151
|
Chueh AC, Tse JWT, Tögel L, Mariadason JM. Mechanisms of Histone Deacetylase Inhibitor-Regulated Gene Expression in Cancer Cells. Antioxid Redox Signal 2015; 23:66-84. [PMID: 24512308 PMCID: PMC4492771 DOI: 10.1089/ars.2014.5863] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Class I and II histone deacetylase inhibitors (HDACis) are approved for the treatment of cutaneous T-cell lymphoma and are undergoing clinical trials as single agents, and in combination, for other hematological and solid tumors. Understanding their mechanisms of action is essential for their more effective clinical use, and broadening their clinical potential. RECENT ADVANCES HDACi induce extensive transcriptional changes in tumor cells by activating and repressing similar numbers of genes. These transcriptional changes mediate, at least in part, HDACi-mediated growth inhibition, apoptosis, and differentiation. Here, we highlight two fundamental mechanisms by which HDACi regulate gene expression—histone and transcription factor acetylation. We also review the transcriptional responses invoked by HDACi, and compare these effects within and across tumor types. CRITICAL ISSUES The mechanistic basis for how HDACi activate, and in particular repress gene expression, is not well understood. In addition, whether subsets of genes are reproducibly regulated by these agents both within and across tumor types has not been systematically addressed. A detailed understanding of the transcriptional changes elicited by HDACi in various tumor types, and the mechanistic basis for these effects, may provide insights into the specificity of these drugs for transformed cells and specific tumor types. FUTURE DIRECTIONS Understanding the mechanisms by which HDACi regulate gene expression and an appreciation of their transcriptional targets could facilitate the ongoing clinical development of these emerging therapeutics. In particular, this knowledge could inform the design of rational drug combinations involving HDACi, and facilitate the identification of mechanism-based biomarkers of response.
Collapse
Affiliation(s)
- Anderly C Chueh
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Janson W T Tse
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - Lars Tögel
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| | - John M Mariadason
- Ludwig Institute for Cancer Research , Olivia Newton John Cancer and Wellness Centre, Austin Health, Melbourne, Australia
| |
Collapse
|
152
|
Lu X, Wang L, Yu C, Yu D, Yu G. Histone Acetylation Modifiers in the Pathogenesis of Alzheimer's Disease. Front Cell Neurosci 2015; 9:226. [PMID: 26136662 PMCID: PMC4468862 DOI: 10.3389/fncel.2015.00226] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/29/2015] [Indexed: 01/07/2023] Open
Abstract
It is becoming more evident that histone acetylation, as one of the epigenetic modifications or markers, plays a key role in the etiology of Alzheimer’s disease (AD). Histone acetylases and histone deacetylases (HDACs) are the well-known covalent enzymes that modify the reversible acetylation of lysine residues in histone amino-terminal domains. In AD, however, the roles of these enzymes are controversial. Some recent studies indicate that HDAC inhibitors are neuroprotective by regulating memory and synaptic dysfunctions in cellular and animal models of AD; while on the other hand, increase of histone acetylation have been implicated in AD pathology. In this review, we focus on the recent advances on the roles of histone acetylation covalent enzymes in AD and discuss how targeting these enzymes can ultimately lead to therapeutic approaches for treating AD.
Collapse
Affiliation(s)
- Xi Lu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| | - Li Wang
- Department of Biotherapy and Hemato-oncology, Chongqing Cancer Institute , Chongqing , China
| | - Caijia Yu
- The Commonwealth Medical College , Scranton, PA , USA
| | - Daohai Yu
- Department of Clinical Sciences, Temple Clinical Research Institute, Temple University School of Medicine , Philadelphia, PA , USA
| | - Gang Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University , Chongqing , China
| |
Collapse
|
153
|
Turtle anoxia tolerance: Biochemistry and gene regulation. Biochim Biophys Acta Gen Subj 2015; 1850:1188-96. [DOI: 10.1016/j.bbagen.2015.02.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/01/2015] [Indexed: 12/16/2022]
|
154
|
Sun XJ, Man N, Tan Y, Nimer SD, Wang L. The Role of Histone Acetyltransferases in Normal and Malignant Hematopoiesis. Front Oncol 2015; 5:108. [PMID: 26075180 PMCID: PMC4443728 DOI: 10.3389/fonc.2015.00108] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/25/2015] [Indexed: 12/15/2022] Open
Abstract
Histone, and non-histone, protein acetylation plays an important role in a variety of cellular events, including the normal and abnormal development of blood cells, by changing the epigenetic status of chromatin and regulating non-histone protein function. Histone acetyltransferases (HATs), which are the enzymes responsible for histone and non-histone protein acetylation, contain p300/CBP, MYST, and GNAT family members. HATs are not only protein modifiers and epigenetic factors but also critical regulators of cell development and carcinogenesis. Here, we will review the function of HATs such as p300/CBP, Tip60, MOZ/MORF, and GCN5/PCAF in normal hematopoiesis and the pathogenesis of hematological malignancies. The inhibitors that have been developed to target HATs will also be reviewed here. Understanding the roles of HATs in normal/malignant hematopoiesis will provide the potential therapeutic targets for the hematological malignancies.
Collapse
Affiliation(s)
- Xiao-Jian Sun
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Cell Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Na Man
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Yurong Tan
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Medicine, University of Miami Miller School of Medicine , Miami, FL , USA
| | - Lan Wang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami, FL , USA ; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
155
|
Liu Y, Zhao L, Ma W, Cao X, Chen H, Feng D, Liang J, Yin K, Jiang X. The Blockage of KCa3.1 Channel Inhibited Proliferation, Migration and Promoted Apoptosis of Human Hepatocellular Carcinoma Cells. J Cancer 2015; 6:643-51. [PMID: 26078795 PMCID: PMC4466414 DOI: 10.7150/jca.11913] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/15/2015] [Indexed: 01/11/2023] Open
Abstract
The intermediate conductance calcium-activated potassium channel KCa3.1 plays an important role in regulating cell proliferation and migration. However, the role of KCa3.1 channel in human hepatocellular carcinoma remained unknown. This study was therefore performed to investigate the effects of KCa3.1 potassium channel blocker on the proliferation, apoptosis and migration of human hepatocellular cancer cells HepG2. KCa3.1 mRNA and protein were detected in HepG2. Furthermore, KCa3.1 potassium channel blocker TRAM-34 was capable to inhibit the proliferation and induce the apoptosis of HepG2 cells, which can be partially attenuated by 1-EBIO, an activator of KCa3.1 channel. Moreover, the migration of HepG2 was obviously inhibited by TRAM-34. Consistently, knockdown of KCa3.1 channel using its siRNA was also able to induce apoptosis and suppress proliferation and migration of HepG2. Meanwhile, intracellular ROS level was found augmented in HepG2 treated with TRAM-34. More importantly, p53 protein was found translocation from the cytoplasm into the nuclei of HepG2. Collectively, inhibition of KCa3.1 channel suppressed the growth and migration, and promoted the apoptosis of human hepatocellular carcinoma cells by regulating intracellular ROS level and promoting p53 activation. This data suggests TRAM-34 as a promising anti-tumor drug for liver cancer.
Collapse
Affiliation(s)
- Yu Liu
- 1. Department of Laboratory Medicine, Affiliated Fourth Hospital of Harbin Medical University, Harbin 150081, PR China
| | - Liang Zhao
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Wenya Ma
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xuefeng Cao
- 3. Department of Anesthesiology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei Province, China
| | - Hongyang Chen
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Dan Feng
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Jing Liang
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kun Yin
- 2. Department of Pharmacology, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xiaofeng Jiang
- 1. Department of Laboratory Medicine, Affiliated Fourth Hospital of Harbin Medical University, Harbin 150081, PR China
| |
Collapse
|
156
|
Mayes K, Qiu Z, Alhazmi A, Landry JW. ATP-dependent chromatin remodeling complexes as novel targets for cancer therapy. Adv Cancer Res 2015; 121:183-233. [PMID: 24889532 DOI: 10.1016/b978-0-12-800249-0.00005-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The progression to advanced stage cancer requires changes in many characteristics of a cell. These changes are usually initiated through spontaneous mutation. As a result of these mutations, gene expression is almost invariably altered allowing the cell to acquire tumor-promoting characteristics. These abnormal gene expression patterns are in part enabled by the posttranslational modification and remodeling of nucleosomes in chromatin. These chromatin modifications are established by a functionally diverse family of enzymes including histone and DNA-modifying complexes, histone deposition pathways, and chromatin remodeling complexes. Because the modifications these enzymes deposit are essential for maintaining tumor-promoting gene expression, they have recently attracted much interest as novel therapeutic targets. One class of enzyme that has not generated much interest is the chromatin remodeling complexes. In this review, we will present evidence from the literature that these enzymes have both causal and enabling roles in the transition to advanced stage cancers; as such, they should be seriously considered as high-value therapeutic targets. Previously published strategies for discovering small molecule regulators to these complexes are described. We close with thoughts on future research, the field should perform to further develop this potentially novel class of therapeutic target.
