151
|
Yoon H, Tang CM, Banerjee S, Yebra M, Noh S, Burgoyne AM, Torre JDL, Siena MD, Liu M, Klug LR, Choi YY, Hosseini M, Delgado AL, Wang Z, French RP, Lowy A, DeMatteo RP, Heinrich MC, Molinolo AA, Gutkind JS, Harismendy O, Sicklick JK. Cancer-associated fibroblast secretion of PDGFC promotes gastrointestinal stromal tumor growth and metastasis. Oncogene 2021; 40:1957-1973. [PMID: 33603171 PMCID: PMC7979540 DOI: 10.1038/s41388-021-01685-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/13/2021] [Accepted: 01/27/2021] [Indexed: 01/30/2023]
Abstract
Targeted therapies for gastrointestinal stromal tumor (GIST) are modestly effective, but GIST cannot be cured with single agent tyrosine kinase inhibitors. In this study, we sought to identify new therapeutic targets in GIST by investigating the tumor microenvironment. Here, we identified a paracrine signaling network by which cancer-associated fibroblasts (CAFs) drive GIST growth and metastasis. Specifically, CAFs isolated from human tumors were found to produce high levels of platelet-derived growth factor C (PDGFC), which activated PDGFC-PDGFRA signal transduction in GIST cells that regulated the expression of SLUG, an epithelial-mesenchymal transition (EMT) transcription factor and downstream target of PDGFRA signaling. Together, this paracrine induce signal transduction cascade promoted tumor growth and metastasis in vivo. Moreover, in metastatic GIST patients, SLUG expression positively correlated with tumor size and mitotic index. Given that CAF paracrine signaling modulated GIST biology, we directly targeted CAFs with a dual PI3K/mTOR inhibitor, which synergized with imatinib to increase tumor cell killing and in vivo disease response. Taken together, we identified a previously unappreciated cellular target for GIST therapy in order to improve disease control and cure rates.
Collapse
Affiliation(s)
- Hyunho Yoon
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Chih-Min Tang
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Sudeep Banerjee
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Mayra Yebra
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Sangkyu Noh
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Adam M Burgoyne
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jorge De la Torre
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Martina De Siena
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
- Gastroenterology and Digestive Endoscopy, Fondazione Policlinico A.Gemelli Catholic University of Rome, Rome, Italy
| | - Mengyuan Liu
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Lillian R Klug
- Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, OR, USA
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yoon Young Choi
- Division of Biomedical Informatics, Moores Cancer Center, University of California, San Diego, CA, USA
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Mojgan Hosseini
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Antonio L Delgado
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Zhiyong Wang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Randall P French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Andrew Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Ronald P DeMatteo
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Alfredo A Molinolo
- Department of Pathology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Moores Cancer Center, University of California, San Diego, CA, USA
| | - Jason K Sicklick
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California, San Diego, CA, USA.
| |
Collapse
|
152
|
Gómez-Peregrina D, García-Valverde A, Pilco-Janeta D, Serrano C. Liquid Biopsy in Gastrointestinal Stromal Tumors: Ready for Prime Time? Curr Treat Options Oncol 2021; 22:32. [PMID: 33641024 DOI: 10.1007/s11864-021-00832-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) constitutes a paradigm for clinically effective targeted inhibition of oncogenic driver mutations. Therefore, GIST has emerged as a compelling clinical and biological model to study oncogene addiction and to validate preclinical concepts for drug response and drug resistance. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the essential drivers of GIST progression throughout all stages of the disease. Interestingly, KIT/PDGFRA genotype predicts the response to first-line imatinib and to all tyrosine kinase inhibitors (TKIs) approved or in investigation after imatinib failure. Considering that TKIs are effective only against a subset of KIT or PDGFRA resistance mutations, close monitoring of tumor dynamics with non-invasive methods such as liquid biopsy emerges as a necessary step forward in the field. Liquid biopsy, in contrast to solid tumor biopsy, aims to characterize tumors irrespective of heterogeneity. Although there are several components in the peripheral blood, most recent studies have been focused on circulating tumor (ct)DNA, due to the technological feasibility, the stability of DNA itself and DNA alterations, and the therapeutic development in precision oncology largely based on the identification of genetic driver mutations. In the present review, we systematically dissect the current wealth of data of ctDNA in GIST. To do so, a critical understanding of the promises and limitations of the current technologies will be followed by an exposition of the knowledge gathered with such studies in GIST. Collectively, our goal is to establish clear premises that can be used as the foundations to build future studies towards the clinical implementation of ctDNA evaluation in GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Daniel Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, P/Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
153
|
Cicenas J, Račienė A. Anti-Cancer Drugs Targeting Protein Kinases Approved by FDA in 2020. Cancers (Basel) 2021; 13:cancers13050947. [PMID: 33668248 PMCID: PMC7956733 DOI: 10.3390/cancers13050947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cancers are a large group of diseases that mostly emerge because of the uncontrollable action of many different genes in human cells [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland
