151
|
Kanazawa S, Soucek L, Evan G, Okamoto T, Peterlin BM. c-Myc recruits P-TEFb for transcription, cellular proliferation and apoptosis. Oncogene 2003; 22:5707-11. [PMID: 12944920 DOI: 10.1038/sj.onc.1206800] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
c-Myc promotes cellular proliferation, sensitizes cells to apoptosis and prevents differentiation. It binds cyclin T1 structurally and functionally from the positive transcription elongation factor b (P-TEFb). The cyclin-dependent kinase 9 (Cdk9) in P-TEFb then phosporylates the C-terminal domain of RNA polymerase II, which is required for the transition from initiation to elongation of eukaryotic transcription. Inhibiting P-TEFb blocks the transcription of its target genes as well as cellular proliferation and apoptosis induced by c-Myc.
Collapse
Affiliation(s)
- Satoshi Kanazawa
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94143-0703, USA
| | | | | | | | | |
Collapse
|
152
|
Ohata H, Tetsuka T, Hayashi H, Onozaki K, Okamoto T. 3-methylcholanthrene activates human immunodeficiency virus type 1 replication via aryl hydrocarbon receptor. Microbiol Immunol 2003; 47:363-70. [PMID: 12825898 DOI: 10.1111/j.1348-0421.2003.tb03408.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We found that 3-methylcholanthrene (3-MC) could induce the reactivation of human immunodeficiency virus type 1 (HIV-1) replication in OM 10.1 cell, promyelocytic cell line latently infected with HIV-1. Transient luciferase expression experiments have revealed no particular transcription factors that are responsible for the effect of 3-MC in inducing HIV-1 gene expression as HIV-1 LTR mutants lacking various upstream transcriptional activators similarly responded to 3-MC. In addition, there was no effect of 3-MC on the DNA binding activity of nuclear factor-kappa B (NF-kappaB) that was previously reported to be crucial for the effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), a chemical homologue of 3-MC. However, overexpression of wild type aryl hydrocarbon receptor (AhR), a nuclear receptor of polycyclic aromatic hydrocarbons (PAHs) such as 3-MC, augmented the effect of 3-MC in the induction of gene expression from HIV-1 LTR. Moreover, a dominant negative mutant of AhR dramatically reduced the 3-MC-mediated activation of HIV-1 LTR. These findings suggest that 3-MC stimulates HIV-1 transcription by interacting with general transcription factors. Our observations indicate that chronic exposure of the HIV-1 infected individuals to PAHs may be contributable to the clinical development of acquired immunodeficiency syndrome (AIDS) among the individuals infected with HIV.
Collapse
Affiliation(s)
- Hirokazu Ohata
- Department of Molecular Genetics, Nagoya City University Medical School, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | |
Collapse
|
153
|
Michels AA, Nguyen VT, Fraldi A, Labas V, Edwards M, Bonnet F, Lania L, Bensaude O. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 2003; 23:4859-69. [PMID: 12832472 PMCID: PMC162212 DOI: 10.1128/mcb.23.14.4859-4869.2003] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 04/08/2003] [Accepted: 04/24/2003] [Indexed: 11/20/2022] Open
Abstract
Positive transcription elongation factor b (P-TEFb) comprises a cyclin (T1 or T2) and a kinase, cyclin-dependent kinase 9 (CDK9), which phosphorylates the carboxyl-terminal domain of RNA polymerase II. P-TEFb is essential for transcriptional elongation in human cells. A highly specific interaction among cyclin T1, the viral protein Tat, and the transactivation response (TAR) element RNA determines the productive transcription of the human immunodeficiency virus genome. In growing HeLa cells, half of P-TEFb is kinase inactive and binds to the 7SK small nuclear RNA. We now report on a novel protein termed MAQ1 (for ménage à quatre) that is also present in this complex. Since 7SK RNA is required for MAQ1 to associate with P-TEFb, a structural role for 7SK RNA is proposed. Inhibition of transcription results in the release of both MAQ1 and 7SK RNA from P-TEFb. Thus, MAQ1 cooperates with 7SK RNA to form a novel type of CDK inhibitor. According to yeast two-hybrid analysis and immunoprecipitations from extracts of transfected cells, MAQ1 binds directly to the N-terminal cyclin homology region of cyclins T1 and T2. Since Tat also binds to this cyclin T1 N-terminal domain and since the association between 7SK RNA/MAQ1 and P-TEFb competes with the binding of Tat to cyclin T1, we speculate that the TAR RNA/Tat lentivirus system has evolved to subvert the cellular 7SK RNA/MAQ1 system.
Collapse
Affiliation(s)
- Annemieke A Michels
- UMR 8541 CNRS, Ecole Normale Supérieure, Laboratoire de Régulation de l'Expression Génétique, 75230 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Marcello A, Ferrari A, Pellegrini V, Pegoraro G, Lusic M, Beltram F, Giacca M. Recruitment of human cyclin T1 to nuclear bodies through direct interaction with the PML protein. EMBO J 2003; 22:2156-66. [PMID: 12727882 PMCID: PMC156077 DOI: 10.1093/emboj/cdg205] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human cyclin T1, the cyclin partner of Cdk9 kinase in the positive transcription elongation factor b (P-TEFb), is an essential cellular cofactor that is recruited by the human immunodeficiency virus type 1 (HIV-1) Tat transactivator to promote transcriptional elongation from the HIV-1 long terminal repeat (LTR). Here we exploit fluorescence resonance energy transfer (FRET) to demonstrate that cyclin T1 physically interacts in vivo with the promyelocytic leukaemia (PML) protein within specific subnuclear compartments that are coincident with PML nuclear bodies. Deletion mutants at the C-terminal region of cyclin T1 are negative for FRET with PML and fail to localize to nuclear bodies. Cyclin T1 and PML are also found associated outside of nuclear bodies, and both proteins are present at the chromatinized HIV-1 LTR promoter upon Tat transactivation. Taken together these results suggest that PML proteins regulate Tat- mediated transcriptional activation by modulating the availability of cyclin T1 and other essential cofactors to the transcription machinery.
Collapse
Affiliation(s)
- Alessandro Marcello
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park, Padriciano 99, 34012 Trieste, Italy.
| | | | | | | | | | | | | |
Collapse
|
155
|
Teranishi F, Liu ZQ, Kunimatsu M, Imai K, Takeyama H, Manabe T, Sasaki M, Okamoto T. Calpain is involved in the HIV replication from the latently infected OM10.1 cells. Biochem Biophys Res Commun 2003; 303:940-6. [PMID: 12670502 DOI: 10.1016/s0006-291x(03)00447-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Treatment of OM10.1 cells latently infected with human immunodeficiency virus type 1 (HIV-1) with phorbol ester and calcium ionophore (A23187) induced virus replication which was blocked by N-Ac-Leu-Leu-norleucinal (ALLnL), a calpain inhibitor I, and not by lactacystin, a specific proteasome inhibitor. When the purified NF-kappa B/I kappa B complex was treated with mu-calpain, the specific DNA-binding activity was demonstrated by using electrophoretic mobility shift assay in vitro. This effect of mu-calpain was inhibited by ALLnL and calpastatin and not by lactacystin. In fact, we found that mu-calpain efficiently degraded I kappa B alpha. Furthermore, our Western blotting analysis has revealed that mu-calpain cleaves I kappa B alpha at its N-terminal and C-terminal regions that were previously reported to be involved in the interaction with NF-kappa B p65. These observations indicate that in monocyte/macrophage cells calcium signaling is involved in NF-kappa B activation through activation of calpain and thus calpain inhibitors may be effective in inhibiting the activation of latently infected HIV.