Collapse
Affiliation(s)
- Kimberly Mayes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Zhijun Qiu
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Aiman Alhazmi
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Joseph W Landry
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
157
|
Abstract
Precise regulation of gene expression programs during embryo development requires cooperation between transcriptional factors and histone-modifying enzymes, such as the Gcn5 histone acetyltransferase. Gcn5 functions within a multi-subunit complex, called SAGA, that is recruited to specific genes through interactions with sequence-specific DNA-binding proteins to aid in gene activation. Although the transcriptional programs regulated by SAGA in embryos are not well defined, deletion of either Gcn5 or USP22, the catalytic subunit of a deubiquitinase module in SAGA, leads to early embryonic lethality. Here, we review the known functions of Gcn5, USP22 and associated proteins during development and discuss how these functions might be related to human disease states, including cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Wang
- Program in Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | | |
Collapse
|
158
|
Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Biochemistry 2015; 54:2001-10. [PMID: 25753752 DOI: 10.1021/acs.biochem.5b00044] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The p53 tumor suppressor is a critical mediator of the cellular response to stress. The N-terminal transactivation domain of p53 makes protein interactions that promote its function as a transcription factor. Among those cofactors is the histone acetyltransferase p300, which both stabilizes p53 and promotes local chromatin unwinding. Here, we report the nuclear magnetic resonance solution structure of the Taz2 domain of p300 bound to the second transactivation subdomain of p53. In the complex, p53 forms an α-helix between residues 47 and 55 that interacts with the α1-α2-α3 face of Taz2. Mutational analysis indicated several residues in both p53 and Taz2 that are critical for stabilizing the interaction. Finally, further characterization of the complex by isothermal titration calorimetry revealed that complex formation is pH-dependent and releases a bound chloride ion. This study highlights differences in the structures of complexes formed by the two transactivation subdomains of p53 that may be broadly observed and play critical roles in p53 transcriptional activity.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hanqiao Feng
- ‡Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Stewart R Durell
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Harichandra D Tagad
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sharlyn J Mazur
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Joseph E Tropea
- §Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yawen Bai
- ‡Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ettore Appella
- †Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
159
|
Ubiquitin-specific peptidase 22 overexpression may promote cancer progression and poor prognosis in human gastric carcinoma. Transl Res 2015; 165:407-16. [PMID: 25445209 DOI: 10.1016/j.trsl.2014.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 08/24/2014] [Accepted: 09/09/2014] [Indexed: 11/20/2022]
Abstract
Ubiquitin-specific peptidase 22 (USP22) was recently identified as a new tumor cell marker, and previous studies demonstrated its expression in a variety of tumors and its correlation with tumor progression. Because tumor progression plays an important role in cancer, researchers are paying more attention to the correlation between USP22 expression and metastatic potential, resistance to chemotherapy, and patient prognosis. This study showed that USP22 is highly expressed in gastric cancer tissues, and significant differences in USP22 expression (P < 0.01) were identified between different types of gastric cancer (the highest expression was found in poorly differentiated adenocarcinomas). In addition USP22 expression was found to be correlated with the promotion of cancer evolution, tumor invasion, and lymph node metastasis. The C-myc protein was also shown to have synergistic effects with USP22 in gastric cancer tissue. On the basis of the results, USP22 expression may play an important role in gastric carcinoma tissue, particularly in precancerous lesions during the gastric cancer evolution process.
Collapse
|
160
|
Bae JH, Kim JG, Heo K, Yang K, Kim TO, Yi JM. Identification of radiation-induced aberrant hypomethylation in colon cancer. BMC Genomics 2015; 16:56. [PMID: 25887185 PMCID: PMC4342812 DOI: 10.1186/s12864-015-1229-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/09/2015] [Indexed: 12/22/2022] Open
Abstract
Background Exposure to ionizing radiation (IR) results in the simultaneous activation or downregulation of multiple signaling pathways that play critical roles in cell type-specific control of survival or death. IR is a well-known genotoxic agent and human carcinogen that induces cellular damage through direct and indirect mechanisms. However, its impact on epigenetic mechanisms has not been elucidated, and more specifically, little information is available regarding genome-wide DNA methylation changes in cancer cells after IR exposure. Recently, genome-wide DNA methylation profiling technology using the Illumina HumanMethylation450K platform has emerged that allows us to query >450,000 loci within the genome. This improved technology is capable of identifying genome-wide DNA methylation changes in CpG islands and other CpG island-associated regions. Results In this study, we employed this technology to test the hypothesis that exposure to IR not only induces differential DNA methylation patterns at a genome-wide level, but also results in locus- and gene-specific DNA methylation changes. We screened for differential DNA methylation changes in colorectal cancer cells after IR exposure with 2 and 5 Gy. Twenty-nine genes showed radiation-induced hypomethylation in colon cancer cells, and of those, seven genes showed a corresponding increase in gene expression by reverse transcriptase polymerase chain reaction (RT-PCR). In addition, we performed chromatin immunoprecipitation (ChIP) to confirm that the DNA-methyltransferase 1 (DNMT1) level associated with the promoter regions of these genes correlated with their methylation level and gene expression changes. Finally, we used a gene ontology (GO) database to show that a handful of hypomethylated genes induced by IR are associated with a variety of biological pathways related to cancer. Conclusion We identified alterations in global DNA methylation patterns and hypomethylation at specific cancer-related genes following IR exposure, which suggests that radiation exposure plays a critical role in conferring epigenetic alterations in cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1229-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin-Han Bae
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Joong-Gook Kim
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea. .,Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, 139-709, Korea.
| | - Tae-Oh Kim
- Department of Internal Medicine, Inje University Haeundae Paik hospital, Busan, 612-896, South Korea.
| | - Joo Mi Yi
- Research Center, Dongnam Institute of Radiological & Medical Sciences (DIRAMS), Busan, 619-953, South Korea.
| |
Collapse
|
161
|
Saha T, Kar RK, Sa G. Structural and sequential context of p53: A review of experimental and theoretical evidence. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 117:250-263. [PMID: 25550083 DOI: 10.1016/j.pbiomolbio.2014.12.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/14/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Approximately 27 million people are suffering from cancer that contains either an inactivating missense mutation of TP53 gene or partially abrogated p53 signaling pathway. Concerted action of folded and intrinsically disordered domains accounts for multi-faceted role of p53. The intricacy of dynamic p53 structure is believed to shed light on its cellular activity for developing new cancer therapies. In this review, insights into structural details of p53, diverse single point mutations affecting its core domain, thermodynamic understanding and therapeutic strategies for pharmacological rescue of p53 function has been illustrated. An effort has been made here to bridge the structural and sequential evidence of p53 from experimental to computational studies. First, we focused on the individual domains and the crucial protein-protein or DNA-protein contacts that determine conformation and dynamic behavior of p53. Next, the oncogenic mutations associated with cancer and its contribution to thermodynamic fluctuation has been discussed. Thus the emerging anti-cancer strategies include targeting of destabilized cancer mutants with selective inhibition of its negative regulators. Recent advances in development of small molecule inhibitors and peptides exploiting p53-MDM2 interaction has been included. In a nutshell, this review attempts to describe structural biology of p53 which provide new openings for structure-guided rescue.
Collapse
Affiliation(s)
- Taniya Saha
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Rajiv K Kar
- Division of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
162
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
163
|
Sui D, Xu X, Ye X, Liu M, Mianecki M, Rattanasinchai C, Buehl C, Deng X, Kuo MH. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex. Mol Cell Proteomics 2014; 14:251-62. [PMID: 25385071 DOI: 10.1074/mcp.o114.044412] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research.
Collapse
Affiliation(s)
- Dexin Sui
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xinjing Xu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Xuemei Ye
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Mengyu Liu
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Maxwell Mianecki
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Chotirat Rattanasinchai
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Christopher Buehl
- ¶Cell and Molecular Biology Program, Michigan State University, East Lansing, Michigan 48824
| | - Xiexiong Deng
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Min-Hao Kuo
- From the ‡Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
164
|
Dahlin JL, Chen X, Walters MA, Zhang Z. Histone-modifying enzymes, histone modifications and histone chaperones in nucleosome assembly: Lessons learned from Rtt109 histone acetyltransferases. Crit Rev Biochem Mol Biol 2014; 50:31-53. [PMID: 25365782 DOI: 10.3109/10409238.2014.978975] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
During DNA replication, nucleosomes ahead of replication forks are disassembled to accommodate replication machinery. Following DNA replication, nucleosomes are then reassembled onto replicated DNA using both parental and newly synthesized histones. This process, termed DNA replication-coupled nucleosome assembly (RCNA), is critical for maintaining genome integrity and for the propagation of epigenetic information, dysfunctions of which have been implicated in cancers and aging. In recent years, it has been shown that RCNA is carefully orchestrated by a series of histone modifications, histone chaperones and histone-modifying enzymes. Interestingly, many features of RCNA are also found in processes involving DNA replication-independent nucleosome assembly like histone exchange and gene transcription. In yeast, histone H3 lysine K56 acetylation (H3K56ac) is found in newly synthesized histone H3 and is critical for proper nucleosome assembly and for maintaining genomic stability. The histone acetyltransferase (HAT) regulator of Ty1 transposition 109 (Rtt109) is the sole enzyme responsible for H3K56ac in yeast. Much research has centered on this particular histone modification and histone-modifying enzyme. This Critical Review summarizes much of our current understanding of nucleosome assembly and highlights many important insights learned from studying Rtt109 HATs in fungi. We highlight some seminal features in nucleosome assembly conserved in mammalian systems and describe some of the lingering questions in the field. Further studying fungal and mammalian chromatin assembly may have important public health implications, including deeper understandings of human cancers and aging as well as the pursuit of novel anti-fungal therapies.
