151
|
Mafi Golchin M, Heidari L, Ghaderian SMH, Akhavan-Niaki H. Osteoporosis: A Silent Disease with Complex Genetic Contribution. J Genet Genomics 2016; 43:49-61. [PMID: 26924688 DOI: 10.1016/j.jgg.2015.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/30/2015] [Accepted: 12/26/2015] [Indexed: 12/17/2022]
Abstract
Osteoporosis is the most common multifactorial metabolic bone disorder worldwide with a strong genetic component. In this review, the evidence for a genetic contribution to osteoporosis and related phenotypes is summarized alongside with methods used to identify osteoporosis susceptibility genes. The key biological pathways involved in the skeleton and bone development are discussed with a particular focus on master genes clustered in these pathways and their mode of action. Furthermore, the most studied single nucleotide polymorphisms (SNPs) analyzed for their importance as genetic markers of the disease are presented. New data generated by next-generation sequencing in conjunction with extensive meta-analyses should contribute to a better understanding of the genetic basis of osteoporosis and related phenotype variability. These data could be ultimately used for identifying at-risk patients for disease prevention by both controlling environmental factors and providing possible therapeutic targets.
Collapse
Affiliation(s)
- Maryam Mafi Golchin
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran
| | - Laleh Heidari
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Seyyed Mohammad Hossein Ghaderian
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences & Health Services, Tehran 1985717443, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran.
| |
Collapse
|
152
|
Leow SC, Poschmann J, Too PG, Yin J, Joseph R, McFarlane C, Dogra S, Shabbir A, Ingham PW, Prabhakar S, Leow MKS, Lee YS, Ng KL, Chong YS, Gluckman PD, Stünkel W. The transcription factor SOX6 contributes to the developmental origins of obesity by promoting adipogenesis. Development 2016; 143:950-61. [PMID: 26893351 DOI: 10.1242/dev.131573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
An association between impaired fetal growth and the postnatal development of obesity has been established. Here, by comparing adipocytes differentiated from mesenchymal stem cells (MSCs) taken from the umbilical cord and derived from normal and growth-restricted neonates, we identified the transcription factor SOX6 as highly expressed only in growth-restricted individuals. We found that SOX6 regulates adipogenesis in vertebrate species by activating adipogenic regulators including PPARγ, C/EBPα and MEST. We further show that SOX6 interacts with β-catenin in adipocytes, suggesting an inhibition of WNT/β-catenin signaling, thereby promoting adipogenesis. The upstream regulatory region of the MEST gene in MSCs from growth-restricted subjects harbors hypomethylated CpGs next to SOX6 binding motifs, and we found that SOX6 binding is impaired by adjacent CpG methylation. In summary, we report that SOX6 is a novel regulator of adipogenesis synergizing with epigenetic mechanisms.
Collapse
Affiliation(s)
- Shi Chi Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Jeremie Poschmann
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138672
| | - Peh Gek Too
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Juan Yin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore 636921
| | - Roy Joseph
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Craig McFarlane
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Shaillay Dogra
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Asim Shabbir
- Department of Surgery, National University Hospital, National University of Singapore, Singapore 119074
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore 636921 Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138673
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138672
| | - Melvin K S Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore 308433
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Kai Lyn Ng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Walter Stünkel
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| |
Collapse
|
153
|
Heme oxygenase-1 attenuates IL-1β induced alteration of anabolic and catabolic activities in intervertebral disc degeneration. Sci Rep 2016; 6:21190. [PMID: 26877238 PMCID: PMC4753421 DOI: 10.1038/srep21190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/19/2016] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is characterized by disordered extracellular matrix (ECM) metabolism, implicating subdued anabolism and enhanced catabolic activities in the nucleus pulposus (NP) of discs. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) are considered to be potent mediators of ECM breakdown. Hemeoxygenase-1 (HO-1) has been reported to participate in cellular anti-inflammatory processes. The purpose of this study was to investigate HO-1 modulation of ECM metabolism in human NP cells under IL-1β stimulation. Our results revealed that expression of HO-1 decreased considerably during IDD progression. Induction of HO-1 by cobalt protoporphyrin IX attenuated the inhibition of sulfate glycosaminoglycan and collagen type II (COL-II) synthesis and ameliorated the reduced expressions of aggrecan, COL-II, SOX-6 and SOX-9 mediated by IL-1β. Induction of HO-1 also reversed the effect of IL-1β on expression of the catabolic markers matrix metalloproteinases-1, 3, 9 and 13. This was combined with inhibition of the activation of mitogen-activated protein kinase signaling. These findings suggest that HO-1 might play a pivotal role in IDD, and that manipulating HO-1 expression might mitigate the impairment of ECM metabolism in NP, thus potentially offering a novel therapeutic approach to the treatment of IDD.
