151
|
Pinton P, Tsuboi T, Ainscow EK, Pozzan T, Rizzuto R, Rutter GA. Dynamics of glucose-induced membrane recruitment of protein kinase C beta II in living pancreatic islet beta-cells. J Biol Chem 2002; 277:37702-10. [PMID: 12149258 DOI: 10.1074/jbc.m204478200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms by which glucose may affect protein kinase C (PKC) activity in the pancreatic islet beta-cell are presently unclear. By developing adenovirally expressed chimeras encoding fusion proteins between green fluorescent protein and conventional (betaII), novel (delta), or atypical (zeta) PKCs, we show that glucose selectively alters the subcellular localization of these enzymes dynamically in primary islet and MIN6 beta-cells. Examined by laser scanning confocal or total internal reflection fluorescence microscopy, elevated glucose concentrations induced oscillatory translocations of PKCbetaII to spatially confined regions of the plasma membrane. Suggesting that increases in free cytosolic Ca(2+) concentrations ([Ca(2+)](c)) were primarily responsible, prevention of [Ca(2+)](c) increases with EGTA or diazoxide completely eliminated membrane recruitment, whereas elevation of cytosolic [Ca(2+)](c) with KCl or tolbutamide was highly effective in redistributing PKCbetaII both to the plasma membrane and to the surface of dense core secretory vesicles. By contrast, the distribution of PKCdelta.EGFP, which binds diacylglycerol but not Ca(2+), was unaffected by glucose. Measurement of [Ca(2+)](c) immediately beneath the plasma membrane with a ratiometric "pericam," fused to synaptic vesicle-associated protein-25, revealed that depolarization induced significantly larger increases in [Ca(2+)](c) in this domain. These data demonstrate that nutrient stimulation of beta-cells causes spatially and temporally complex changes in the subcellular localization of PKCbetaII, possibly resulting from the generation of Ca(2+) microdomains. Localized changes in PKCbetaII activity may thus have a role in the spatial control of insulin exocytosis.
Collapse
Affiliation(s)
- Paolo Pinton
- Henry Wellcome Signalling Laboratories and the Department of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
152
|
Abstract
Fluorescent Speckle Microscopy (FSM) is a technology for analyzing cytoskeleton dynamics, giving novel insight into their roles in living cells. New applications of FSM, together with the development of computer-based FSM image analysis, will make FSM the first microscopy-based method to deliver quantitative kinetic readouts at high spatial and temporal resolution for a wide variety of macromolecular systems. Here, we review the most recent applications and developments and give a glimpse of future directions and potentials of FSM.
Collapse
Affiliation(s)
- Clare M Waterman-Storer
- Department of Cell Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
153
|
Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E. Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 2002; 21:4896-905. [PMID: 12234929 PMCID: PMC126299 DOI: 10.1093/emboj/cdf503] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Motor proteins and microtubule-associated proteins (MAPs) play important roles in cellular transport, regulation of shape and polarity of cells. While motor proteins generate motility, MAPs are thought to stabilize the microtubule tracks. However, the proteins also interfere with each other, such that MAPs are able to inhibit transport of vesicles and organelles in cells. In order to investigate the mechanism of MAP-motor interference in molecular detail, we have studied single kinesin molecules by total internal reflection fluorescence microscopy in the presence of different neuronal MAPs (tau, MAP2c). The parameters observed included run-length (a measure of processivity), velocity and frequency of attachment. The main effect of MAPs was to reduce the attachment frequency of motors. This effect was dependent on the concentration, the affinity to microtubules and the domain composition of MAPs. In contrast, once attached, the motors did not show a change in speed, nor in their run-length. The results suggest that MAPs can regulate motor activity on the level of initial attachment, but not during motion.
Collapse
Affiliation(s)
- Arne Seitz
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany and
Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492, Japan Corresponding author e-mail:
| | - Hiroaki Kojima
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany and
Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492, Japan Corresponding author e-mail:
| | - Kazuhiro Oiwa
- Max-Planck-Unit for Structural Molecular Biology, Notkestrasse 85, D-22607 Hamburg, Germany and
Kansai Advanced Research Center, Communications Research Laboratory, Kobe 651-2492, Japan Corresponding author e-mail:
| | | | | | | |
Collapse
|
154
|
Loerke D, Stühmer W, Oheim M. Quantifying axial secretory-granule motion with variable-angle evanescent-field excitation. J Neurosci Methods 2002; 119:65-73. [PMID: 12234637 DOI: 10.1016/s0165-0270(02)00178-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The trajectory of secretory vesicles to their fusion sites at the plasma membrane is expected to give insight into the mechanisms that underlie vesicle transport, maturation and the initiation of membrane fusion. Evanescent-wave (EW) microscopy allows the tracking of fluorescently labeled granules and vesicles prior to fusion with nanometer precision in xy-direction. At the same time, the exponential sensitivity of granular fluorescence to experimental parameters can preclude quantitative estimates of the granule's approach to the plasma membrane. Thus, it has remained controversial to which extent axial distance can be obtained from simple intensity measurements. We used the information contained in a stack of images acquired at 80-125 nm penetration depth of the EW field to estimate individual granule diameter and axial distance. A population analysis on 90 granules revealed an average diameter of 305 +/- 47 nm, below the diffraction-limited 352 +/- 31 nm obtained from xy measurements at fixed depth penetration. Stimulation of exocytosis by potassium depolarization resulted in the selective loss of the 18 +/- 5% of granules located closest to the plasma membrane, while a second population of granules located 60 nm deeper within the cytoplasm increased by recruitment of granules previously located at > or = 120 nm depth. These measurements extend and corroborate previous observations at fixed penetration depth of functionally distinct granule populations. Parameters influencing the accuracy of the parameter estimation are evaluated in the appendix.