Collapse
Affiliation(s)
- Jayme L Dahlin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine , Rochester, MN , USA
| | | | | | | |
Collapse
|
165
|
Tough DF, Lewis HD, Rioja I, Lindon MJ, Prinjha RK. Epigenetic pathway targets for the treatment of disease: accelerating progress in the development of pharmacological tools: IUPHAR Review 11. Br J Pharmacol 2014; 171:4981-5010. [PMID: 25060293 PMCID: PMC4253452 DOI: 10.1111/bph.12848] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 05/22/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
The properties of a cell are determined both genetically by the DNA sequence of its genes and epigenetically through processes that regulate the pattern, timing and magnitude of expression of its genes. While the genetic basis of disease has been a topic of intense study for decades, recent years have seen a dramatic increase in the understanding of epigenetic regulatory mechanisms and a growing appreciation that epigenetic misregulation makes a significant contribution to human disease. Several large protein families have been identified that act in different ways to control the expression of genes through epigenetic mechanisms. Many of these protein families are finally proving tractable for the development of small molecules that modulate their function and represent new target classes for drug discovery. Here, we provide an overview of some of the key epigenetic regulatory proteins and discuss progress towards the development of pharmacological tools for use in research and therapy.
Collapse
Affiliation(s)
- David F Tough
- Immuno-Inflammation Therapy Area, GlaxoSmithKline R&D, Medicines Research Centre, Epinova DPU, Stevenage, UK
| | | | | | | | | |
Collapse
|
166
|
Koh DI, Han D, Ryu H, Choi WI, Jeon BN, Kim MK, Kim Y, Kim JY, Parry L, Clarke AR, Reynolds AB, Hur MW. KAISO, a critical regulator of p53-mediated transcription of CDKN1A and apoptotic genes. Proc Natl Acad Sci U S A 2014; 111:15078-83. [PMID: 25288747 PMCID: PMC4210320 DOI: 10.1073/pnas.1318780111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An unresolved issue in genotoxic stress response is identification of induced regulatory proteins and how these activate tumor suppressor p53 to determine appropriate cell responses. Transcription factor KAISO was previously described to repress transcription following binding to methylated DNA. In this study, we show that KAISO is induced by DNA damage in p53-expressing cells and then interacts with the p53-p300 complex to increase acetylation of p53 K320 and K382 residues, although decreasing K381 acetylation. Moreover, the p53 with this particular acetylation pattern shows increased DNA binding and potently induces cell cycle arrest and apoptosis by activating transcription of CDKN1A (cyclin-dependent kinase inhibitor 1) and various apoptotic genes. Analogously, in Kaiso KO mouse embryonic fibroblast cells, p53-to-promoter binding and up-regulation of p21 and apoptosis gene expression is significantly compromised. KAISO may therefore be a critical regulator of p53-mediated cell cycle arrest and apoptosis in response to various genotoxic stresses in mammalian cells.
Collapse
Affiliation(s)
- Dong-In Koh
- Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Dohyun Han
- Department of Biomedical Sciences and Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hoon Ryu
- VA Boston Healthcare System and Department of Neurology, Boston University School of Medicine, Boston, MA 02130
| | - Won-Il Choi
- Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Min-Kyeong Kim
- Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, SeoDaeMoon-Ku, Seoul 120-752, Korea
| | - Youngsoo Kim
- Department of Biomedical Sciences and Biomedical Engineering, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jin Young Kim
- Mass Spectrometry Research Center, Korea Basic Science Institute, Ochang-eup, Cheongwon-gun, Chungbuk 363-883, Korea
| | - Lee Parry
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3XQ, United Kingdom; and
| | - Alan R Clarke
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3XQ, United Kingdom; and
| | - Albert B Reynolds
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232-2175
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Sciences, Department of Biochemistry and Molecular Biology, Severance Biomedical Research Institute, Yonsei University School of Medicine, SeoDaeMoon-Ku, Seoul 120-752, Korea;
| |
Collapse
|
167
|
An amino terminal phosphorylation motif regulates intranuclear compartmentalization of Olig2 in neural progenitor cells. J Neurosci 2014; 34:8507-18. [PMID: 24948806 DOI: 10.1523/jneurosci.0309-14.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The bHLH transcription factor Olig2 is expressed in cycling neural progenitor cells but also in terminally differentiated, myelinating oligodendrocytes. Sustained expression of Olig2 is counterintuitive because all known functions of the protein in expansion of neural progenitors and specification of oligodendrocyte progenitors are completed with the formation of mature white matter. How are the biological functions of Olig2 suppressed in terminally differentiated oligodendrocytes? In previous studies, we have shown that a triple serine motif in the amino terminus of Olig2 is phosphorylated in cycling neural progenitors but not in their differentiated progeny. We now show that phosphorylation of the triple serine motif regulates intranuclear compartmentalization of murine Olig2. Phosphorylated Olig2 is preferentially localized to a transcriptionally active "open" chromatin compartment together with coregulator proteins essential for regulation of gene expression. Unphosphorylated Olig2, as seen in mature white matter, is localized mainly within a transcriptionally inactive, chromatin fraction characterized by condensed and inaccessible DNA. Of special note is the observation that the p53 tumor suppressor protein is confined to the open chromatin fraction. Proximity ligation assays show that phosphorylation brings Olig2 within 30 nm of p53 within the open chromatin compartment. The data thus shed light on previously noted promitogenic functions of phosphorylated Olig2, which reflect, at least in part, an oppositional relationship with p53 functions.
Collapse
|
168
|
Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell 2014; 25:3081-93. [PMID: 25103245 PMCID: PMC4230596 DOI: 10.1091/mbc.e14-05-0993] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Period 2 forms a trimeric complex with p53 and Mdm2. As a result, p53’s transcriptional activity and stability are modulated in unstressed cells, ensuring that basal levels are present if a p53-mediated response is needed. These data provide evidence of cross-talk between circadian and checkpoint components, adding a level of regulation to the checkpoint. Human Period 2 (hPer2) is a transcriptional regulator at the core of the circadian clock mechanism that is responsible for generating the negative feedback loop that sustains the clock. Its relevance to human disease is underlined by alterations in its function that affect numerous biochemical and physiological processes. When absent, it results in the development of various cancers and an increase in the cell's susceptibility to genotoxic stress. Thus we sought to define a yet-uncharacterized checkpoint node in which circadian components integrate environmental stress signals to the DNA-damage response. We found that hPer2 binds the C-terminal half of human p53 (hp53) and forms a stable trimeric complex with hp53’s negative regulator, Mdm2. We determined that hPer2 binding to hp53 prevents Mdm2 from being ubiquitinated and targeting hp53 by the proteasome. Down-regulation of hPer2 expression directly affects hp53 levels, whereas its overexpression influences both hp53 protein stability and transcription of targeted genes. Overall our findings place hPer2 directly at the heart of the hp53-mediated response by ensuring that basal levels of hp53 are available to precondition the cell when a rapid, hp53-mediated, transcriptional response is needed.
Collapse
Affiliation(s)
- Tetsuya Gotoh
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Marian Vila-Caballer
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carlo S Santos
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jingjing Liu
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Jianhua Yang
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | - Carla V Finkielstein
- Integrated Cellular Responses Laboratory, Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| |
Collapse
|
169
|
Gcn5 and PCAF regulate PPARγ and Prdm16 expression to facilitate brown adipogenesis. Mol Cell Biol 2014; 34:3746-53. [PMID: 25071153 DOI: 10.1128/mcb.00622-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The acetyltransferase Gcn5 is critical for embryogenesis and shows partial functional redundancy with its homolog PCAF. However, the tissue- and cell lineage-specific functions of Gcn5 and PCAF are still not well defined. Here we probe the functions of Gcn5 and PCAF in adipogenesis. We found that the double knockout (DKO) of Gcn5/PCAF inhibits expression of the master adipogenic transcription factor gene PPARγ, thereby preventing adipocyte differentiation. The adipogenesis defects in Gcn5/PCAF DKO cells are rescued by ectopic expression of peroxisome proliferator-activated receptor γ (PPARγ), suggesting Gcn5/PCAF act upstream of PPARγ to facilitate adipogenesis. The requirement of Gcn5/PCAF for PPARγ expression was unexpectedly bypassed by prolonged treatment with an adipogenic inducer, 3-isobutyl-1-methylxanthine (IBMX). However, neither PPARγ ectopic expression nor prolonged IBMX treatment rescued defects in Prdm16 expression in DKO cells, indicating that Gcn5/PCAF are essential for normal Prdm16 expression. Gcn5/PCAF regulate PPARγ and Prdm16 expression at different steps in the transcription process, facilitating RNA polymerase II recruitment to Prdm16 and elongation of PPARγ transcripts. Overall, our study reveals that Gcn5/PCAF facilitate adipogenesis through regulation of PPARγ expression and regulate brown adipogenesis by influencing Prdm16 expression.
Collapse
|
170
|
Abstract
Post-translational modifications provide a fine-tuned control of protein function(s) in the cell. The well-known tumour suppressor p53 is subject to many post-translational modifications, which alter its activity, localization and stability, thus ultimately modulating its response to various forms of genotoxic stress. In this review, we focus on the role of recently discovered lysine-specific modifications of p53, methylation and acetylation in particular, and their effects on p53 activity in damaged cells. We also discuss a possibility of mutual influence of covalent modifications in the p53 and histone proteins located in the vicinity of p53 binding sites in chromatin and propose important ramifications stemming from this hypothesis.