Collapse
Affiliation(s)
- Futoshi Teranishi
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The type II bare lymphocyte syndrome (BLS) or major histocompatibility complex class II (MHCII) deficiency is a severe combined immunodeficiency (SCID) that is characterized by the absence of constitutive and inducible expression of MHCII determinants on immune cells. Four complementation groups of BLS have been defined, and they result from mutations in DNA-bound activators and the coactivator for MHCII transcription. Recently, all complementation groups of BLS patients have been accounted for. Studies of the syndrome and specific mutations reveal important lessons for the genetics of the immune response.
Collapse
Affiliation(s)
- Nada Nekrep
- Institute of Biochemistry, Medical Faculty of the University of Ljubljana, Slovenia
| | | | | | | |
Collapse
|
157
|
Abstract
Positive transcription factor b (P-TEFb) is required for RNA polymerase II to make the transition from abortive to productive elongation. This important factor is a heterodimer of a cyclin-dependent kinase, cyclin-dependent kinase 9 (Cdk9), and one of four cyclin partners, cyclin T1, T2a, T2b or K. We demonstrate here that there exists in cells a second form of Cdk9 that is 13 kDa larger than the protein originally identified. Both of these forms, which we name Cdk9(42) and Cdk9(55), are present in HeLa and NIH/3T3 cells. Cdk9(55) is generated from an mRNA that originates from a second promoter located upstream of the startpoint of transcription used to generate mRNAs encoding Cdk9(42). Antibodies specific for Cdk9(55) immunoprecipitate Cdk(55) and cyclin T1, but not Cdk9(42). Cdk9(55) in the immunoprecipitates is active as judged by its ability to phosphorylate the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Recently it has been shown that the activity of P-TEFb is negatively regulated in cells by reversible association with a small cellular RNA called 7SK. We show here that P-TEFb molecules containing either form of Cdk9 are found in association with 7SK and both complexes are disrupted by treatment with 600 mM KCl. The relative abundance of Cdk9(55) and Cdk9(42) changes in different cell types, including HeLa, NIH/3T3, human macrophages and mouse lung tissue. Additionally, treatment of macrophages with lipopolysaccharides or infection with human immunodeficiency virus alters the relative abundance of the two forms of Cdk9.
Collapse
Affiliation(s)
- Sarah M Shore
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
158
|
Zhang F, Barboric M, Blackwell TK, Peterlin BM. A model of repression: CTD analogs and PIE-1 inhibit transcriptional elongation by P-TEFb. Genes Dev 2003; 17:748-58. [PMID: 12651893 PMCID: PMC196018 DOI: 10.1101/gad.1068203] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The positive transcription elongation factor b (P-TEFb) contains cyclin T1 (CycT1) and cyclin-dependent kinase 9 (Cdk9). For activating the expression of eukaryotic genes, the histidine-rich sequence in CycT1 binds the heptapeptide repeats in the C-terminal domain (CTD) of RNA polymerase II (RNAPII), whereupon Cdk9 phosphorylates the CTD. We found that alanine-substituted heptapeptide repeats that cannot be phosphorylated also bind CycT1. When placed near transcription units, these CTD analogs block effects of P-TEFb. Remarkably, the transcriptional repressor PIE-1 from Caenorhabditis elegans behaves analogously. It binds CycT1 via an alanine-containing heptapeptide repeat and inhibits transcriptional elongation. Thus, our findings reveal a new mechanism by which repressors inhibit eukaryotic transcription.
Collapse
Affiliation(s)
- Fan Zhang
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
159
|
Hoque M, Young TM, Lee CG, Serrero G, Mathews MB, Pe'ery T. The growth factor granulin interacts with cyclin T1 and modulates P-TEFb-dependent transcription. Mol Cell Biol 2003; 23:1688-702. [PMID: 12588988 PMCID: PMC151712 DOI: 10.1128/mcb.23.5.1688-1702.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyclin T1, together with the kinase CDK9, is a component of the transcription elongation factor P-TEFb which binds the human immunodeficiency virus type 1 (HIV-1) transactivator Tat. P-TEFb facilitates transcription by phosphorylating the carboxy-terminal domain (CTD) of RNA polymerase II. Cyclin T1 is an exceptionally large cyclin and is therefore a candidate for interactions with regulatory proteins. We identified granulin as a cyclin T1-interacting protein that represses expression from the HIV-1 promoter in transfected cells. The granulins, mitogenic growth factors containing repeats of a cysteine-rich motif, were reported previously to interact with Tat. We show that granulin formed stable complexes in vivo and in vitro with cyclin T1 and Tat. Granulin bound to the histidine-rich domain of cyclin T1, which was recently found to bind to the CTD, but not to cyclin T2. Binding of granulin to P-TEFb inhibited the phosphorylation of a CTD peptide. Granulin expression inhibited Tat transactivation, and tethering experiments showed that this effect was due, at least in part, to a direct action on cyclin T1 in the absence of Tat. In addition, granulin was a substrate for CDK9 but not for the other transcription-related kinases CDK7 and CDK8. Thus, granulin is a cellular protein that interacts with cyclin T1 to inhibit transcription.
Collapse
Affiliation(s)
- Mainul Hoque
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07013-1709, USA
| | | | | | | | | | | |
Collapse
|
160
|
Yedavalli VSRK, Benkirane M, Jeang KT. Tat and trans-activation-responsive (TAR) RNA-independent induction of HIV-1 long terminal repeat by human and murine cyclin T1 requires Sp1. J Biol Chem 2003; 278:6404-10. [PMID: 12458222 DOI: 10.1074/jbc.m209162200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb, cyclin T1 + CDK9, is needed for the expression of cellular promoters and primate lentiviral long terminal repeats (LTRs). Curiously, cellular and lentiviral promoters differ dramatically in the requirements for positive transcriptional elongation factor (P-TEF) b activity. Lentiviral LTRs, but not cellular promoters, need an RNA-associated P-TEFb/Tat/TAR (trans-activation-responsive) RNA ternary complex. Ternary complex defective murine cycT1 is apparently inactive for lentiviral transcription. Why P-TEFb requires Tat/TAR for LTRs but not for cellular promoters remains unknown. To explore this question, we sought to determine whether DNA targeting of murine and human cyclin T1 can reconstitute a Tat/TAR-independent activity to the HIV-1 LTR. In the absence of Tat and TAR, we found that both HuCycT1 and MuCycT1 can robustly activate the HIV-1 LTR. We further showed that Sp1 is necessary and sufficient for this DNA-targeted activity. Thus, like cellular promoters, HIV-1 LTR can use P-TEFb function without a Tat/TAR RNA complex. This activity could explain recent findings of robust HIV-1 replication in rat cells that cannot form a P-TEFb/Tat/TAR moiety.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| | | | | |
Collapse
|
161
|
Boss JM, Jensen PE. Transcriptional regulation of the MHC class II antigen presentation pathway. Curr Opin Immunol 2003; 15:105-11. [PMID: 12495741 DOI: 10.1016/s0952-7915(02)00015-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jeremy M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
162
|
Peterlin BM, Trono D. Hide, shield and strike back: how HIV-infected cells avoid immune eradication. Nat Rev Immunol 2003; 3:97-107. [PMID: 12563294 DOI: 10.1038/nri998] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Viruses that induce chronic infections can evade immune responses. HIV is a prototype of this class of pathogen. Not only does it mutate rapidly and make its surface components difficult to access by neutralizing antibodies, but it also creates cellular hideouts, establishes proviral latency, removes cell-surface receptors and destroys immune effectors to escape eradication. A better understanding of these strategies might lead to new approaches in the fight against AIDS.