Collapse
|
154
|
Zhang M, Lu Q, Miller AH, Barnthouse NC, Wang J. Dynamic epigenetic mechanisms regulate age-dependent SOX9 expression in mouse articular cartilage. Int J Biochem Cell Biol 2016; 72:125-134. [PMID: 26806292 DOI: 10.1016/j.biocel.2016.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/16/2015] [Accepted: 01/18/2016] [Indexed: 12/22/2022]
Abstract
While the developmental role of the SOX9 transcription factor in chondrocyte differentiation and cartilage formation is well documented, age-dependent SOX9 expression in articular chondrocytes (ACs) and its regulatory mechanisms remain unclear. This study aimed to explore epigenetic regulatory mechanisms for age-related changes in SOX9 expression in ACs of mice, spanning from the developmental stage to 18 months of age. Sox9 mRNA and protein were highly expressed in ACs during joint development but significantly decreased after 2 months of age. Histopathological features of osteoarthritis were not observed in examined hip and shoulder joints by 18 months of age. Epigenetic studies revealed that DNA methylation levels were increased at specific CpG islands of the Sox9 gene at 6 and 12 months; treatment of cultured ACs from 6-month-old mice with 5-azacytidine (an inhibitor of DNA methylation) elevated the level of Sox9 expression in ACs by lowering DNA methylation levels in the Sox9 promoter region. Histone 3 lysine 4 dimethylation (H3K4me2, a histone modification for transcriptional activation) in the Sox9 promoter region was decreased with age, which was associated with the age-dependent decrease in SOX9 expression in ACs. Knockdown of lysine-specific demethylase-1 up-regulated SOX9 expression in ACs of adult mice through increased recruitment of H3K4me2 in the Sox9 promoter region. Our results suggest that SOX9 expression in mouse ACs is significantly decreased after the completion of joint development. These age-dependent changes in SOX9 expression are dynamically regulated by DNA methylation and histone methylation.
Collapse
Affiliation(s)
- Mingcai Zhang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Qinghua Lu
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Andrew H Miller
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Nicholas C Barnthouse
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - Jinxi Wang
- Harrington Laboratory for Molecular Orthopedics, Department of Orthopedic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, United States; Department of Biochemistry & Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
155
|
WEN W, CHEN X, CHEN D, YU B, LUO J, HUANG Z. Cloning and functional characterization of porcine Sox6. Turk J Biol 2016. [DOI: 10.3906/biy-1503-51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
156
|
Matsumoto Y, Sato S, Maeda T, Kishino M, Toyosawa S, Usami Y, Iwai SI, Nakazawa M, Yura Y, Ogawa Y. Transcription factors related to chondrogenesis in pleomorphic adenoma of the salivary gland: a mechanism of mesenchymal tissue formation. J Transl Med 2016; 96:16-24. [PMID: 26501866 DOI: 10.1038/labinvest.2015.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
In salivary gland pleomorphic adenoma, expression of extracellular matrix (ECM) substances indicates that tumor epithelial cells are becoming chondrogenic and will produce cartilage-like mesenchymal tissues. Sox9, the master transcription factor of chondrogenesis, is expressed in mouse salivary gland cells. To clarify the mechanism behind chondrogenesis in tumor epithelial cells, we examined the expression of transcription factors related to chondrogenesis in tumors and salivary glands. Reverse transcriptase-polymerase chain reaction (RT-PCR), quantitative real-time RT-PCR, and immunostaining were performed on pleomorphic adenoma tissues, salivary gland tissues, and human submandibular gland (HSG) cells. The mRNAs of essential transcription factors for chondrogenesis-Sox9, Sox6, and Sox5-were detected in both tumor and salivary gland tissues. The mRNAs of aggrecan and type II collagen-cartilage-specific ECM substances-were detected only in tumors. Sox9 and Sox6 proteins were colocalized in many epithelial cells in tumors and salivary glands. Tumor epithelial cells also possessed aggrecan protein and occasionally type II collagen protein. Moreover, mRNAs for transcription repressors of chondrogenesis δEF1 and AP-2α were detected in both tumors and salivary glands, whereas Twist1 mRNA was detected only in salivary glands and was at significantly low-to-undetectable levels in tumors. Twist1 protein was localized in the Sox9-expressing salivary gland cells. HSG cells expressed Sox9, Sox6, and Twist1, but not aggrecan or type II collagen, and thus were similar to salivary gland cells. Twist1 depletion by Twist1 siRNA led to the upregulation of aggrecan and type II collagen mRNA expression in HSG cells. In contrast, forced expression of Twist1, using Twist1 cDNA, resulted in the downregulation of both these genes. Taken together, these results indicate that salivary gland cells have a potential for chondrogenesis, and Twist1 depletion concomitant with neoplastic transformation, which would permit tumor epithelial cells to produce cartilage-like mesenchymal tissues in salivary gland pleomorphic adenoma.
