucleosomes. Epigenetic machinery is involved in various biological processes, including embryonic development, cell differentiation, neurogenesis, and adult cell renewal. In the last few years, it has become clear that the number of players identified in the regulation of chromatin structure and function is still increasing. In addition to well-known phenomena, including DNA methylation and histone modification, new, important elements, including nucleosome mobility, histone tail clipping, and regulatory ncRNA molecules, are being discovered. The present paper provides the current state of knowledge about the role of 16 different histone post-translational modifications, nucleosome positioning, and histone tail clipping in the structure and function of chromatin. We also emphasize the significance of cross-talk among chromatin marks and ncRNAs in epigenetic control.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343, Kraków, Poland,
| | | |
Collapse
|
185
|
QIU LIEWANG, GU LUYUN, LÜ LIN, CHEN XIAOFENG, LI CHUANFEI, MEI ZHECHUAN. FOXO1-mediated epigenetic modifications are involved in the insulin-mediated repression of hepatocyte aquaporin 9 expression. Mol Med Rep 2014; 11:3064-8. [DOI: 10.3892/mmr.2014.3085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/01/2014] [Indexed: 11/06/2022] Open
|
186
|
Liu Y, Luo X, Deng J, Pan Y, Zhang L, Liang H. SMYD3 overexpression was a risk factor in the biological behavior and prognosis of gastric carcinoma. Tumour Biol 2014; 36:2685-94. [PMID: 25472580 DOI: 10.1007/s13277-014-2891-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023] Open
Abstract
SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase, plays a key function in the progression of human cancer. However, the role of SMYD3 in gastric carcinoma carcinogenesis has yet to be elucidated. This study aimed to determine the relationships of SMYD3 expression with clinicopathological characteristics and prognosis in gastric carcinoma. The expression of SMYD3 was detected by real-time quantitative reverse transcription PCR and Western blot in gastric carcinoma (GC) cell lines, normal gastric mucosa cell line, GC tissues, and adjacent non-tumor tissues. SMYD3 expression in tissue sections of 180 gastric carcinoma samples were evaluated using immunohistochemistry. The staining results were compared with clinicopathological characteristics and to the outcome of patients. The expression levels of SMYD3 messenger RNA (mRNA) and protein in GC tissues were both higher than those in adjacent non-tumor tissues (p < 0.05). SMYD3 mRNA and protein expression levels were higher in GC cell lines MKN28, SGC7901, and MGC803 than normal gastric mucosa cell line GES-1. SMYD3 expression in gastric carcinoma was significantly correlated with primary tumor size (p < 0.001), lymph node metastasis (p < 0.001), and TNM stage (p = 0.011). Degree of differentiation [hazard ratio (HR) = 5.113; p = 0.006], serosal invasion (HR = 2.074; p = 0.024), lymph node metastasis (HR = 1.354; p < 0.001), and SMYD3 expression (HR = 0.564; p = 0.004) were identified as the independent factors of the overall survival (OS) in all enrolled GC patients. For patients with positive lymph node metastasis, degree of differentiation (HR = 5.974; p = 0.015), lymph node metastasis (HR = 1.257; p < 0.001), and SMYD3 expression (HR = 0.529; p = 0.004) were the independent prognostic factors of the OS. SMYD3 performed an important function in the aggressiveness of gastric carcinoma and may act as a promising target for prognostic prediction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | | | | | | | | | | |
Collapse
|
187
|
Solaimani P, Wang F, Hankinson O. SIN3A, generally regarded as a transcriptional repressor, is required for induction of gene transcription by the aryl hydrocarbon receptor. J Biol Chem 2014; 289:33655-62. [PMID: 25305016 DOI: 10.1074/jbc.m114.611236] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
CYP1A1 bioactivates several procarcinogens and detoxifies several xenobiotic compounds. Transcription of CYP1A1 is highly induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) via the aryl hydrocarbon receptor. We recently described an RNAi high throughput screening performed in the Hepa-1 mouse hepatoma cell line, which revealed that SIN3A is necessary for the induction of CYP1A1-dependent ethoxyresorufin-o-deethylase (EROD) enzymatic activity by TCDD. In the current studies, we sought to provide insight into the role of SIN3A in this process, particularly because studies on SIN3A have usually focused on its repressive activity on transcription. We report that ectopic expression of human SIN3A in Hepa-1 cells enhanced EROD induction by TCDD and efficiently rescued TCDD induction of EROD activity in cells treated with an siRNA to mouse SIN3A, thus validating a role for SIN3A in CYP1A1 induction. We demonstrate that SIN3A is required for TCDD induction of the CYP1A1 protein in Hepa-1 cells but not for expression of the aryl hydrocarbon receptor protein. In addition, siRNAs for SIN3A decreased TCDD-mediated induction of CYP1A1 mRNA and EROD activity in human hepatoma cell line Hep3B. We establish that TCDD treatment of Hepa-1 cells rapidly increases the degree of SIN3A binding to both the proximal promoter and enhancer of the Cyp1a1 gene and demonstrate that increased binding to the promoter also occurs in human Hep3B, HepG2, and MCF-7 cells. These studies establish that SIN3A physically interacts with the CYP1A1 gene and extends the transcriptional role of SIN3A to a gene that is very rapidly and dramatically induced.