Collapse
Affiliation(s)
- Dinah Loerke
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein Str. 3, D-37075 Göttingen, Germany.
| | | | | |
Collapse
|
155
|
Chow A, Toomre D, Garrett W, Mellman I. Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002; 418:988-94. [PMID: 12198549 DOI: 10.1038/nature01006] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central to the initiation of immune responses is recognition of peptide antigen by T lymphocytes. The cell biology of dendritic cells makes them ideally suited for the essential process of antigen presentation. Their life cycle includes several stages characterized by distinct functions and mechanisms of regulation. Immature dendritic cells synthesize large amounts of major histocompatibility complex class II molecules (MHC II), but the alpha beta-dimers are targeted to late endosomes and lysosomes (often referred to as MHC class II compartments) where they reside unproductively with internalized antigens. After exposure to microbial products or inflammatory mediators, endocytosis is downregulated, the expression of co-stimulatory molecules is enhanced, and newly formed immunogenic MHC II-peptide complexes are transported to the cell surface. That these MHC II molecules reach the surface is surprising, as the lysosomes comprise the terminal degradative compartment of the endocytic pathway from which exogenous components generally cannot be recovered intact. Here we have visualized this pathway in live dendritic cells by video microscopy, using cells expressing MHC II tagged with green fluorescent protein (GFP). We show that on stimulation, dendritic cells generate tubules from lysosomal compartments that go on to fuse directly with the plasma membrane.
Collapse
Affiliation(s)
- Amy Chow
- Department of Cell Biology and Section of Immunobiology, Ludwig Institute for Cancer Research, Yale University School of Medicine, 333 Cedar Street, PO Box 208002, New Haven, Connecticut 06520-8002, USA
| | | | | | | |
Collapse
|
156
|
Kaether C, Lammich S, Edbauer D, Ertl M, Rietdorf J, Capell A, Steiner H, Haass C. Presenilin-1 affects trafficking and processing of betaAPP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol 2002; 158:551-61. [PMID: 12147673 PMCID: PMC2173840 DOI: 10.1083/jcb.200201123] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Amyloid beta-peptide (Abeta) is generated by the consecutive cleavages of beta- and gamma-secretase. The intramembraneous gamma-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with gamma-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Abeta production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the gamma-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with gamma-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by gamma-secretase inhibitors results in delayed reinternalization of the beta-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in gamma-secretase processing and in trafficking.
Collapse
Affiliation(s)
- Christoph Kaether
- Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Alzheimer's and Parkinson's Disease Research, Ludwig-Maximilians-University, 80336 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Kaverina I, Krylyshkina O, Small JV. Regulation of substrate adhesion dynamics during cell motility. Int J Biochem Cell Biol 2002; 34:746-61. [PMID: 11950592 DOI: 10.1016/s1357-2725(01)00171-6] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The movement of a metazoan cell entails the regulated creation and turnover of adhesions with the surface on which it moves. Adhesion sites form as a result of signaling between the extracellular matrix on the outside and the actin cytoskeleton on the inside, and they are associated with specific assembles of actin filaments. Two broad categories of adhesion sites can be distinguished: (1) "focal complexes" associated with lamellipodia and filopodia that support protrusion and traction at the cell front; and (2) "focal adhesions" at the termini of stress fibre bundles that serve in longer term anchorage. Focal complexes are signaled via Rac1 or Cdc42 and can either turnover on a minute scale or differentiate, via intervention of the RhoA pathway, into longer-lived focal adhesions. All classes of adhesion sites depend on the stress in the actin cytoskeleton for their formation and maintenance. Different cell types use different adhesion strategies to move, in terms of the relative engagement of filopodia and lamellipodia in focal complex formation and protrusion and the extent of focal adhesion formation. These differences can be attributed to variations in the relative activities of Rho family members. However, the Rho GTPases alone are unable to signal asymmetry in the actin cytoskeleton, necessary for polarisation and movement. Polarisation requires the collaboration of the microtubule cytoskeleton. Changes in the polymerisation state of microtubules influences the activities of both Rac1 and RhoA and microtubules interact directly with adhesion foci and promote their turnover. Possible mechanisms of cross-talk between the microtubule and actin cytoskeletons in determining polarity are discussed.