Collapse
Affiliation(s)
- B Matija Peterlin
- Department of Medicine, Rosalind Russell Medical Research Center, University of California, San Francisco, California 94143-0703, USA.
| | | |
Collapse
|
163
|
Fujinaga K, Irwin D, Geyer M, Peterlin BM. Optimized chimeras between kinase-inactive mutant Cdk9 and truncated cyclin T1 proteins efficiently inhibit Tat transactivation and human immunodeficiency virus gene expression. J Virol 2002; 76:10873-81. [PMID: 12368330 PMCID: PMC136629 DOI: 10.1128/jvi.76.21.10873-10881.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cyclin T1 (hCycT1) protein from the positive transcription elongation factor b (P-TEFb) binds the transactivator Tat and the transactivation response (TAR) RNA stem loop from human immunodeficiency virus type 1 (HIV). This complex activates the elongation of viral transcription. To create effective inhibitors of Tat and thus HIV replication, we constructed mutant hCycT1 proteins that are defective in binding its kinase partner, Cdk9, or TAR. Although these mutant hCycT1 proteins did not increase Tat transactivation in murine cells, their dominant-negative effects were small in human cells. Higher inhibitory effects were obtained when hCycT1 was fused with the mutant Cdk9 protein. Since the autophosphorylation of the C terminus of Cdk9 is required for the formation of the stable complex between P-TEFb, Tat, and TAR, these serines and threonines were changed to glutamate in a kinase-inactive Cdk9 protein. This chimera inhibited Tat transactivation and HIV gene expression in human cells. Therefore, this dominant-negative kinase-inactive mutant Cdk9.hCycT1 chimera could be used for antiviral gene therapy.
Collapse
Affiliation(s)
- Koh Fujinaga
- Department of Medicine, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
164
|
Ramezani A, Hawley RG. Overview of the HIV‐1 Lentiviral Vector System. ACTA ACUST UNITED AC 2002; Chapter 16:Unit 16.21. [DOI: 10.1002/0471142727.mb1621s60] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
| | - Robert G. Hawley
- American Red Cross Rockville Maryland
- The George Washington University Washington D.C
| |
Collapse
|
165
|
Eberhardy SR, Farnham PJ. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 2002; 277:40156-62. [PMID: 12177005 DOI: 10.1074/jbc.m207441200] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-Myc protein is up-regulated in many different types of cancer, suggesting that a detailed understanding of Myc function is an important goal. Our previous studies have focused on determining the mechanism by which Myc activates transcription using the target gene cad as an experimental model. Previously, we found that Myc activates cad transcription at a post-RNA polymerase II recruitment step and that the Myc transactivation domain interacts with a number of cdk-cyclin complexes. We now extend these studies to determine the role of these cyclin-cdk complexes in Myc-mediated transactivation. We have found that cyclin T1 binding to Myc localizes to the highly conserved Myc Box I, whereas cdk8 binding localizes to the amino-terminal 41 amino acids of the Myc transactivation domain. We showed that recruitment of cdk8 is sufficient for activation of a synthetic promoter construct. In contrast, the ability of Myc to activate transcription of the cad promoter correlates with binding of cyclin T1. Furthermore, recruitment of cyclin T1 to the cad promoter via a Gal4 fusion protein or through protein-protein interaction with the HIV-1 Tat protein can also activate cad transcription. These results suggest that Myc activates transcription by stimulating elongation and that P-TEFb is a key mediator of this process.
Collapse
Affiliation(s)
- Scott R Eberhardy
- University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
166
|
Tosi G, Jabrane-Ferrat N, Peterlin B. Phosphorylation of CIITA directs its oligomerization, accumulation and increased activity on MHCII promoters. EMBO J 2002; 21:5467-76. [PMID: 12374747 PMCID: PMC129089 DOI: 10.1093/emboj/cdf557] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The class II transactivator (CIITA) is the master regulator of major histocompatibility complex class II (MHCII) transcription. Its activity is regulated at the post-transcriptional level by phosphorylation and oligomerization. This aggregation mapped to and depended on the phosphorylation of residues between positions 253 and 321 in CIITA, which resulted in a dramatic accumulation of the protein and increased expression of MHCII genes in human promonocytic U937 cells, which represent immature antigen-presenting cells. Thus, the post-transcriptional modification of CIITA plays an important role in the immune response.
Collapse
Affiliation(s)
- Giovanna Tosi
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94115-0703, USA
Present address: Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Viale L.Borri 57, Varese, Italy Corresponding author e-mail:
| | | | - B.Matija Peterlin
- Departments of Medicine, Microbiology and Immunology, Rosalind Russell Medical Research Center, University of California, San Francisco, CA 94115-0703, USA
Present address: Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Viale L.Borri 57, Varese, Italy Corresponding author e-mail:
| |
Collapse
|
167
|
Kobor MS, Greenblatt J. Regulation of transcription elongation by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:261-275. [PMID: 12213657 DOI: 10.1016/s0167-4781(02)00457-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis of mRNA by RNA polymerase II (RNAPII) is a multistep process that is regulated by different mechanisms. One important aspect of transcriptional regulation is phosphorylation of components of the transcription apparatus. The phosphorylation state of RNAPII carboxy-terminal domain (CTD) is controlled by a variety of protein kinases and at least one protein phosphatase. We discuss emerging genetic and biochemical evidence that points to a role of these factors not only in transcription initiation but also in elongation and possibly termination. In addition, we review phosphorylation events involving some of the general transcription factors (GTFs) and other regulatory proteins. As an interesting example, we describe the modulation of transcription associated kinases and phosphatase by the HIV Tat protein. We focus on bringing together recent findings and propose a revised model for the RNAPII phosphorylation cycle.
Collapse
Affiliation(s)
- Michael S Kobor
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | |
Collapse
|
168
|
Shim EY, Walker AK, Shi Y, Blackwell TK. CDK-9/cyclin T (P-TEFb) is required in two postinitiation pathways for transcription in the C. elegans embryo. Genes Dev 2002; 16:2135-46. [PMID: 12183367 PMCID: PMC186450 DOI: 10.1101/gad.999002] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metazoan transcription elongation factor P-TEFb (CDK-9/cyclin T) is essential for HIV transcription, and is recruited by some cellular activators. P-TEFb promotes elongation in vitro by overcoming pausing that requires the SPT-4/SPT-5 complex, but considerable evidence indicates that SPT-4/SPT-5 facilitates elongation in vivo. Here we used RNA interference to investigate P-TEFb functions in vivo, in the Caenorhabditis elegans embryo. We found that P-TEFb is broadly essential for expression of early embryonic genes. P-TEFb is required for phosphorylation of Ser 2 of the RNA Polymerase II C-terminal domain (CTD) repeat, but not for most CTD Ser 5 phosphorylation, supporting the model that P-TEFb phosphorylates CTD Ser 2 during elongation. Remarkably, although heat shock genes are cdk-9-dependent, they can be activated when spt-4 and spt-5 expression is inhibited along with cdk-9. This observation suggests that SPT-4/SPT-5 has an inhibitory function in vivo, and that mutually opposing influences of P-TEFb and SPT-4/SPT-5 may combine to facilitate elongation, or insure fidelity of mRNA production. Other genes are not expressed when cdk-9, spt-4, and spt-5 are inhibited simultaneously, suggesting that these genes require P-TEFb in an additional mechanism, and that they and heat shock genes are regulated through different P-TEFb-dependent elongation pathways.
Collapse
Affiliation(s)
- Eun Yong Shim
- Center for Blood Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
169
|
Jabrane-Ferrat N, Nekrep N, Tosi G, Esserman LJ, Peterlin BM. Major histocompatibility complex class II transcriptional platform: assembly of nuclear factor Y and regulatory factor X (RFX) on DNA requires RFX5 dimers. Mol Cell Biol 2002; 22:5616-25. [PMID: 12101253 PMCID: PMC133954 DOI: 10.1128/mcb.22.15.5616-5625.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Major histocompatibility complex class II (MHC-II) genes are regulated in a B-cell-specific and gamma interferon-inducible manner. Conserved upstream sequences (CUS) in their compact promoters bind nuclear factor Y (NFY) and regulatory factor X (RFX) complexes. These DNA-bound proteins form a platform that attracts the class II transactivator, which initiates and elongates MHC-II transcription. In this report, we analyzed the complex assembly of these DNA-bound proteins. First, we found that NFY can interact with RFX in cells. In particular, NFYA and NFYC bound RFXANK/B in vitro. Next, RFX5 formed dimers in vivo and in vitro. Within a leucine-rich stretch N-terminal to the DNA-binding domain in RFX5, the leucine at position 66 was found to be critical for this self-association. Mutant RFX5 proteins that could not form dimers also did not support the formation of higher-order DNA-protein complexes on CUS in vitro or MHC-II transcription in vivo. We conclude that the MHC-II transcriptional platform begins to assemble off CUS and then binds DNA via multiple, spatially constrained interactions. These findings offer one explanation of why in the Bare Lymphocyte Syndrome, which is a congenital severe combined immunodeficiency, MHC-II promoters are bare when any subunit of RFX is mutated or missing.
