151
|
Decoding molecular programs in melanoma brain metastases. Nat Commun 2022; 13:7304. [PMID: 36435874 PMCID: PMC9701224 DOI: 10.1038/s41467-022-34899-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/07/2022] [Indexed: 11/28/2022] Open
Abstract
Melanoma brain metastases (MBM) variably respond to therapeutic interventions; thus determining patient's prognosis. However, the mechanisms that govern therapy response are poorly understood. Here, we use a multi-OMICS approach and targeted sequencing (TargetSeq) to unravel the programs that potentially control the development of progressive intracranial disease. Molecularly, the expression of E-cadherin (Ecad) or NGFR, the BRAF mutation state and level of immune cell infiltration subdivides tumors into proliferative/pigmented and invasive/stem-like/therapy-resistant irrespective of the intracranial location. The analysis of MAPK inhibitor-naive and refractory MBM reveals switching from Ecad-associated into NGFR-associated programs during progression. NGFR-associated programs control cell migration and proliferation via downstream transcription factors such as SOX4. Moreover, global methylome profiling uncovers 46 differentially methylated regions that discriminate BRAFmut and wildtype MBM. In summary, we propose that the expression of Ecad and NGFR sub- classifies MBM and suggest that the Ecad-to-NGFR phenotype switch is a rate-limiting process which potentially indicates drug-response and intracranial progression states in melanoma patients.
Collapse
|
152
|
The Analysis of Trends in Survival for Patients with Melanoma Brain Metastases with Introduction of Novel Therapeutic Options before the Era of Combined Immunotherapy-Multicenter Italian-Polish Report. Cancers (Basel) 2022; 14:cancers14235763. [PMID: 36497248 PMCID: PMC9737166 DOI: 10.3390/cancers14235763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Stage IV melanoma patients develop melanoma brain metastases (MBM) in 50% of cases. Their prognosis is improving, and its understanding outside the context of clinical trials is relevant. We have retrospectively analyzed the clinical data, course of treatment, and outcomes of 531 subsequent stage IV melanoma patients with BM treated in five reference Italian and Polish melanoma centers between 2014 and 2021. Patients with MBM after 2017 had a better prognosis, with a significantly improved median of overall survival (OS) after 2017 in the worst mol-GPA prognostic groups (mol-GPA ≤ 2): a median OS >6 months and HR 0.76 vs. those treated before 2017 (CI: 0.60−0.97, p = 0.027). In our prognostic model, mol-GPA was highly predictive for survival, and symptoms without steroid use did not have prognostic significance. Local therapy significantly improved survival regardless of the year of diagnosis (treated before or after 2017), with median survival >12 months. Systemic therapy improved outcomes when it was combined with local therapy. Local surgery was associated with improved OS regardless of the timing related to treatment start (i.e., before or after 30 days from MBM diagnosis). Local and systemic treatment significantly prolong survival for the poorest mol-GPA prognosis. Use of modern treatment modalities is justified in all mol-GPA prognostic groups.
Collapse
|
153
|
Welti M, Dimitriou F, Gutzmer R, Dummer R. Triple Combination of Immune Checkpoint Inhibitors and BRAF/MEK Inhibitors in BRAFV600 Melanoma: Current Status and Future Perspectives. Cancers (Basel) 2022; 14:5489. [PMID: 36428582 PMCID: PMC9688939 DOI: 10.3390/cancers14225489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), namely programmed cell death 1 (PD-1) or cytotoxic t-lymphocyte antigen 4 (CTLA-4) inhibitors, are currently the standard of care for the treatment of advanced melanoma, with robust and durable responses in a subset of patients. For BRAFV600-mutant melanoma, treatment with BRAF and MEK inhibitors has resulted in high objective response rates, but most responses are short-lived. Preclinical data suggest that BRAF and MEK inhibitors result in immunomodulatory changes in the tumor microenvironment; early data in murine models further suggest that these changes could enhance sensitivity to ICIs. Subsequently, the notion of combining the two therapy modalities for a more effective response was further evolved in early phase clinical trials. In this review, we analyzed the results of recent phase 2 and 3 clinical trials investigating the combination of ICIs with targeted therapy in BRAFV600-mutated advanced melanoma. Furthermore, we evaluated the results of recent studies investigating the first-line treatment sequencing of ipilimumab/nivolumab and BRAF/MEK inhibitors in these patients. We discussed the study limitations and interpreted how these recent advances could be incorporated into the treatment landscape of advanced BRAFV600-mutant melanoma.
Collapse
Affiliation(s)
- Michèle Welti
- Faculty of Medicine, University of Zurich (UZH), 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Florentia Dimitriou
- Faculty of Medicine, University of Zurich (UZH), 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Ralf Gutzmer
- Department of Dermatology, Johannes Wesling Medical Center, Ruhr University Bochum, 32423 Minden, Germany
| | - Reinhard Dummer
- Faculty of Medicine, University of Zurich (UZH), 8006 Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| |
Collapse
|
154
|
Caksa S, Baqai U, Aplin AE. The future of targeted kinase inhibitors in melanoma. Pharmacol Ther 2022; 239:108200. [PMID: 35513054 PMCID: PMC10187889 DOI: 10.1016/j.pharmthera.2022.108200] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Melanoma is a cancer of the pigment-producing cells of the body and its incidence is rising. Targeted inhibitors that act against kinases in the MAPK pathway are approved for BRAF-mutant metastatic cutaneous melanoma and increase patients' survival. Response to these therapies is limited by drug resistance and is less durable than with immune checkpoint inhibition. Conversely, rare melanoma subtypes have few therapeutic options for advanced disease and MAPK pathway targeting agents show minimal anti-tumor effects. Nevertheless, there is a future for targeted kinase inhibitors in melanoma: in new applications such as adjuvant or neoadjuvant therapy and in novel combinations with immunotherapies or other targeted therapies. Pre-clinical studies continue to identify tumor dependencies and their corresponding actionable drug targets, paving the way for rational targeted kinase inhibitor combinations as a personalized medicine approach for melanoma.
Collapse
Affiliation(s)
- Signe Caksa
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Usman Baqai
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E Aplin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
155
|
Dummer R, Tawbi H. Symptomatic melanoma CNS metastases in the TRICOTEL study – Authors' reply. Lancet Oncol 2022; 23:e482. [DOI: 10.1016/s1470-2045(22)00647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022]
|
156
|
Karz A, Dimitrova M, Kleffman K, Alvarez-Breckenridge C, Atkins MB, Boire A, Bosenberg M, Brastianos P, Cahill DP, Chen Q, Ferguson S, Forsyth P, Glitza Oliva IC, Goldberg SB, Holmen SL, Knisely JPS, Merlino G, Nguyen DX, Pacold ME, Perez-Guijarro E, Smalley KSM, Tawbi HA, Wen PY, Davies MA, Kluger HM, Mehnert JM, Hernando E. Melanoma central nervous system metastases: An update to approaches, challenges, and opportunities. Pigment Cell Melanoma Res 2022; 35:554-572. [PMID: 35912544 PMCID: PMC10171356 DOI: 10.1111/pcmr.13059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023]
Abstract
Brain metastases are the most common brain malignancy. This review discusses the studies presented at the third annual meeting of the Melanoma Research Foundation in the context of other recent reports on the biology and treatment of melanoma brain metastases (MBM). Although symptomatic MBM patients were historically excluded from immunotherapy trials, efforts from clinicians and patient advocates have resulted in more inclusive and even dedicated clinical trials for MBM patients. The results of checkpoint inhibitor trials were discussed in conversation with current standards of care for MBM patients, including steroids, radiotherapy, and targeted therapy. Advances in the basic scientific understanding of MBM, including the role of astrocytes and metabolic adaptations to the brain microenvironment, are exposing new vulnerabilities which could be exploited for therapeutic purposes. Technical advances including single-cell omics and multiplex imaging are expanding our understanding of the MBM ecosystem and its response to therapy. This unprecedented level of spatial and temporal resolution is expected to dramatically advance the field in the coming years and render novel treatment approaches that might improve MBM patient outcomes.
Collapse
Affiliation(s)
- Alcida Karz
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | - Maya Dimitrova
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Kevin Kleffman
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| | | | - Michael B Atkins
- Georgetown-Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Adrienne Boire
- Human Oncology and Pathogenesis Program, Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Marcus Bosenberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Priscilla Brastianos
- MGH Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Qing Chen
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sherise Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Forsyth
- Department of Neuro-Oncology and Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Isabella C Glitza Oliva
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Sheri L Holmen
- Huntsman Cancer Institute and Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Jonathan P S Knisely
- Meyer Cancer Center and Department of Radiation Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Don X Nguyen
- Department of Pathology, Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Michael E Pacold
- Department of Radiation Oncology, NYU Langone Health and NYU Grossman School of Medicine, New York, New York, USA
| | - Eva Perez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research NCI, NIH, USA
| | - Keiran S M Smalley
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, United States, Boston, Massachusetts, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Harriet M Kluger
- Department of Medicine (Medical Oncology), Yale School of Medicine, New Haven, Connecticut, USA
| | - Janice M Mehnert
- Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA.,Department of Medicine, NYU Grossman School of Medicine, New York, USA
| | - Eva Hernando
- Department of Pathology, NYU Grossman School of Medicine, New York, USA.,Interdisciplinary Melanoma Cooperative Group, Perlmutter Cancer Center, NYU Langone Health, New York, USA
| |
Collapse
|
157
|
Muacevic A, Adler JR, Liu K, Sandhu N, Blomain E, Binkley MS, Gephart MH, Chang SD, Li GH, Reddy SA, Soltys SG, Pollom E. Intracranial Control With Combination BRAF and MEK Inhibitor Therapy in Patients With Metastatic Melanoma. Cureus 2022; 14:e31838. [PMID: 36579260 PMCID: PMC9788920 DOI: 10.7759/cureus.31838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose/Objectives Combination BRAF (vemurafenib, dabrafenib, or encorafenib) plus MEK (trametinib, cobimetinib, or binimetinib) inhibitor therapy is now widely used in the treatment of metastatic melanoma. However, data for intracranial response to these drugs are limited. We aimed to evaluate the intracranial efficacy of BRAF plus MEK inhibitors in patients with BRAF-mutant melanoma with brain metastases (BM) and to determine patterns of failure of these new agents to inform optimal integration of local intracranial therapy. Materials and methods We retrospectively reviewed charts of patients with BRAF-mutant melanoma with metastasis to the brain with at least one untreated brain metastasis at the time of initiation of BRAF plus MEK inhibitors at our institution from 2006 to 2020. We collected per-patient and per-lesion data on demographics, treatment modality, and outcomes. The cumulative incidence of local (LF), distant intracranial (DF), and extracranial failure (EF) were calculated with competing risk analysis with death as a competing risk and censored at the last brain MRI follow-up. LF was calculated on a per-lesion basis while DF and EF were calculated on a per-patient basis. DF was defined as any new intracranial lesions. Overall survival (OS) was analyzed using Kaplan-Meier. Logistic regression was used to identify predictors for LF. Results We identified 10 patients with 63 untreated brain metastases. The median age was 50.5 years. The median sum of the diameters of the five largest untreated brain metastases per patient was 20 mm (interquartile range 15-39 mm) and the median diameter for all measurable lesions was 4 mm. Median follow-up time was 9.0 months (range 1.4 months-46.2 months). Median OS was 13.6 months. The one-year cumulative incidence of LF, DF, and EF was 17.1%, 88.6, and 71.4%, respectively. The median time to LF, DF, and EF from the start of BRAF plus MEK inhibitors was 9.0 months, 4.7 months, and 7.0 months, respectively. The larger size of the BM was associated with LF on univariate analysis (odds ratio 1.13 per 1 mm increase in diameter, 95% confidence interval 1.019 to 1.308, p<0.02). Two (20%) patients eventually received stereotactic radiosurgery, and 2 (20%) received whole-brain radiotherapy for intracranial progression. Conclusion Although patients with BRAF-mutant melanoma with BM had fair local control on BRAF plus MEK inhibitors, the competing risk of death and distant intracranial and extracranial progression was high. Patients with larger brain metastases may benefit from local therapy.
Collapse
|
158
|
Schmitt AM, Larkin J. Symptomatic melanoma CNS metastases in the TRICOTEL study. Lancet Oncol 2022; 23:e481. [DOI: 10.1016/s1470-2045(22)00566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
|
159
|
Eroglu Z, Topcu T, Yu H, Margolin K. How I treat brain metastases of melanoma. ESMO Open 2022; 7:100598. [PMID: 36274439 PMCID: PMC9589018 DOI: 10.1016/j.esmoop.2022.100598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022] Open
Abstract
Brain metastases are common in advanced melanoma and cause death in >50% of patients. Until recently, median survival was only ∼4 months. Improved systemic treatment including immune checkpoint inhibitors and combinations of BRAF/MEK inhibitors, however, has significantly improved intracranial tumor response and survival. In addition, advances in radiation therapy have also improved the intracranial outcomes for advanced melanoma patients with brain metastases (MBM). There has long been concern that systemic treatment of the central nervous metastases would be ineffective due to inability of active agents to cross an intact blood-brain barrier. Recent studies have shown, however, that highly active systemic therapy can have significant benefit in these patients. When determining a patient's treatment, the important factors in predicting the likelihood of benefit including the presence of neurologic symptoms, the number and size of brain metastases, performance status/status of extracranial disease, and BRAF mutation status should all be considered. In this review, we will discuss the challenges and treatment options for patients with advanced melanoma and brain metastases.