Collapse
Affiliation(s)
- Irina Kaverina
- Department of Cell Biology, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstrasse 11, Salzburg 5020, Austria.
| | | | | |
Collapse
|
158
|
Ntziachristos V, Bremer C, Graves EE, Ripoll J, Weissleder R. In Vivo Tomographic Imaging of Near-Infrared Fluorescent Probes. Mol Imaging 2002; 1:82-8. [PMID: 12920848 DOI: 10.1162/15353500200201121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fluorescence imaging is increasingly used to probe protein function and gene expression in live animals. This technology could enhance the study of pathogenesis, drug development, and therapeutic intervention. In this article, we focus on three-dimensional fluorescence observations using fluorescence-mediated molecular tomography (FMT), a novel imaging technique that can resolve molecular function in deep tissues by reconstructing fluorescent probe distributions in vivo. We have compared FMT findings with conventional fluorescence reflectance imaging (FRI) to study protease function in nude mice with subsurface implanted tumors. This validation of FMT with FRI demonstrated the spatial congruence of fluorochrome activation as determined by the two techniques.
Collapse
Affiliation(s)
- Vasilis Ntziachristos
- Center for Molecular Imaging Research, Massachusetts General Hospital & Harvard Medical School, Bldg. 149 13th Street 5406, Charlestown, MA 02129-2060, USA.
| | | | | | | | | |
Collapse
|
159
|
Cholesterol Depletion Blocks Redistribution of Lipid Raft Components and Insulin-Mimetic Signaling by Glimepiride and Phosphoinositolglycans in Rat Adipocytes. Mol Med 2002. [DOI: 10.1007/bf03402005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
160
|
Oksvold MP, Skarpen E, Widerberg J, Huitfeldt HS. Fluorescent histochemical techniques for analysis of intracellular signaling. J Histochem Cytochem 2002; 50:289-303. [PMID: 11850432 DOI: 10.1177/002215540205000301] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Intracellular signaling relies on the orchestrated cooperation of signaling proteins and modules, their intracellular localization, and membrane trafficking. Recently, a repertoire of fluorescence-based techniques, which significantly increases our potential for detailed studies of the involved mechanisms, has been introduced. Microscopic techniques with increased resolution have been combined with improved techniques for detection of signaling proteins. Transfections of fluorescently tagged proteins have allowed in vivo microscopy of their trafficking and interactions with other proteins and intracellular structures. We present an overview of general signaling principles and a description of techniques based on fluorescent microscopy suited for studies of signaling mechanisms.
Collapse
Affiliation(s)
- Morten P Oksvold
- Center for Cellular Stress Responses, Institute of Pathology, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
161
|
de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG. Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 2001; 114:4153-60. [PMID: 11739648 DOI: 10.1242/jcs.114.23.4153] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Throughout the years, fluorescence microscopy has proven to be an extremely versatile tool for cell biologists to study live cells. Its high sensitivity and non-invasiveness, together with the ever-growing spectrum of sophisticated fluorescent indicators, ensure that it will continue to have a prominent role in the future. A drawback of light microscopy is the fundamental limit of the attainable spatial resolution – ∼250 nm – dictated by the laws of diffraction. The challenge to break this diffraction limit has led to the development of several novel imaging techniques. One of them, near-field scanning optical microscopy (NSOM), allows fluorescence imaging at a resolution of only a few tens of nanometers and, because of the extremely small near-field excitation volume, reduces background fluorescence from the cytoplasm to the extent that single-molecule detection sensitivity becomes within reach. NSOM allows detection of individual fluorescent proteins as part of multimolecular complexes on the surface of fixed cells, and similar results should be achievable under physiological conditions in the near future.
Collapse
Affiliation(s)
- F de Lange
- Department of Tumor Immunology, University Medical Center Nijmegen, NCMLS/187 TIL, PO Box 9101, 6500HB Nijmegen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Key events in cellular trafficking occur at the cell surface, and it is desirable to visualize these events without interference from other regions deeper within. This review describes a microscopy technique based on total internal reflection fluorescence which is well suited for optical sectioning at cell-substrate regions with an unusually thin region of fluorescence excitation. The technique has many other applications as well, most notably for studying biochemical kinetics and single biomolecule dynamics at surfaces. A brief summary of these applications is provided, followed by presentations of the physical basis for the technique and the various ways to implement total internal reflection fluorescence in a standard fluorescence microscope.
Collapse
Affiliation(s)
- D Axelrod
- Department of Physics & Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|