Collapse
Affiliation(s)
- Nabila Jabrane-Ferrat
- Department of Surgery, University of California-San Francisco, San Francisco, CA 94115-0703, USA
| | | | | | | | | |
Collapse
|
170
|
Takada N, Sanda T, Okamoto H, Yang JP, Asamitsu K, Sarol L, Kimura G, Uranishi H, Tetsuka T, Okamoto T. RelA-associated inhibitor blocks transcription of human immunodeficiency virus type 1 by inhibiting NF-kappaB and Sp1 actions. J Virol 2002; 76:8019-30. [PMID: 12134007 PMCID: PMC155123 DOI: 10.1128/jvi.76.16.8019-8030.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RelA-associated inhibitor (RAI) is an inhibitor of nuclear factor kappaB (NF-kappaB) newly identified by yeast two-hybrid screen as an interacting protein of the p65 (RelA) subunit. In this study, we attempted to examine the effect of RAI on transcription and replication of human immunodeficiency virus type 1 (HIV-1). We found that RAI inhibited gene expression from the HIV-1 long terminal repeat (LTR) even at the basal level. Upon in vitro DNA-binding reactions, RAI could directly block the DNA-binding of p65 subunit of NF-kappaB but not that of the p50 subunit or AP1. We found that RAI could also inhibit the DNA-binding of Sp1 and thus inhibit the basal HIV-1 promoter activity. We further examined the effects of RAI on Sp1 and found that RAI colocalizes with Sp1 in the nucleus and interacts with Sp1 in vitro and in vivo. Moreover, we found that RAI efficiently blocked the HIV-1 replication when cotransfected with a full-length HIV-1 clone. These findings indicate that RAI acts as an efficient inhibitor of HIV-1 gene expression in which both NF-kappaB and Sp1 play major roles.
Collapse
Affiliation(s)
- Norio Takada
- Department of Molecular Genetics, Nagoya City University Medical School, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Shao L, Sperber K. Impaired regulation of HLA-DR expression in human immunodeficiency virus-infected monocytes. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2002; 9:739-46. [PMID: 12093667 PMCID: PMC120040 DOI: 10.1128/cdli.9.4.739-746.2002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ling Shao
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
172
|
Mudhasani R, Fontes JD. The class II transactivator requires brahma-related gene 1 to activate transcription of major histocompatibility complex class II genes. Mol Cell Biol 2002; 22:5019-26. [PMID: 12077331 PMCID: PMC139786 DOI: 10.1128/mcb.22.14.5019-5026.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The class II transactivator (CIITA) is the key regulator of major histocompatibility complex (MHC) class II gene transcription. We demonstrate here that CIITA requires the ATPase subunit of an hSWI/SNF complex, brahma-related gene 1 (BRG-1), to activate transcription. When introduced into a cell line lacking BRG-1, CIITA was unable to activate cellular MHC class II genes. Reexpression of the wild-type but not an ATP-binding-deficient BRG-1 protein in this cell line restored the ability of CIITA to transactivate transcription of MHC class II genes. Interestingly, when the activity of CIITA was assayed in the BRG-1-deficient cell line by using a plasmid-based reporter assay, BRG-1 was not required for transcriptional activation, suggesting that the chromatin structure on the plasmid is such that BRG-1 is not necessary. Coimmunoprecipitation experiments were performed to determine if BRG-1 and CIITA proteins associate with each other in cells. We found that the two proteins coimmunoprecipitate and that amino acids 1 to 140 of CIITA are sufficient for binding. Taken together, these data suggest that BRG-1 and, very likely, an hSWI/SNF complex are required for transcription of MHC class II genes. The complex is likely recruited to MHC class II promoters, at least in part, by interaction with CIITA.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, 2399 Euclid Avenue, Cleveland, OH 44115, USA
| | | |
Collapse
|
173
|
Morris AC, Beresford GW, Mooney MR, Boss JM. Kinetics of a gamma interferon response: expression and assembly of CIITA promoter IV and inhibition by methylation. Mol Cell Biol 2002; 22:4781-91. [PMID: 12052885 PMCID: PMC133907 DOI: 10.1128/mcb.22.13.4781-4791.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 12/03/2001] [Accepted: 03/28/2002] [Indexed: 01/14/2023] Open
Abstract
Chromatin immunoprecipitation assays were employed to assess the kinetics of transcription factor assembly and histone modifications that occur during gamma interferon (IFN-gamma) induction of CIITA gene expression. CIITA is the master regulator of major histocompatibility complex class II transcription. Promoter IV (PIV), the major IFN-gamma responsive promoter for CIITA expression, requires both STAT1 and IFN regulatory factor 1 (IRF-1) for induction by IFN-gamma. STAT1 binding to PIV was detected first and was accompanied by a modest acetylation of histones H3 and H4 that were associated with the region. Despite these changes, which occurred within 30 min of IFN-gamma treatment, CIITA mRNA was not detected until IRF-1 protein was synthesized and bound to its site, a process that required >120 min. In contrast to these events, fetal trophoblast-like cell lines, which are refractory to CIITA induction by IFN-gamma, failed to assemble the above factors or modify their chromatin, suggesting that accessibility to the promoter is blocked. Bisulfite sequencing of PIV showed strong hypermethylation of PIV, providing a link between methylation, chromatin structure, and factor binding. Together, this analysis provides a kinetic view of the activation of the CIITA gene in response to IFN-gamma and shows that regulatory factor assembly, chromatin modification, and gene expression proceed in discrete steps.
Collapse
Affiliation(s)
- Ann C Morris
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
174
|
Srinivasakumar N, Zaboikin M, Zaboikina T, Schuening F. Evaluation of Tat-encoding bicistronic human immunodeficiency virus type 1 gene transfer vectors in primary canine bone marrow mononuclear cells. J Virol 2002; 76:7334-42. [PMID: 12072532 PMCID: PMC136335 DOI: 10.1128/jvi.76.14.7334-7342.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tat-encoding human immunodeficiency virus type 1 (HIV-1) gene transfer vectors were evaluated in primary canine bone marrow mononuclear cells. Tat vectors provided higher levels of gene expression than vectors with internal promoters. The HIV-1 vector was also more efficient than Moloney murine leukemia virus (MoMLV) vectors for transduction of canine bone marrow mononuclear cells in vitro. Transplantation experiments in dogs with transduced autologous marrow cells confirmed the superiority of HIV-1 vectors over MoMLV vectors for gene transfer into canine bone marrow cells. Tat vectors may be useful not only for providing high levels of therapeutic gene expression in hematopoietic cells but also for study of the biological effects of Tat in those tissues in the canine model.