Collapse
Affiliation(s)
- Parrisa Solaimani
- From the Department of Pathology and Laboratory Medicine, Molecular Toxicology Interdepartmental Program, and the Jonsson Comprehensive Cancer Center and
| | - Feng Wang
- the Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095
| | - Oliver Hankinson
- From the Department of Pathology and Laboratory Medicine, Molecular Toxicology Interdepartmental Program, and the Jonsson Comprehensive Cancer Center and
| |
Collapse
|
188
|
Kuang Z, Cai L, Zhang X, Ji H, Tu BP, Boeke JD. High-temporal-resolution view of transcription and chromatin states across distinct metabolic states in budding yeast. Nat Struct Mol Biol 2014; 21:854-63. [PMID: 25173176 PMCID: PMC4190017 DOI: 10.1038/nsmb.2881] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023]
Abstract
Under continuous, glucose-limited conditions, budding yeast exhibit robust metabolic cycles associated with major oscillations of gene expression. How such fluctuations are linked to changes in chromatin status is not well understood. Here we examine the correlated genome-wide transcription and chromatin states across the yeast metabolic cycle at unprecedented temporal resolution, revealing a 'just-in-time supply chain' by which components from specific cellular processes such as ribosome biogenesis become available in a highly coordinated manner. We identify distinct chromatin and splicing patterns associated with different gene categories and determine the relative timing of chromatin modifications relative to maximal transcription. There is unexpected variation in the chromatin modification and expression relationship, with histone acetylation peaks occurring with varying timing and 'sharpness' relative to RNA expression both within and between cycle phases. Chromatin-modifier occupancy reveals subtly distinct spatial and temporal patterns compared to those of the modifications themselves.
Collapse
Affiliation(s)
- Zheng Kuang
- High Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ling Cai
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Xuekui Zhang
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Benjamin P. Tu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jef D. Boeke
- High Throughput Biology Center, Johns Hopkins University, Baltimore, Maryland 21205, USA
- Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
189
|
Page A, Mann DA, Mann J. The mechanisms of HSC activation and epigenetic regulation of HSCs phenotypes. CURRENT PATHOBIOLOGY REPORTS 2014; 2:163-170. [PMID: 27413631 DOI: 10.1007/s40139-014-0052-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Epigenetics is a dynamically expanding field of science entailing numerous regulatory mechanisms controlling changes of gene expression in response to environmental factors. Over the recent years there has been a great interest in epigenetic marks as a potential diagnostic and prognostic tool or future target for treatment of various human diseases. There is an increasing body of published research to suggest that epigenetic events regulate progression of chronic liver disease. Experimental manipulation of epigenetic signatures such as DNA methylation, histone acetylation / methylation and the activities of proteins that either annotate or interpret these epigenetic marks can have profound effects on the activation and phenotype of HSC, key cells responsible for onset and progression of liver fibrosis. This review presents recent advances in epigenetic alterations, which could provide mechanistic insight into the pathogenesis of chronic liver disease and provide novel clinical applications.