- Correspondence: ; Tel.: +43-6645875822 or +37-066704267
| | - Asta Račienė
- Vilnius University Hospital, Santariskiu Klinikos Santariskiu str. 2, LT-08661 Vilnius, Lithuania;
| |
Collapse
|
154
|
Rizzo A, Pantaleo MA, Astolfi A, Indio V, Nannini M. The Identity of PDGFRA D842V-Mutant Gastrointestinal Stromal Tumors (GIST). Cancers (Basel) 2021; 13:cancers13040705. [PMID: 33572358 PMCID: PMC7916155 DOI: 10.3390/cancers13040705] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Among the platelet-derived growth factor receptor (PDGFRA) mutations in gastrointestinal stromal tumors (GIST), the most frequent is the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V), widely recognized as D842V, a two-sided mutation providing primary resistance to all currently approved agents for GIST treatment. In recent years, new specific inhibitors have been studied in preclinical and clinical settings, and molecular findings have been accumulated, well describing this complex entity. This paper aims at offering a comprehensive picture of the clinical features and the molecular background of this rare subtype of GIST. Abstract The majority of gastrointestinal stromal tumors (GIST) carry a sensitive primary KIT mutation, but approximately 5% to 10% of cases harbor activating mutations of platelet-derived growth factor receptor (PDGFRA), mainly involving the A-loop encoded by exon 18 (~5%), or more rarely the JM domain, encoded by exon 12 (~1%), or the ATP binding domain encoded by exon 14 (<1%). The most frequent mutation is the substitution at position 842 in the A-loop of an aspartic acid (D) with a valine (V) in exon 18, widely recognized as D842V. This mutation, as well known, provides primary resistance to imatinib and sunitinib. Thus, until few years ago, no active drugs were available for this subtype of GIST. Conversely, recent years have witnessed the development of a new specific inhibitor—avapritinib—that has been studied in in vitro and clinical setting with promising results. In light of this primary resistance to conventional therapies, the biological background of D842V-mutant GIST has been deeply investigated to better understand what features characterize this peculiar subset of GIST, and some promising insights have emerged. Hereinafter, we present a comprehensive overview on the clinical features and the molecular background of this rare subtype of GIST.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.R.); (M.A.P.)
| | - Maria Abbondanza Pantaleo
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.R.); (M.A.P.)
- Department of Experimental, Diagnostic and Specialized Medicine, University of Bologna, 40138 Bologna, Italy
| | - Annalisa Astolfi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy;
| | - Valentina Indio
- “Giorgio Prodi” Cancer Research Center, University of Bologna, 40138 Bologna, Italy;
| | - Margherita Nannini
- Division of Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (A.R.); (M.A.P.)
- Correspondence: ; Tel.: +39-0512-142-708
| |
Collapse
|
155
|
George S, Jones RL, Bauer S, Kang YK, Schöffski P, Eskens F, Mir O, Cassier PA, Serrano C, Tap WD, Trent J, Rutkowski P, Patel S, Chawla SP, Meiri E, Gordon M, Zhou T, Roche M, Heinrich MC, von Mehren M. Avapritinib in Patients With Advanced Gastrointestinal Stromal Tumors Following at Least Three Prior Lines of Therapy. Oncologist 2021; 26:e639-e649. [PMID: 33453089 PMCID: PMC8018324 DOI: 10.1002/onco.13674] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Most gastrointestinal stromal tumors (GIST) driven by KIT or platelet-derived growth factor receptor A (PDGFRA) mutations develop resistance to available tyrosine kinase inhibitor (TKI) treatments. NAVIGATOR is a two-part, single-arm, dose escalation and expansion study designed to evaluate safety and antineoplastic activity of avapritinib, a selective, potent inhibitor of KIT and PDGFRA, in patients with unresectable or metastatic GIST. MATERIALS AND METHODS Eligible patients were 18 years or older with histologically or cytologically confirmed unresectable GIST and Eastern Cooperative Oncology Group performance status ≤2 and initiated avapritinib at 300 mg or 400 mg once daily. Primary endpoints were safety in patients who initiated avapritinib at 300 mg or 400 mg once daily and overall response rate (ORR) in patients in the safety population with three or more previous lines of TKI therapy. RESULTS As of November 16, 2018, in the safety population (n = 204), the most common adverse events (AEs) were nausea (131 [64%]), fatigue (113 [55%]), anemia (102 [50%]), cognitive effects (84 [41%]), and periorbital edema (83 [41%]); 17 (8%) patients discontinued due to treatment-related AEs, most frequently confusion, encephalopathy, and fatigue. ORR in response-evaluable patients with GIST harboring KIT or non-D842V PDGFRA mutations and with at least three prior therapies (n = 103) was 17% (95% confidence interval [CI], 10-25). Median duration of response was 10.2 months (95% CI, 7.2-10.2), and median progression-free survival was 3.7 months (95% CI, 2.8-4.6). CONCLUSION Avapritinib has manageable toxicity with meaningful clinical activity as fourth-line or later treatment in some patients with GIST with KIT or PDGFRA mutations. IMPLICATIONS FOR PRACTICE In the NAVIGATOR trial, avapritinib, an inhibitor of KIT and platelet-derived growth factor receptor A tyrosine kinases, provided durable responses in a proportion of patients with advanced gastrointestinal stromal tumors (GIST) who had received three or more prior therapies. Avapritinib had a tolerable safety profile, with cognitive adverse events manageable with dose interruptions and modification in most cases. These findings indicate that avapritinib can elicit durable treatment responses in some patients with heavily pretreated GIST, for whom limited treatment options exist.