Collapse
Affiliation(s)
- Z. Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, USA,Correspondence to: Prof. Zeynep Eroglu, Moffitt Cancer Center, 12902 USF Magnolia Dr, Tampa, FL 33612, USA. Tel: +1-813-745-4673
| | - T.O. Topcu
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, USA
| | - H.M. Yu
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, USA
| | - K.A. Margolin
- Department of Medical Oncology, Providence St. John’s Cancer Institute, Santa Monica, USA
| |
Collapse
|
160
|
Hui C, Qu V, Wang JY, von Eyben R, Chang YC, Chiang PL, Liang CH, Lu JT, Li G, Hayden-Gephart M, Wakelee H, Neal J, Ramchandran K, Das M, Nagpal S, Soltys S, Myall N, Pollom E. Local control of brain metastases with osimertinib alone in patients with EGFR-mutant non-small cell lung cancer. J Neurooncol 2022; 160:233-240. [PMID: 36227422 DOI: 10.1007/s11060-022-04145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/21/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE Although osimertinib has excellent intracranial activity in metastatic non-small cell lung cancer (NSCLC) with exon 19 deletion or L858R EGFR alterations, measures of local control of brain metastases are less well-reported. We describe lesion-level outcomes of brain metastases treated with osimertinib alone. METHODS We retrospectively reviewed patients with EGFR-mutant NSCLC with untreated brain metastasis measuring ≥ 5 mm at the time of initiating osimertinib. Cumulative incidence of local recurrence in brain (LRiB) was calculated with death as a competing risk, and univariable and multivariable analyses were conducted to identify factors associated with LRiB. RESULTS We included 284 brain metastases from 37 patients. Median follow-up was 20.1 months. On initial MRI after starting osimertinib, patient-level response was complete response (CR) in 11 (15%), partial response (PR) in 33 (45%), stable disease (SD) in 18 (25%) and progressive disease (PD) in 11 (15%). The 1-year cumulative incidence of LRiB was 14% (95% CI 9.9-17.9) and was significantly different in patients with a CR (0%), PR (4%), and SD (11%; p = 0.02). Uncontrolled primary tumor (adjusted hazard ratio [aHR] 3.78, 95% CI 1.87-7.66; p < 0.001), increasing number of prior systemic therapies (aHR 2.12, 95% CI 1.49-3.04; p < 0.001), and higher ECOG score (aHR 7.8, 95% CI 1.99-31.81; p = 0.003) were associated with LRiB. CONCLUSIONS Although 1-year cumulative incidence of LRiB is < 4% with a CR or PR, 1-year cumulative incidence of LRiB is over 10% for patients with less than a PR to osimertinib on initial MRI. These patients should be followed closely for need for additional treatment such as stereotactic radiosurgery.
Collapse
Affiliation(s)
- Caressa Hui
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Vera Qu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Jen-Yeu Wang
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | | | | | | | | | - Gordon Li
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | | | - Heather Wakelee
- Department of Medical Oncology, Stanford University, Palo Alto, CA, USA
| | - Joel Neal
- Department of Medical Oncology, Stanford University, Palo Alto, CA, USA
| | | | - Millie Das
- Department of Medical Oncology, Stanford University, Palo Alto, CA, USA
| | - Seema Nagpal
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Scott Soltys
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Nathaniel Myall
- Department of Medical Oncology, Stanford University, Palo Alto, CA, USA. .,Department of Medical Oncology, Stanford University, 300 Pasteur Dr Rm JC007, Stanford, CA, 94305, USA.
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA. .,Department of Radiation Oncology, Stanford University, 875 Blake Wilbur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
161
|
Aizer AA, Lamba N, Ahluwalia MS, Aldape K, Boire A, Brastianos PK, Brown PD, Camidge DR, Chiang VL, Davies MA, Hu LS, Huang RY, Kaufmann T, Kumthekar P, Lam K, Lee EQ, Lin NU, Mehta M, Parsons M, Reardon DA, Sheehan J, Soffietti R, Tawbi H, Weller M, Wen PY. Brain metastases: A Society for Neuro-Oncology (SNO) consensus review on current management and future directions. Neuro Oncol 2022; 24:1613-1646. [PMID: 35762249 PMCID: PMC9527527 DOI: 10.1093/neuonc/noac118] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Brain metastases occur commonly in patients with advanced solid malignancies. Yet, less is known about brain metastases than cancer-related entities of similar incidence. Advances in oncologic care have heightened the importance of intracranial management. Here, in this consensus review supported by the Society for Neuro-Oncology (SNO), we review the landscape of brain metastases with particular attention to management approaches and ongoing efforts with potential to shape future paradigms of care. Each coauthor carried an area of expertise within the field of brain metastases and initially composed, edited, or reviewed their specific subsection of interest. After each subsection was accordingly written, multiple drafts of the manuscript were circulated to the entire list of authors for group discussion and feedback. The hope is that the these consensus guidelines will accelerate progress in the understanding and management of patients with brain metastases, and highlight key areas in need of further exploration that will lead to dedicated trials and other research investigations designed to advance the field.
Collapse
Affiliation(s)
- Ayal A Aizer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nayan Lamba
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Radiation Oncology Program, Boston, Massachusetts, USA
| | | | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Adrienne Boire
- Department of Neurology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Priscilla K Brastianos
- Departments of Neuro-Oncology and Medical Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - D Ross Camidge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Veronica L Chiang
- Departments of Neurosurgery and Radiation Oncology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, Arizona, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | | | - Priya Kumthekar
- Department of Neurology at The Feinberg School of Medicine at Northwestern University and The Malnati Brain Tumor Institute at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Keng Lam
- Department of Neurology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, California, USA
| | - Eudocia Q Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Nancy U Lin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida, USA
| | - Michael Parsons
- Departments of Oncology and Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason Sheehan
- Department of Neurosurgery, University of Virginia, Charlottesville, Virginia, USA
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Patrick Y Wen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
162
|
Wilcox JA, Li MJ, Boire AA. Leptomeningeal Metastases: New Opportunities in the Modern Era. Neurotherapeutics 2022; 19:1782-1798. [PMID: 35790709 PMCID: PMC9723010 DOI: 10.1007/s13311-022-01261-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 02/07/2023] Open
Abstract
Leptomeningeal metastases arise from cancer cell entry into the subarachnoid space, inflicting significant neurologic morbidity and mortality across a wide range of malignancies. The modern era of cancer therapeutics has seen an explosion of molecular-targeting agents and immune-mediated strategies for patients with breast, lung, and melanoma malignancies, with meaningful extracranial disease control and improvement in patient survival. However, the clinical efficacy of these agents in those with leptomeningeal metastases remains understudied, due to the relative rarity of this patient population, the investigational challenges associated with studying this dynamic disease state, and brisk disease pace. Nevertheless, retrospective studies, post hoc analyses, and small prospective trials in the last two decades provide a glimmer of hope for patients with leptomeningeal metastases, suggesting that several cancer-directed strategies are not only active in the intrathecal space but also improve survival against historical odds. The continued development of clinical trials devoted to patients with leptomeningeal metastases is critical to establish robust efficacy outcomes in this patient population, define drug pharmacokinetics in the intrathecal space, and uncover new avenues for treatment in the face of leptomeningeal therapeutic resistance.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Min Jun Li
- Brain Tumor Center, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrienne A Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumor Center, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
163
|
Singh K, Saxena S, Khosla AA, McDermott MW, Kotecha RR, Ahluwalia MS. Update on the Management of Brain Metastasis. Neurotherapeutics 2022; 19:1772-1781. [PMID: 36422836 PMCID: PMC9723062 DOI: 10.1007/s13311-022-01312-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/27/2022] Open
Abstract
Brain metastases occur in almost one-third of adult patients with solid tumor malignancies and lead to considerable patient morbidity and mortality. The rising incidence of brain metastases has been ascribed to the development of better imaging and screening techniques and the formulation of better systemic therapies. Until recently, the multimodal management of brain metastases focused primarily on the utilization of neurosurgical techniques, with varying combinations of whole-brain radiation therapy and stereotactic radio-surgical procedures. Over the past 2 decades, in particular, the increment in knowledge pertaining to molecular genetics and the pathogenesis of brain metastases has led to significant developments in targeted therapies and immunotherapies. This review article highlights the recent updates in the management of brain metastases with an emphasis on novel systemic therapies.
Collapse
Affiliation(s)
- Karanvir Singh
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Shreya Saxena
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Atulya A Khosla
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Michael W McDermott
- Division of Neurosurgery, Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Rupesh R Kotecha
- Division of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Manmeet S Ahluwalia
- Division of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA.
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
164
|
Dutriaux C, Robert C, Grob JJ, Mortier L, Dereure O, Lebbe C, Mansard S, Grange F, Neidhardt EM, Lesimple T, Machet L, Bedane C, Maillard H, Dalac-Rat S, Nardin C, Szenik A, Denden A, Saiag P. An open label, non-randomised, phase IIIb study of trametinib in combination with dabrafenib in patients with unresectable (stage III) or distant metastatic (stage IV) BRAF V600-mutant melanoma: A subgroup analysis of patients with brain metastases. Eur J Cancer 2022; 175:254-262. [PMID: 36170791 DOI: 10.1016/j.ejca.2022.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/06/2022] [Accepted: 07/20/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Despite the poor prognosis associated with melanoma brain metastases (BM), data concerning these patients and their inclusion in clinical trials remains scarce. We report here the efficacy results of a subgroup analysis in patients with BRAFV600-mutant melanoma and BM treated with BRAF and MEK inhibitors dabrafenib (D) and trametinib (T). PATIENTS AND METHODS This phase IIIb single-arm, open-label, multicenter, French study included patients with unresectable stage IIIc or IV BRAFV600-mutant melanoma with or without BM. The present analysis focuses on patients with BM. Response rates were determined clinically and/or radiologically as per standard clinical practice. Progression-free survival (PFS) was estimated using the Kaplan Meier analysis and modelled with multivariate Cox regression model. Risk subgroups were identified using an exponential regression tree analysis. Significance was set at p < 0.05. RESULTS Between March 2015 and November 2016, 856 patients were included and 275 (32%) patients had BM. Median PFS was 5.68 months (95% confidence interval [CI], 5.29-6.87). Significant independent factors associated with shorter PFS were ECOG ≥1, elevated serum lactate dehydrogenase (LDH), ≥3 metastatic sites, and non-naïve status. The binary-split classification and regression tree modelling identified baseline LDH and ECOG status as major prognostic factors. CONCLUSION This is to date the largest, close to real-world, study in advanced BRAFV600-mutant melanoma patients with BM treated with D+T. ECOG >1, ≥3 metastatic sites and elevated LDH were associated with shorter PFS, a finding previously demonstrated only in patients without BM. Further studies are warranted to determine the optimal treatment sequence in this population.
Collapse
Affiliation(s)
- Caroline Dutriaux
- Department of Dermatology, CHU Bordeaux Hôpital St. André, Bordeaux, France.
| | - Caroline Robert
- Department of Dermatology, Institut Gustave Roussy, Villejuif, France
| | - Jean-Jacques Grob
- Department of Dermatology, Aix Marseille University, and APHM University Hospital Timone, Marseille, France
| | - Laurent Mortier
- Department of Dermatology, Hopital Claude Huriez, Lille, France
| | - Olivier Dereure
- Department of Dermatology, CHU Montpellier, Montpellier, France
| | - Céleste Lebbe
- Université de Paris, INSERM U976, Team 1, HIPI, F-75010, Paris, France; AP-HP Hôpital Saint Louis, Service de Dermatologie, F-75010, Paris, France
| | - Sandrine Mansard
- Department of Dermatology, CHU Estaing, Clermont-Ferrand, France
| | | | | | - Thierry Lesimple
- Department of Medical Oncology, Eugene Marquis Center, Rennes, France
| | - Laurent Machet
- Department of Dermatology, CHRU de Tours et Université François Rabelais de Tours, Tours, France
| | | | | | | | - Charlée Nardin
- Dermatology, CHU de Besançon, INSERM U-1098, University of Besançon, Besançon, France
| | - Alexandra Szenik
- Department of Medical Oncology, Novartis Pharma S.A.S., Rueil-Malmaison, France
| | - Amine Denden
- Department of Medical Oncology, Novartis Pharma S.A.S., Rueil-Malmaison, France
| | - Philippe Saiag
- Department of Dermatology, AP-HP, & EA 4340, University UVSQ, University Paris-Saclay, Boulogne-Billancourt, France
| |
Collapse
|
165
|
CCT196969 effectively inhibits growth and survival of melanoma brain metastasis cells. PLoS One 2022; 17:e0273711. [PMID: 36084109 PMCID: PMC9462752 DOI: 10.1371/journal.pone.0273711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Melanomas frequently metastasize to the brain. Despite recent progress in the treatment of melanoma brain metastasis, therapy resistance and relapse of disease remain unsolved challenges. CCT196969 is a SRC family kinase (SFK) and Raf proto-oncogene, serine/threonine kinase (RAF) inhibitor with documented effects in primary melanoma cell lines in vitro and in vivo. Using in vitro cell line assays, we studied the effects of CCT196969 in multiple melanoma brain metastasis cell lines. The drug effectively inhibited proliferation, migration, and survival in all examined cell lines, with viability IC50 doses in the range of 0.18–2.6 μM. Western blot analysis showed decreased expression of p-ERK, p-MEK, p-STAT3 and STAT3 upon CCT196969 treatment. Furthermore, CCT196969 inhibited viability in two B-Raf Proto-Oncogene (BRAF) inhibitor resistant metastatic melanoma cell lines. Further in vivo studies should be performed to determine the treatment potential of CCT196969 in patients with treatment-naïve and resistant melanoma brain metastasis.