Collapse
Affiliation(s)
- Yuka Matsumoto
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Sunao Sato
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takashi Maeda
- Department of Anatomy and Cell Biology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsunobu Kishino
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Clinical Laboratory, Osaka University Dental Hospital, Osaka, Japan
| | - So-ichi Iwai
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Mitsuhiro Nakazawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yuzo Ogawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral Health Sciences, Faculty of Nursing and Health Care, Baika Women's University, Osaka, Japan
| |
Collapse
|
157
|
Naito M, Vongsa S, Tsukune N, Ohashi A, Takahashi T. Promyelocytic leukemia zinc finger mediates glucocorticoid-induced cell cycle arrest in the chondroprogenitor cell line ATDC5. Mol Cell Endocrinol 2015; 417:114-23. [PMID: 26419928 DOI: 10.1016/j.mce.2015.09.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 12/21/2022]
Abstract
Glucocorticoids (GCs) affect the proliferation of growth plate chondrocytes. In this study, we investigated the role of the GC-inducible promyelocytic leukemia zinc finger (PLZF) gene in chondrocyte differentiation by using the chondrogenic cell line ATDC5. PLZF overexpression suppressed cell cycle progression (p < 0.01) and promoted differentiation into hypertrophic chondrocytes by inducing mRNA expression of alkaline phosphatase (p < 0.01), and the cyclin-dependent kinase (CDK) inhibitor p21 (p < 0.01). In contrast, PLZF knockdown impaired differentiation into hypertrophic chondrocytes and promoted cell cycle progression (p < 0.01). Treatment with the GC analogue dexamethasone (10(-6) M) suppressed cell cycle progression in ATDC5 cells. PLZF shRNA attenuated dexamethasone-induced cell cycle arrest (p < 0.01) by downregulating the mRNA expression of the CDK inhibitors p21 and p57 (p < 0.01). These results clearly indicated that PLZF promoted differentiation into hypertrophic chondrocytes and mediated dexamethasone-induced cell cycle arrest by regulating CDK inhibitors.
Collapse
Affiliation(s)
- Masako Naito
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Souksavanh Vongsa
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoya Tsukune
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akiko Ohashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
158
|
Green JD, Tollemar V, Dougherty M, Yan Z, Yin L, Ye J, Collier Z, Mohammed MK, Haydon RC, Luu HH, Kang R, Lee MJ, Ho SH, He TC, Shi LL, Athiviraham A. Multifaceted signaling regulators of chondrogenesis: Implications in cartilage regeneration and tissue engineering. Genes Dis 2015; 2:307-327. [PMID: 26835506 PMCID: PMC4730920 DOI: 10.1016/j.gendis.2015.09.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/16/2015] [Indexed: 01/08/2023] Open
Abstract
Defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity and avascular nature. Current surgical treatment options do not ensure consistent regeneration of hyaline cartilage in favor of fibrous tissue. Here, we review the current understanding of the most important biological regulators of chondrogenesis and their interactions, to provide insight into potential applications for cartilage tissue engineering. These include various signaling pathways, including: fibroblast growth factors (FGFs), transforming growth factor β (TGF-β)/bone morphogenic proteins (BMPs), Wnt/β-catenin, Hedgehog, Notch, hypoxia, and angiogenic signaling pathways. Transcriptional and epigenetic regulation of chondrogenesis will also be discussed. Advances in our understanding of these signaling pathways have led to promising advances in cartilage regeneration and tissue engineering.
Collapse
Affiliation(s)
- Jordan D. Green
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Viktor Tollemar
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Mark Dougherty
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zhengjian Yan
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Liangjun Yin
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jixing Ye
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Bioengineering, Chongqing University, Chongqing, China
| | - Zachary Collier
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Maryam K. Mohammed
- The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Richard Kang
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Aravind Athiviraham
- Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
159
|
Baroti T, Schillinger A, Wegner M, Stolt CC. Sox13 functionally complements the related Sox5 and Sox6 as important developmental modulators in mouse spinal cord oligodendrocytes. J Neurochem 2015; 136:316-28. [PMID: 26525805 DOI: 10.1111/jnc.13414] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 09/25/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
The role of transcription factor Sox13, which together with Sox5 and Sox6 belongs to the SoxD family, is only poorly characterized in central nervous system development. Therefore, we analysed whether Sox13 expression and function overlaps with or differs from that of its close relatives Sox5 and Sox6. In the developing mouse spinal cord, we found Sox13 predominantly expressed in neuroepithelial precursors, oligodendroglial and astroglial cells. The substantially overlapping expression with Sox5 and Sox6 in oligodendroglial cells prompted us to study potential roles during specification, lineage progression and differentiation of oligodendrocytes. In contrast to Sox5 and Sox6, Sox13 expression continues after differentiation and even increases in myelinating oligodendrocytes. Sox13 deletion did not interfere with oligodendroglial development, which was normal in Sox13-deficient mice. However, the premature differentiation of oligodendrocyte precursors triggered by loss of Sox6 was slightly more prominent in Sox6/Sox13 double-deficient mice. Sox13 can bind to the same sites in myelin gene promoters as Sox5 and Sox6 in vitro. Reporter gene assays furthermore reveal a similar antagonizing effect on Sox10-dependent transactivation of myelin gene promoters as previously shown for Sox5 and Sox6. This argues that Sox13 is functionally redundant with the other SoxD proteins and complements Sox5 and Sox6 in their role as important modulators of oligodendrocyte development. The transcription factor Sox13 is co-expressed with the related Sox5 and Sox6 in cells of the oligodendroglial lineage. By itself, it has little impact on oligodendrocyte development but supports Sox5 and Sox6 during the process as a functionally redundant transcription factor.