Collapse
Affiliation(s)
- Suzanne George
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Robin L Jones
- Royal Marsden Hospital and Institute of Cancer Research, London, UK
| | - Sebastian Bauer
- Department of Medical Oncology, West German Cancer Center, University of Duisburg-Essen, Essen, Germany
| | - Yoon-Koo Kang
- Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Patrick Schöffski
- University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Ferry Eskens
- Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | | | - Cesar Serrano
- Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - William D Tap
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York, USA
| | - Jonathan Trent
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Piotr Rutkowski
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Sant P Chawla
- Sarcoma Oncology Center, Santa Monica, California, USA
| | - Eval Meiri
- Cancer Treatment Center of America, Atlanta, Georgia, USA
| | - Michael Gordon
- HonorHealth Research Institute, Scottsdale, Arizona, USA
| | - Teresa Zhou
- Blueprint Medicines Corporation, Cambridge, Massachusetts, USA
| | - Maria Roche
- Blueprint Medicines Corporation, Cambridge, Massachusetts, USA
| | - Micahel C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | | |
Collapse
|
156
|
Reichardt P, Pink D. [Treatment of soft tissue sarcomas including GIST - Update 2021]. Dtsch Med Wochenschr 2021; 146:157-161. [PMID: 33513648 DOI: 10.1055/a-1170-7731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Soft tissue sarcomas are rare tumors that represent a major challenge due to varying clinical presentations and often interdisciplinary treatment concepts. Gold standard for the treatment of localized resectable soft tissue sarcomas is complete surgical removal. So far, multimodality treatment does not represent a clininal standard. However, several newer analyses and studies suggest that a subgroup of patients seems to derive an overall survival benefit from perioperative chemotherapy. In metastatic soft tissue sarcoma systemic therapy is the treatment of choice. Most active drugs are the anthracyclines and ifosfamide. Combination chemotherapy has improved both response rate and progression-free survival at the costs of increased toxicity in comparison to single agent therapy but without impact on overall survival in first-line therapy. In pretreated patients, treatment options consist of trabectedin, pazopanib, gemcitabine plus docetaxel or DTIC, and eribulin. Recent data have shown that histiotype-specific treatment options including targeted therapy represent a major improvement for several sarcoma subtypes.In GIST, imatinib is the gold standard for patients with advanced or metastatic disease. In imatinib refractory or intolerant patients, sunitinib in an individualized treatment schedule is recommended. Regorafenib has been approved for third-line therapy. Recently, avapritinib has been approved for treatment of patients with the so far resistant D842V mutation in the PDGFRA exon 18. Ripretinib has shown very promising activity in forth and further lines of therapy and is already approved in the US. The use of adjuvant imatinib therapy in patients with completely resected localized GIST with a high risk of recurrence has significantly improved overall survival with a treatment duration of 3 years. These results have now been confirmed with a 10 years follow-up analysis.
Collapse
Affiliation(s)
- Peter Reichardt
- Helios-Klinikum Berlin-Buch, Sarkomzentrum Berlin-Brandenburg, Helios-Klinikum Bad Saarow, Sarkomzentrum Berlin-Brandenburg, Klinik für Innere Medizin C der Universitätsmedizin Greifswald
| | - Daniel Pink
- Helios-Klinikum Berlin-Buch, Sarkomzentrum Berlin-Brandenburg, Helios-Klinikum Bad Saarow, Sarkomzentrum Berlin-Brandenburg, Klinik für Innere Medizin C der Universitätsmedizin Greifswald
| |
Collapse
|
157
|
Brčić I, Argyropoulos A, Liegl-Atzwanger B. Update on Molecular Genetics of Gastrointestinal Stromal Tumors. Diagnostics (Basel) 2021; 11:diagnostics11020194. [PMID: 33525726 PMCID: PMC7912114 DOI: 10.3390/diagnostics11020194] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The majority are sporadic, solitary tumors that harbor mutually exclusive KIT or PDGFRA gain-of-function mutations. The type of mutation in addition to risk stratification corresponds to the biological behavior of GIST and response to treatment. Up to 85% of pediatric GISTs and 10–15% of adult GISTs are devoid of these (KIT/PDGFRA) mutations and are referred to as wild-type GISTs (wt-GIST). It has been shown that these wt-GISTs are a heterogeneous tumor group with regard to their clinical behavior and molecular profile. Recent advances in molecular pathology helped to further sub-classify the so-called “wt-GISTs”. Based on their significant clinical and molecular heterogeneity, wt-GISTs are divided into a syndromic and a non-syndromic (sporadic) subgroup. Recently, the use of succinate dehydrogenase B (SDHB) by immunohistochemistry has been used to stratify GIST into an SDHB-retained and an SDHB-deficient group. In this review, we focus on GIST sub-classification based on clinicopathologic, and molecular findings and discuss the known and yet emerging prognostic and predictive genetic alterations. We also give insights into the limitations of targeted therapy and highlight the mechanisms of secondary resistance.