Collapse
Affiliation(s)
- Agata Page
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Derek A Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jelena Mann
- Institute of Cellular Medicine, Faculty of Medical Sciences, 4 Floor, William Leech Building, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
190
|
Dong S, Zhang P. [Advances of histone methyltransferase SMYD3 in tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:689-94. [PMID: 25248712 PMCID: PMC6000504 DOI: 10.3779/j.issn.1009-3419.2014.09.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shangwen Dong
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China;Tianjin Lung Cancer Research Institute, Tianjin 300052, China
| |
Collapse
|
191
|
Whayne TF. Epigenetics in the development, modification, and prevention of cardiovascular disease. Mol Biol Rep 2014; 42:765-76. [DOI: 10.1007/s11033-014-3727-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 09/03/2014] [Indexed: 02/07/2023]
|
192
|
Yanagisawa T, Umehara T, Sakamoto K, Yokoyama S. Expanded Genetic Code Technologies for Incorporating Modified Lysine at Multiple Sites. Chembiochem 2014; 15:2181-7. [DOI: 10.1002/cbic.201402266] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 01/08/2023]
|
193
|
Kim DH, Park MH, Lee EK, Choi YJ, Chung KW, Moon KM, Kim MJ, An HJ, Park JW, Kim ND, Yu BP, Chung HY. The roles of FoxOs in modulation of aging by calorie restriction. Biogerontology 2014; 16:1-14. [PMID: 25146189 DOI: 10.1007/s10522-014-9519-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/17/2014] [Indexed: 01/29/2023]
Abstract
FoxO activity and modifications, such as its phosphorylation, acetylation, and methylation, may help drive the expression of genes involved in combating oxidative stress by causing the epigenetic modifications, and thus, preserve cellular function during aging and age-related diseases, such as diabetes, cancer, and Alzheimer disease. Insulin signaling has been postulated to influence the aging process by increasing resistance to oxidative stress, and slowing the accumulation of oxidative damage. Some antioxidative effects are mediated by a conserved family of forkhead box transcription factors (FoxOs), which in the absence of insulin signaling freely bind to promoters of antioxidant enzymes, superoxide dismutase, and catalase. On the other hand, calorie restriction (CR) extends the lifespans of several species via the insulin pathway, and extends longevity and healthspan in diverse species via a conserved mechanism. CR enhances adaptive stress responses at the cellular and organism levels and extends lifespan in a FoxO-independent manner. Thus, increased modification of FoxO is modulated via the hyperinsulinemia-induced PI3K/Akt pathway during aging, and CR reverses this process. Accordingly, FoxO plays an important role in maintenance of metabolic homeostasis and removal of oxidative stress in the aging process and in the effect of CR on lifespan.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Pharmacy, Molecular Inflammation Research Center for Aging Intervention (MRCA), College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Mol Cell Proteomics 2014; 13:2896-910. [PMID: 25106422 DOI: 10.1074/mcp.m114.038174] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In yeast, the conserved histone acetyltransferase (HAT) Gcn5 associates with Ada2 and Ada3 to form the catalytic module of the ADA and SAGA transcriptional coactivator complexes. Gcn5 also contains an acetyl-lysine binding bromodomain that has been implicated in regulating nucleosomal acetylation in vitro, as well as at gene promoters in cells. However, the contribution of the Gcn5 bromodomain in regulating site specificity of HAT activity remains unclear. Here, we used a combined acid-urea gel and quantitative mass spectrometry approach to compare the HAT activity of wild-type and Gcn5 bromodomain-mutant ADA subcomplexes (Gcn5-Ada2-Ada3). Wild-type ADA subcomplex acetylated H3 lysines with the following specificity; H3K14 > H3K23 > H3K9 ≈ H3K18 > H3K27 > H3K36. However, when the Gcn5 bromodomain was defective in acetyl-lysine binding, the ADA subcomplex demonstrated altered site-specific acetylation on free and nucleosomal H3, with H3K18ac being the most severely diminished. H3K18ac was also severely diminished on H3K14R, but not H3K23R, substrates in wild-type HAT reactions, further suggesting that Gcn5-catalyzed acetylation of H3K14 and bromodomain binding to H3K14ac are important steps preceding H3K18ac. In sum, this work details a previously uncharacterized cross-talk between the Gcn5 bromodomain "reader" function and enzymatic HAT activity that might ultimately affect gene expression. Future studies of how mutations in bromodomains or other histone post-translational modification readers can affect chromatin-templated enzymatic activities will yield unprecedented insight into a potential "histone/epigenetic code." MS data are available via ProteomeXchange with identifier PXD001167.