Collapse
|
166
|
Gritsch D, Mrugala MM, Marks LA, Wingerchuk DM, O'Carroll CB. In Patients With Melanoma Brain Metastases, Is Combination Immune Checkpoint Inhibition a Safe and Effective First-Line Treatment? A Critically Appraised Topic. Neurologist 2022; 27:290-297. [PMID: 35834790 DOI: 10.1097/nrl.0000000000000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Combined PD-1/PD-L1 and CTLA-4 immune checkpoint inhibition for the has been shown to produce superior results in the treatment of malignant melanoma when compared to monotherapy. However, patients with intracranial disease were excluded from these studies given their poor prognosis. OBJECTIVE The objective of this study was to critically assess current evidence supporting the co-administration of PD-1/PD-L1 and CTLA-4 inhibitors in the treatment of melanoma brain metastases. METHODS The objective was addressed through the development of a critically appraised topic that included a clinical scenario, structured question, literature search strategy, critical appraisal, assessment of results, evidence summary, commentary, and bottom-line conclusions. Participants included consultant and resident neurologists, a medical librarian, clinical epidemiologists, and a content expert in the field of neuro-oncology. RESULTS A recent, open-label, non-comparative randomized phase II trial was selected for critical appraisal. This trial evaluated the efficacy and safety of nivolumab alone or in combination with ipilimumab in 79 adult patients with untreated, asymptomatic melanoma brain metastases. The rates of the primary outcome (intracranial response at ≥12 wk) in the primary endpoint cohort were 46% for cohort A (combination therapy) and 20% for cohort B (nivolumab monotherapy). No treatment related deaths were observed in the study. Grade 4 adverse events occurred in 9% of patients in cohort A and none in cohort B. CONCLUSIONS Co-administration of ipilimumab and nivolumab as first-line therapy is effective in the treatment of asymptomatic melanoma brain metastases, with an acceptable safety profile.
Collapse
|
167
|
Dummer R, Queirolo P, Abajo Guijarro AM, Hu Y, Wang D, de Azevedo SJ, Robert C, Ascierto PA, Chiarion-Sileni V, Pronzato P, Spagnolo F, Mujika Eizmendi K, Liszkay G, de la Cruz Merino L, Tawbi H. Atezolizumab, vemurafenib, and cobimetinib in patients with melanoma with CNS metastases (TRICOTEL): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol 2022; 23:1145-1155. [PMID: 35940183 DOI: 10.1016/s1470-2045(22)00452-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/19/2022]
Abstract
BACKGROUND Targeted therapy and immunotherapy have shown intracranial activity in melanoma with CNS metastases, but there remains an unmet need, particularly for patients with symptomatic CNS metastases. We aimed to evaluate atezolizumab in combination with cobimetinib or vemurafenib plus cobimetinib in patients with melanoma with CNS metastases. METHODS TRICOTEL was a multicentre, open-label, single-arm, phase 2 study done in two cohorts: a BRAFV600 wild-type cohort and a BRAFV600 mutation-positive cohort, recruited at 21 hospitals and oncology centres in Brazil, France, Germany, Hungary, Italy, Spain, and Switzerland. Eligible patients were aged 18 years or older with previously untreated metastatic melanoma, CNS metastases of 5 mm or larger in at least one dimension, and an Eastern Cooperative Oncology Group performance status of 2 or less. Patients in the BRAFV600 wild-type cohort received intravenous atezolizumab (840 mg, days 1 and 15 of each 28-day cycle) plus oral cobimetinib (60 mg once daily, days 1-21). Patients in the BRAFV600 mutation-positive cohort received intravenous atezolizumab (840 mg, days 1 and 15 of each 28-day cycle) plus oral vemurafenib (720 mg twice daily) plus oral cobimetinib (60 mg once daily, days 1-21); atezolizumab was withheld in cycle 1. Treatment was continued until progression, toxicity, or death. The primary outcome was intracranial objective response rate confirmed by assessments at least 4 weeks apart, as assessed by independent review committee (IRC) using modified Response Evaluation Criteria in Solid Tumours version 1.1. Because of early closure of the BRAFV600 wild-type cohort, the primary endpoint of intracranial objective response rate by IRC assessment was not done in this cohort; intracranial objective response rate by investigator assessment was reported instead. Efficacy and safety were analysed in all patients who received at least one dose of study medication. This trial is closed to enrolment and is registered with ClinicalTrials.gov, NCT03625141. FINDINGS Between Dec 13, 2018, and Dec 7, 2020, 65 patients were enrolled in the BRAFV600 mutation-positive cohort; the BRAFV600 wild-type cohort was closed early after enrolment of 15 patients. Median follow-up was 9·7 months (IQR 6·3-15·0) for the BRAFV600 mutation-positive cohort and 6·2 months (3·5-23·0) for the BRAFV600 wild-type cohort. Intracranial objective response rate was 42% (95% CI 29-54) by IRC assessment in the BRAFV600 mutation-positive cohort and 27% (95% CI 8-55) by investigator assessment in the BRAFV600 wild-type cohort. Treatment-related grade 3 or worse adverse events occurred in 41 (68%) of 60 patients who received atezolizumab plus vemurafenib plus cobimetinib in the BRAFV600 mutation-positive cohort, the most common of which were lipase increased (15 [25%] of 60 patients) and blood creatine phosphokinase increased (ten [17%]). Eight (53%) of 15 patients treated with atezolizumab plus cobimetinib in the BRAFV600 wild-type cohort had treatment-related grade 3 or worse adverse events, most commonly anaemia (two [13%]) and dermatitis acneiform (two [13%]). Treatment-related serious adverse events occurred in 14 (23%) of 60 patients in the BRAFV600 mutation-positive cohort and two (13%) of 15 in the BRAFV600 wild-type cohort. One death in the BRAFV600 mutation-positive cohort (limbic encephalitis) was considered to be related to atezolizumab treatment. INTERPRETATION Adding atezolizumab to vemurafenib plus cobimetinib provided promising intracranial activity in patients with BRAFV600-mutated melanoma with CNS metastases. FUNDING F Hoffmann-La Roche.
Collapse
Affiliation(s)
- Reinhard Dummer
- Department of Dermatology, Skin Cancer Center, University Hospital Zurich, Zurich, Switzerland.
| | | | | | - Youyou Hu
- F Hoffman-La Roche, Basel, Switzerland
| | - Dao Wang
- F Hoffman-La Roche, Basel, Switzerland
| | - Sergio Jobim de Azevedo
- Hospital de Clínicas de Porto Alegre, Unidade de Pesquisa Clinica em Oncologia, Porto Alegre, Brazil
| | - Caroline Robert
- Gustave Roussy and Université Paris-Saclay, Villejuif-Paris, France
| | | | | | | | | | | | | | - Luis de la Cruz Merino
- Hospital Universitario Virgen Macarena, Clinical Oncology Department and Medicine Department, University of Seville, Seville, Spain
| | - Hussein Tawbi
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
168
|
Quality of Life and Cognitive Function Evaluations and Interventions for Patients with Brain Metastases in the Radiation Oncology Clinic. Cancers (Basel) 2022; 14:cancers14174301. [PMID: 36077835 PMCID: PMC9454858 DOI: 10.3390/cancers14174301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Brain metastases (BMs) are the most common brain malignancy and are projected to increase in incidence over the coming decades. Historically, brain metastasis studies have focused on improving survival outcomes, but recently, the importance of evaluating health-related quality of life (HRQOL) and cognitive function has gained recognition. Although there is a myriad of validated HRQOL and cognitive assessments available in the radiation oncology clinic, there is an urgent need to identify tools tailored to patients with BMs and to adopt a uniform set of tests that measure HRQOL and cognition. This review presents various assessments for measuring HRQOL and cognitive function, current recommendations to improve standardization, and treatments known to preserve HRQOL and cognitive function. Abstract Brain metastases (BMs) account for a disproportionately high percentage of cancer morbidity and mortality. Historically, studies have focused on improving survival outcomes, and recent radiation oncology clinical trials have incorporated HRQOL and cognitive assessments. We are now equipped with a battery of assessments in the radiation oncology clinic, but there is a lack of consensus regarding how to incorporate them in modern clinical practice. Herein, we present validated assessments for BM patients, current recommendations for future clinical studies, and treatment advances that have improved HRQOL and cognitive outcomes for BM patients.
Collapse
|
169
|
Genetic and Methylation Analysis of CTNNB1 in Benign and Malignant Melanocytic Lesions. Cancers (Basel) 2022; 14:cancers14174066. [PMID: 36077603 PMCID: PMC9454999 DOI: 10.3390/cancers14174066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology and in 1–2% of advanced melanoma. We performed a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations and found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanoma) demonstrated a different genetic profile, grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (55%) and NRAS Q61 (34%). Abstract Melanocytic neoplasms have been genetically characterized in detail during the last decade. Recurrent CTNNB1 exon 3 mutations have been recognized in the distinct group of melanocytic tumors showing deep penetrating nevus-like morphology. In addition, they have been identified in 1–2% of advanced melanoma. Performing a detailed genetic analysis of difficult-to-classify nevi and melanomas with CTNNB1 mutations, we found that benign tumors (nevi) show characteristic morphological, genetic and epigenetic traits, which distinguish them from other nevi and melanoma. Malignant CTNNB1-mutant tumors (melanomas) demonstrated a different genetic profile, instead grouping clearly with other non-CTNNB1 melanomas in methylation assays. To further evaluate the role of CTNNB1 mutations in melanoma, we assessed a large cohort of clinically sequenced melanomas, identifying 38 tumors with CTNNB1 exon 3 mutations, including recurrent S45 (n = 13, 34%), G34 (n = 5, 13%), and S27 (n = 5, 13%) mutations. Locations and histological subtype of CTNNB1-mutated melanoma varied; none were reported as showing deep penetrating nevus-like morphology. The most frequent concurrent activating mutations were BRAF V600 (n = 21, 55%) and NRAS Q61 (n = 13, 34%). In our cohort, four of seven (58%) and one of nine (11%) patients treated with targeted therapy (BRAF and MEK Inhibitors) or immune-checkpoint therapy, respectively, showed disease control (partial response or stable disease). In summary, CTNNB1 mutations are associated with a unique melanocytic tumor type in benign tumors (nevi), which can be applied in a diagnostic setting. In advanced disease, no clear characteristics distinguishing CTNNB1-mutant from other melanomas were observed; however, studies of larger, optimally prospective, cohorts are warranted.
Collapse
|
170
|
Marconcini R, Fava P, Nuzzo A, Manacorda S, Ferrari M, De Rosa F, De Tursi M, Tanda ET, Consoli F, Minisini A, Pimpinelli N, Morgese F, Bersanelli M, Tucci M, Saponara M, Parisi A, Ocelli M, Bazzurri S, Massaro G, Morganti R, Ciardetti I, Stanganelli I. Comparison Between First Line Target Therapy and Immunotherapy in Different Prognostic Categories of BRAF Mutant Metastatic Melanoma Patients: An Italian Melanoma Intergroup Study. Front Oncol 2022; 12:917999. [PMID: 36046043 PMCID: PMC9421680 DOI: 10.3389/fonc.2022.917999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBRAF and MEK inhibitors target therapies (TT) and AntiPD1 immunotherapies (IT) are available first-line treatments for BRAF v600 mutant metastatic melanoma patients. ECOG PS (E), baseline LDH (L), and baseline number of metastatic sites (N) are well-known clinical prognostic markers that identify different prognostic categories of patients. Direct comparison between first-line TT and IT in different prognostic categories could help in first line treatment decision.MethodsThis is a retrospective analysis conducted in 14 Italian centers on about 454 metastatic melanoma patients, divided in 3 groups: group A—patients with E = 0, L within normal range, and N less than 3; group B—patients not included in group A or C; group C—patients with E > 0, L over the normal range, and N more than 3. For each prognostic group, we compared TT and IT in terms of progression free survival (PFS), overall survival (OS), and disease control rate (DCR).ResultsIn group A, results in 140 TT and 36 IT-treated patients were, respectively, median PFS 35.5 vs 11.6 months (HR (95% CI) 1.949 (1.180–3.217) p value 0.009); median OS not reached vs 55 months (HR (95% CI) 1.195 (0.602–2.373) p value 0.610); DCR 99% vs 75% p value <0.001). In group B, results in 196 TT and 38 IT-treated patients were, respectively, median PFS 11.5 vs 5 months (HR 1.535 (1.036–2.275) p value 0.033); median OS 19 vs 20 months (HR 0.886 (0.546–1.437) p value 0.623); DCR 85% vs 47% p value <0.001). In group C, results in 41 TT and 3 IT-treated patients were, respectively, median PFS 6.4 vs 1.8 months (HR 4.860 (1.399–16) p value 0.013); median OS 9 vs 5 months (HR 3.443 (0.991–11.9) p value 0.052); DCR 66% vs 33% p value 0.612).ConclusionsIn good prognosis, group A—TT showed statistically significant better PFS than IT, also in a long-term period, suggesting that TT can be a good first line option for this patient category. It is only in group B that we observed a crossing of the survival curves after the 3rd year of observation in favor of IT. Few patients were enrolled in group C, so few conclusions can be made on it.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- *Correspondence: Riccardo Marconcini,
| | - Paolo Fava
- Struttura Complessa (S.C.) Dermatologia Azienda Ospedaliero Universitaria (AOU) Città della Salute e della Scienza di Torino, Torino, Italy
| | - Amedeo Nuzzo
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Simona Manacorda
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Marco Ferrari
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Francesco De Rosa
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Romagnolo per lo studio dei Tumori “Dino Amadori”, Meldola, Italy
| | - Michele De Tursi
- Dipartimento di Tecnologie Innovative in Medicina & Odontoiatria Sezione di Oncologia Università G. D’Annunzio Chieti-Pescara, Chieti-Pescara, Italy
| | - Enrica Teresa Tanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
- Genetics of Rare Cancers, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, Genoa, Italy
| | - Francesca Consoli
- Unitá Operativa (U.O.) Oncologia Medica, Azienda Socio Sanitaria Territoriale (ASST) Spedali Civili, Brescia, Italy
| | - Alessandro Minisini
- Dipartimento di Oncologia Azienda Sanitaria Universitaria del Friuli Centrale P.le Santa Maria (SM) della Misericordia, Udine, Italy
| | - Nicola Pimpinelli
- Dipartimento Di Scienze Della Salute (DSS), Sezione Dermatologia, Università di Firenze, Melanoma & Skin Cancer Unit Area Vasta Centro, Firenze, Italy
| | - Francesca Morgese
- Clinica Oncologica, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, G.M. Lancisi, G. Salesi di Ancona, Ancona, Italy
| | - Melissa Bersanelli
- Unità Operativa di Oncologia Medica, Azienda Ospedaliero-Universitaria di Parma e Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Parma, Italy
| | - Marco Tucci
- Medical Oncology Unit, Department of interdisciplinary Medicine (DIM), University of Bari ‘Aldo Moro’, Bari, Italy
| | | | | | | | - Serena Bazzurri
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Giulia Massaro
- Unit of Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | | | - Isabella Ciardetti
- Dipartimento Di Scienze Della Salute (DSS), Sezione Dermatologia, Università di Firenze, Melanoma & Skin Cancer Unit Area Vasta Centro, Firenze, Italy
| | - Ignazio Stanganelli
- Skin Cancer Unit, Scientific Institute of Romagna for the Study of Cancer, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto per La Ricerca Scientifica e Tecnologica (IRST), Meldola, Italy
- Department of Dermatology, University of Parma, Parma, Italy
| |
Collapse
|
171
|
Kelly AM, Berry MR, Tasker SZ, McKee SA, Fan TM, Hergenrother PJ. Target-Agnostic P-Glycoprotein Assessment Yields Strategies to Evade Efflux, Leading to a BRAF Inhibitor with Intracranial Efficacy. J Am Chem Soc 2022; 144:12367-12380. [PMID: 35759775 DOI: 10.1021/jacs.2c03944] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The blood-brain barrier (BBB) presents a major hurdle in the development of central nervous system (CNS) active therapeutics, and expression of the P-glycoprotein (P-gp) efflux transporter at the blood-brain interface further impedes BBB penetrance of most small molecules. Designing efflux liabilities out of compounds can be laborious, and there is currently no generalizable approach to directly transform periphery-limited agents to ones active in the CNS. Here, we describe a target-agnostic, prospective assessment of P-gp efflux using diverse compounds. Our results demonstrate that reducing the molecular size or appending a carboxylic acid in many cases enables evasion of P-gp efflux in cell-based experiments and in mice. These strategies were then applied to transform a periphery-limited V600EBRAF inhibitor, dabrafenib, into versions that possess potent and selective anti-cancer activity but now also evade P-gp-mediated efflux. When compared to dabrafenib, the compound developed herein (everafenib) has superior BBB penetrance and superior efficacy in an intracranial mouse model of metastatic melanoma, suggesting it as a lead candidate for the treatment of melanoma metastases to the brain and gliomas with BRAF mutation. More generally, the results described herein suggest the actionability of the trends observed in these target-agnostic efflux studies and provide guidance for the conversion of non-BBB-penetrant drugs into versions that are BBB-penetrant and efficacious.