Collapse
|
158
|
Ye S, Sharipova D, Kozinova M, Klug L, D'Souza J, Belinsky MG, Johnson KJ, Einarson MB, Devarajan K, Zhou Y, Litwin S, Heinrich MC, DeMatteo R, von Mehren M, Duncan JS, Rink L. Identification of Wee1 as a target in combination with avapritinib for gastrointestinal stromal tumor treatment. JCI Insight 2021; 6:143474. [PMID: 33320833 PMCID: PMC7934848 DOI: 10.1172/jci.insight.143474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Management of gastrointestinal stromal tumors (GISTs) has been revolutionized by the identification of activating mutations in KIT and PDGFRA and clinical application of RTK inhibitors in advanced disease. Stratification of GISTs into molecularly defined subsets provides insight into clinical behavior and response to approved targeted therapies. Although these RTK inhibitors are effective in most GISTs, resistance remains a significant clinical problem. Development of effective treatment strategies for refractory GISTs requires identification of novel targets to provide additional therapeutic options. Global kinome profiling has the potential to identify critical signaling networks and reveal protein kinases essential in GISTs. Using multiplexed inhibitor beads and mass spectrometry, we explored the majority of the kinome in GIST specimens from the 3 most common molecular subtypes (KIT mutant, PDGFRA mutant, and succinate dehydrogenase deficient) to identify kinase targets. Kinome profiling with loss-of-function assays identified an important role for G2/M tyrosine kinase, Wee1, in GIST cell survival. In vitro and in vivo studies revealed significant efficacy of MK-1775 (Wee1 inhibitor) in combination with avapritinib in KIT mutant and PDGFRA mutant GIST cell lines as well as notable efficacy of MK-1775 as a monotherapy in the engineered PDGFRA mutant line. These studies provide strong preclinical justification for the use of MK-1775 in GIST.
Collapse
Affiliation(s)
- Shuai Ye
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Dinara Sharipova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Marya Kozinova
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.,Pirogov Russian National Research Medical University, Moscow, Russia
| | - Lilli Klug
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Jimson D'Souza
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Martin G Belinsky
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Karthik Devarajan
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Yan Zhou
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Samuel Litwin
- Department of Biostatistics and Bioinformatics, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Michael C Heinrich
- Portland VA Health Care System and OHSU Knight Cancer Institute, Portland, Oregon, USA
| | - Ronald DeMatteo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margaret von Mehren
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | | | - Lori Rink
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
159
|
Verma S, Reddy R, Chandrashekhara SH, Shamim SA, Tripathy S, Rastogi S. Avapritinib in advanced gastrointestinal stromal tumor: case series and review of the literature from a tertiary care center in India. Future Sci OA 2021; 7:FSO676. [PMID: 33815822 PMCID: PMC8015663 DOI: 10.2144/fsoa-2020-0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The therapeutic landscape in advanced gastrointestinal stromal tumor has evolved. Avapritinib and ripretinib have now been approved by the US FDA for platelet-derived growth factor alpha D842V-mutant and refractory gastrointestinal stromal tumor patients, respectively. Here we report five patients who have been on avapritinib under an expanded access program. Response assessment was available for four patients - a partial response in two patients and stable disease in one, while one patient had progressive disease. Though preliminary results of the VOYAGER trial have shown less activity of avapritinib and no significant difference in progression-free survival when compared with regorafenib, avapritinib may show some clinical benefit in a subset of patients refractory to approved therapies. We share our experience of five cases, with clinical benefit in three. We believe avapritinib should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- Saurav Verma
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Rohit Reddy
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | | | - Shamim Ahmed Shamim
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarthak Tripathy
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sameer Rastogi
- Sarcoma Medical Oncology Clinic, Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
160
|
Lostes-Bardaji MJ, García-Illescas D, Valverde C, Serrano C. Ripretinib in gastrointestinal stromal tumor: the long-awaited step forward. Ther Adv Med Oncol 2021; 13:1758835920986498. [PMID: 33473249 PMCID: PMC7797597 DOI: 10.1177/1758835920986498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal stromal tumor (GIST) represents a paradigm for clinically effective targeted inhibition of oncogenic driver mutations in cancer. Five drugs are currently positioned as the standard of care for the treatment of advanced or metastatic GIST patients. This is the result of continuous, deep understanding of KIT and PDGFRA GIST oncogenic drivers as well as the resistance mechanisms associated to tumor progression. However, the complexity of GIST molecular heterogeneity is an evolving field, and critical questions remain open. Specifically, the clinical benefit of approved and/or investigated targeted agents is strikingly modest at advanced stages of the disease when compared with the activity of first-line imatinib. Ripretinib is a novel switch-pocket inhibitor with broad activity against KIT and PDGFRA oncoproteins and has recently demonstrated antitumoral activity across phase I to phase III clinical trials. Therefore, ripretinib has emerged as a new standard of care for advanced, multi-resistant GIST patients. Based on this data, the Food and Drug Administration has granted in 2020 the approval of ripretinib for GIST patients after progression to imatinib, sunitinib and regorafenib. This, in turn, constitutes a major breakthrough in sarcoma drug development, as there have not been new treatment approvals in GIST for nearly a decade. Herein, we provide a critical review on the preclinical and clinical development of ripretinib in GIST. Furthermore, we seek to assess the biological and clinical impact of this new standard of care on the course of the disease, aiming to provide an insight on future treatments strategies for the next coming years.