Collapse
|
171
|
Choi JY, Kim JH, Jo SA. Acetylation regulates the stability of glutamate carboxypeptidase II protein in human astrocytes. Biochem Biophys Res Commun 2014; 450:372-7. [DOI: 10.1016/j.bbrc.2014.05.132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/27/2014] [Indexed: 02/02/2023]
|
172
|
Regulation of MDA-MB-231 cell proliferation by GSK-3β involves epigenetic modifications under high glucose conditions. Exp Cell Res 2014; 324:75-83. [DOI: 10.1016/j.yexcr.2014.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/09/2014] [Accepted: 03/25/2014] [Indexed: 11/24/2022]
|
173
|
Adikesavan AK, Karmakar S, Pardo P, Wang L, Liu S, Li W, Smith CL. Activation of p53 transcriptional activity by SMRT: a histone deacetylase 3-independent function of a transcriptional corepressor. Mol Cell Biol 2014; 34:1246-61. [PMID: 24449765 PMCID: PMC3993559 DOI: 10.1128/mcb.01216-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The silencing mediator of retinoic acid and thyroid hormone receptors (SMRT) is an established histone deacetylase 3 (HDAC3)-dependent transcriptional corepressor. Microarray analyses of MCF-7 cells transfected with control or SMRT small interfering RNA revealed SMRT regulation of genes involved in DNA damage responses, and the levels of the DNA damage marker γH2AX as well as poly(ADP-ribose) polymerase cleavage were elevated in SMRT-depleted cells treated with doxorubicin. A number of these genes are established p53 targets. SMRT knockdown decreased the activity of two p53-dependent reporter genes as well as the expression of p53 target genes, such as CDKN1A (which encodes p21). SMRT bound directly to p53 and was recruited to p53 binding sites within the p21 promoter. Depletion of GPS2 and TBL1, components of the SMRT corepressor complex, but not histone deacetylase 3 (HDAC3) decreased p21-luciferase activity. p53 bound to the SMRT deacetylase activation domain (DAD), which mediates HDAC3 binding and activation, and HDAC3 could attenuate p53 binding to the DAD region of SMRT. Moreover, an HDAC3 binding-deficient SMRT DAD mutant coactivated p53 transcriptional activity. Collectively, these data highlight a biological role for SMRT in mediating DNA damage responses and suggest a model where p53 binding to the DAD limits HDAC3 interaction with this coregulator, thereby facilitating SMRT coactivation of p53-dependent gene expression.
Collapse
Affiliation(s)
| | - Sudipan Karmakar
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Patricia Pardo
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liguo Wang
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Shuang Liu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Carolyn L. Smith
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
174
|
Kokkola T, Suuronen T, Molnár F, Määttä J, Salminen A, Jarho EM, Lahtela-Kakkonen M. AROS has a context-dependent effect on SIRT1. FEBS Lett 2014; 588:1523-8. [PMID: 24681097 DOI: 10.1016/j.febslet.2014.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/27/2014] [Accepted: 03/10/2014] [Indexed: 11/25/2022]
Abstract
The modulation of protein deacetylase SIRT1 has a vast therapeutic potential in treatment of several aging-associated diseases. Active regulator of SIRT1 (AROS) is a small endogenous protein which was originally reported to activate SIRT1 through a direct interaction in cancer cells. We show that the interaction between the two proteins is weak and does not alter the activity of SIRT1 in non-cancerous human cells. The results of different in vitro SIRT1 activity assays disclosed AROS as an inhibitor of SIRT1. The functional relationship between AROS and SIRT1 proved to be dependent on the biological context and experimental setting.
Collapse
Affiliation(s)
- Tarja Kokkola
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.
| | - Tiina Suuronen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Ferdinand Molnár
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Juha Määttä
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Antero Salminen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Elina M Jarho
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | | |
Collapse
|
175
|
Zhang JG, Hong DF, Zhang CW, Sun XD, Wang ZF, Shi Y, Liu JW, Shen GL, Zhang YB, Cheng J, Wang CY, Zhao G. Sirtuin 1 facilitates chemoresistance of pancreatic cancer cells by regulating adaptive response to chemotherapy-induced stress. Cancer Sci 2014; 105:445-54. [PMID: 24484175 PMCID: PMC4317803 DOI: 10.1111/cas.12364] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/07/2014] [Accepted: 01/22/2014] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy drugs themselves may act as stressors to induce adaptive responses to promote the chemoresistance of cancer cells. Our previous research showed that sirtuin 1 (SIRT1) was overexpressed in pancreatic cancer patients and deregulation of SIRT1 with RNAi could enhance chemosensitivity. Thus, we hypothesized that SIRT1 might facilitate chemoresistance in pancreatic cancer cells through regulating the adaptive response to chemotherapy-induced stress. In the present study, SIRT1 in PANC-1, BXPC-3, and ASPC-1 cells was upregulated after treatment with gemcitabine. Moreover, the decrease in SIRT1 activity with special inhibitor EX527 had a synergic effect on chemotherapy with gemcitabine in PANC-1 and ASPC-1 cell lines, which significantly promoted apoptosis, senescence, and G0 /G1 cycle arrest. Western blot results also showed that SIRT1, acetylated-p53, FOXO3a, and p21 were upregulated after combined treatment, whereas no obvious change was evident in total p53 protein. To further confirm the role of SIRT1 in clinical chemotherapy, SIRT1 was detected in eight pancreatic cancer tissues acquired by endoscopy ultrasonography guided fine needle aspiration biopsy before and after chemotherapy. Compared to before chemotherapy, SIRT1 was significantly increased after treatment with gemcitabine in six cases. Thus, our results indicated a special role for SIRT1 in the regulation of adaptive response to chemotherapy-induced stress, which is involved in chemoresistance. Moreover, it indicates that blocking SIRT1 activity with targeting drugs might be a novel strategy to reverse the chemoresistance of pancreatic cancer.
Collapse
Affiliation(s)
- Jun-Gang Zhang
- Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China; Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Binding of the histone chaperone ASF1 to the CBP bromodomain promotes histone acetylation. Proc Natl Acad Sci U S A 2014; 111:E1072-81. [PMID: 24616510 DOI: 10.1073/pnas.1319122111] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The multifunctional Creb-binding protein (CBP) protein plays a pivotal role in many critical cellular processes. Here we demonstrate that the bromodomain of CBP binds to histone H3 acetylated on lysine 56 (K56Ac) with higher affinity than to its other monoacetylated binding partners. We show that autoacetylation of CBP is critical for the bromodomain-H3 K56Ac interaction, and we propose that this interaction occurs via autoacetylation-induced conformation changes in CBP. Unexpectedly, the bromodomain promotes acetylation of H3 K56 on free histones. The CBP bromodomain also interacts with the histone chaperone anti-silencing function 1 (ASF1) via a nearby but distinct interface. This interaction is necessary for ASF1 to promote acetylation of H3 K56 by CBP, indicating that the ASF1-bromodomain interaction physically delivers the histones to the histone acetyl transferase domain of CBP. A CBP bromodomain mutation manifested in Rubinstein-Taybi syndrome has compromised binding to both H3 K56Ac and ASF1, suggesting that these interactions are important for the normal function of CBP.
Collapse
|
177
|
Abstract
In this issue of Molecular Cell, Sen et al. (2013) identify HDAC5 as a deacetylase with specificity for the K120 site of p53, a key residue of p53 that undergoes acetylation after DNA damage and regulates target gene selection.
Collapse
Affiliation(s)
- Sam Sulgi Kim
- Department of Biology, York University, Toronto M3J 1P3, Ontario, Canada
| | | |
Collapse
|
178
|
Eom GH, Nam YS, Oh JG, Choe N, Min HK, Yoo EK, Kang G, Nguyen VH, Min JJ, Kim JK, Lee IK, Bassel-Duby R, Olson EN, Park WJ, Kook H. Regulation of acetylation of histone deacetylase 2 by p300/CBP-associated factor/histone deacetylase 5 in the development of cardiac hypertrophy. Circ Res 2014; 114:1133-43. [PMID: 24526703 DOI: 10.1161/circresaha.114.303429] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RATIONALE Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear. OBJECTIVE Recently, we suggested that casein kinase 2α1-dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy. Here we report an alternative post-translational activation mechanism of HDAC2 that involves acetylation of HDAC2 mediated by p300/CBP-associated factor/HDAC5. METHODS AND RESULTS Hdac2 was acetylated in response to hypertrophic stresses in both cardiomyocytes and a mouse model. Acetylation was reduced by a histone acetyltransferase inhibitor but was increased by a nonspecific HDAC inhibitor. The enzymatic activity of Hdac2 was positively correlated with its acetylation status. p300/CBP-associated factor bound to Hdac2 and induced acetylation. The HDAC2 K75 residue was responsible for hypertrophic stress-induced acetylation. The acetylation-resistant Hdac2 K75R showed a significant decrease in phosphorylation on S394, which led to the loss of intrinsic activity. Hdac5, one of class IIa HDACs, directly deacetylated Hdac2. Acetylation of Hdac2 was increased in Hdac5-null mice. When an acetylation-mimicking mutant of Hdac2 was infected into cardiomyocytes, the antihypertrophic effect of either nuclear tethering of Hdac5 with leptomycin B or Hdac5 overexpression was reduced. CONCLUSIONS Taken together, our results suggest a novel mechanism by which the balance of HDAC2 acetylation is regulated by p300/CBP-associated factor and HDAC5 in the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Gwang Hyeon Eom
- From the Department of Pharmacology (G.H.E., J.-K.K., H.K.) and Medical Research Center for Gene Regulation (G.H.E., Y.S.N., N.C., H.-K.M., H.K.), Chonnam National University Medical School, Gwangju, Republic of Korea; Global Research Laboratory and College of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea (J.G.O., W.J.P.); Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Republic of Korea (E.-K.Y., I.-K.L.); Division of Clinical Pharmacology, Chonnam National University Hospital, Gwangju, Republic of Korea (G.K., J.-K.K.); Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea (V.H.N., J.-J.M.); and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX (R.B.-D., E.N.O.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Ikari J, Inamine A, Yamamoto T, Watanabe-Takano H, Yoshida N, Fujimura L, Taniguchi T, Sakamoto A, Hatano M, Tatsumi K, Tokuhisa T, Arima M. Plant homeodomain finger protein 11 promotes class switch recombination to IgE in murine activated B cells. Allergy 2014; 69:223-30. [PMID: 24286306 DOI: 10.1111/all.12328] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2013] [Indexed: 01/20/2023]
Abstract
BACKGROUND Polymorphisms of the Plant homeodomain finger protein 11 (PHF11) are strongly associated with high serum IgE levels and clinical severity of atopic patients. However, the precise mechanism has not been fully elucidated. We investigated the role of Phf11 in class switch recombination (CSR) to IgE by activated B cells. METHODS We generated Phf11 transgenic (Lckd-Phf11-Tg) mice that express the exogenous murine Phf11 in lymphocytes under the control of distal Lck promoter. We examined IL-4-induced CSR to IgE in activated Lckd-Phf11-Tg B cells in vitro. We analyzed production of ovalbumin (OVA)-specific IgE and nose-scratching symptoms in Lckd-Phf11-Tg mice using an OVA-induced allergic rhinitis model. RESULTS The exogenous Phf11 promoted CSR to IgG1 and IgE in activated B cells with an increase in germ line transcript (GLT) γ1 and GLT ε expression. The exogenous Phf11 augmented transcriptional activity of the GLT γ1 and GLT ε promoters through permissive histone modifications and binding of NF-κB and STAT6. Furthermore, the exogenous Phf11 bound to the GLT ε promoter with increased binding of NF-κB. Silencing of the endogenous Phf11 reduced the frequency of CSR to IgE and GLT ε expression, but not to IgG1 or GLT γ1 expression, in activated B cells. In an allergic rhinitis model, Lckd-Phf11-Tg mice showed a significant increase in the production of OVA-specific IgE and the frequency of nose scratching. CONCLUSION Phf11 accelerates CSR to IgE in activated B cells by increasing the transcriptional activity of GLT ε promoter and contributes to the exacerbation of allergic responses. These findings provide a novel therapeutic target for allergic diseases.