Collapse
Affiliation(s)
- Narasimhachar Srinivasakumar
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232-6305, USA.
| | | | | | | |
Collapse
|
175
|
Accolla RS. The AIR-1 encoded class II transactivator (CIITA): the master coordinator of MHC class II gene expression and .. more. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 495:83-91. [PMID: 11774613 DOI: 10.1007/978-1-4615-0685-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- R S Accolla
- Department of Clinical and Biological Sciences, Chair of General Pathology and Immunology, School of Medicine, University of Insubria, Varese, Italy
| |
Collapse
|
176
|
Simone C, Bagella L, Bellan C, Giordano A. Physical interaction between pRb and cdk9/cyclinT2 complex. Oncogene 2002; 21:4158-65. [PMID: 12037672 DOI: 10.1038/sj.onc.1205511] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2001] [Revised: 03/13/2002] [Accepted: 03/21/2002] [Indexed: 11/09/2022]
Abstract
Cyclin-dependent kinase 9 (cdk9) is a multifunctional kinase with roles in different cellular pathways such as transcriptional elongation, differentiation and apoptosis. Cdk9/cyclin T differs functionally from other cdk/cyclin complexes that regulate cell cycle progression, but maintains structural affinity with those complexes. In addition, previous reports have demonstrated that the cdk9 complex is able to phosphorylate p56/pRb in vitro. In this report we show in vitro and in vivo interaction between cdk9/cyclinT2 and the protein product of the retinoblastoma gene (pRb) in human cell lines. The interaction involves the region composed of residues 129-195 of cdk9, cyclinT2 (1-642 aa) and the C-terminal domain of pRb (835-928 aa). We located the minimal region of cdk9 phosphorylation on the C-terminus of pRb, by identifying the residues between 793 and 834. This region contains at least three proline-directed serines (sp), S795, S807 and S811, which have been reported to be phosphorylated in vivo and which could be targeted by the cdk9 complex. These data suggest that, in logarithmically growing cells, cdk9/cyclin T2 and pRb are located in a nuclear multiprotein complex probably involved in transduction of cellular signals to the basal transcription machinery and that one of these signals could be the cdk9 phosphorylation of pRb.
Collapse
Affiliation(s)
- Cristiano Simone
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, PA 19107, USA
| | | | | | | |
Collapse
|
177
|
Simone C, Stiegler P, Bagella L, Pucci B, Bellan C, De Falco G, De Luca A, Guanti G, Puri PL, Giordano A. Activation of MyoD-dependent transcription by cdk9/cyclin T2. Oncogene 2002; 21:4137-48. [PMID: 12037670 DOI: 10.1038/sj.onc.1205493] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2001] [Revised: 03/01/2002] [Accepted: 03/18/2002] [Indexed: 11/09/2022]
Abstract
Myogenic transcription is repressed in myoblasts by serum-activated cyclin-dependent kinases, such as cdk2 and cdk4. Serum withdrawal promotes muscle-specific gene expression at least in part by down-regulating the activity of these cdks. Unlike the other cdks, cdk9 is not serum- or cell cycle-regulated and is instead involved in the regulation of transcriptional elongation by phosphorylating the carboxyl-terminal domain (CTD) of RNA polymerase II. While ectopic expression of cdk2 together with its regulatory subunits (cyclins E and A) inhibits myogenic transcription, overproduction of cdk9 and its associated cyclin (cyclin T2a) strengthens MyoD-dependent transcription and stimulates myogenic differentiation in both MyoD-converted fibroblasts and C2C12 muscle cells. Conversely, inhibition of cdk9 activity by a dominant negative form (cdk9-dn) represses the myogenic program. Cdk9, cyclinT2 and MyoD can be detected in a multimeric complex in C2C12 cells, with the minimal cdk9-binding region of MyoD mapping within 101-161 aa of the bHLH region. Finally, cdk9 can phosphorylate MyoD in vitro, suggesting the possibility that cdk9/cycT2a regulation of muscle differentiation includes the direct enzymatic activity of the kinase on MyoD.
Collapse
Affiliation(s)
- Cristiano Simone
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, PA 19122, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Chougnet C, Shearer GM, Landay AL. The Role of Antigen-presenting Cells in HIV Pathogenesis. Curr Infect Dis Rep 2002; 4:266-271. [PMID: 12015921 DOI: 10.1007/s11908-002-0090-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The study of antigen-presenting cells (APC) in HIV pathogenesis has been ongoing for almost 20 years. The initial studies recognized the important role of APC as targets for HIV infection and their ability to serve as reservoirs of virus, particularly in tissues. The issue of whether HIV impacts the functional competency of APC has been more controversial, with some studies showing reduced expression of important costimulatory molecules on APC, but others showing the functional capacity of APC to be normal. The study of APC has advanced with recent interest in one class of APC, namely the dendritic cell. These cells have been shown to consist of numerous subsets and serve an important role in bridging innate and adaptive immune responses. The impact of HIV infection on dendritic cells has recently been characterized, as well as the critical functional role of these cells in host defenses in HIV-infected patients. One of the more exciting recent advances in APC biology is the ability to manipulate APC ex vivo for therapeutic purposes in an attempt to restore immune responses in HIV-infected persons. This review covers many of the advances of the field of APC biology and puts them into perspective with HIV pathogenesis.
Collapse
Affiliation(s)
- Claire Chougnet
- Children's Hospital Research Foundation, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
179
|
Lin X, Taube R, Fujinaga K, Peterlin BM. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA. J Biol Chem 2002; 277:16873-8. [PMID: 11884399 DOI: 10.1074/jbc.m200117200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Different positive transcription elongation factor b (P-TEFb) complexes isolated from mammalian cells contain a common catalytic subunit (Cdk9) and the unique regulatory cyclins CycT1, CycT2a, CycT2b, or CycK. The role of CycK as a transcriptional cyclin was demonstrated in this study. First, CycK activated transcription when tethered heterologously to RNA, which required the kinase activity of Cdk9. Although this P-TEFb could phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNAPII) in vitro, in contrast to CycT1 and CycT2, CycK did not activate transcription when tethered to DNA. Interestingly, when the C termini of CycT1 and CycT2 or only the histidine-rich stretch from positions 481 to 551 in CycT1 were added to CycK, the extended chimeras activated transcription equivalently via DNA. Moreover, these transcriptional effects required the CTD of RNAPII in cells. Thus, CycK functions as P-TEFb only via RNA, which suggests the presence of cellular RNA-bound activators that require CycK for their transcriptional activity.
Collapse
Affiliation(s)
- Xin Lin
- Department of Medicine, University of California at San Francisco, California 94143-0703, USA
| | | | | | | |
Collapse
|
180
|
Lawn SD, Butera ST, Shinnick TM. Tuberculosis unleashed: the impact of human immunodeficiency virus infection on the host granulomatous response to Mycobacterium tuberculosis. Microbes Infect 2002; 4:635-46. [PMID: 12048033 DOI: 10.1016/s1286-4579(02)01582-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The granuloma plays a critical role in the host immune response to Mycobacterium tuberculosis, containing the organism and confining it in a latent state in most infected individuals. Indeed, approximately one-third of the world's population has latent M. tuberculosis infection. However, over the past decade, the human immunodeficiency virus type 1 (HIV-1) pandemic has profoundly affected the incidence and clinicopathological features of tuberculosis. This review examines the immunological mechanisms whereby HIV-1 impairs the establishment, maintenance and function of the tuberculous granuloma.
Collapse
Affiliation(s)
- Stephen D Lawn
- Tuberculosis/Mycobacteriology Branch, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Services, 1600 Clifton Road NE, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
181
|
Prelich G. RNA polymerase II carboxy-terminal domain kinases: emerging clues to their function. EUKARYOTIC CELL 2002; 1:153-62. [PMID: 12455950 PMCID: PMC118035 DOI: 10.1128/ec.1.2.153-162.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Gregory Prelich
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
182
|
Abstract
The presentation of peptides to T cells by MHC class II molecules is of critical importance in specific recognition by the immune system. Expression of class II molecules is exquisitely controlled at the transcriptional level. A large set of proteins interact with the promoters of class II genes. The most important of these is CIITA, a master controller that orchestrates expression but does not bind directly to the promoter. The transcriptosome complex formed at class II promoters is a model for induction of gene expression.