Collapse
Affiliation(s)
| | | | - Claudia Valverde
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, P/Vall d'Hebron 119-129, Barcelona, 08035, Spain
| |
Collapse
|
161
|
Gastrointestinal Stromal Tumors (GISTs): Novel Therapeutic Strategies with Immunotherapy and Small Molecules. Int J Mol Sci 2021; 22:ijms22020493. [PMID: 33419029 PMCID: PMC7825300 DOI: 10.3390/ijms22020493] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common types of malignant mesenchymal tumors in the gastrointestinal tract, with an estimated incidence of 1.5/100.000 per year and 1–2% of gastrointestinal neoplasms. About 75–80% of patients have mutations in the KIT gene in exons 9, 11, 13, 14, 17, and 5–10% of patients have mutations in the platelet-derived growth factor receptor a (PDGFRA) gene in exons 12, 14, 18. Moreover, 10–15% of patients have no mutations and are classified as wild type GIST. The treatment for metastatic or unresectable GISTs includes imatinib, sunitinib, and regorafenib. So far, GIST therapies have raised great expectations and offered patients a better quality of life, but increased pharmacological resistance to tyrosine kinase inhibitors is often observed. New treatment options have emerged, with ripretinib, avapritinib, and cabozantinib getting approvals for these tumors. Nowadays, immune checkpoint inhibitors form a new landscape in cancer therapeutics and have already shown remarkable responses in various tumors. Studies in melanoma, non-small-cell lung cancer, and renal cell carcinoma are very encouraging as these inhibitors have increased survival rates. The purpose of this review is to present alternative approaches for the treatment of the GIST patients, such as combinations of immunotherapy and novel inhibitors with traditional therapies (tyrosine kinase inhibitors).
Collapse
|
162
|
Kelly CM, Gutierrez Sainz L, Chi P. The management of metastatic GIST: current standard and investigational therapeutics. J Hematol Oncol 2021; 14:2. [PMID: 33402214 PMCID: PMC7786896 DOI: 10.1186/s13045-020-01026-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal stromal tumor (GIST) is the most common mesenchymal tumor of the gastrointestinal tract. The majority of GISTs harbor gain of function mutations in either KIT or PDGFRα. Determination of the GIST molecular subtype upon diagnosis is important because this information informs therapeutic decisions in both the adjuvant and metastatic setting. The management of GIST was revolutionized by the introduction of imatinib, a KIT inhibitor, which has become the standard first line treatment for metastatic GIST. However, despite a clinical benefit rate of 80%, the majority of patients with GIST experience disease progression after 2-3 years of imatinib therapy. Second and third line options include sunitinib and regorafenib, respectively, and yield low response rates and limited clinical benefit. There have been recent FDA approvals for GIST including ripretinib in the fourth-line setting and avapritinib for PDGFRA exon 18-mutant GIST. This article aims to review the optimal treatment approach for the management of patients with advanced GIST. It examines the standard treatment options available but also explores the novel treatment approaches in the setting of imatinib refractory GIST.
Collapse
Affiliation(s)
- Ciara M. Kelly
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, USA
| | - Laura Gutierrez Sainz
- grid.81821.320000 0000 8970 9163Department of Medical Oncology, Hospital Universitario La Paz, IdiPAZ, Madrid, Spain
| | - Ping Chi
- grid.51462.340000 0001 2171 9952Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, USA ,grid.5386.8000000041936877XDepartment of Medicine, Weill Cornell Medical College, New York, USA ,grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
163
|
Grunewald S, Klug LR, Mühlenberg T, Lategahn J, Falkenhorst J, Town A, Ehrt C, Wardelmann E, Hartmann W, Schildhaus HU, Treckmann J, Fletcher JA, Jung S, Czodrowski P, Miller S, Schmidt-Kittler O, Rauh D, Heinrich MC, Bauer S. Resistance to Avapritinib in PDGFRA-Driven GIST Is Caused by Secondary Mutations in the PDGFRA Kinase Domain. Cancer Discov 2021; 11:108-125. [PMID: 32972961 DOI: 10.1158/2159-8290.cd-20-0487] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/21/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Gastrointestinal stromal tumors (GIST) harboring activating mutations of PDGFRA respond to imatinib, with the notable exception of the most common mutation, D842V. Avapritinib is a novel, potent KIT/PDGFRA inhibitor with substantial clinical activity in patients with the D842V genotype. To date, only a minority of PDGFRA-mutant patients treated with avapritinib have developed secondary resistance. Tumor and plasma biopsies in 6 of 7 patients with PDGFRA primary mutations who progressed on avapritinib or imatinib had secondary resistance mutations within PDGFRA exons 13, 14, and 15 that interfere with avapritinib binding. Secondary PDGFRA mutations causing V658A, N659K, Y676C, and G680R substitutions were found in 2 or more patients each, representing recurrent mechanisms of PDGFRA GIST drug resistance. Notably, most PDGFRA-mutant GISTs refractory to avapritinib remain dependent on the PDGFRA oncogenic signal. Inhibitors that target PDGFRA protein stability or inhibition of PDGFRA-dependent signaling pathways may overcome avapritinib resistance. SIGNIFICANCE: Here, we provide the first description of avapritinib resistance mechanisms in PDGFRA-mutant GIST.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Susanne Grunewald
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Lillian R Klug
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Thomas Mühlenberg
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Lategahn
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Johanna Falkenhorst
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ajia Town
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Christiane Ehrt
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, University of Münster Medical Center, Münster, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, University of Münster Medical Center, Münster, Germany
| | | | - Juergen Treckmann
- Department of Visceral Surgery, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Sascha Jung
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Paul Czodrowski
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | | | | | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW), Dortmund, Germany
| | - Michael C Heinrich
- Portland VA Health Care System, Portland, Oregon; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon; and Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Duisburg-Essen, Medical School, Essen, Germany.