Collapse
Affiliation(s)
- J. Ikari
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Respirology (B2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - A. Inamine
- Department of Otorhinolaryngology (J2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Yamamoto
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - H. Watanabe-Takano
- Department of Biomedical Science (M14); Graduate School of Medicine; Chiba University; Chiba Japan
| | - N. Yoshida
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - L. Fujimura
- Biomedical Research Center; Chiba University; Chiba Japan
| | - T. Taniguchi
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - A. Sakamoto
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - M. Hatano
- Department of Biomedical Science (M14); Graduate School of Medicine; Chiba University; Chiba Japan
- Biomedical Research Center; Chiba University; Chiba Japan
| | - K. Tatsumi
- Department of Respirology (B2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - T. Tokuhisa
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| | - M. Arima
- Department of Developmental Genetics (H2); Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
180
|
Nakajima T, Aratani S, Nakazawa M, Hirose T, Fujita H, Nishioka K. Implications of transcriptional coactivator CREB binding protein complexes in rheumatoid arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-003-0258-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
181
|
Vaughan C, Pearsall I, Yeudall A, Deb SP, Deb S. p53: its mutations and their impact on transcription. Subcell Biochem 2014; 85:71-90. [PMID: 25201189 DOI: 10.1007/978-94-017-9211-0_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
p53 is a tumor suppressor protein whose key function is to maintain the integrity of the cell. Mutations in p53 have been found in up to 50 % of all human cancers and cause an increase in oncogenic phenotypes such as proliferation and tumorigenicity. Both wild-type and mutant p53 have been shown to transactivate their target genes, either through directly binding to DNA, or indirectly through protein-protein interactions. This review discusses possible mechanisms behind both wild-type and mutant p53-mediated transactivation and touches on the concept of addiction to mutant p53 of cancer cells and how that may be used for future therapies.
Collapse
Affiliation(s)
- Catherine Vaughan
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA, 23298, USA
| | | | | | | | | |
Collapse
|
182
|
Ono W, Hayashi Y, Yokoyama W, Kuroda T, Kishimoto H, Ito I, Kimura K, Akaogi K, Waku T, Yanagisawa J. The nucleolar protein Myb-binding protein 1A (MYBBP1A) enhances p53 tetramerization and acetylation in response to nucleolar disruption. J Biol Chem 2013; 289:4928-40. [PMID: 24375404 DOI: 10.1074/jbc.m113.474049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Tetramerization of p53 is crucial to exert its biological activity, and nucleolar disruption is sufficient to activate p53. We previously demonstrated that nucleolar stress induces translocation of the nucleolar protein MYBBP1A from the nucleolus to the nucleoplasm and enhances p53 activity. However, whether and how MYBBP1A regulates p53 tetramerization in response to nucleolar stress remain unclear. In this study, we demonstrated that MYBBP1A enhances p53 tetramerization, followed by acetylation under nucleolar stress. We found that MYBBP1A has two regions that directly bind to lysine residues of the p53 C-terminal regulatory domain. MYBBP1A formed a self-assembled complex that provided a molecular platform for p53 tetramerization and enhanced p300-mediated acetylation of the p53 tetramer. Moreover, our results show that MYBBP1A functions to enhance p53 tetramerization that is necessary for p53 activation, followed by cell death with actinomycin D treatment. Thus, we suggest that MYBBP1A plays a pivotal role in the cellular stress response.
Collapse
Affiliation(s)
- Wakana Ono
- From the Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Chung HH, Sze SK, Tay ASL, Lin VCL. Acetylation at lysine 183 of progesterone receptor by p300 accelerates DNA binding kinetics and transactivation of direct target genes. J Biol Chem 2013; 289:2180-94. [PMID: 24302725 DOI: 10.1074/jbc.m113.517896] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The identification of lysine acetylation of steroid hormone receptors has previously been based on the presence of consensus motif (K/R)XKK. This study reports the discovery by mass spectrometry of a novel progesterone receptor acetylation site at Lys-183 that is not in the consensus motif. In vivo acetylation and mutagenesis experiments revealed that Lys-183 is a primary site of progesterone receptor (PR) acetylation. Lys-183 acetylation is enhanced by p300 overexpression and abrogated by p300 gene silencing, suggesting that p300 is the major acetyltransferase for Lys-183 acetylation. Furthermore, p300-mediated Lys-183 acetylation is associated with heightened PR activity. Accordingly, the acetylation-mimicking mutant PRB-K183Q exhibited accelerated DNA binding kinetics and greater activity compared with the wild-type PRB on genes containing progesterone response element. In contrast, Lys-183 acetylation had no influence on PR tethering effect on the nuclear factor κ-light chain enhancer of activated B cells (NFκB). Additionally, increases of Lys-183 acetylation by p300 overexpression or inhibition of deacetylation resulted in increases of Ser-294 phosphorylation levels. In conclusion, PR acetylation at Lys-183 by p300 potentiates PR activity through accelerated binding of its direct target genes without affecting PR tethering on other transcription factors. The effect may be mediated by enhancing Ser-294 phosphorylation.
Collapse
Affiliation(s)
- Hwa Hwa Chung
- From the School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | |
Collapse
|
184
|
Khan DH, Gonzalez C, Cooper C, Sun JM, Chen HY, Healy S, Xu W, Smith KT, Workman JL, Leygue E, Davie JR. RNA-dependent dynamic histone acetylation regulates MCL1 alternative splicing. Nucleic Acids Res 2013; 42:1656-70. [PMID: 24234443 PMCID: PMC3919583 DOI: 10.1093/nar/gkt1134] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Histone deacetylases (HDACs) and lysine acetyltransferases (KATs) catalyze dynamic histone acetylation at regulatory and coding regions of transcribed genes. Highly phosphorylated HDAC2 is recruited within corepressor complexes to regulatory regions, while the nonphosphorylated form is associated with the gene body. In this study, we characterized the nonphosphorylated HDAC2 complexes recruited to the transcribed gene body and explored the function of HDAC-complex-mediated dynamic histone acetylation. HDAC1 and 2 were coimmunoprecipitated with several splicing factors, including serine/arginine-rich splicing factor 1 (SRSF1) which has roles in alternative splicing. The co-chromatin immunoprecipitation of HDAC1/2 and SRSF1 to the gene body was RNA-dependent. Inhibition of HDAC activity and knockdown of HDAC1, HDAC2 or SRSF1 showed that these proteins were involved in alternative splicing of MCL1. HDAC1/2 and KAT2B were associated with nascent pre-mRNA in general and with MCL1 pre-mRNA specifically. Inhibition of HDAC activity increased the occupancy of KAT2B and acetylation of H3 and H4 of the H3K4 methylated alternative MCL1 exon 2 nucleosome. Thus, nonphosphorylated HDAC1/2 is recruited to pre-mRNA by splicing factors to act at the RNA level with KAT2B and other KATs to catalyze dynamic histone acetylation of the MCL1 alternative exon and alter the splicing of MCL1 pre-mRNA.