Collapse
Affiliation(s)
- Aya M Kelly
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew R Berry
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sarah Z Tasker
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Sydney A McKee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Timothy M Fan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Paul J Hergenrother
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
172
|
Gondi V, Bauman G, Bradfield L, Burri SH, Cabrera AR, Cunningham DA, Eaton BR, Hattangadi-Gluth JA, Kim MM, Kotecha R, Kraemer L, Li J, Nagpal S, Rusthoven CG, Suh JH, Tomé WA, Wang TJC, Zimmer AS, Ziu M, Brown PD. Radiation Therapy for Brain Metastases: An ASTRO Clinical Practice Guideline. Pract Radiat Oncol 2022; 12:265-282. [PMID: 35534352 DOI: 10.1016/j.prro.2022.02.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
PURPOSE This guideline provides updated evidence-based recommendations addressing recent developments in the management of patients with brain metastases, including advanced radiation therapy techniques such as stereotactic radiosurgery (SRS) and hippocampal avoidance whole brain radiation therapy and the emergence of systemic therapies with central nervous system activity. METHODS The American Society for Radiation Oncology convened a task force to address 4 key questions focused on the radiotherapeutic management of intact and resected brain metastases from nonhematologic solid tumors. The guideline is based on a systematic review provided by the Agency for Healthcare Research and Quality. Recommendations were created using a predefined consensus-building methodology and system for grading evidence quality and recommendation strength. RESULTS Strong recommendations are made for SRS for patients with limited brain metastases and Eastern Cooperative Oncology Group performance status 0 to 2. Multidisciplinary discussion with neurosurgery is conditionally recommended to consider surgical resection for all tumors causing mass effect and/or that are greater than 4 cm. For patients with symptomatic brain metastases, upfront local therapy is strongly recommended. For patients with asymptomatic brain metastases eligible for central nervous system-active systemic therapy, multidisciplinary and patient-centered decision-making to determine whether local therapy may be safely deferred is conditionally recommended. For patients with resected brain metastases, SRS is strongly recommended to improve local control. For patients with favorable prognosis and brain metastases receiving whole brain radiation therapy, hippocampal avoidance and memantine are strongly recommended. For patients with poor prognosis, early introduction of palliative care for symptom management and caregiver support are strongly recommended. CONCLUSIONS The task force has proposed recommendations to inform best clinical practices on the use of radiation therapy for brain metastases with strong emphasis on multidisciplinary care.
Collapse
Affiliation(s)
- Vinai Gondi
- Department of Radiation Oncology, Northwestern Medicine Cancer Center and Proton Center, Warrenville, Illinois.
| | - Glenn Bauman
- Division of Radiation Oncology, Department of Oncology, London Health Sciences Centre & Western University, London, Ontario, Canada
| | - Lisa Bradfield
- American Society for Radiation Oncology, Arlington, Virginia
| | - Stuart H Burri
- Department of Radiation Oncology, Atrium Health, Charlotte, North Carolina
| | - Alvin R Cabrera
- Department of Radiation Oncology, Kaiser Permanente, Seattle, Washington
| | | | - Bree R Eaton
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | | | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Seema Nagpal
- Division of Neuro-oncology, Department of Neurology, Stanford University, Stanford, California
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, Colorado
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University, New York, New York
| | - Alexandra S Zimmer
- Women's Malignancies Branch, National Institutes of Health/National Cancer Institute, Bethesda, Maryland
| | - Mateo Ziu
- Department of Neurosciences, INOVA Neuroscience and INOVA Schar Cancer Institute, Falls Church, Virginia
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
173
|
Garbe C, Amaral T, Peris K, Hauschild A, Arenberger P, Basset-Seguin N, Bastholt L, Bataille V, Del Marmol V, Dréno B, Fargnoli MC, Forsea AM, Grob JJ, Hoeller C, Kaufmann R, Kelleners-Smeets N, Lallas A, Lebbé C, Lytvynenko B, Malvehy J, Moreno-Ramirez D, Nathan P, Pellacani G, Saiag P, Stratigos AJ, Van Akkooi ACJ, Vieira R, Zalaudek I, Lorigan P. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment - Update 2022. Eur J Cancer 2022; 170:256-284. [PMID: 35623961 DOI: 10.1016/j.ejca.2022.04.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A unique collaboration of multidisciplinary experts from the European Dermatology Forum (EDF), the European Association of Dermato-Oncology (EADO), and the European Organization of Research and Treatment of Cancer (EORTC) was formed to make recommendations on cutaneous melanoma diagnosis and treatment, based on the systematic literature reviews and the experts' experience. Cutaneous melanomas are excised with one to 2-cm safety margins. Sentinel lymph node dissection shall be performed as a staging procedure in patients with tumor thickness ≥1.0 mm or ≥0.8 mm with additional histological risk factors, although there is as yet no clear survival benefit for this approach. Therapeutic decisions in stage III/IV patients should be primarily made by an interdisciplinary oncology team ("tumor board"). Adjuvant therapies can be proposed in stage III/completely resected stage IV patients and are primarily anti-PD-1, independent of mutational status, or alternatively dabrafenib plus trametinib for BRAF mutant patients. In distant metastases (stage IV), either resected or not, systemic treatment is always indicated. For first-line treatment particularly in BRAF wild-type patients, immunotherapy with PD-1 antibodies alone or in combination with CTLA-4 antibodies shall be considered. In stage IV melanoma with a BRAF-V600 E/K mutation, first-line therapy with BRAF/MEK inhibitors can be offered as an alternative to immunotherapy. In patients with primary resistance to immunotherapy and harboring a BRAF-V600 E/K mutation, this therapy shall be offered as second-line therapy. Systemic therapy in stage III/IV melanoma is a rapidly changing landscape, and it is likely that these recommendations may change in the near future.
Collapse
Affiliation(s)
- Claus Garbe
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany.
| | - Teresa Amaral
- Center for Dermatooncology, Department of Dermatology, Eberhard Karls University, Tuebingen, Germany
| | - Ketty Peris
- Institute of Dermatology, Università Cattolica, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli - IRCCS, Rome, Italy
| | - Axel Hauschild
- Department of Dermatology, University Hospital Schleswig-Holstein (UKSH), Campus Kiel, Kiel, Germany
| | - Petr Arenberger
- Department of Dermatovenereology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nicole Basset-Seguin
- Université Paris Cite, AP-HP, Department of Dermatology INSERM U 976 Hôpital, Saint Louis Paris France
| | - Lars Bastholt
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Veronique Bataille
- Twin Research and Genetic Epidemiology Unit, School of Basic & Medical Biosciences, King's College London, London, SE1 7EH, United Kingdom
| | - Veronique Del Marmol
- Department of Dermatology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Brigitte Dréno
- Dermatology Department, CHU Nantes, CIC 1413, CRCINA, University Nantes, Nantes, France
| | - Maria C Fargnoli
- Dermatology, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ana-Maria Forsea
- Dermatology Department, Elias University Hospital, Carol Davila University of Medicine and Pharmacy Bucharest, Romania
| | | | | | - Roland Kaufmann
- Department of Dermatology, Venereology and Allergology, Frankfurt University Hospital, Frankfurt, Germany
| | | | - Aimilios Lallas
- First Department of Dermatology, Aristotle University, Thessaloniki, Greece
| | - Celeste Lebbé
- Université Paris Cite, AP-HP, Department of Dermatology INSERM U 976 Hôpital, Saint Louis Paris France
| | - Bodhan Lytvynenko
- Shupyk National Medical Academy of Postgraduate Education, Kiev, Ukraine
| | - Josep Malvehy
- Melanoma Unit, Department of Dermatology, Hospital Clinic, IDIBAPS, Barcelona, Spain
| | - David Moreno-Ramirez
- Medical-&-Surgical Dermatology Service, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Paul Nathan
- Mount-Vernon Cancer Centre, Northwood United Kingdom
| | | | - Philippe Saiag
- University Department of Dermatology, Université de Versailles-Saint Quentin en Yvelines, APHP, Boulogne, France
| | - Alexander J Stratigos
- First Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece
| | - Alexander C J Van Akkooi
- Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Ricardo Vieira
- Department of Dermatology and Venereology, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Iris Zalaudek
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Paul Lorigan
- The University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
174
|
Safety of combining dabrafenib plus trametinib in elderly BRAF V600 mutation-positive advanced melanoma patients: real-world data analysis of Spanish patients (ELDERLYMEL). Melanoma Res 2022; 32:343-352. [PMID: 35762583 DOI: 10.1097/cmr.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Efficacy and safety of dabrafenib and trametinib in metastatic melanoma have been demonstrated in two-phase III and one-phase I/II clinical trials. However, patients at least 75 years old (y.o.) were largely underrepresented. Additionally, the safety profile of dabrafenib and trametinib based on age is unknown. ELDERLYMEL is a retrospective noninterventional multicenter study, describing the effectiveness and safety of at least 75 y.o. patients compared with less than 75 y.o. patients with advanced BRAF V600-mutated melanoma treated with dabrafenib plus trametinib or dabrafenib monotherapy. A total of 159 patients were included, 130 less than 75 y.o. and 29 at least 75 y.o. Clinical features were similar between the groups, except in the number of comorbidities, number of metastatic sites, Eastern Cooperative Oncology Group (ECOG) performance status, and BRAF V600-mutation type. Five patients per group received dabrafenib monotherapy. There were no differences in adverse events (AEs) rate or grade between the groups. However, AE profiles were different between the groups, being pyrexia infrequent in patients at least 75 y.o. (13.8% vs. 42.3%; P = 0.005). Dabrafenib and trametinib dose intensities were lower in at least 75 y.o. patients (P = 0.018 and P = 0.020), but there were no differences in effectiveness between the groups. Finally, in a multivariate analysis, sex (female) was the only variable independently associated with an increased risk of AE grade ≥3. Data from the ELDERLYMEL study demonstrate that dabrafenib plus trametinib is safe and effective in at least 75 y.o. patients with advanced BRAF V600-mutated melanoma without increasing toxicity. Additionally, we describe a different safety profile depending on age and sex.