- DKTK partner site Essen, German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
164
|
Structural, physico-chemical landscapes, ground state and excited state properties in different solvent atmosphere of Avapritinib and its ultrasensitive detection using SERS/GERS on self-assembly formation with graphene quantum dots. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
165
|
Abstract
PURPOSE OF REVIEW Genetic aberrations resulting in tropomyosin receptor kinase (TRK) fusion proteins can drive oncogenesis and are postulated to occur in up to 1% of solid tumours. However, TRK fusions in adult sarcomas are rare and there is a significant challenge in identifying patients with sarcomas harbouring TRK fusions in the clinical setting. Despite a recent European Society of Medical Oncology consensus article regarding screening of tumours for TRK fusions, economical and practical limitations present a barrier to widespread screening of sarcomas. RECENT FINDINGS Larotrectinib and entrectinib are pan-TRK inhibitors which have both received FDA approval for the management of solid tumours harbouring NTRK fusions. Initial results of a number of clinical trials have demonstrated promising efficacy and safety data, including dramatic and durable responses in patients with sarcomas. As such, TRK inhibitors represent a promising treatment option in a small cohort of adult sarcoma patients, where currently treatment options are limited. The emergence of acquired resistance is a concern associated with TRK inhibitor therapy and a number of second-generation agents targeting TRK kinase mutations driving acquired resistance have entered early-phase clinical trials. SUMMARY With the growing appreciation of the implications of TRK fusions, this review will summarize the emerging clinical trial data of TRK inhibitors in sarcomas. Although in their infancy, clinical trial results are encouraging, and as further results and analyses are released, we will have a greater understanding of their impact on clinical practice and the management of patients with sarcomas.
Collapse
|
166
|
Italiano A. New insights into the clinical management of advanced gastrointestinal stromal tumors. Expert Opin Pharmacother 2020; 22:439-447. [PMID: 33307872 DOI: 10.1080/14656566.2020.1828346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION 90% of gastrointestinal stromal tumors (GISTs) harbor an activating mutation in the KIT or PDGFRα oncogene, and these are known to confer imatinib sensitivity. AREAS COVERED The author reviews the data regarding the current management of GIST, mechanisms of resistance to imatinib, and new drugs currently in clinical development and provides his unique perspectives on the subject matter. EXPERT OPINION Several studies have shown that the response to imatinib in GIST patients mainly depends on the mutational status of KIT or PDGFRα. Moreover, most, if not all, patients treated with imatinib for advanced GIST will develop a secondary progressive disease under the treatment. In most cases, such progressions are the result of acquired resistance due to the occurrence of secondary c-KIT mutations, especially in GISTs with primary exon 11 mutations. Sunitinib and regorafenib are inhibitors of multiple tyrosine kinases, including KIT, PDGFRα, PDGFRβ, and VEGFRs, and are approved for the management of imatinib- and imatinib/sunitinib-refractory GIST patients, respectively. Clearly, better knowledge of the molecular mechanisms underlying the resistance to imatinib as well as the development of a new class of broad-spectrum tyrosine kinase inhibitors such as avapritinib and ripretinib will provide new individualized therapeutic strategies for GIST patients.
Collapse
|
167
|
Mohammadi M, Gelderblom H. Systemic therapy of advanced/metastatic gastrointestinal stromal tumors: an update on progress beyond imatinib, sunitinib, and regorafenib. Expert Opin Investig Drugs 2020; 30:143-152. [PMID: 33252274 DOI: 10.1080/13543784.2021.1857363] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Introduction: Discovery of oncogenic mutations in the KIT and PDGFRA tyrosine kinase receptor was a crucial step for the development of tyrosine kinase inhibitors (TKIs). Since then, GIST became a model for the development of molecular-targeted therapy, which led to dramatically improved median overall survival of advanced GIST. Still, further progress is needed after third-line or for TKI resistant mutations. Areas covered: In this review, after a brief introduction on imatinib, sunitinib, and regorafenib, an overview of TKIs that was evaluated beyond these drugs is provided, with a main focus on the novel approved TKIs. Expert opinion: Combination therapies have thus far not fulfilled their promise in GIST, nor did immunotherapy. Increased understanding of GIST and advances in the development of molecular-targeted drugs led to the introduction of ripretinib and avapritinib. Furthermore, NTRK inhibitors became available for ultrarare NTRK fusions. Solutions for NF1 and BRAF mutated and SDH-deficient GIST are still to be awaited. This all underlines the need for adequate molecular profiling of high-risk GISTs before treatment is started. Possibly by using circulating tumor DNA in the future, targeting resistance mutations with specific drugs along the course of the disease would be easier, avoiding multiple tumor biopsies.
Collapse
Affiliation(s)
- Mahmoud Mohammadi
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center , Leiden, The Netherlands
| |
Collapse
|
168
|
Esteban-Villarrubia J, Soto-Castillo JJ, Pozas J, San Román-Gil M, Orejana-Martín I, Torres-Jiménez J, Carrato A, Alonso-Gordoa T, Molina-Cerrillo J. Tyrosine Kinase Receptors in Oncology. Int J Mol Sci 2020; 21:E8529. [PMID: 33198314 PMCID: PMC7696731 DOI: 10.3390/ijms21228529] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/07/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Tyrosine kinase receptors (TKR) comprise more than 60 molecules that play an essential role in the molecular pathways, leading to cell survival and differentiation. Consequently, genetic alterations of TKRs may lead to tumorigenesis and, therefore, cancer development. The discovery and improvement of tyrosine kinase inhibitors (TKI) against TKRs have entailed an important step in the knowledge-expansion of tumor physiopathology as well as an improvement in the cancer treatment based on molecular alterations over many tumor types. The purpose of this review is to provide a comprehensive review of the different families of TKRs and their role in the expansion of tumor cells and how TKIs can stop these pathways to tumorigenesis, in combination or not with other therapies. The increasing growth of this landscape is driving us to strengthen the development of precision oncology with clinical trials based on molecular-based therapy over a histology-based one, with promising preliminary results.