Collapse
Affiliation(s)
- Dilshad H Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, Manitoba, R3E 3P4, Canada, Department of Biochemistry and Medical Genetics, University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, Manitoba, R3E0V9, Canada and Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Hamard PJ, Barthelery N, Hogstad B, Mungamuri SK, Tonnessen CA, Carvajal LA, Senturk E, Gillespie V, Aaronson SA, Merad M, Manfredi JJ. The C terminus of p53 regulates gene expression by multiple mechanisms in a target- and tissue-specific manner in vivo. Genes Dev 2013; 27:1868-85. [PMID: 24013501 PMCID: PMC3778241 DOI: 10.1101/gad.224386.113] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The C terminus of the tumor suppressor p53 is subjected to multiple post-translational modifications, suggesting that differing sets of modifications determine distinct cellular outcomes. Hamard et al. address this question by generating a Trp53 mutant mouse that constitutively expresses truncated p53. Intriguingly, the C terminus acts via three distinct mechanisms to control p53-dependent gene expression depending on the tissue. This study reconciles contradictory reports and delineates how regulation of target gene selectivity by p53 leads to alternate cellular outcomes. The p53 tumor suppressor is a transcription factor that mediates varied cellular responses. The C terminus of p53 is subjected to multiple and diverse post-translational modifications. An attractive hypothesis is that differing sets of combinatorial modifications therein determine distinct cellular outcomes. To address this in vivo, a Trp53ΔCTD/ΔCTD mouse was generated in which the endogenous p53 is targeted and replaced with a truncated mutant lacking the C-terminal 24 amino acids. These Trp53ΔCTD/ΔCTD mice die within 2 wk post-partum with hematopoietic failure and impaired cerebellar development. Intriguingly, the C terminus acts via three distinct mechanisms to control p53-dependent gene expression depending on the tissue. First, in the bone marrow and thymus, the C terminus dampens p53 activity. Increased senescence in the Trp53ΔCTD/ΔCTD bone marrow is accompanied by up-regulation of Cdkn1 (p21). In the thymus, the C-terminal domain negatively regulates p53-dependent gene expression by inhibiting promoter occupancy. Here, the hyperactive p53ΔCTD induces apoptosis via enhanced expression of the proapoptotic Bbc3 (Puma) and Pmaip1 (Noxa). In the liver, a second mechanism prevails, since p53ΔCTD has wild-type DNA binding but impaired gene expression. Thus, the C terminus of p53 is needed in liver cells at a step subsequent to DNA binding. Finally, in the spleen, the C terminus controls p53 protein levels, with the overexpressed p53ΔCTD showing hyperactivity for gene expression. Thus, the C terminus of p53 regulates gene expression via multiple mechanisms depending on the tissue and target, and this leads to specific phenotypic effects in vivo.
Collapse
|
186
|
Stewart HJS, Horne GA, Bastow S, Chevassut TJT. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1. Cancer Med 2013; 2:826-35. [PMID: 24403256 PMCID: PMC3892387 DOI: 10.1002/cam4.146] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 08/17/2013] [Accepted: 09/11/2013] [Indexed: 12/30/2022] Open
Abstract
The bromodomain and extra terminal (BET) family protein bromodomain containing protein 4 (BRD4) is an epigenetic regulator recently identified as a therapeutic target for several hematological cancers, notably mixed lineage leukemia-fusion acute myeloid leukemia (MLL-AML). Here, we show that the BRD4 bromodomain inhibitor JQ1 is highly active against the p53-wild-type Ontario Cancer Institute (OCI)-AML3 cell line which carries mutations in nucleophosmin (NPM1) and DNA methyltransferase 3 (DNMT3A) genes commonly associated with poor prognostic disease. We find that JQ1 causes caspase 3/7-mediated apoptosis and DNA damage response in these cells. In combination studies, we show that histone deacetylase (HDAC) inhibitors, the HDM2 inhibitor Nutlin-3, and the anthracycline daunorubicin all enhance the apoptotic response of JQ1. These compounds all induce activation of p53 suggesting that JQ1 might sensitize AML cells to p53-mediated cell death. In further experiments, we show that BRD4 associates with acetylated p53 but that this association is not inhibited by JQ1 indicating that the protein-protein interaction does not involve bromodomain binding of acetylated lysines. Instead, we propose that JQ1 acts to prevent BRD4-mediated recruitment of p53 to chromatin targets following its activation in OCI-AML3 cells resulting in cell cycle arrest and apoptosis in a c-MYC-independent manner. Our data suggest that BET bromodomain inhibition might enhance current chemotherapy strategies in AML, notably in poor-risk DNMT3A/NPM1-mutated disease.
Collapse
Affiliation(s)
- Helen Jayne Susan Stewart
- Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex, BN1 9PS, U.K; Department of Haematology, Royal Sussex County Hospital, Brighton, East Sussex, BN2 5BE, U.K
| | | | | | | |
Collapse
|
187
|
Cui F, Zhurkin VB. Rotational positioning of nucleosomes facilitates selective binding of p53 to response elements associated with cell cycle arrest. Nucleic Acids Res 2013; 42:836-47. [PMID: 24153113 PMCID: PMC3902933 DOI: 10.1093/nar/gkt943] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The tumor suppressor protein p53 exhibits high affinity to the response elements regulating cell cycle arrest genes (CCA-sites), but relatively low affinity to the sites associated with apoptosis (Apo-sites). This in vivo tendency cannot be explained solely by the p53-DNA binding constants measured in vitro. Since p53 can bind nucleosomal DNA, we sought to understand if the two groups of p53 sites differ in their accessibility when embedded in nucleosomes. To this aim, we analyzed the sequence-dependent bending anisotropy of human genomic DNA containing p53 sites. For the 20 CCA-sites, we calculated rotational positioning patterns predicting that most of the sites are exposed on the nucleosomal surface. This is consistent with experimentally observed positioning of human nucleosomes. Remarkably, the sequence-dependent DNA anisotropy of both the p53 sites and flanking DNA work in concert producing strong positioning signals. By contrast, both the predicted and observed rotational settings of the 38 Apo-sites in nucleosomes suggest that many of these sites are buried inside, thus preventing immediate p53 recognition and delaying gene induction. The distinct chromatin organization of the CCA response elements appears to be one of the key factors facilitating p53-DNA binding and subsequent activation of genes associated with cell cycle arrest.
Collapse
Affiliation(s)
- Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive Rochester, NY 14623, USA and Laboratory of Cell Biology, National Cancer Institute, NIH Bg. 37, Room 3035A, Convent Dr., Bethesda, MD 20892, USA
| | | |
Collapse
|
188
|
Gogna R, Madan E, Khan M, Pati U, Kuppusamy P. p53's choice of myocardial death or survival: Oxygen protects infarct myocardium by recruiting p53 on NOS3 promoter through regulation of p53-Lys(118) acetylation. EMBO Mol Med 2013; 5:1662-83. [PMID: 24096875 PMCID: PMC3840484 DOI: 10.1002/emmm.201202055] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction, an irreversible cardiac tissue damage, involves progressive loss of cardiomyocytes due to p53-mediated apoptosis. Oxygenation is known to promote cardiac survival through activation of NOS3 gene. We hypothesized a dual role for p53, which, depending on oxygenation, can elicit apoptotic death signals or NOS3-mediated survival signals in the infarct heart. p53 exhibited a differential DNA-binding, namely, BAX-p53RE in the infarct heart or NOS3-p53RE in the oxygenated heart, which was regulated by oxygen-induced, post-translational modification of p53. In the infarct heart, p53 was heavily acetylated at Lys118 residue, which was exclusively reversed in the oxygenated heart, apparently regulated by oxygen-dependent expression of TIP60. The inhibition of Lys118 acetylation promoted the generation of NOS3-promoting prosurvival form of p53. Thus, oxygenation switches p53-DNA interaction by regulating p53 core-domain acetylation, promoting a prosurvival transcription activity of p53. Understanding this novel oxygen-p53 survival pathway will open new avenues in cardioprotection molecular therapy.
Collapse
Affiliation(s)
- Rajan Gogna
- Dorothy M. Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
189
|
Gomez D, Kessler K, Michel JB, Vranckx R. Modifications of Chromatin Dynamics Control Smad2 Pathway Activation in Aneurysmal Smooth Muscle Cells. Circ Res 2013; 113:881-90. [DOI: 10.1161/circresaha.113.301989] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rationale
:
The activation of the Smad2 signaling pathway is thought to play an important role in human aneurysmal diseases as described by an important body of research. We previously showed that constitutive Smad2 activation is associated with Smad2 mRNA overexpression in aneurysmal vascular smooth muscle cells (VSMCs), which is dependent on epigenetic regulation of the
SMAD2
promoter involving histone modifications. However, the underlying molecular mechanisms controlling Smad2 overexpression are currently unknown.
Objective
:
The aim of the present study is to understand the mechanisms regulating the constitutive Smad2 overexpression in VSMCs by identification of the histone-modifying enzymes, transcription factors, and cofactors responsible for Smad2 promoter activation in aneurysmal disease.
Methods and Results
:
This study was performed on medial tissue extracts and primary cultures of VSMCs of human thoracic aneurysms (n=17) and normal thoracic aortas (n=10). Here, we demonstrate that the activation of
SMAD2
promoter is driven by the recruitment of a multipartner complex, including the transcription factor p53 and histone acetyltransferases. Remarkably, the transcriptional regulatory network of the
SMAD2
promoter is dramatically altered in human aneurysmal VSMCs in vitro and in situ with a switch from Myc-dependent repression of
SMAD2
in normal vessel to a p53-dependent activation of
SMAD2
in aneurysms. Furthermore, histone acetyltransferases p300 and P300/CBP-associated protein play a major role in
SMAD2
promoter activation by acting on histone acetylation, p53 recruitment, and acetylation.
Conclusions
:
These results provide evidence for a major role of p53 and the complex composed of p300 and p300/CBP-associated protein in Smad2 activation in human aneurysmal VSMCs.