Collapse
|
175
|
Liao G, Fu Y, Arooj S, Khan M, Li X, Yan M, Li Z, Yang H, Zheng T, Xu R. Impact of Previous Local Treatment for Brain Metastases on Response to Molecular Targeted Therapy in BRAF-Mutant Melanoma Brain Metastasis: A Systematic Review and Meta-Analysis. Front Oncol 2022; 12:704890. [PMID: 35814449 PMCID: PMC9263360 DOI: 10.3389/fonc.2022.704890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Melanoma brain metastases (BMs) are associated with poor prognosis and are the main cause of mortality in melanoma patients. BRAF inhibitors have shown intracranial activity in both treatment-naïve and previously treated BM patients. We aimed to investigate if there was any difference in response of BRAF inhibitors in these two cohorts. Materials and Methods Electronic database search included PubMed, Medline, and Cochrane library until March 2021 for studies with desired comparative outcomes. Outcomes of interest that were obtained for meta-analysis included intracranial response rate as the primary outcome and survival and safety outcomes as the secondary outcomes. Review Manager version 5.4 was used for data analysis. Results Three studies comprising 410 BRAF-mutated melanoma patients with BMs were included according to eligibility criteria. The comparative cohort included patients with treatment-naïve BMs (TN cohort; n = 255) and those who had progressive disease after receiving local brain treatment for BMs (PT cohort; n = 155). Meta-analysis revealed that BRAF inhibitors (vemurafenib and dabrafenib) and BRAF/MEK inhibitor combination (dabrafenib and trametinib) induced significantly higher intracranial disease control (OR 0.58 [95% CI: 0.34, 0.97], p = 0.04) and a trend toward improved progression-free survival (PFS) (HR 1.22 [95% CI: 0.98, 1.52], p = 0.08) in the PT cohort as compared to the TN cohort. Overall survival was not significantly different between the cohorts (HR 1.16 [95% CI: 0.89, 1.51], p = 0.28). Subgroup analysis revealed that PFS was significantly improved (HR 1.67 [95% CI: 1.06, 2.62], p = 0.03), and a trend toward improved OS (HR 1.62 [95% CI: 0.95, 2.75], p = 0.08) was achieved in patients receiving BRAF/MEK inhibitor combination and patients with BRAFv600K mutation receiving dabrafenib alone. No increase in overall adverse events (AEs), grade 3/4 AEs, and severe adverse events (SAEs) was observed between the cohorts. Conclusions BRAF inhibitors (plus MEK inhibitor) may achieve better intracranial disease stability in BRAF-mutant melanoma patients who have received previous local treatment for BMs. Systematic Review Registration https://www.crd.york.ac.uk/prospero/), identifier CRD42020185984.
Collapse
Affiliation(s)
- Guixiang Liao
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Yuxiang Fu
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Sumbal Arooj
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Biochemistry and Molecular Biology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Khan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ruilian Xu, ; Muhammad Khan,
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Maosheng Yan
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Hongli Yang
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Tao Zheng
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Ruilian Xu
- Department of Radiation Oncology, Shenzhen People’s Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
- *Correspondence: Ruilian Xu, ; Muhammad Khan,
| |
Collapse
|
176
|
Significant survival improvements for patients with melanoma brain metastases: can we reach cure in the current era? J Neurooncol 2022; 158:471-480. [PMID: 35665462 DOI: 10.1007/s11060-022-04036-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE New therapies for melanoma have been associated with increasing survival expectations, as opposed to the dismal outcomes of only a decade ago. Using a prospective registry, we aimed to define current survival goals for melanoma patients with brain metastases (BM), based on state-of-the-art multimodality care. METHODS We reviewed 171 melanoma patients with BM receiving stereotactic radiosurgery (SRS) who were followed with point-of-care data collection between 2012 and 2020. Clinical, molecular and imaging data were collected, including systemic treatment and radiosurgical parameters. RESULTS Mean age was 63 ± 15 years, 39% were female and 29% had BRAF-mutated tumors. Median overall survival after radiosurgery was 15.7 months (95% Confidence Interval 11.4-27.7) and 25 months in patients managed since 2015. Thirty-two patients survived [Formula: see text] 5 years from their initial SRS. BRAF mutation-targeted therapies showed a survival advantage in comparison to chemotherapy (p = 0.009), but not to immunotherapy (p = 0.09). In a multivariable analysis, both immunotherapy and the number of metastases at 1st SRS were predictors of long-term survival ([Formula: see text] 5 years) from initial SRS (p = 0.023 and p = 0.018, respectively). Five patients (16%) of the long-term survivors required no active treatment for [Formula: see text] 5 years. CONCLUSION Long-term survival in patients with melanoma BM is achievable in the current era of SRS combined with immunotherapies. For those alive [Formula: see text] 5 years after first SRS, 16% had been also off systemic or local brain therapy for over 5 years. Given late recurrences of melanoma, caution is warranted, however prolonged survival off active treatment in a subset of our patients raises the potential for cure.
Collapse
|
177
|
Wankhede D, Grover S. Outcomes After Curative Metastasectomy for Patients with Malignant Melanoma: A Systematic Review and Meta-analysis. Ann Surg Oncol 2022; 29:3709-3723. [PMID: 35128602 DOI: 10.1245/s10434-022-11351-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2023]
Abstract
BACKGROUND Evidence on the role of curative metastasectomy (CM) for malignant melanoma (MM) patients is limited, especially in the current era of effective systemic therapy. A systematic review and meta-analysis were performed to ascertain the role of CM compared with incomplete or nonsurgical treatment for patients with MM. METHODS Medline, Embase, and Scopus databases were searched for studies investigating CM for MM until 30 September 2021. The review included studies that compared CM with no-CM and reported a hazard ratio (HR) after multivariate analysis for overall survival. A random-effects model with inverse variance was used to calculate pooled HR. The Newcastle-Ottawa Scale was used to assess the risk of bias. RESULTS For the final analysis, 40 studies including 31,282 patients (CM, 9958; no-CM, 21,324) were considered. Compared with no-CM, CM was associated with a significantly lower risk of death (HR, 0.42; 95% confidence interval [CI], 0.38-0.47; p < 0.00001). Subgroup analysis showed that the outcome was independent of the effective systemic therapy and anatomic location of metastasis. An unfavorable prognosis was associated with advancing age, elevated lactate dehydrogenase (LDH), male gender, prior stage 3 disease, multiple metastases and organ sites, and shorter disease-free interval. CONCLUSION Curative metastasectomy for MM is associated with a lower risk of death than non-curative treatment methods. Selection bias and underlying weakness of studies reduced the strength of evidence in this review. However, CM should be a part of the multimodality treatment of MM whenever technically feasible.
Collapse
Affiliation(s)
- Durgesh Wankhede
- Department of Surgical Oncology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
178
|
Pedersen S, Møller S, Donia M, Persson GF, Svane IM, Ellebaek E. Real-world data on melanoma brain metastases and survival outcome. Melanoma Res 2022; 32:173-182. [PMID: 35256571 DOI: 10.1097/cmr.0000000000000816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Novel medical therapies have revolutionized outcome for patients with melanoma. However, patients with melanoma brain metastases (MBM) still have poor survival. Data are limited as these patients are generally excluded from clinical trials, wherefore real-world data on clinical outcome may support evidence-based treatment choices for patients with MBM. Patients diagnosed with MBM between 2008 and 2020 were included retrospectively. Patient characteristics, treatment, and outcome data were recorded from The Danish Metastatic Melanoma Database, pathology registries, electronic patient files, and radiation plans. Anti-programmed cell death protein 1 antibodies and the combination of BRAF/MEK-inhibitors were introduced in Denmark in 2015, and the cohort was split accordingly for comparison. A total of 527 patients were identified; 148 underwent surgical excision of MBM, 167 had stereotactic radiosurgery (SRS), 270 received whole-brain radiation therapy (WBRT), and 343 received systemic therapies. Median overall survival (mOS) for patients diagnosed with MBM before and after 2015 was 4.4 and 7.6 months, respectively. Patients receiving surgical excision as first choice of treatment had the best mOS of 10.9 months, whereas patients receiving WBRT had the worst outcome (mOS, 3.4 months). Postoperative SRS did not improve survival or local control after surgical excision of brain metastases. Of the 40 patients alive >3 years after diagnosis of MBM, 80% received immunotherapy at some point after diagnosis. Patients with meningeal carcinosis did not benefit from treatment with CPI. Outcome for patients with MBM has significantly improved after 2015, but long-term survivors are rare. Most patients alive >3 years after diagnosis of MBM received immunotherapy.
Collapse
Affiliation(s)
- Sidsel Pedersen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
| | - Søren Møller
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen
| | - Marco Donia
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Gitte Fredberg Persson
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
- Department of Clinical Medicine, Faculty of Health Science, Copenhagen University, Copenhagen, Denmark
| | - Eva Ellebaek
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital, Herlev
- Department of Oncology, Copenhagen University Hospital, Herlev
| |
Collapse
|
179
|
Franklin C, Mohr P, Bluhm L, Grimmelmann I, Gutzmer R, Meier F, Garzarolli M, Weichenthal M, Pfoehler C, Herbst R, Terheyden P, Utikal J, Ulrich J, Debus D, Haferkamp S, Kaatz M, Forschner A, Leiter U, Nashan D, Kreuter A, Sachse M, Welzel J, Heinzerling L, Meiss F, Weishaupt C, Gambichler T, Weyandt G, Dippel E, Schatton K, Celik E, Trommer M, Helfrich I, Roesch A, Zimmer L, Livingstone E, Schadendorf D, Horn S, Ugurel S. Impact of radiotherapy and sequencing of systemic therapy on survival outcomes in melanoma patients with previously untreated brain metastasis: a multicenter DeCOG study on 450 patients from the prospective skin cancer registry ADOREG. J Immunother Cancer 2022; 10:jitc-2022-004509. [PMID: 35688555 PMCID: PMC9189852 DOI: 10.1136/jitc-2022-004509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Despite of various therapeutic strategies, treatment of patients with melanoma brain metastasis (MBM) still is a major challenge. This study aimed at investigating the impact of type and sequence of immune checkpoint blockade (ICB) and targeted therapy (TT), radiotherapy, and surgery on the survival outcome of patients with MBM. METHOD We assessed data of 450 patients collected within the prospective multicenter real-world skin cancer registry ADOREG who were diagnosed with MBM before start of the first non-adjuvant systemic therapy. Study endpoints were progression-free survival (PFS) and overall survival (OS). RESULTS Of 450 MBM patients, 175 (38.9%) received CTLA-4+PD-1 ICB, 161 (35.8%) PD-1 ICB, and 114 (25.3%) BRAF+MEK TT as first-line treatment. Additional to systemic therapy, 67.3% of the patients received radiotherapy (stereotactic radiosurgery (SRS); conventional radiotherapy (CRT)) and 24.4% had surgery of MBM. 199 patients (42.2%) received a second-line systemic therapy. Multivariate Cox regression analysis revealed the application of radiotherapy (HR for SRS: 0.213, 95% CI 0.094 to 0.485, p<0.001; HR for CRT: 0.424, 95% CI 0.210 to 0.855, p=0.016), maximal size of brain metastases (HR for MBM >1 cm: 1.977, 95% CI 1.117 to 3.500, p=0.019), age (HR for age >65 years: 1.802, 95% CI 1.016 to 3.197, p=0.044), and ECOG performance status (HR for ECOG ≥2: HR: 2.615, 95% CI 1.024 to 6.676, p=0.044) as independent prognostic factors of OS on first-line therapy. The type of first-line therapy (ICB vs TT) was not independently prognostic. As second-line therapy BRAF+MEK showed the best survival outcome compared with ICB and other therapies (HR for CTLA-4+PD-1 compared with BRAF+MEK: 13.964, 95% CI 3.6 to 54.4, p<0.001; for PD-1 vs BRAF+MEK: 4.587 95% CI 1.3 to 16.8, p=0.022 for OS). Regarding therapy sequencing, patients treated with ICB as first-line therapy and BRAF+MEK as second-line therapy showed an improved OS (HR for CTLA-4+PD-1 followed by BRAF+MEK: 0.370, 95% CI 0.157 to 0.934, p=0.035; HR for PD-1 followed by BRAF+MEK: 0.290, 95% CI 0.092 to 0.918, p=0.035) compared with patients starting with BRAF+MEK in first-line therapy. There was no significant survival difference when comparing first-line therapy with CTLA-4+PD-1 ICB with PD-1 ICB. CONCLUSIONS In patients with MBM, the addition of radiotherapy resulted in a favorable OS on systemic therapy. In BRAF-mutated MBM patients, ICB as first-line therapy and BRAF+MEK as second-line therapy were associated with a significantly prolonged OS.
Collapse
Affiliation(s)
- Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Peter Mohr
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Leonie Bluhm
- Department of Dermatology, Elbe Kliniken Buxtehude, Buxtehude, Germany
| | - Imke Grimmelmann
- Department of Dermatology, Hannover Medical School, Hannover, Germany
| | - Ralf Gutzmer
- Department of Dermatology, Muehlenkreiskliniken Minden and Ruhr University Bochum, Minden, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany; Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Marlene Garzarolli
- Skin Cancer Center at the University Cancer Centre Dresden and National Center for Tumor Diseases, Dresden, Germany; Department of Dermatology, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Weichenthal
- Department of Dermatology, Skin Cancer Center, Schleswig-Holstein University Hospital, Campus Kiel, Kiel, Germany
| | - Claudia Pfoehler
- Department of Dermatology, Saarland University Medical School, Homburg/Saar, Germany
| | - Rudolf Herbst
- Department of Dermatology, HELIOS Klinikum Erfurt, Erfurt, Germany
| | | | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Heidelberg, Germany
| | - Jens Ulrich
- Department of Dermatology and Skin Cancer Center, Harzklinikum Dorothea Christiane Erxleben, Quedlinburg, Germany
| | - Dirk Debus
- Department of Dermatology, Nuremberg General Hospital, Paracelsus Medical University, Nuremberg, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kaatz
- Department of Dermatology, SRH Wald-Klinikum Gera, Gera, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Ulrike Leiter
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Dorothee Nashan
- Department of Dermatology, Hospital of Dortmund, Dortmund, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Herdecke, Germany
| | - Michael Sachse
- Department of Dermatology, Klinikum Bremerhaven Reinkenheide, Bremerhaven, Germany
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital Augsburg, Augsburg, Germany
| | - Lucie Heinzerling
- Department of Dermatology and Allergology, Ludwig-Maximilian University, München, Germany
| | - Frank Meiss
- Department of Dermatology and Venereology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carsten Weishaupt
- Department of Dermatology, University Hospital of Münster, Münster, Germany
| | - Thilo Gambichler
- Department of Dermatology, Ruhr University Bochum, Bochum, Germany
| | - Gerhard Weyandt
- Department of Dermatology and Allergology, Hospital Bayreuth, Bayreuth, Germany
| | - Edgar Dippel
- Department of Dermatology, Ludwigshafen Medical Center, Ludwigshafen, Germany
| | - Kerstin Schatton
- Department of Dermatology, Heinrich Heine University, Düsseldorf, Germany
| | - Eren Celik
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Maike Trommer
- Department of Radiation Oncology and Cyberknife Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Iris Helfrich
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Elisabeth Livingstone
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| | - Susanne Horn
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany.,Rudolf-Schönheimer-Institute of Biochemistry, Medical Faculty of the University Leipzig, Leipzig, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany and German Cancer Consortium (DKTK) partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
180
|
Advances in the Diagnosis and Treatment of Leptomeningeal Disease. Curr Neurol Neurosci Rep 2022; 22:413-425. [PMID: 35588045 DOI: 10.1007/s11910-022-01198-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Leptomeningeal disease (LMD) is a rare, late complication of systemic cancer and is associated with significant neurological morbidity and high mortality. Here we provide an overview of this condition, summarizing key recent research findings and clinical practice trends in its diagnosis and treatment. We also review current clinical trials for LMD. RECENT FINDINGS Improved molecular diagnostic tools are in development to enable more sensitive detection of LMD, including circulating tumor cells and circulating tumor DNA. The use of targeted and CNS-penetrant therapeutics has shown survival improvements with tyrosine kinase inhibitors, antibody-drug conjugates, and select chemotherapy. However, these studies have primarily been phase I/II and retrospective analyses. There remains a dearth of clinical trials that include LMD patients. The combination of patient-specific molecular information and novel therapeutic approaches holds significant promise for improving outcomes in patients with LMD.