Collapse
Affiliation(s)
- Jenny Pan-Yun Ting
- Department of Microbiology and Immunology and The Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
183
|
Masternak K, Reith W. Promoter-specific functions of CIITA and the MHC class II enhanceosome in transcriptional activation. EMBO J 2002; 21:1379-88. [PMID: 11889043 PMCID: PMC125922 DOI: 10.1093/emboj/21.6.1379] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription of the major histocompatibility complex class II family of genes is regulated by conserved promoter elements and two gene-specific trans-activators, RFX and CIITA. RFX binds DNA and nucleates the assembly of an enhanceosome, which recruits CIITA through protein--protein interactions. Transcriptional activation is a complex, multi-step process involving chromatin modification and recruitment of the transcription apparatus. To examine the roles of the enhanceosome and CIITA in these processes, we analysed the level of promoter-associated hyperacetylated histones H3 and H4, TBP, TFIIB and RNA poly merase II in cells lacking RFX or CIITA. We compared four genes co-regulated by RFX and CIITA (HLA-DRA, HLA-DPB, HLA-DMB and Ii) and found that the enhanceosome and CIITA make variable, promoter-dependent contributions to histone acetylation and transcription apparatus recruitment. CIITA is generally implicated at multiple levels of the activation process, while the enhanceosome contributes in a CIITA-independent manner only at certain promoters. Our results support the general notion that the impact of a particular activator on transcription in vivo may vary depending on the promoter and the chromatin context.
Collapse
Affiliation(s)
- Krzysztof Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
Present address: NovImmune S.A., 64 avenue de la Roseraie, CH-1211 Genève 4, Switzerland Corresponding author e-mail:
| | - Walter Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, CH-1211 Genève 4, Switzerland
Present address: NovImmune S.A., 64 avenue de la Roseraie, CH-1211 Genève 4, Switzerland Corresponding author e-mail:
| |
Collapse
|
184
|
Sarol LC, Imai K, Asamitsu K, Tetsuka T, Barzaga NG, Okamoto T. Inhibitory effects of IFN-gamma on HIV-1 replication in latently infected cells. Biochem Biophys Res Commun 2002; 291:890-6. [PMID: 11866448 DOI: 10.1006/bbrc.2002.6532] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The progress in the use of HAART for the treatment of HIV-infected individuals has been limited by the development of viral resistance and the maintenance of viral latency. New therapeutic strategies geared toward improvement in the host's immune response are now being considered. We found that IFN-gamma induces CIITA through the JAK-STAT pathway and inhibits HIV-1 replication in latently infected cells. Its effect appears to be mediated through the reciprocal action of Tat and CIITA. With this beneficial effect, IFN-gamma and its inducers can be considered as an adjunct to the currently available therapy. We also addressed the safety of using simvastatin, an HMG-CoA reductase inhibitor, to treat dyslipidemia often associated with the use of protease inhibitors. Simvastatin did not show any unfavorable effects on HIV replication, thus could be used safely unless there are any drug interactions when administered.
Collapse
Affiliation(s)
- Lilen C Sarol
- Department of Molecular Genetics, Nagoya City University Medical School, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
185
|
Abstract
The human genome has been called "the blueprint for life." This master plan is realized through the process of gene expression. Recent progress has revealed that many of the steps in the pathway from gene sequence to active protein are connected, suggesting a unified theory of gene expression.
Collapse
Affiliation(s)
- George Orphanides
- Syngenta Central Toxicology Laboratory, Alderley Park, Cheshire SK10 4TJ, United Kingdom
| | | |
Collapse
|
186
|
Mudhasani R, Fontes JD. Inhibition of class II trans-activator function by HIV-1 tat in mouse cells is independent of competition for binding to cyclin T1. Mol Immunol 2002; 38:539-46. [PMID: 11750655 DOI: 10.1016/s0161-5890(01)00091-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The Tat trans-activator protein from HIV-1 inhibits the function of the class II trans-activator protein (CIITA), resulting in reduced MHC class II gene transcription in human cells. Tat does so by competing with CIITA for binding to cyclin T1, a component of the transcriptional elongation complex PTEFb. Since Tat does not functionally interact with mouse cyclin T1, we decided to examine the ability of Tat to inhibit CIITA in mouse cells. We found that Tat inhibited CIITA activity in mouse cells though this inhibition was independent of cyclin T1. The inhibition required the transcriptional activation domain of CIITA, but did not involve alterations in MHC class II promoter occupancy. Although Tat blocked the interaction between CIITA protein and human cyclin T1, it had no effect on the binding between CIITA and mouse cyclin T1. Therefore, Tat can inhibit the ability of CIITA to activate transcription of MHC class II genes in mouse cells by a mechanism that appears to be distinct from that proposed for human cells.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Rm. SI219, Cleveland, OH 44115, USA
| | | |
Collapse
|
187
|
Towey M, Kelly AP. Nuclear localisation of CIITA is controlled by a carboxy terminal leucine-rich repeat region. Mol Immunol 2002; 38:627-34. [PMID: 11792431 DOI: 10.1016/s0161-5890(01)00093-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Regulation of both IFN-gamma inducible and constitutive MHC class II gene transcription is under the control of CIITA. This master regulator is synthesised in the cytosol and must translocate to the nucleus in order to activate class II gene transcription. Here, we demonstrate that, in a patient deficient in MHC class II gene expression, a single missense mutation results in sequestration of CIITA within the cytosol. The mutation is situated in a region that bears homology to the beta strand domain of ribonuclease inhibitor-like leucine-rich repeat (LRR) motifs. Deletion and mutagenesis analysis suggest that structural integrity of this region is required for efficient nuclear localisation. Importantly, we show that in the absence of amino terminal domains, the carboxy terminal LRR region is sufficient to efficiently target GFP chimeric proteins to the nucleus. CIITA therefore encodes multiple domains that can, in isolation, efficiently target to the nuclear compartment.
Collapse
Affiliation(s)
- Michael Towey
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
188
|
Taube R, Lin X, Irwin D, Fujinaga K, Peterlin BM. Interaction between P-TEFb and the C-terminal domain of RNA polymerase II activates transcriptional elongation from sites upstream or downstream of target genes. Mol Cell Biol 2002; 22:321-31. [PMID: 11739744 PMCID: PMC134214 DOI: 10.1128/mcb.22.1.321-331.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional elongation by RNA polymerase II (RNAPII) is regulated by the positive transcription elongation factor b (P-TEFb). P-TEFb is composed of Cdk9 and C-type cyclin T1 (CycT1), CycT2a, CycT2b, or CycK. The role of the C-terminal region of CycT1 and CycT2 remains unknown. In this report, we demonstrate that these sequences are essential for the activation of transcription by P-TEFb via DNA, i.e., when CycT1 is tethered upstream or downstream of promoters and coding sequences. A histidine-rich stretch, which is conserved between CycT1 and CycT2 in this region, bound the C-terminal domain of RNAPII. This binding was required for the subsequent expression of full-length transcripts from target genes. Thus, P-TEFb could mediate effects of enhancers on the elongation of transcription.
Collapse
Affiliation(s)
- Ran Taube
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | |
Collapse
|
189
|
Eberhardy SR, Farnham PJ. c-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 2001; 276:48562-71. [PMID: 11673469 DOI: 10.1074/jbc.m109014200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The c-Myc protein is a site-specific DNA-binding transcription factor that is up-regulated in a number of different cancers. We have previously shown that binding of Myc correlates with increased transcription of the cad promoter. We have now further investigated the mechanism by which Myc mediates transcriptional activation of the cad gene. Using a chromatin immunoprecipitation assay, we found high levels of RNA polymerase II bound to the cad promoter in quiescent NIH 3T3 cells and in differentiated U937 cells, even though the promoter is inactive. However, chromatin immunoprecipitation with an antibody that recognizes the hyperphosphorylated form of the RNA polymerase II carboxyl-terminal domain (CTD) revealed that phosphorylation of the CTD does correlate with c-Myc binding and cad transcription. We have also found that the c-Myc transactivation domain interacts with cdk9 and cyclin T1, components of the CTD kinase P-TEFb. Furthermore, activator bypass experiments have shown that direct recruitment of cyclin T1 to the cad promoter can substitute for c-Myc to activate the promoter. In summary, our results suggest that c-Myc activates transcription of cad by stimulating promoter clearance and elongation, perhaps via recruitment of P-TEFb.