Collapse
Affiliation(s)
- Jorge Esteban-Villarrubia
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Juan José Soto-Castillo
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Pozas
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - María San Román-Gil
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Inmaculada Orejana-Martín
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Javier Torres-Jiménez
- Medical Oncology Department, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (J.E.-V.); (J.J.S.-C.); (J.P.); (M.S.R.-G.); (I.O.-M.); (J.T.-J.)
| | - Alfredo Carrato
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Ramón y Cajal Health Research Institute (IRYCIS), CIBERONC, Alcalá University, University Hospital Ramon y Cajal, 28034 Madrid, Spain; (A.C.); (J.M.-C.)
| |
Collapse
|
169
|
Grünewald TGP, Alonso M, Avnet S, Banito A, Burdach S, Cidre‐Aranaz F, Di Pompo G, Distel M, Dorado‐Garcia H, Garcia‐Castro J, González‐González L, Grigoriadis AE, Kasan M, Koelsche C, Krumbholz M, Lecanda F, Lemma S, Longo DL, Madrigal‐Esquivel C, Morales‐Molina Á, Musa J, Ohmura S, Ory B, Pereira‐Silva M, Perut F, Rodriguez R, Seeling C, Al Shaaili N, Shaabani S, Shiavone K, Sinha S, Tomazou EM, Trautmann M, Vela M, Versleijen‐Jonkers YMH, Visgauss J, Zalacain M, Schober SJ, Lissat A, English WR, Baldini N, Heymann D. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med 2020; 12:e11131. [PMID: 33047515 PMCID: PMC7645378 DOI: 10.15252/emmm.201911131] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.
Collapse
Affiliation(s)
- Thomas GP Grünewald
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Division of Translational Pediatric Sarcoma ResearchGerman Cancer Research Center (DKFZ), Hopp Children's Cancer Center (KiTZ), German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of PathologyHeidelberg University HospitalHeidelbergGermany
| | - Marta Alonso
- Program in Solid Tumors and BiomarkersFoundation for the Applied Medical ResearchUniversity of Navarra PamplonaPamplonaSpain
| | - Sofia Avnet
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Ana Banito
- Pediatric Soft Tissue Sarcoma Research GroupGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Stefan Burdach
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Florencia Cidre‐Aranaz
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | - Gemma Di Pompo
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | | | | | | | | | | | - Merve Kasan
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | | | - Fernando Lecanda
- Division of OncologyAdhesion and Metastasis LaboratoryCenter for Applied Medical ResearchUniversity of NavarraPamplonaSpain
| | - Silvia Lemma
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Dario L Longo
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | | | | | - Julian Musa
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
- Department of General, Visceral and Transplantation SurgeryUniversity of HeidelbergHeidelbergGermany
| | - Shunya Ohmura
- Max‐Eder Research Group for Pediatric Sarcoma BiologyInstitute of PathologyFaculty of MedicineLMU MunichMunichGermany
| | | | - Miguel Pereira‐Silva
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversity of CoimbraCoimbraPortugal
| | - Francesca Perut
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Rene Rodriguez
- Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain
- CIBER en oncología (CIBERONC)MadridSpain
| | | | - Nada Al Shaaili
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Shabnam Shaabani
- Department of Drug DesignUniversity of GroningenGroningenThe Netherlands
| | - Kristina Shiavone
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Snehadri Sinha
- Department of Oral and Maxillofacial DiseasesUniversity of HelsinkiHelsinkiFinland
| | | | - Marcel Trautmann
- Division of Translational PathologyGerhard‐Domagk‐Institute of PathologyMünster University HospitalMünsterGermany
| | - Maria Vela
- Hospital La Paz Institute for Health Research (IdiPAZ)MadridSpain
| | | | | | - Marta Zalacain
- Institute of Biostructures and Bioimaging (IBB)Italian National Research Council (CNR)TurinItaly
| | - Sebastian J Schober
- Department of Pediatrics and Children's Cancer Research Center (CCRC)Technische Universität MünchenMunichGermany
| | - Andrej Lissat
- University Children′s Hospital Zurich – Eleonoren FoundationKanton ZürichZürichSwitzerland
| | - William R English
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
| | - Nicola Baldini
- Orthopedic Pathophysiology and Regenerative Medicine UnitIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Dominique Heymann
- Department of Oncology and MetabolismUniversity of SheffieldSheffieldUK
- Université de NantesInstitut de Cancérologie de l'OuestTumor Heterogeneity and Precision MedicineSaint‐HerblainFrance
| |
Collapse
|
170
|
Non-Coding RNAs, a Novel Paradigm for the Management of Gastrointestinal Stromal Tumors. Int J Mol Sci 2020; 21:ijms21186975. [PMID: 32972022 PMCID: PMC7555847 DOI: 10.3390/ijms21186975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal malignancies found in the gastrointestinal tract. At a molecular level, most GISTs are characterized by gain-of-function mutations in V-Kit Hardy-Zuckerman 4 Feline Sarcoma Viral Oncogene Homolog (KIT) and Platelet Derived Growth Factor Receptor Alpha (PDGFRA), leading to constitutive activated signaling through these receptor tyrosine kinases, which drive GIST pathogenesis. In addition to surgery, treatment with the tyrosine kinase inhibitor imatinib forms the mainstay of GIST treatment, particularly in the advanced setting. Nevertheless, the majority of GISTs develop imatinib resistance. Biomarkers that indicate metastasis, drug resistance and disease progression early on could be of great clinical value. Likewise, novel treatment strategies that overcome resistance mechanisms are equally needed. Non-coding RNAs, particularly microRNAs, can be employed as diagnostic, prognostic or predictive biomarkers and have therapeutic potential. Here we review which non-coding RNAs are deregulated in GISTs, whether they can be linked to specific clinicopathological features and discuss how they can be used to improve the clinical management of GISTs.