Collapse
|
181
|
Bonfill-Teixidor E, Iurlaro R, Handl C, Wichmann J, Arias A, Cuartas I, Emmenegger J, Romagnani A, Mangano L, Lorber T, Berrera M, Godfried Sie C, Köchl F, Eckmann J, Feddersen R, Kornacker M, Schnetzler G, Cicuéndez M, Cordero E, Topczewski TE, Ferrés-Pijoan A, Gonzalez J, Martínez-Ricarte F, Muñoz-Couselo E, Tabernero J, Bischoff JR, Pettazzoni P, Seoane J. Activity and resistance of a brain-permeable paradox breaker BRAF inhibitor in melanoma brain metastasis. Cancer Res 2022; 82:2552-2564. [PMID: 35584009 DOI: 10.1158/0008-5472.can-21-4152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022]
Abstract
The therapeutic benefit of approved BRAF and MEK inhibitors (BRAFi/MEKi) in patients with brain metastatic BRAF V600E/K-mutated melanoma is limited and transient. Resistance largely occurs through the restoration of MAPK signaling via paradoxical BRAF activation, highlighting the need for more effective therapeutic options. Aiming to address this clinical challenge, we characterized the activity of a potent, brain-penetrant paradox breaker BRAFi (compound 1a, C1a) as first line therapy and following progression upon treatment with approved BRAFi and BRAFi/MEKi therapies. C1a activity was evaluated in vitro and in vivo in melanoma cell lines and patient-derived models of BRAF V600E-mutant melanoma brain metastases following relapse after treatment with BRAFi/MEKi. C1a showed superior efficacy compared to approved BRAFi, both in subcutaneous and brain metastatic models. Importantly, C1a manifested potent and prolonged antitumor activity even in models that progressed on BRAFi/MEKi treatment. Analysis of mechanisms of resistance to C1a revealed MAPK reactivation under drug treatment as the predominant resistance-driving event in both subcutaneous and intracranial tumors. Specifically, BRAF kinase domain duplication was identified as a frequently occurring driver of resistance to C1a. Combination therapies of C1a and anti-PD1 antibody proved to significantly reduce disease recurrence. Collectively, these preclinical studies validate the outstanding antitumor activity of C1a in brain metastasis, support clinical investigation of this agent in patients pretreated with BRAFi/MEKi, unveil genetic drivers of tumor escape from C1a, and identify a combinatorial treatment that achieves long-lasting responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Isabel Cuartas
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | | | | | | | | | | | | | | | - Romi Feddersen
- Roche Pharma Research & Early Development pRED, Roche Innovation Center Munich, Penzberg, Germany., Penzberg, Germany
| | | | | | | | | | - Thomaz E Topczewski
- Hospital Clinic, University of Barcelona and Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Abel Ferrés-Pijoan
- Hospital Clinic, University of Barcelona and Institut d'Investigació Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Gonzalez
- Hospital Clinic, University of Barcelona and Institut d'Investigacio Biomedica August Pi i Sunyer (IDIBAPS), Spain
| | | | - Eva Muñoz-Couselo
- Vall d'Hebron Institute of Oncology, barcelona, barcelona, spain, Spain
| | - Josep Tabernero
- Vall d'Hebron University Hospital. Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | | | | | - Joan Seoane
- Vall d Hebron Institute of Oncology (VHIO), Barcelona, Spain
| |
Collapse
|
182
|
Zoga E, Wolff R, Ackermann H, Meissner M, Rödel C, Tselis N, Chatzikonstantinou G. Factors Associated with Hemorrhage of Melanoma Brain Metastases after Stereotactic Radiosurgery in the Era of Targeted/Immune Checkpoint Inhibitor Therapies. Cancers (Basel) 2022; 14:cancers14102391. [PMID: 35625996 PMCID: PMC9140160 DOI: 10.3390/cancers14102391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023] Open
Abstract
Simple Summary Melanoma brain metastases (MBM) have a high propensity for hemorrhage (HA) after treatment. Our retrospective analysis evaluated factors associated with HA of MBM after robotic stereotactic radiosurgery (SRS) in the era of modern systemic therapy, and to the best of our knowledge, this is the first study focusing on this side effect. A total of 55 patients with 279 MBM were treated. The use of anticoagulants was the only predictive factor, both for radiologically evident HA and HA causing grade 3 toxicity. The interval between the administration of systemic therapy and SRS was also significant with regard to HA causing grade 1 toxicity, but it appears that the combination was safe, at least concerning grade 3 toxicity. We believe that our study is a useful contribution to the current literature, as it provides insights regarding the factors that correlate with HA. Abstract We aimed to evaluate the factors associated with hemorrhage (HA) of melanoma brain metastases (MBM) after Cyberknife stereotactic radiosurgery (SRS) in the modern era of systemic therapy. A total of 55 patients with 279 MBM were treated in 93 fractions. The median age, SRS dose, radiological follow-up, and time to HA were 60.4 years, 20 Gy, 17.7 months, and 10.7 months, respectively. Radiologically evident HA was documented in 47 (16.8%) metastases. Of the 55 patients, 25 (45.4%) suffered an HA. Among those, HA caused grade 3 toxicity in 10 patients (40%) and grade 1 symptoms in 5 patients (20%). Ten patients (40%) with HA experienced no toxicity. Logistic regression revealed the use of anticoagulants and the administration of systemic therapy within 7/15 days from SRS to be predictive for HA. When considering the HA causing grade 3 symptomatology, only the use of anticoagulants was significant, with the delivery of whole brain radiation therapy (WBRT) before the HA narrowly missing statistical significance. Our retrospective analysis showed that the administration of modern systemic therapy within 7/15 days from SRS may contribute to HA of MBM, though it appears safe, at least concerning grade 3 toxicity. The use of anticoagulants by the time of SRS significantly increased the risk of HA.
Collapse
Affiliation(s)
- Eleni Zoga
- Department of Radiotherapy, Sana Hospital Offenbach, 63069 Offenbach am Main, Germany;
| | - Robert Wolff
- Saphir Radiosurgery Center Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Hanns Ackermann
- Institute of Biostatistic and Mathematical Modeling, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Markus Meissner
- Department of Dermatology, Venereology and Allergology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Claus Rödel
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (C.R.); (N.T.)
| | - Nikolaos Tselis
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (C.R.); (N.T.)
| | - Georgios Chatzikonstantinou
- Saphir Radiosurgery Center Frankfurt, 60528 Frankfurt am Main, Germany;
- Department of Radiotherapy and Oncology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (C.R.); (N.T.)
- Correspondence: ; Tel.: +49-69-6301-5130; Fax: +49-69-6301-5091
| |
Collapse
|
183
|
Ascierto PA, Warner AB, Blank C, Caracò C, Demaria S, Gershenwald JE, Khushalani NI, Long GV, Luke JJ, Mehnert JM, Robert C, Rutkowski P, Tawbi HA, Osman I, Puzanov I. The "Great Debate" at Melanoma Bridge 2021, December 2nd-4th, 2021. J Transl Med 2022; 20:200. [PMID: 35538491 PMCID: PMC9087170 DOI: 10.1186/s12967-022-03406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/24/2022] [Indexed: 11/10/2022] Open
Abstract
The Great Debate session at the 2021 Melanoma Bridge virtual congress (December 2-4) featured counterpoint views from experts on seven important issues in melanoma. The debates considered the use of adoptive cell therapy versus use of bispecific antibodies, mitogen-activated protein kinase (MAPK) inhibitors versus immunotherapy in the adjuvant setting, whether the use of corticosteroids for the management of side effects have an impact on outcomes, the choice of programmed death (PD)-1 combination therapy with cytotoxic T-lymphocyte-associated antigen (CTLA)-4 or lymphocyte-activation gene (LAG)-3, whether radiation is needed for brain metastases, when lymphadenectomy should be integrated into the treatment plan and then the last debate, telemedicine versus face-to-face. As with previous Bridge congresses, the debates were assigned by meeting Chairs and positions taken by experts during the debates may not have necessarily reflected their respective personal view. Audiences voted both before and after each debate.
Collapse
Affiliation(s)
- Paolo A Ascierto
- Department of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy.
| | | | | | - Corrado Caracò
- Division of Surgery of Melanoma and Skin Cancer, Istituto Nazionale Tumori "Fondazione Pascale" IRCCS, Naples, Italy
| | - Sandra Demaria
- Department of Radiation Oncology, Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, Australia.,Charles Perkins Centre, The University of Sydney, Sydney, Australia.,Royal North Shore Hospital, Sydney, Australia
| | - Jason J Luke
- University of Pittsburgh Medical Center, UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Janice M Mehnert
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Caroline Robert
- Institut de Cancérologie Gustave Roussy Et Université Paris-Saclay, Villejuif, France
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Hussein A Tawbi
- Melanoma Medical Oncology, Investigational Cancer Therapeutics, Division of Cancer Medicine, MD Anderson Brain Metastasis Clinic, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Iman Osman
- New York University Langone Medical Center, New York, NY, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
184
|
Melanoma Brain Metastases: An Update on the Use of Immune Checkpoint Inhibitors and Molecularly Targeted Agents. Am J Clin Dermatol 2022; 23:523-545. [PMID: 35534670 DOI: 10.1007/s40257-022-00678-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 11/01/2022]
Abstract
Brain metastases from melanoma are no longer uniformly associated with dismal outcomes. Impressive tumor tissue-based (craniotomy) translational research has consistently shown that distinct patient subgroups may have a favorable prognosis. This review provides a historical overview of the standard-of-care treatments until the early 2010s. It subsequently summarizes more recent advances in understanding the biology of melanoma brain metastases (MBMs) and treating patients with MBMs, mainly focusing upon prospective clinical trials of BRAF/MEK and PD-1/CTLA-4 inhibitors in patients with previously untreated MBMs. These additional systemic treatments have provided effective complementary treatment approaches and/or alternatives to radiation and craniotomy. The current role of radiation therapy, especially in conjunction with systemic therapies, is also discussed through the lens of various retrospective studies. The combined efficacy of systemic treatments with radiation has improved overall survival over the last 10 years and has sparked considerable research interest regarding optimal dosing and sequencing of radiation treatments with systemic treatments. Finally, the review describes ongoing clinical trials in patients with MBMs.
Collapse
|
185
|
Alvarez-Breckenridge C, Remon J, Piña Y, Nieblas-Bedolla E, Forsyth P, Hendriks L, Brastianos PK. Emerging Systemic Treatment Perspectives on Brain Metastases: Moving Toward a Better Outlook for Patients. Am Soc Clin Oncol Educ Book 2022; 42:1-19. [PMID: 35522917 DOI: 10.1200/edbk_352320] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The diagnosis of brain metastases has historically been a dreaded, end-stage complication of systemic disease. Additionally, with the increasing effectiveness of systemic therapies that prolong life expectancy and improved imaging tools, the incidence of intracranial progression is becoming more common. Within this context, there has been increasing attention directed at understanding the molecular underpinnings of intracranial progression. Exploring the unique features of brain metastases compared with their extracranial counterparts to identify aberrant signaling pathways, which can be targeted pharmacologically, may help lead to new treatments for this patient population. Additionally, critical discoveries outside the sphere of the central nervous system are increasingly being applied to brain metastases with the emergence of immune checkpoint inhibition, becoming a prevalent treatment option for patients with brain metastases across multiple histologies. As novel treatment strategies are considered, they require thoughtful incorporation of agents that can cross the blood-brain barrier and can synergize with pre-existing agents through rational combinations. Lastly, as clinicians and scientists continue to understand key molecular features of these tumors, they will continue to influence the treatment algorithms that are developing for the management of these patients. Due to the complexity of treatment decisions for patients with brain metastases, an emerging tool is the utilization of multidisciplinary brain metastasis tumor boards to ensure optimal treatment decisions are made and that patients are provided access to applicable clinical trials. Looking to the future, the collective effort to understand the various tumor-intrinsic and tumor-extrinsic factors that promote central nervous system seeding and propagation will have the potential to change the clinical trajectory for these patients.