Collapse
Affiliation(s)
- S R Eberhardy
- University of Wisconsin Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
190
|
Kiernan RE, Emiliani S, Nakayama K, Castro A, Labbé JC, Lorca T, Nakayama Ki K, Benkirane M. Interaction between cyclin T1 and SCF(SKP2) targets CDK9 for ubiquitination and degradation by the proteasome. Mol Cell Biol 2001; 21:7956-70. [PMID: 11689688 PMCID: PMC99964 DOI: 10.1128/mcb.21.23.7956-7970.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CDK9 paired with cyclin T1 forms the human P-TEFb complex and stimulates productive transcription through phosphorylation of the RNA polymerase II C-terminal domain. Here we report that CDK9 is ubiquitinated and degraded by the proteasome whereas cyclin T1 is stable. SCF(SKP2) was recruited to CDK9/cyclin T1 via cyclin T1 in an interaction requiring its PEST domain. CDK9 ubiquitination was modulated by cyclin T1 and p45(SKP2). CDK9 accumulated in p45(SKP2-/-) cells, and its expression during the cell cycle was periodic. The transcriptional activity of CDK9/cyclin T1 on the class II major histocompatibility complex promoter could be regulated by CDK9 degradation in vivo. We propose a novel mechanism whereby recruitment of SCF(SKP2) is mediated by cyclin T1 while ubiquitination occurs exclusively on CDK9.
Collapse
Affiliation(s)
- R E Kiernan
- Laboratoire de Virologie Moléculaire et Transfert de Gène, Institut de Génétique Humaine, UPR1142, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Renner DB, Yamaguchi Y, Wada T, Handa H, Price DH. A highly purified RNA polymerase II elongation control system. J Biol Chem 2001; 276:42601-9. [PMID: 11553615 DOI: 10.1074/jbc.m104967200] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studying the sensitivity of transcription to the nucleotide analog 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole has led to the discovery of a number of proteins involved in the regulation of transcription elongation by RNA polymerase II. We have developed a highly purified elongation control system composed of three purified proteins added back to isolated RNA polymerase II elongation complexes. Two of the proteins, 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole sensitivity-inducing factor (DSIF) and negative elongation factor (NELF), act as negative transcription elongation factors by increasing the time the polymerase spent at pause sites. P-TEFb reverses the negative effect of DSIF and NELF through a mechanism dependent on its kinase activity. TFIIF is a general initiation factor that positively affects elongation by decreasing pausing. We show that TFIIF functionally competes with DSIF and NELF, and this competition is dependent on the relative concentrations of TFIIF and NELF.
Collapse
Affiliation(s)
- D B Renner
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | |
Collapse
|
192
|
Kamp W, Breij EC, Nottet HS, Berk MB. Interactions between major histocompatibility complex class II surface expression and HIV: implications for pathogenesis. Eur J Clin Invest 2001; 31:984-91. [PMID: 11737241 DOI: 10.1046/j.1365-2362.2001.00895.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Although it has been almost 20 years since the first cases of acquired immunodeficiency syndrome (AIDS) were documented, the pathogenesis is still not completely understood. Interactions between major histocompatibility complex (MHC) Class I and human immunodeficiency virus (HIV), resulting in down-regulation of MHC-I surface expression, have been reported to contribute to pathogenesis by suppressing the host's immune response. Interactions between MHC Class II and HIV have also been described, but it is unclear how these contribute to the pathogenesis. MHC-II surface expression on HIV-infected monocytes and monocytic cell lines has been described to be increased as well as decreased when compared to uninfected control monocytes. HIV-specific mechanisms appear to down-regulate MHC-II expression on blood monocytes during HIV-1 infection, whereas host mechanisms up-regulate MHC-II expression in response to infection of blood monocytes as well as brain macrophages. A balance between these two may determine MHC-II expression levels in individual patients. Altogether, HIV seems to be able to benefit from both low and high levels of MHC-II surface expression. The first results in reduced immune surveillance of the host, allowing the virus to replicate faster; the second increases infectivity of the virus as a result of higher MHC-II density on macrophages and virion particles.
Collapse
Affiliation(s)
- W Kamp
- Fight for Life Foundation, Amsterdam, the Netherlands
| | | | | | | |
Collapse
|
193
|
Goldstrohm AC, Albrecht TR, Suñé C, Bedford MT, Garcia-Blanco MA. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1. Mol Cell Biol 2001; 21:7617-28. [PMID: 11604498 PMCID: PMC99933 DOI: 10.1128/mcb.21.22.7617-7628.2001] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 08/17/2001] [Indexed: 11/20/2022] Open
Abstract
CA150 represses RNA polymerase II (RNAPII) transcription by inhibiting the elongation of transcripts. The FF repeat domains of CA150 bind directly to the phosphorylated carboxyl-terminal domain of the largest subunit of RNAPII. We determined that this interaction is required for efficient CA150-mediated repression of transcription from the alpha(4)-integrin promoter. Additional functional determinants, namely, the WW1 and WW2 domains of CA150, were also required for efficient repression. A protein that interacted directly with CA150 WW1 and WW2 was identified as the splicing-transcription factor SF1. Previous studies have demonstrated a role for SF1 in transcription repression, and we found that binding of the CA150 WW1 and WW2 domains to SF1 correlated exactly with the functional contribution of these domains for repression. The binding specificity of the CA150 WW domains was found to be unique in comparison to known classes of WW domains. Furthermore, the CA150 binding site, within the carboxyl-terminal half of SF1, contains a novel type of proline-rich motif that may be recognized by the CA150 WW1 and WW2 domains. These results support a model for the recruitment of CA150 to repress transcription elongation. In this model, CA150 binds to the phosphorylated CTD of elongating RNAPII and SF1 targets the nascent transcript.
Collapse
Affiliation(s)
- A C Goldstrohm
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | |
Collapse
|
194
|
Stumptner-Cuvelette P, Morchoisne S, Dugast M, Le Gall S, Raposo G, Schwartz O, Benaroch P. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci U S A 2001; 98:12144-9. [PMID: 11593029 PMCID: PMC59782 DOI: 10.1073/pnas.221256498] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HIV-1-infected cells can avoid cytotoxic T lymphocyte killing by Nef-mediated down-regulation of surface MHC I. Here, we show that HIV-1 Nef inhibits MHC II restricted peptide presentation to specific T cells and thus may affect the induction of antiviral immune responses. Nef mediates this effect by reducing the surface level of mature (i.e., peptide-loaded) MHC II while increasing levels of immature MHC II, which are functionally incompetent because of their association with the invariant chain. Nef was the only HIV-1 gene product to possess this capacity, which was also observed in the context of the whole HIV-1 genome. Other proteins of the endocytic pathway were not affected by Nef expression, suggesting that Nef effects on MHC II did not result from a general alteration of the endocytic pathway. Response patterns to previously characterized mutations of Nef differed for Nef-induced modulation of mature and immature MHC II. Furthermore, the doses of Nef required to observe each of the two effects were clearly different, suggesting that Nef could affect MHC II peptide presentation through distinct mechanisms. Cooperation between those mechanisms may enable Nef to efficiently inhibit MHC II function.