Collapse
Affiliation(s)
- Delphine Gomez
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Ketty Kessler
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Jean-Baptiste Michel
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| | - Roger Vranckx
- From the INSERM, U698, Paris, France (D.G., K.K., J.-B.M., R.V.); and Université Paris Diderot, Sorbonne Paris Cité, Paris, France (D.G., K.K., J.-B.M., R.V.)
| |
Collapse
|
190
|
Li Y, Liu J, McLaughlin N, Bachvarov D, Saifudeen Z, El-Dahr SS. Genome-wide analysis of the p53 gene regulatory network in the developing mouse kidney. Physiol Genomics 2013; 45:948-64. [PMID: 24003036 DOI: 10.1152/physiolgenomics.00113.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite mounting evidence that p53 senses and responds to physiological cues in vivo, existing knowledge regarding p53 function and target genes is largely derived from studies in cancer or stressed cells. Herein we utilize p53 transcriptome and ChIP-Seq (chromatin immunoprecipitation-high throughput sequencing) analyses to identify p53 regulated pathways in the embryonic kidney, an organ that develops via mesenchymal-epithelial interactions. This integrated approach allowed identification of novel genes that are possible direct p53 targets during kidney development. We find the p53-regulated transcriptome in the embryonic kidney is largely composed of genes regulating developmental, morphogenesis, and metabolic pathways. Surprisingly, genes in cell cycle and apoptosis pathways account for <5% of differentially expressed transcripts. Of 7,893 p53-occupied genomic regions (peaks), the vast majority contain consensus p53 binding sites. Interestingly, 78% of p53 peaks in the developing kidney lie within proximal promoters of annotated genes compared with 7% in a representative cancer cell line; 25% of the differentially expressed p53-bound genes are present in nephron progenitors and nascent nephrons, including key transcriptional regulators, components of Fgf, Wnt, Bmp, and Notch pathways, and ciliogenesis genes. The results indicate widespread p53 binding to the genome in vivo and context-dependent differences in the p53 regulon between cancer, stress, and development. To our knowledge, this is the first comprehensive analysis of the p53 transcriptome and cistrome in a developing mammalian organ, substantiating the role of p53 as a bona fide developmental regulator. We conclude p53 targets transcriptional networks regulating nephrogenesis and cellular metabolism during kidney development.
Collapse
Affiliation(s)
- Yuwen Li
- Section of Pediatric Nephrology, Department of Pediatrics, Tulane University Health Sciences Center, New Orleans, Louisiana
| | | | | | | | | | | |
Collapse
|
191
|
Lalioti VS, Vergarajauregui S, Villasante A, Pulido D, Sandoval IV. C6orf89 encodes three distinct HDAC enhancers that function in the nucleolus, the golgi and the midbody. J Cell Physiol 2013; 228:1907-21. [PMID: 23460338 DOI: 10.1002/jcp.24355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/12/2013] [Indexed: 11/06/2022]
Abstract
We report here that C6orf89, which encodes a protein that interacts with bombesin receptor subtype-3 and accelerates cell cycle progression and wound repair in human bronchial epithelial cells (Liu et al., 2011, PLoS ONE 6: e23072), encodes one soluble and two type II membrane proteins that function as histone deacetylases (HDAC) enhancers. Soluble 34/64sp is selectively targeted to the nucleolus and is retained in nucleolar organiser regions (NORs) in mitotic cells. Nucleolar 34/64sp is integrated into the ribosomal gene transcription machinery, colocalises and coimmunoprecipitates with the Pol I transcription factor UBF, and undergoes a dramatic relocalisation to the nucleolus upon the arrest of rDNA transcription, protein synthesis and PI3K/mTORC2 signalling. Membrane 42/116mp localises to the Golgi and the midbody, and its controlled ectopic expression provokes the disruption of the Golgi cisternae and hinders the separation of daughter cells and the completion of mitosis. The latter effect is also produced by the microinjection of an affinity-purified amfion antibody. The identification of C60rf89 as a gene that encodes three distinct proteins with the capacity to enhance the activity of histone deacetylases (HDACs) in the nucleolus, the Golgi and the midbody provides new information regarding the components of the acetylome and their capacity to interact with different functional groups in the cell.
Collapse
Affiliation(s)
- Vasiliki S Lalioti
- Centro de Biología Molecular Severo Ochoa, CSIC, Universidad Autónoma de Madrid, Departamento Biología Celular e Inmunología, Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
192
|
Sareddy GR, Nair BC, Krishnan SK, Gonugunta VK, Zhang QG, Suzuki T, Miyata N, Brenner AJ, Brann DW, Vadlamudi RK. KDM1 is a novel therapeutic target for the treatment of gliomas. Oncotarget 2013; 4:18-28. [PMID: 23248157 PMCID: PMC3702204 DOI: 10.18632/oncotarget.725] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Glioma development is a multistep process, involving alterations in genetic and epigenetic mechanisms. Understanding the mechanisms and enzymes that promote epigenetic changes in gliomas are urgently needed to identify novel therapeutic targets. We examined the role of histone demethylase KDM1 in glioma progression. KDM1 was overexpressed in gliomas and its expression positively correlated with histological malignancy. Knockdown of KDM1 expression or its pharmacological inhibition using pargyline or NCL-1 significantly reduced the proliferation of glioma cells. Inhibition of KDM1 promoted up regulation of the p53 target genes p21 and PUMA. Patient-derived primary GBM cells expressed high levels of KDM1 and pharmacological inhibition of KDM1 decreased their proliferation. Further, KDM1 inhibition reduced the expression of stemness markers CD133 and nestin in GBM cells. Mouse xenograft assays revealed that inhibition of KDM1 significantly reduced glioma xenograft tumor growth. Inhibition of KDM1 increased levels of H3K4-me2 and H3K9-Ac histone modifications, reduced H3K9-me2 modification and promoted expression of p53 target genes (p21 and PUMA), leading to apoptosis of glioma xenograft tumors. Our results suggest that KDM1 is overexpressed in gliomas and could be a potential therapeutic target for the treatment of gliomas.
Collapse
Affiliation(s)
- Gangadhara R Sareddy
- The Department of Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Stanley FKT, Moore S, Goodarzi AA. CHD chromatin remodelling enzymes and the DNA damage response. Mutat Res 2013; 750:31-44. [PMID: 23954449 DOI: 10.1016/j.mrfmmm.2013.07.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
The protein and DNA complex known as chromatin is a dynamic structure, adapting to alter the spatial arrangement of genetic information within the nucleus to meet the ever changing demands of life. Following decades of research, a dizzying array of regulatory factors is now known to control the architecture of chromatin at nearly every level. Amongst these, ATP-dependent chromatin remodelling enzymes play a key role, required for the establishment, maintenance and re-organization of chromatin through their ability to adjust the contact points between DNA and histones, the spacing between individual nucleosomes and the over-arching chromatin superstructure. Utilizing energy from ATP hydrolysis, these enzymes serve as the gatekeepers of genomic access and are essential for transcriptional regulation, DNA replication and cell division. In recent years, a vital role in DNA Double Strand Break (DSB) repair has emerged, particularly within complex chromatin environments such as heterochromatin, or regions undergoing energetic transactions such as transcription or DNA replication. Here, we will provide an overview of what is understood about ATP-dependent chromatin remodelling enzymes in the context of the DNA damage response. We will first touch upon all four major chromatin remodelling enzyme families and then focus chiefly on the nine members of the Chromodomain, Helicase, DNA-binding (CHD) family, particularly CHD3, CHD4, CHD5 and CHD6. These four proteins have established and emerging roles in DNA repair, the oxidative stress response, the maintenance of genomic stability and/or cancer prevention.
Collapse
Affiliation(s)
- Fintan K T Stanley
- Southern Alberta Cancer Research Institute, Department of Biochemistry and Molecular Biology and Department of Oncology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
194
|
Functional characterisation of p53 mutants identified in breast cancers with suboptimal responses to anthracyclines or mitomycin. Biochim Biophys Acta Gen Subj 2013; 1830:2790-7. [PMID: 23246812 DOI: 10.1016/j.bbagen.2012.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/08/2012] [Accepted: 12/01/2012] [Indexed: 11/22/2022]
Abstract
BACKGROUND Approximately 4300 different TP53 mutations have been reported in human cancers. TP53 mutations, in particular those affecting the L2/L3 domains, are associated with resistance to anthracycline or mitomycin treatment in breast cancer patients. While many mutations have been characterised functionally, novel TP53 mutations are continuously reported. Here, we characterise 10 p53 protein variants encoded by mutated TP53 (5 within and 5 outside L2/L3) detected in locally advanced or metastatic breast cancers. Each tumour was previously characterised for response to therapy, allowing comparison between in vivo and in vitro findings. METHODS Mutated p53 variants were analysed for their ability to oligomerise with the wild-type protein and their subcellular localisation by immunoprecipitation and immunofluorescence, respectively. Their ability to induce transcription of target genes was determined by qPCR. Cellular growth rate, apoptosis and senescence were monitored by WST-1, TUNEL and beta-galactosidase assays, respectively. RESULTS Immunoprecipitation assays revealed each mutant protein to retain binding capacity for wild-type p53, thus potentially acting in a dominant negative manner. Even though each p53 variant located predominantly in the nucleus, the percentage of cells with only nuclear p53 localisation varied between 60% and 90%. None of the p53 variants were able to induce target genes to levels similar to wild-type p53, nor where they able to reduce cellular growth rate, induce apoptosis or senescence similar to wild-type p53 after anthracycline treatment in vitro. CONCLUSIONS All the 10 variants studied displayed inferior p53 functionality compared to the wild-type protein. GENERAL SIGNIFICANCE Our data add further information characterising the effects of somatic TP53 mutations on p53 protein function and anthracycline resistance in breast cancer.