Collapse
Affiliation(s)
| | - Jordi Remon
- Department of Medical Oncology, HM CIOCC Barcelona (Centro Integral Oncológico Clara Campal), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Yolanda Piña
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | | | - Peter Forsyth
- Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, FL
| | - Lizza Hendriks
- Department of Pulmonary Diseases - GROW School for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, Netherlands
| | | |
Collapse
|
186
|
Tan XL, Le A, Lam FC, Scherrer E, Kerr RG, Lau AC, Han J, Jiang R, Diede SJ, Shui IM. Current Treatment Approaches and Global Consensus Guidelines for Brain Metastases in Melanoma. Front Oncol 2022; 12:885472. [PMID: 35600355 PMCID: PMC9117744 DOI: 10.3389/fonc.2022.885472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Background Up to 60% of melanoma patients develop melanoma brain metastases (MBM), which traditionally have a poor diagnosis. Current treatment strategies include immunotherapies (IO), targeted therapies (TT), and stereotactic radiosurgery (SRS), but there is considerable heterogeneity across worldwide consensus guidelines. Objective To summarize current treatments and compare worldwide guidelines for the treatment of MBM. Methods Review of global consensus treatment guidelines for MBM patients. Results Substantial evidence supported that concurrent IO or TT plus SRS improves progression-free survival (PFS) and overall survival (OS). Guidelines are inconsistent with regards to recommendations for surgical resection of MBM, since surgical resection of symptomatic lesions alleviates neurological symptoms but does not improve OS. Whole-brain radiation therapy is not recommended by all guidelines due to negative effects on neurocognition but can be offered in rare palliative scenarios. Conclusion Worldwide consensus guidelines consistently recommend up-front combination IO or TT with or without SRS for the treatment of MBM.
Collapse
Affiliation(s)
- Xiang-Lin Tan
- Merck & Co., Inc., Rahway, NJ, United States
- *Correspondence: Xiang-Lin Tan,
| | - Amy Le
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN, United States
| | - Fred C. Lam
- Division of Neurosurgery, Huntington Hospital, Northwell Health, Huntington, NY, United States
| | - Emilie Scherrer
- Merck & Co., Inc., Rahway, NJ, United States
- Seagen Inc., Bothell, WA, United States
| | - Robert G. Kerr
- Division of Neurosurgery, Huntington Hospital, Northwell Health, Huntington, NY, United States
| | - Anthony C. Lau
- Division of Neurosurgery, Huntington Hospital, Northwell Health, Huntington, NY, United States
| | - Jiali Han
- Integrative Precision Health, Limited Liability Company (LLC), Carmel, IN, United States
| | | | | | | |
Collapse
|
187
|
Huang YM, Yeh KY, Chen PY, Hsieh TY, Hsu LS, Wu CE, Yang CH, Zheng YC. Primary intracranial malignant melanomas in solitary type: a tertiary center experience. J Clin Neurosci 2022; 101:37-46. [PMID: 35526362 DOI: 10.1016/j.jocn.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE Solitary type primary intracranial malignant melanoma (PIMM) is extremely rare but fatal. The optimal treatment algorithm according to clinical relevance of symptoms and outcomes is unclear. This series emphasized the prognostic factors of solitary PIMM and established the treatment algorithm for this rare disease. METHODS Patients with solitary PIMMs were pathologically verified and treated with neurosurgical tumor resection. All solitary PIMMs recruited at our institute received multidisciplinary team care. We analyzed the clinical findings and prognostic factors. RESULTS The study cohort included 10 patients. PIMMs in solitary type impacted middle-aged populations with male predominance in Taiwan. Most patients (80%) presented a single tumor initially. Six patients had progressed to multiplicity after the initial treatment. Rates of tumor bleeding and leptomeningeal metastasis seeding (LS) are high in solitary PIMMs. Patients who had gross-total resection (GTR) had better survival than those who had incomplete resection, with median overall survival (OS) rates of 170.4 months vs. 5.23 months (p = 0.004). Multiplicity, eloquent area involvement, initial tumor bleeding, LS, hydrocephalus, and Karnofsky Performance Score < 80 at diagnosis were associated with negative outcomes in progression-free survival and OS. Adjuvant radiotherapy for patients who had LS and for those who cannot undergo grossly total tumor removal resulted in a good outcome. CONCLUSIONS GTR demonstrated better outcomes for solitary PIMM. For recurrent tumors, aggressively repeated surgical resection remained beneficial for selected cases. Adjuvant radiotherapy was a treatment option for LS following operation. We proposed a possible treatment algorithm for solitary PIMM.
Collapse
Affiliation(s)
- Yen-Min Huang
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Kun-Yun Yeh
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Pin-Yuan Chen
- Departments of Neurosurgery, Chang Gung Memorial Hospital, Keelung and Linkou & Chang Gung University, Taiwan.
| | - Tsan-Yu Hsieh
- Department of Pathology, Chang Gung Memorial Hospital, Keelung, Taiwan.
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.
| | - Chiao-En Wu
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| | - Cheng-Han Yang
- Departments of Anatomic Pathology, Chang Gung Memorial Hospital at Linkou.
| | - Yun-Cong Zheng
- Departments of Neurosurgery, Chang Gung Memorial Hospital, Keelung and Linkou & Chang Gung University, Taiwan.
| |
Collapse
|
188
|
Riudavets M, Cascetta P, Planchard D. Targeting BRAF-mutant non-small cell lung cancer: current status and future directions. Lung Cancer 2022; 169:102-114. [DOI: 10.1016/j.lungcan.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
189
|
Switzer B, Puzanov I, Skitzki JJ, Hamad L, Ernstoff MS. Managing Metastatic Melanoma in 2022: A Clinical Review. JCO Oncol Pract 2022; 18:335-351. [PMID: 35133862 PMCID: PMC9810138 DOI: 10.1200/op.21.00686] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cutaneous melanoma remains the most lethal of the primary cutaneous neoplasms, and although the incidence of primary melanoma continues to rise, the mortality from metastatic disease remains unchanged, in part through advances in treatment. Major developments in immunomodulatory and targeted therapies have provided robust improvements in response and survival trends that have transformed the clinical management of patients with metastatic melanoma. Additional advances in immunologic and cancer cell biology have contributed to further optimization in (1) risk stratification, (2) prognostication, (3) treatment, (4) toxicity management, and (5) surveillance approaches for patients with an advanced melanoma diagnosis. In this review, we provide a comprehensive overview of the historical and future advances regarding the translational and clinical implications of advanced melanoma and share multidisciplinary recommendations to aid clinicians in the navigation of current treatment approaches for a variety of patient cohorts.
Collapse
Affiliation(s)
- Benjamin Switzer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Joseph J. Skitzki
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Lamya Hamad
- Department of Pharmacy, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Marc S. Ernstoff
- ImmunoOncology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD,Marc S. Ernstoff, MD, National Cancer Institute, Rockville, MD 20850; e-mail:
| |
Collapse
|
190
|
Bari S, Muzaffar J, Eroglu Z. Combination targeted and immune therapy in the treatment of advanced melanoma: a valid treatment option for patients? Ther Adv Med Oncol 2022; 14:17588359221090306. [PMID: 35478991 PMCID: PMC9036333 DOI: 10.1177/17588359221090306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Melanomas harboring an activating BRAFV600 mutation account for 50% of all advanced melanomas. The approval of BRAF-targeted therapy revolutionized treatment of these patients with achievement of impressive responses. However, development of resistance to these drugs is a significant problem, and as such, duration of response remains low, with median progression free survival of around 11–15 months. Immune checkpoint blockers exploit the immune system to eradicate cancer and can produce durable disease control that results in long-term, treatment-free survival in some patients. These drugs have shown very impressive survival in patients with BRAF-mutated melanoma. Thus, there is a need to continue to utilize emerging data to achieve long-term disease control for patients with advanced melanoma. Combining targeted therapy with immune therapy may be one possible way to achieve this goal. In this review, the mechanisms of action of these two pathways, including the mechanistic basis of this combination, are summarized, along with results of completed and ongoing trials in triple therapy.
Collapse
Affiliation(s)
- Shahla Bari
- Department of Cutaneous Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jameel Muzaffar
- Department of Head and Neck Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Zeynep Eroglu
- Department of Cutaneous Oncology, Moffitt Cancer Center, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
191
|
Yan M, Zalay O, Kennedy T, Owen TE, Purzner J, Taslimi S, Purzner T, Alkins R, Moideen N, Fung AS, Moraes FY. Outcomes of Hypofractionated Stereotactic Radiotherapy for Small and Moderate-Sized Brain Metastases: A Single-Institution Analysis. Front Oncol 2022; 12:869572. [PMID: 35444935 PMCID: PMC9014302 DOI: 10.3389/fonc.2022.869572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) is the standard treatment for limited intracranial metastases. With the advent of frameless treatment delivery, fractionated stereotactic radiotherapy (FSRT) has become more commonly implemented given superior control and toxicity rates for larger lesions. We reviewed our institutional experience of FSRT to brain metastases without size restriction. Methods We performed a retrospective review of our institutional database of patients treated with FSRT for brain metastases. Clinical and dosimetric details were abstracted. All patients were treated in 3 or 5 fractions using LINAC-based FSRT, did not receive prior cranial radiotherapy, and had at least 6 months of MRI follow-up. Overall survival was estimated using the Kaplan–Meier method. Local failure and radionecrosis cumulative incidence rates were estimated using a competing risks model with death as the competing risk. Univariable and multivariable analyses using Fine and Gray’s proportional subdistribution hazards regression model were performed to determine covariates predictive of local failure and radionecrosis. Results We identified 60 patients and 133 brain metastases treated at our institution from 2016 to 2020. The most common histologies were lung (53%) and melanoma (25%). Most lesions were >1 cm in diameter (84.2%) and did not have previous surgical resection (88%). The median duration of imaging follow-up was 9.8 months. The median survival for the whole cohort was 20.5 months. The local failure at 12 months was 17.8% for all lesions, 22.1% for lesions >1 cm, and 13.7% for lesions ≤1 cm (p = 0.36). The risk of radionecrosis at 12 months was 7.1% for all lesions, 13.2% for lesions >1 cm, and 3.2% for lesions ≤1 cm (p = 0.15). Conclusions FSRT is safe and effective in the treatment of brain metastases of any size with excellent local control and toxicity outcomes. Prospective evaluation against single-fraction SRS is warranted for all lesion sizes.
Collapse
Affiliation(s)
- Michael Yan
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Osbert Zalay
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Thomas Kennedy
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Timothy E Owen
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - James Purzner
- Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Shervin Taslimi
- Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Teresa Purzner
- Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Ryan Alkins
- Division of Neurosurgery, Department of Surgery, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Nikitha Moideen
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Andrea S Fung
- Department of Oncology, Division of Medical Oncology and Hematology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Fabio Y Moraes
- Department of Oncology, Division of Radiation Oncology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| |
Collapse
|
192
|
Martínez-García M, Servitja Tormo S, Vilariño Quintela N, Arance Fernández A, Berrocal Jaime A, Cantos Sánchez de Ibargüen B, Del Barco Berrón S, García Campelo R, Gironés Sarrió R, Manuel Sepúlveda-Sánchez J. SEOM-GEINO clinical guideline of systemic therapy and management of brain central nervous system metastases (2021). Clin Transl Oncol 2022; 24:703-711. [PMID: 35258806 PMCID: PMC8986739 DOI: 10.1007/s12094-022-02803-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 11/25/2022]
Abstract
Central nervous system (CNS) dissemination is a severe complication in cancer and a leading cause of cancer-related mortality. Brain metastases (BMs) are the most common types of malignant intracranial tumors and are reported in approximately 25% of patients with metastatic cancers. The recent increase in incidence of BMs is due to several factors including better diagnostic assessments and the development of improved systemic therapies that have lower activity on the CNS. However, newer systemic therapies are being developed that can cross the blood-brain barrier giving us additional tools to treat BMs. The guidelines presented here focus on the efficacy of new targeted systemic therapies and immunotherapies on CNS BMs from breast, melanoma, and lung cancers.
Collapse
Affiliation(s)
- María Martínez-García
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
- CIOCC HM Delfos, Barcelona, Spain
| | | | - Noelia Vilariño Quintela
- Medical Oncology Department, Institut Català d’Oncologia L’Hospitalet, L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Alfonso Berrocal Jaime
- Medical Oncology Department, Consorcio Hospital General Universitario de Valencia, Valencia, Spain
| | | | | | - Rosario García Campelo
- Medical Oncology Department, Complexo Hospitalario Universitario A Coruña (CHUAC), A Coruña, Spain
| | - Regina Gironés Sarrió
- Medical Oncology Department, Hospital Universitari i Politècnic la Fe, Valencia, Spain
| | | |
Collapse
|
193
|
Shanker MD, Garimall S, Gatt N, Foley H, Crowley S, Le Cornu E, Muscat K, Soon W, Atkinson V, Xu W, Watkins T, Huo M, Foote MC, Pinkham MB. Stereotactic radiosurgery for melanoma brain metastases: Concurrent immune checkpoint inhibitor therapy associated with superior clinicoradiological response outcomes. J Med Imaging Radiat Oncol 2022; 66:536-545. [PMID: 35343063 PMCID: PMC9311698 DOI: 10.1111/1754-9485.13403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION/PURPOSE This study assessed long-term clinical and radiological outcomes following treatment with combination stereotactic radiosurgery (SRS) and immunotherapy (IT) for melanoma brain metastases (BM). METHODS A retrospective review was performed in a contemporary cohort of patients with melanoma BM at a single tertiary institution receiving Gamma Knife® SRS for melanoma BM. Multivariate Cox proportional-hazards modelling was performed with a P <0.05 for significance. RESULTS 101 patients (435 melanoma BM) were treated with SRS between January-2015 and June-2019. 68.3% of patients received IT within 4 weeks of SRS (concurrent) and 31.7% received SRS alone or non-concurrently with IT. Overall, BM local control rate was 87.1% after SRS. Median progression free survival was 8.7 months. Median follow-up was 29.2 months. On multivariate analysis (MVA), patients receiving concurrent SRS-IT maintained a higher chance of achieving a complete (CR) or partial response (PR) [HR 2.6 (95% CI: 1.2-5.5, P = 0.012)] and a reduced likelihood of progression of disease (PD) [HR 0.52 (95% CI: 0.16-0.60), P = 0.048]. Any increase in BM volume on the initial MRI 3 months after SRS predicted a lower likelihood of achieving long-term CR or PR on MVA accounting for concurrent IT, BRAF status and dexamethasone use [HR = 0.048 (95% CI: 0.007-0.345, P = 0.0026)]. Stratified volumetric change demonstrated a sequential relationship with outcomes on Kaplan-Meier analysis. CONCLUSION Concurrent SRS-IT has favourable clinical and radiological outcomes with respect to CR, PR and a reduced likelihood of PD. Changes in BM volume on the initial MRI 3 months after SRS were predictive of long-term outcomes for treatment response.