Collapse
Affiliation(s)
- P Stumptner-Cuvelette
- Institut National de la Santé et de la Recherche Médicale U520 and Centre National de la Recherche Scientifique UMR144, Institut Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
195
|
Accolla RS, De Lerma Barbaro A, Mazza S, Casoli C, De Maria A, Tosi G. The MHC class II transactivator: prey and hunter in infectious diseases. Trends Immunol 2001; 22:560-3. [PMID: 11574280 DOI: 10.1016/s1471-4906(01)02003-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The MHC class II transcriptional activator (CIITA) is the major regulator of expression of MHC class II genes. Thus, CIITA plays a fundamental role in the regulation of the immune response. Here, we discuss our findings on the dual role of CIITA during infections, as the target (prey) for certain pathogens but the host effector (hunter) against other pathogens, including HIV-1. This dual role is placed in an evolutionary context as a rather peculiar example of a strategy used by pathogens to evade host defenses and a counteraction of the host to minimize the survival and spread of the pathogen.
Collapse
Affiliation(s)
- R S Accolla
- Department of Clinical and Biological Sciences, School of Medicine, University of Insubria, Viale L. Borri 57, 21100 Varese, Italy.
| | | | | | | | | | | |
Collapse
|
196
|
Inohara N, Nuñez G. The NOD: a signaling module that regulates apoptosis and host defense against pathogens. Oncogene 2001; 20:6473-81. [PMID: 11607846 DOI: 10.1038/sj.onc.1204787] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nods, a growing family of proteins containing a nucleotide-binding oligomerization domain (NOD), are involved in the regulation of programmed cell death (PCD) and immune responses. Members of the family include Apaf-1, Ced-4, Nod1, Nod2, and the cytosolic products of plant disease resistance genes. The NOD module is homologous to the ATP-binding cassette (ABC) found in a large number of proteins with diverse biological function. The centrally located NOD promotes activation of effector molecules through self-association and induced proximity of binding partners. The C-terminal domain of Nods serves as a sensor for intracellular ligands, whereas the N-terminal domain mediates binding to dowstream effector molecules and activation of diverse signaling pathways. Thus, Nods activate, through the NOD module, diverse signaling pathways involved in the elimination of cells via PCD and the host defense against pathogens.
Collapse
Affiliation(s)
- N Inohara
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan, MI 48109, USA
| | | |
Collapse
|
197
|
Rakoff-Nahoum S, Chen H, Kraus T, George I, Oei E, Tyorkin M, Salik E, Beuria P, Sperber K. Regulation of class II expression in monocytic cells after HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2331-42. [PMID: 11490022 DOI: 10.4049/jimmunol.167.4.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human macrophage hybridoma cells were used to study HLA-DR expression after HIV-1 infection. HLA-DR surface expression was lost 2 wk after infection that was associated with decreased mRNA transcription. Transfecting HLA-DR-alpha and HLA-DR-beta cDNA driven by a nonphysiological CMV promoter restored expression, suggesting that regulatory DNA-binding proteins may be affected by HIV-1 infection. There was no protein binding to conserved class II DNA elements (W/Z/S box, X-1 and X-2 boxes, and Y box) in a HIV-1-infected human macrophage hybridoma cell line, 43(HIV), and in primary monocytes that lost HLA-DR expression after HIV-1(BaL) infection. PCR analysis of the HIV-1-infected cells that lost HLA-DR expression revealed mRNA for W/Z/S (RFX-5), X-1 (RFX-5), X-2 (hX-2BP), and one Y box DNA-binding protein (NF-YB), and CIITA, a non-DNA-binding protein necessary for class II transcription. There was no mRNA for the Y box-binding protein, NF-YA. However, HLA-DR expression could be restored by transfection with NF-YA driven by a CMV promoter, although HLA-DR failed to localize in either the late endosomes, lysosomes, or acidic compartments. This was associated with a loss of class II-associated invariant chain peptide and leupeptin-induced protein in the 43(HIV) cells. To address this further, non-HIV-1-infected 43 cells were infected with vaccinia virus containing HIV-1 gag, nef, pol, and env proteins. HLA-DR failed to localize in neither the late endosomes, lysosomes, or acidic compartments in the vaccinia-infected cells containing HIV-1 env protein. HIV-1 appears to have multiple effects on class II expression in monocytic cells that may contribute to the immune defects seen in HIV-1-infected patients.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Abstract
The bare lymphocyte syndrome (BLS) is a hereditary immunodeficiency resulting from the absence of major histocompatibility complex class II (MHCII) expression. Considering the central role of MHCII molecules in the development and activation of CD4(+) T cells, it is not surprising that the immune system of the patients is severely impaired. BLS is the prototype of a "disease of gene regulation." The affected genes encode RFXANK, RFX5, RFXAP, and CIITA, four regulatory factors that are highly specific and essential for MHCII genes. The first three are subunits of RFX, a trimeric complex that binds to all MHCII promoters. CIITA is a non-DNA-binding coactivator that functions as the master control factor for MHCII expression. The study of RFX and CIITA has made major contributions to our comprehension of the molecular mechanisms controlling MHCII genes and has made this system into a textbook model for the regulation of gene expression.
Collapse
Affiliation(s)
- W Reith
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, Geneva 4, 1211 Switzerland.
| | | |
Collapse
|
199
|
Barboric M, Nissen RM, Kanazawa S, Jabrane-Ferrat N, Peterlin BM. NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Mol Cell 2001; 8:327-37. [PMID: 11545735 DOI: 10.1016/s1097-2765(01)00314-8] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
To stimulate transcriptional elongation of HIV-1 genes, the transactivator Tat recruits the positive transcription elongation factor b (P-TEFb) to the initiating RNA polymerase II (RNAPII). We found that the activation of transcription by RelA also depends on P-TEFb. Similar to Tat, RelA activated transcription when tethered to RNA. Moreover, TNF-alpha triggered the recruitment of P-TEFb to the NF-kappaB-regulated IL-8 gene. While the formation of the transcription preinitiation complex (PIC) remained unaffected, DRB, an inhibitor of P-TEFb, prevented RNAPII from elongating on the IL-8 gene. Remarkably, DRB inhibition sensitized cells to TNF-alpha-induced apoptosis. Thus, NF-kappaB requires P-TEFb to stimulate the elongation of transcription and P-TEFb plays an unexpected role in regulating apoptosis.
Collapse
Affiliation(s)
- M Barboric
- Howard Hughes Medical Institute Departments of Medicine, Microbiology, and Immunology University of California at San Francisco 94143, USA
| | | | | | | | | |
Collapse
|
200
|
Kanazawa S, Peterlin BM. Combinations of dominant-negative class II transactivator, p300 or CDK9 proteins block the expression of MHC II genes. Int Immunol 2001; 13:951-8. [PMID: 11431425 DOI: 10.1093/intimm/13.7.951] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The class II transactivator (CIITA) regulates not only the transcription of HLA-DR, -DQ, -DP, but also invariant chain, DMA and DMB genes. A hybrid mutant CIITA protein, which contained residues from positions 302 to 1130 in CIITA fused to the enhanced green fluorescent protein (EdCIITA), inhibited the function of the wild-type protein. EdCIITA extinguished the inducible and constitutive expression of MHC II genes in epithelial cells treated with IFN-gamma and B lymphoblastoid cells respectively. Also, it blocked T cell activation by superantigen. This inhibition correlated with the localization of EdCIITA but not CIITA in the cytoplasm of cells. However, when EdCIITA was co-expressed with a dominant-negative form of the nucleoporin Nup214/CAN, it also accumulated in the nucleus. These data suggest that EdCIITA not only competes with the wild-type protein for the binding to MHC II promoters but sequesters a critical co-factor of CIITA in the cytoplasm. CIITA also recruits the histone acetyltransferase cAMP responsive element binding protein (CREB) binding protein and positive transcription elongation factor b (p-TEFb) for the transcription of MHC II genes. Dominant-negative p300 (DNp300) or CDK9 (DNCDK9) proteins inhibited the function of CIITA and of the DRA promoter. Thus, combinations of EdCIITA and DNp300 and/or DNCDK9 proteins extinguished the transcription of MHC II genes. They might become useful for future genetic therapeutic approaches in organ transplantation and autoimmune diseases.
Collapse
Affiliation(s)
- S Kanazawa
- Department of Medicine, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143-0703, USA
| | | |
Collapse
|