Collapse
|
171
|
Nguyen V, Banerjee S, Sicklick JK. Moving gastrointestinal stromal tumours towards truly personalised precision therapy. Lancet Oncol 2020; 21:865-867. [PMID: 32615099 DOI: 10.1016/s1470-2045(20)30335-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Vi Nguyen
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, CA 92093-0987, USA
| | - Sudeep Banerjee
- Department of Surgery, University of California, Los Angeles, CA, USA
| | - Jason K Sicklick
- Division of Surgical Oncology, Department of Surgery, University of California, San Diego, CA 92093-0987, USA.
| |
Collapse
|
172
|
Serrano C, George S. Gastrointestinal Stromal Tumor: Challenges and Opportunities for a New Decade. Clin Cancer Res 2020; 26:5078-5085. [PMID: 32601076 DOI: 10.1158/1078-0432.ccr-20-1706] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/26/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Gastrointestinal stromal tumor (GIST) provides a paradigm to evaluate new molecularly targeted therapies and to identify structural and functional mechanisms for drug response and resistance. Drug development in GIST has successfully exploited the high reliance on KIT/PDGFRA oncogenic signaling as a therapeutic vulnerability. The recent arrival of avapritinib and ripretinib to the GIST arena has aimed to further improve on precision kinase inhibition and address tumor heterogeneity in imatinib-resistant GIST. The two main clinical challenges for the forthcoming years entail tumor eradication in patients with early-stage GIST, and maximization of tumor response in late-stage disease. To succeed, we will need to better understand the mechanisms behind adaptation to KIT inhibition and apoptosis evasion, tumor evolution after successive lines of treatment, and to explore clinically novel creative therapeutic strategies, with the overarching goal to tackle the intrinsic oncogenic complexity while minimizing adverse events.
Collapse
Affiliation(s)
- César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology, Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Suzanne George
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
173
|
Smrke A, Gennatas S, Huang P, Jones RL. Avapritinib in the treatment of PDGFRA exon 18 mutated gastrointestinal stromal tumors. Future Oncol 2020; 16:1639-1646. [PMID: 32517495 DOI: 10.2217/fon-2020-0348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gastrointestinal stromal tumors (GIST) can be molecularly classified based on different subtypes including mutations in KIT and PDGFRA. Patients with PDGFRA mutations are an important subgroup that commonly arise in the stomach and are associated with a more indolent disease course. Importantly, the most common PDGFRA molecular subtype, the D842V mutation in exon 18 of the gene which alters the activation loop, is imatinib insensitive in in vitro studies. Poor responses to imatinib have been seen clinically compared with PDGFRA exon 18 non-D842V-mutated GIST. Avapritinib (BLU-285) is a potent KIT and PDGFRA-specific tyrosine kinase inhibitor which has shown >90% response rates in patients with PDGFRA exon 18 D842V-mutated GIST. Results from the Phase I trial of avapritinib have indicated that this drug should be the standard of care for patients with PDGFRA exon 18 D842V-mutated GIST.
Collapse
Affiliation(s)
- Alannah Smrke
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London, SW36JJ, UK
| | - Spyridon Gennatas
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London, SW36JJ, UK
| | - Paul Huang
- Department of Pathology, Molecular & Systems Oncology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden Hospital, 203 Fulham Road, London, SW36JJ, UK.,Department of Pathology, Molecular & Systems Oncology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| |
Collapse
|
174
|
Abstract
OPINION STATEMENT The treatment of advanced GIST is rapidly evolving with the development of novel molecular compounds such as avapritinib and ripretinib, but also promising results have been achieved with cabozantinib in a phase II trial. The availability of over five lines of treatment for patients with advanced GIST is likely to completely shift the current second-line and third-line treatment options, and will also potentially enable a personalised approach to treatment. Imatinib will most likely remain as the first-line treatment of choice for the vast majority of GIST patients. However, for GIST patients with tumours harbouring a D842V mutation in PDGFRA exon 18, avapritinib has shown efficacy and will become first-line therapy for this molecular subgroup. For second- and third-line treatment, results are awaited of a number of clinical trials. However, second-line and further treatment could potentially be tailored depending on secondary mutations found in imatinib-resistant GISTs. As secondary resistance to TKIs remains the biggest challenge in the treatment of GIST and despite negative results with alternating regimens in phase II, combination treatments should be further evaluated to tackle this issue. Moreover, the favourable safety profiles observed with avapritinib and ripretinib suggest that combination treatments are feasible, for instance, combining two TKIs or a TKI with drugs targeting downstream signalling pathways, such as PI3K inhibitors or MEK inhibitors. Finally, in line with further personalisation of treatment in GIST, a multidisciplinary approach is essential, and local treatment options, such as RFA, resection in case of unifocal progression, and radiotherapy, should be considered.
Collapse
|