Collapse
Affiliation(s)
- Anne M Cieniewicz
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Linley Moreland
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Alison E Ringel
- ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Samuel G Mackintosh
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ana Raman
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Tonya M Gilbert
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Cynthia Wolberger
- §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; ‖Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; **Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Alan J Tackett
- ¶Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205;
| | - Sean D Taverna
- From the ‡Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; §Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
195
|
Zhao L, Wang P, Yan S, Gao F, Li H, Hou H, Zhang Q, Tan J, Li L. Promoter-associated histone acetylation is involved in the osmotic stress-induced transcriptional regulation of the maize ZmDREB2A gene. PHYSIOLOGIA PLANTARUM 2014; 151:459-467. [PMID: 24299295 DOI: 10.1111/ppl.12136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 06/02/2023]
Abstract
Epigenetic modifications play a key role in the transcriptional regulation of stress-induced gene expression in plants. In this study, we showed that the overall acetylation levels of histone H3 lysine 9 (H3K9) and H4 lysine 5 (H4K5) in the genome were increased in maize seedlings after mannitol treatment (to mimic osmotic stress). Mannitol treatment significantly induced the upregulation of the maize osmotic stress responsive gene Zea mays dehydration-responsive element binding protein 2A (ZmDREB2A), whereas abscisic acid (ABA) did not result in the induction of this gene. The application of exogenous ABA under osmotic stress conditions strongly repressed the induction of the ZmDREB2A gene. Chromatin immunoprecipitation and chromatin accessibility by real-time PCR experiments revealed that the promoter region of the ZmDREB2A gene was quickly hyperacetylated and decondensed after the mannitol treatment, suggesting that the promoter region is poised for histone acetylation to allow for fast induction of the ZmDREB2A gene. However, under osmotic stress conditions, the ABA treatment decreased the acetylation status and chromatin accessibility to micrococcal nuclease. These results suggest that osmotic stress activates the transcription of the ZmDREB2A gene by increasing the levels of acetylated histones H3K9 and H4K5 associated with the ZmDREB2A promoter region.
Collapse
Affiliation(s)
- Lin Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Ghare SS, Joshi-Barve S, Moghe A, Patil M, Barker DF, Gobejishvili L, Brock GN, Cave M, McClain CJ, Barve SS. Coordinated histone H3 methylation and acetylation regulate physiologic and pathologic fas ligand gene expression in human CD4+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:412-21. [PMID: 24899502 PMCID: PMC5096587 DOI: 10.4049/jimmunol.1400055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activation-induced Fas ligand (FasL) mRNA expression in CD4+ T cells is mainly controlled at transcriptional initiation. To elucidate the epigenetic mechanisms regulating physiologic and pathologic FasL transcription, TCR stimulation-responsive promoter histone modifications in normal and alcohol-exposed primary human CD4+ T cells were examined. TCR stimulation of normal and alcohol-exposed cells led to discernible changes in promoter histone H3 lysine trimethylation, as documented by an increase in the levels of transcriptionally permissive histone 3 lysine 4 trimethylation and a concomitant decrease in the repressive histone 3 lysine 9 trimethylation. Moreover, acetylation of histone 3 lysine 9 (H3K9), a critical feature of the active promoter state that is opposed by histone 3 lysine 9 trimethylation, was significantly increased and was essentially mediated by the p300-histone acetyltransferase. Notably, the degree of these coordinated histone modifications and subsequent recruitment of transcription factors and RNA polymerase II were significantly enhanced in alcohol-exposed CD4+ T cells and were commensurate with the pathologic increase in the levels of FasL mRNA. The clinical relevance of these findings is further supported by CD4+ T cells obtained from individuals with a history of heavy alcohol consumption, which demonstrate significantly greater p300-dependent H3K9 acetylation and FasL expression. Overall, these data show that, in human CD4+ T cells, TCR stimulation induces a distinct promoter histone profile involving a coordinated cross-talk between histone 3 lysine 4 and H3K9 methylation and acetylation that dictates the transcriptional activation of FasL under physiologic, as well as pathologic, conditions of alcohol exposure.
Collapse
Affiliation(s)
- Smita S Ghare
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Swati Joshi-Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Akshata Moghe
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Madhuvanti Patil
- University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - David F Barker
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Leila Gobejishvili
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202
| | - Guy N Brock
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY 40202
| | - Matthew Cave
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| | - Shirish S Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202; University of Louisville Alcohol Research Center, University of Louisville, Louisville, KY 40202; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202; and
| |
Collapse
|
197
|
Yao L, Li Y, Du F, Han X, Li X, Niu Y, Ren S, Sun Y. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer. Biochem Biophys Res Commun 2014; 450:692-6. [PMID: 24937452 DOI: 10.1016/j.bbrc.2014.06.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/08/2014] [Indexed: 11/17/2022]
Abstract
Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.