Collapse
Affiliation(s)
- Mihir D Shanker
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital Research Foundation, Brisbane, Queensland, Australia
| | - Sidyarth Garimall
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nick Gatt
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Heath Foley
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Samuel Crowley
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Emma Le Cornu
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Kendall Muscat
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wei Soon
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Victoria Atkinson
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Wen Xu
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Trevor Watkins
- Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Michael Huo
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Matthew C Foote
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mark B Pinkham
- Gamma Knife Centre of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
194
|
Li AY, Gaebe K, Jerzak KJ, Cheema PK, Sahgal A, Das S. Intracranial Metastatic Disease: Present Challenges, Future Opportunities. Front Oncol 2022; 12:855182. [PMID: 35330715 PMCID: PMC8940535 DOI: 10.3389/fonc.2022.855182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intracranial metastatic disease (IMD) is a prevalent complication of cancer that significantly limits patient survival and quality of life. Over the past half-century, our understanding of the epidemiology and pathogenesis of IMD has improved and enabled the development of surveillance and treatment algorithms based on prognostic factors and tumor biomolecular characteristics. In addition to advances in surgical resection and radiation therapy, the treatment of IMD has evolved to include monoclonal antibodies and small molecule antagonists of tumor-promoting proteins or endogenous immune checkpoint inhibitors. Moreover, improvements in the sensitivity and specificity of imaging as well as the development of new serological assays to detect brain metastases promise to revolutionize IMD diagnosis. In this review, we will explore current treatment principles in patients with IMD, including the emerging role of targeted and immunotherapy in select primary cancers, and discuss potential areas for further investigation.
Collapse
Affiliation(s)
- Alyssa Y Li
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Karolina Gaebe
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Katarzyna J Jerzak
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Parneet K Cheema
- Division of Oncology, William Osler Health System, Brampton, ON, Canada
| | - Arjun Sahgal
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Sunit Das
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
195
|
Eggen AC, Hospers GAP, Bosma I, Kramer MCA, Reyners AKL, Jalving M. Anti-tumor treatment and healthcare consumption near death in the era of novel treatment options for patients with melanoma brain metastases. BMC Cancer 2022; 22:247. [PMID: 35247992 PMCID: PMC8897874 DOI: 10.1186/s12885-022-09316-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 02/20/2022] [Indexed: 11/18/2022] Open
Abstract
Background Effective systemic treatments have revolutionized the management of patients with metastatic melanoma, including those with brain metastases. The extent to which these treatments influence disease trajectories close to death is unknown. Therefore, this study aimed to gain insight into provided treatments and healthcare consumption during the last 3 months of life in patients with melanoma brain metastases. Methods Retrospective, single-center study, including consecutive patients with melanoma brain metastases diagnosed between June-2015 and June-2018, referred to the medical oncologist, and died before November-2019. Patient and tumor characteristics, anti-tumor treatments, healthcare consumption, presence of neurological symptoms, and do-not-resuscitate status were extracted from medical charts. Results 100 patients were included. A BRAF-mutation was present in 66 patients. Systemic anti-tumor therapy was given to 72% of patients during the last 3 months of life, 34% in the last month, and 6% in the last week. Patients with a BRAF-mutation more frequently received systemic treatment during the last 3 (85% vs. 47%) and last month (42% vs. 18%) of life than patients without a BRAF-mutation. Furthermore, patients receiving systemic treatment were more likely to visit the emergency room (ER, 75% vs. 36%) and be hospitalized (75% vs. 36%) than those who did not. Conclusion The majority of patients with melanoma brain metastases received anti-tumor treatment during the last 3 months of life. ER visits and hospitalizations occurred more often in patients on anti-tumor treatment. Further research is warranted to examine the impact of anti-tumor treatments close to death on symptom burden and care satisfaction.
Collapse
|
196
|
Senko C, Gunjur A, Balasubramanian A, Gan HK, Parakh S, Cher L. The systemic management of central nervous system metastases and leptomeningeal disease from advanced lung, melanoma, and breast cancer with molecular drivers: An Australian perspective. Asia Pac J Clin Oncol 2022; 18:515-525. [PMID: 35238161 DOI: 10.1111/ajco.13759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
Abstract
The advent of systemic therapies with high intracranial efficacy in recent years is changing the therapeutic paradigm and renewing interest in the management of central nervous system (CNS) and leptomeningeal metastases from solid organ tumors. CNS metastases have traditionally heralded a dismal prognosis with median survival of 3-10 months, and were primarily treated with local therapeutic modalities, such as surgery or radiation therapy. Although these modalities still have a role in the management of CNS disease, newer agents, such as small molecule tyrosine kinase inhibitors and immune-checkpoint inhibitors, are now paving the way as an alternative therapeutic option for those with oligometastatic or low-volume intracranial disease, potentially eliminating or delaying the need for local treatment modalities in this setting. Herein, we summarize the systemic treatments with proven intracranial efficacy, currently approved for use in Australia for advanced mutation-driven non-small cell lung cancer, melanoma, and breast cancer, as well as novel agents in preclinical and clinical trial development.
Collapse
Affiliation(s)
- Clare Senko
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia.,La Trobe University School of Molecular Sciences, Melbourne, Victoria, Australia
| | - Ashray Gunjur
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia
| | - Adithya Balasubramanian
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia
| | - Hui K Gan
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Sagun Parakh
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia.,La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Lawrence Cher
- Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
197
|
Tawbi H, Bartley K, Seetasith A, Kent M, Lee J, Burton E, Haydu L, McKenna E. Economic and health care resource utilization burden of central nervous system metastases in patients with metastatic melanoma. J Manag Care Spec Pharm 2022; 28:342-353. [PMID: 35199578 PMCID: PMC10372958 DOI: 10.18553/jmcp.2022.28.3.342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: In patients with metastatic melanoma, central nervous system (CNS) involvement is associated with poor prognosis, increased costs, and higher health care resource utilization (HCRU); however, previous cost-estimate studies were conducted before widespread use of targeted therapies and immunotherapies. OBJECTIVE: To estimate costs and HCRU in patients with metastatic melanoma with and without CNS metastases in the current treatment era following introduction of targeted therapies and immunotherapies. METHODS: This real-world retrospective cohort study used data from the IQVIA PharMetrics Plus claims database to estimate and compare costs and HCRU in patients with metastatic melanoma by presence or absence of CNS metastases between January 2011 and June 2019. Patients with at least 2 melanoma claims, at least 2 metastatic claims, and continuous enrollment at least 6 months before and at least 1 month after first metastatic diagnosis were included. Mean per-patient-per-month (PPPM) costs are reported in 2019 US dollars. Analyses were also conducted by time period of first metastatic diagnosis: 2011-2014 (reflecting BRAF inhibitor monotherapy and anti-CTLA-4 therapy) and 2015-2019 (reflecting availability of BRAF and MEK inhibitor combinations and anti-PD-1/PD-L1 therapies). RESULTS: Of 4,078 patients, 1,253 (30.7%) had CNS metastases. Patients with CNS metastases were more likely to receive any treatment (89.1% vs 58.9%; P < 0.001), including systemic treatment (73.3% vs 55.4%; P < 0.001) and radiation (65.8% vs 11.8%; P < 0.001), and to have brain imaging any time after metastatic diagnosis (98.3% vs 67.2%; P < 0.001). In patients with CNS metastases, 40.0% had dexamethasone 4 mg within 30 days of CNS metastatic diagnosis. Patients with CNS metastases incurred higher total mean PPPM costs ($29,953 vs $14,996; P < 0.001). The largest contributors were total radiology ($2,351 vs $1,110), targeted therapies ($2,499 vs $638), and immunotherapies ($7,398 vs $5,036). HCRU and costs were higher in patients with vs without CNS metastases regardless of time period of first metastatic diagnosis. In patients with CNS metastases, use of any systemic treatment was increased in 2015-2019 vs 2011-2014 (81.2% vs 64.5%; P < 0.001), including chemotherapy (68.1% vs 50.0%; P < 0.001), immunotherapy (60.9% vs 30.1%; P < 0.001), and/or targeted therapies (32.7% vs 27.4%; P = 0.05). Mean total PPPM costs for patients with CNS metastases increased from $28,183 in 2011-2014 to $31,569 in 2015-2019 (P < 0.001); main drivers were immunotherapies and targeted therapies. CONCLUSIONS: CNS metastases occur frequently in patients with metastatic melanoma and are associated with significantly increased economic burden compared with patients without CNS metastases; the largest contributors to total costs in the current treatment era are radiology, targeted therapies, and immunotherapies. Brain imaging remains underused, and there is an opportunity to improve outcomes through early detection of CNS metastases, potentially reducing the high HCRU and costs associated with CNS metastases. DISCLOSURES: This study was funded by F. Hoffmann-La Roche Ltd. The sponsor was involved in the study design, data collection, data analysis, manuscript preparation, and publication decisions. Seetasith and Lee are employed by and report stock ownership in Genentech, Inc. Bartley and McKenna were employed by Genentech, Inc., at the time of this study and report stock ownership. Tawbi reports grants and personal fees from Genentech/Roche, Novartis, BMS, and Merck; grants from GSK and Celgene; and personal fees from Eisai, outside the submitted work. Kent, Burton, and Haydu have nothing to disclose. The results of this study were presented in part at the AMCP Nexus 2020 Virtual Meeting, October 19-23, 2020.
Collapse
Affiliation(s)
- Hussein Tawbi
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Janet Lee
- Genentech, Inc., South San Francisco, CA
| | - Elizabeth Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lauren Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | |
Collapse
|
198
|
Caulfield JI, Kluger HM. Emerging Studies of Melanoma Brain Metastasis. Curr Oncol Rep 2022; 24:585-594. [PMID: 35212922 DOI: 10.1007/s11912-022-01237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Among solid tumors, melanoma has the highest propensity for brain dissemination. Although newer treatment approaches have resulted in excellent control or elimination of brain metastasis in many patients, they remain the cause of significant morbidity and mortality. Here, we review recent preclinical and clinical studies to detail current understanding of the incidence, prognosis, biological characteristics, and treatments for melanoma brain metastases. RECENT FINDINGS Clinical trials tailored to this patient population have demonstrated prolonged disease control with immune checkpoint inhibitors. Emerging clinical challenges include radiation necrosis and perilesional edema, phenomena that are rarely seen in other organs. Recent preclinical studies have resulted in improved understanding of the tumor microenvironment in the brain, providing insights into additional treatment approaches. The biological basis of brain tumor homing and survival within the central nervous system remain understudied. Additional preclinical and clinical studies will enhance our ability to prevent and treat brain metastases.
Collapse
Affiliation(s)
- Jasmine I Caulfield
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Harriet M Kluger
- Yale Cancer Center, Yale School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA.
| |
Collapse
|
199
|
Kleffman K, Levinson G, Rose IVL, Blumenberg LM, Shadaloey SAA, Dhabaria A, Wong E, Galan-Echevarria F, Karz A, Argibay D, Von Itter R, Floristan A, Baptiste G, Eskow NM, Tranos JA, Chen J, Vega Y Saenz de Miera EC, Call M, Rogers R, Jour G, Wadghiri YZ, Osman I, Li YM, Mathews P, DeMattos R, Ueberheide B, Ruggles KV, Liddelow SA, Schneider RJ, Hernando E. Melanoma-secreted Amyloid Beta Suppresses Neuroinflammation and Promotes Brain Metastasis. Cancer Discov 2022; 12:1314-1335. [PMID: 35262173 PMCID: PMC9069488 DOI: 10.1158/2159-8290.cd-21-1006] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/21/2021] [Accepted: 02/18/2022] [Indexed: 11/16/2022]
Abstract
Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared to those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (AB) for growth and survival in the brain parenchyma. Melanoma-secreted AB activates surrounding astrocytes to a pro-metastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacological inhibition of AB decreases brain metastatic burden.
Collapse
Affiliation(s)
- Kevin Kleffman
- NYU Langone Medical Center, New York, New York, United States
| | - Grace Levinson
- NYU Langone Medical Center, New York, New York, United States
| | - Indigo V L Rose
- NYU Langone Medical Center, New York, New York, United States
| | | | | | - Avantika Dhabaria
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., New York, NY, United States
| | - Eitan Wong
- Memorial Sloan Kettering Cancer Center, New York, New York, United States
| | | | - Alcida Karz
- NYU Langone Medical Center, New York, New York, United States
| | - Diana Argibay
- NYU Langone Medical Center, New York, NY, United States
| | | | | | - Gillian Baptiste
- New York University Grossman School of Medicine, New York, NY, United States
| | | | - James A Tranos
- NYU Langone Medical Center, New York, New York, United States
| | - Jenny Chen
- NYU Langone Medical Center, New York, New York, United States
| | | | - Melissa Call
- NYU Langone Medical Center, New York, New York, United States
| | - Robert Rogers
- NYU Langone Medical Center, New York, New York, United States
| | - George Jour
- New York University, New York, New York, United States
| | | | - Iman Osman
- New York University School of Medicine, New York, New York, United States
| | - Yue-Ming Li
- Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Paul Mathews
- NYU Langone Medical Center, New York, New York, United States
| | - Ronald DeMattos
- Eli Lilly (United States), Indianapolis, Indiana, United States
| | - Beatrix Ueberheide
- Proteomics Laboratory, Division of Advanced Research and Technology, NYU Langone Health, New York, New York., United States
| | - Kelly V Ruggles
- New York University Langone Medical Center, New York, United States
| | | | | | - Eva Hernando
- NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
200
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|