Collapse
|
195
|
Lee J, Lee BK, Gross JM. Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and colobomata. Hum Mol Genet 2013; 22:3568-82. [PMID: 23669349 DOI: 10.1093/hmg/ddt211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mutations in BCOR (Bcl6 corepressor) are found in patients with oculo-facio-cardio-dental (OFCD) syndrome, a congenital disorder affecting visual system development, and loss-of-function studies in zebrafish and Xenopus demonstrate a role for Bcor during normal optic cup development in preventing colobomata. The mechanism whereby BCOR functions during eye development to prevent colobomata is not known, but in other contexts it serves as a transcriptional corepressor that potentiates transcriptional repression by B cell leukemia/lymphoma 6 (BCL6). Here, we have explored the function of the zebrafish ortholog of Bcl6, Bcl6a, during eye development, and our results demonstrate that Bcl6a, like Bcor, is required to prevent colobomata during optic cup formation. Our data demonstrate that Bcl6a acts downstream of Vax1 and Vax2, known regulators of ventral optic cup formation and choroid fissure closure, and that bcl6a is a direct target of Vax2. Together, this regulatory network functions to repress p53 expression and thereby suppress apoptosis in the developing optic cup. Furthermore, our data demonstrate that Bcl6a functions cooperatively with Bcor, Rnf2 and Hdac1 in a common gene regulatory network that acts to repress p53 and prevent colobomata. Together, these data support a model in which p53-dependent apoptosis needs to be tightly regulated for normal optic cup formation and that Bcl6a, Bcor, Rnf2 and Hdac1 activities mediate this regulation.
Collapse
Affiliation(s)
- Jiwoon Lee
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | |
Collapse
|
196
|
Ono W, Akaogi K, Waku T, Kuroda T, Yokoyama W, Hayashi Y, Kimura K, Kishimoto H, Yanagisawa J. Nucleolar protein, Myb-binding protein 1A, specifically binds to nonacetylated p53 and efficiently promotes transcriptional activation. Biochem Biophys Res Commun 2013; 434:659-63. [PMID: 23583237 DOI: 10.1016/j.bbrc.2013.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 04/04/2013] [Indexed: 11/15/2022]
Abstract
Nucleolar dynamics are important for cellular stress response. We previously demonstrated that nucleolar stress induces nucleolar protein Myb-binding protein 1A (MYBBP1A) translocation from the nucleolus to the nucleoplasm and enhances p53 activity. However, the underlying molecular mechanism is understood to a lesser extent. Here we demonstrate that MYBBP1A interacts with lysine residues in the C-terminal regulatory domain region of p53. MYBBP1A specifically interacts with nonacetylated p53 and induces p53 acetylation. We propose that MYBBP1A dissociates from acetylated p53 because MYBBP1A did not interact with acetylated p53 and because MYBBP1A was not recruited to the p53 target promoter. Therefore, once p53 is acetylated, MYBBP1A dissociates from p53 and interacts with nonacetylated p53, which enables another cycle of p53 activation. Based on our observations, this MYBBP1A-p53 binding property can account for efficient p53-activation by MYBBP1A under nucleolar stress. Our results support the idea that MYBBP1A plays catalytic roles in p53 acetylation and activation.
Collapse
Affiliation(s)
- Wakana Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba Science City, Ibaraki 305-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Park SJ, Kim JG, Son TG, Yi JM, Kim ND, Yang K, Heo K. The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia. Biochem Biophys Res Commun 2013; 434:722-7. [PMID: 23583388 DOI: 10.1016/j.bbrc.2013.03.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 11/18/2022]
Abstract
We studied the roles of JMJD1A and its target gene ADM in the growth of hepatocellular carcinomas (HCCs) and breast cancer cells under hypoxic conditions. Hypoxia stimulated HepG2 and Hep3B cell proliferation but had no effect on MDA-MB-231 cell proliferation. Interestingly, the JMJD1A and ADM expressions were enhanced by hypoxia only in HepG2 and Hep3B cells. Our ChIP results showed that hypoxia-induced HepG2 and Hep3B cell proliferation is mediated by JMJD1A upregulation and subsequent decrease in methylation in the ADM promoter region. Furthermore, JMJD1A gene silencing abrogated the hypoxia-induced ADM expression and inhibited HepG2 and Hep3B cell growth. These data suggest that JMJD1A might function as a proliferation regulator in some cancer cell types.
Collapse
Affiliation(s)
- Seong-Joon Park
- Research Center, Dongnam Institute of Radiological and Medical Science (DIRAMS), Busan 619-953, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
198
|
Xu R, Sen N, Paul BD, Snowman AM, Rao F, Vandiver MS, Xu J, Snyder SH. Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. Sci Signal 2013; 6:ra22. [PMID: 23550211 DOI: 10.1126/scisignal.2003405] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The tumor suppressor protein p53 is a critical stress response transcription factor that induces the expression of genes leading to cell cycle arrest, apoptosis, and tumor suppression. We found that mammalian inositol polyphosphate multikinase (IPMK) stimulated p53-mediated transcription by binding to p53 and enhancing its acetylation by the acetyltransferase p300 independently of its inositol phosphate and lipid kinase activities. Genetic or RNA interference (RNAi)-mediated knockdown of IPMK resulted in decreased activation of p53, decreased recruitment of p53 and p300 to target gene promoters, abrogated transcription of p53 target genes, and enhanced cell viability. Additionally, blocking the IPMK-p53 interaction decreased the extent of p53-mediated transcription. These results suggest that IPMK acts as a transcriptional coactivator for p53 and that it is an integral part of the p53 transcriptional complex facilitating cell death.
Collapse
Affiliation(s)
- Risheng Xu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. Histone Deacetylase Inhibition Attenuates Transcriptional Activity of Mineralocorticoid Receptor Through Its Acetylation and Prevents Development of Hypertension. Circ Res 2013; 112:1004-12. [DOI: 10.1161/circresaha.113.301071] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Inhibition of histone deacetylases (HDACs) results in attenuated development of hypertension in deoxycorticosterone acetate–induced hypertensive rats and spontaneously hypertensive rats. However, the molecular mechanism remains elusive.
Objective:
We hypothesized that HDAC inhibition attenuates transcriptional activity of mineralocorticoid receptor (MR) through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Methods and Results:
Expression of MR target genes was measured by quantitative real-time polymerase chain reaction. Recruitment of MR and RNA polymerase II on promoters of target genes was analyzed by chromatin immunoprecipitation assay. Live cell imaging was performed for visualization of nuclear translocation of MR. MR acetylation was determined by Western blot with anti-acetyl-lysine antibody after immunoprecipitation with anti-MR antibody. Transcriptional activity of MR was determined by luciferase assay. For establishment of a hyperaldosteronism animal, Sprague-Dawley rats underwent uninephrectomy and received subcutaneous injection of 40 mg/kg per week of deoxycorticosterone acetate and drinking water containing 1% NaCl. Treatment with a HDAC class I inhibitor resulted in reduced expression of MR target genes in accordance with reduced recruitment of MR and RNA polymerase II on promoters of target genes. HDAC inhibition promoted MR acetylation, leading to decreased transcriptional activity of MR. Knockdown or inhibition of HDAC3 resulted in reduced expression of MR target genes induced by mineralocorticoids.
Conclusions:
These results indicate that HDAC inhibition attenuates transcriptional activity of MR through its acetylation and prevents development of hypertension in deoxycorticosterone acetate–induced hypertensive rats.
Collapse
Affiliation(s)
- Hae-Ahm Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Dong-Youb Lee
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Hyun-Min Cho
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Sang-Yeob Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - Yasumasa Iwasaki
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| | - In Kyeom Kim
- From the Department of Pharmacology (H.-A.L., D.-Y.L., H.-M.C., I.K.), Cardiovascular Research Institute (H.-A.L., I.K.), Cell and Matrix Research Institute (H.-A.L., S.-Y.K., I.K.), and Department of Biochemistry and Cell Biology (S.-Y.K.), Kyungpook National University School of Medicine, Daegu, Republic of Korea; and Department of Endocrinology, Metabolism and Nephrology, Kochi Medical School, Kochi University, Nankoku, Japan (Y.I.)
| |
Collapse
|
200
|
MOZ increases p53 acetylation and premature senescence through its complex formation with PML. Proc Natl Acad Sci U S A 2013; 110:3895-900. [PMID: 23431171 DOI: 10.1073/pnas.1300490110] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Monocytic leukemia zinc finger (MOZ)/KAT6A is a MOZ, Ybf2/Sas3, Sas2, Tip60 (MYST)-type histone acetyltransferase that functions as a coactivator for acute myeloid leukemia 1 protein (AML1)- and Ets family transcription factor PU.1-dependent transcription. We previously reported that MOZ directly interacts with p53 and is essential for p53-dependent selective regulation of p21 expression. We show here that MOZ is an acetyltransferase of p53 at K120 and K382 and colocalizes with p53 in promyelocytic leukemia (PML) nuclear bodies following cellular stress. The MOZ-PML-p53 interaction enhances MOZ-mediated acetylation of p53, and this ternary complex enhances p53-dependent p21 expression. Moreover, we identified an Akt/protein kinase B recognition sequence in the PML-binding domain of MOZ protein. Akt-mediated phosphorylation of MOZ at T369 has a negative effect on complex formation between PML and MOZ. As a result of PML-mediated suppression of Akt, the increased PML-MOZ interaction enhances p21 expression and induces p53-dependent premature senescence upon forced PML expression. Our research demonstrates that MOZ controls p53 acetylation and transcriptional activity via association with PML.
Collapse
|