Collapse
Affiliation(s)
- Lushuai Yao
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Li
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fengxia Du
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Han
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanjie Niu
- Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Yingli Sun
- Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
198
|
Zhang C, Gao S, Molascon AJ, Wang Z, Gorovsky MA, Liu Y, Andrews PC. Bioinformatic and proteomic analysis of bulk histones reveals PTM crosstalk and chromatin features. J Proteome Res 2014; 13:3330-7. [PMID: 24894457 PMCID: PMC4096215 DOI: 10.1021/pr5001829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Systems
analysis of chromatin has been constrained by complex patterns
and dynamics of histone post-translational modifications (PTMs), which
represent major challenges for both mass spectrometry (MS) and immuno-based
approaches (e.g., chromatin immuno-precipitation, ChIP). Here we present
a proof-of-concept study demonstrating that crosstalk among PTMs and
their functional significance can be revealed via systematic bioinformatic
and proteomic analysis of steady-state histone PTM levels from cells
under various perturbations. Using high resolution tandem MS, we quantified
53 modification states from all core histones and their conserved
variants in the unicellular eukaryotic model organism Tetrahymena. By correlating histone PTM patterns across 15 different conditions,
including various physiological states and mutations of key histone
modifying enzymes, we identified 5 specific chromatin states with
characteristic covarying histone PTMs and associated them with distinctive
functions in replication, transcription, and DNA repair. In addition
to providing a detailed picture on histone PTM crosstalk at global
levels, this work has established a novel bioinformatic and proteomic
approach, which can be adapted to other organisms and readily scaled
up to allow increased resolution of chromatin states.
Collapse
Affiliation(s)
- Chunchao Zhang
- Departments of †Computational Medicine and Bioinformatics, ‡Pathology, ∥Chemistry, and ⊥Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | | | |
Collapse
|
199
|
Maree JP, Patterton HG. The epigenome of Trypanosoma brucei: a regulatory interface to an unconventional transcriptional machine. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:743-50. [PMID: 24942804 DOI: 10.1016/j.bbagrm.2014.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Abstract
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function. Trypanosomes, an ancient branch of the eukaryotic evolutionary lineage, exhibit some highly unusual transcriptional features, including the arrangement of functionally unrelated genes in large, polymerase II transcribed polycistronic transcription units, often exceeding hundreds of kilobases in size. It is generally believed that transcription initiation plays a minor role in regulating the transcript level of genes in trypanosomes, which are mainly regulated post-transcriptionally. Recent advances have revealed that epigenetic mechanisms play an essential role in the transcriptional regulation of Trypanosoma brucei. This suggested that the modulation of gene activity, particularly that of pol I transcribed genes, is, indeed, an important control mechanism, and that the epigenome is critical in regulating gene expression programs that allow the successful migration of this parasite between hosts, as well as the continuous evasion of the immune system in mammalian hosts. A wide range of epigenetic signals, readers, writers and erasers have been identified in trypanosomes, some of which have been mapped to essential genetic functions. Some epigenetic mechanisms have also been observed to be unique to trypanosomes. We review recent advances in our understanding of epigenetic control mechanisms in T. brucei, the causative agent of African sleeping sickness, and highlight the utility of epigenetic targets in the possible development of new therapies for human African trypanosomiasis.
Collapse
Affiliation(s)
- Johannes P Maree
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa
| | - Hugh-G Patterton
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa.
| |
Collapse
|
200
|
Hong J, Feng H, Wang F, Ranjan A, Chen J, Jiang J, Ghirlando R, Xiao TS, Wu C, Bai Y. The catalytic subunit of the SWR1 remodeler is a histone chaperone for the H2A.Z-H2B dimer. Mol Cell 2014; 53:498-505. [PMID: 24507717 DOI: 10.1016/j.molcel.2014.01.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/02/2013] [Accepted: 12/31/2013] [Indexed: 11/29/2022]
Abstract
Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.
Collapse
Affiliation(s)
- Jingjun Hong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Hanqiao Feng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Feng Wang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jianhong Chen
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jiansheng Jiang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - T Sam Xiao
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA; Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yawen Bai
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|