Collapse
Affiliation(s)
- Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Schillinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - C Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
160
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
161
|
Baroti T, Zimmermann Y, Schillinger A, Liu L, Lommes P, Wegner M, Stolt CC. Transcription factors Sox5 and Sox6 exert direct and indirect influences on oligodendroglial migration in spinal cord and forebrain. Glia 2015; 64:122-38. [DOI: 10.1002/glia.22919] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Yvonne Zimmermann
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Anja Schillinger
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Lina Liu
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Petra Lommes
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| | - C. Claus Stolt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg; Erlangen Germany
| |
Collapse
|
162
|
She ZY, Yang WX. SOX family transcription factors involved in diverse cellular events during development. Eur J Cell Biol 2015; 94:547-63. [PMID: 26340821 DOI: 10.1016/j.ejcb.2015.08.002] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 08/11/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022] Open
Abstract
In metazoa, SOX family transcription factors play many diverse roles. In vertebrate, they are well-known regulators of numerous developmental processes. Wide-ranging studies have demonstrated the co-expression of SOX proteins in various developing tissues and that they occur in an overlapping manner and show functional redundancy. In particular, studies focusing on the HMG box of SOX proteins have revealed that the HMG box regulates DNA-binding properties, and mediates both the nucleocytoplasmic shuttling of SOX proteins and their physical interactions with partner proteins. Posttranslational modifications are further implicated in the regulation of the transcriptional activities of SOX proteins. In this review, we discuss the underlying molecular mechanisms involved in the SOX-partner factor interactions and the functional modes of SOX-partner complexes during development. We particularly emphasize the representative roles of the SOX group proteins in major tissues during developmental and physiological processes.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, 866 Yu Hang Tang Road, Hangzhou 310058, China.
| |
Collapse
|
163
|
Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res 2015; 43:8183-203. [PMID: 26150426 PMCID: PMC4787819 DOI: 10.1093/nar/gkv688] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
SOX9 is a transcriptional activator required for chondrogenesis, and SOX5 and SOX6 are closely related DNA-binding proteins that critically enhance its function. We use here genome-wide approaches to gain novel insights into the full spectrum of the target genes and modes of action of this chondrogenic trio. Using the RCS cell line as a faithful model for proliferating/early prehypertrophic growth plate chondrocytes, we uncover that SOX6 and SOX9 bind thousands of genomic sites, frequently and most efficiently near each other. SOX9 recognizes pairs of inverted SOX motifs, whereas SOX6 favors pairs of tandem SOX motifs. The SOX proteins primarily target enhancers. While binding to a small fraction of typical enhancers, they bind multiple sites on almost all super-enhancers (SEs) present in RCS cells. These SEs are predominantly linked to cartilage-specific genes. The SOX proteins effectively work together to activate these SEs and are required for in vivo expression of their associated genes. These genes encode key regulatory factors, including the SOX trio proteins, and all essential cartilage extracellular matrix components. Chst11, Fgfr3, Runx2 and Runx3 are among many other newly identified SOX trio targets. SOX9 and SOX5/SOX6 thus cooperate genome-wide, primarily through SEs, to implement the growth plate chondrocyte differentiation program.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|
164
|
Nesbitt A, Bhoj EJ, McDonald Gibson K, Yu Z, Denenberg E, Sarmady M, Tischler T, Cao K, Dubbs H, Zackai EH, Santani A. Exome sequencing expands the mechanism of SOX5-associated intellectual disability: A case presentation with review of sox-related disorders. Am J Med Genet A 2015; 167A:2548-54. [PMID: 26111154 DOI: 10.1002/ajmg.a.37221] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 12/20/2022]
Abstract
The SOX5 haploinsufficiency syndrome is characterized by global developmental delay, intellectual disability, language and motor impairment, and distinct facial features. The smallest deletion encompassed only one gene, SOX5 (OMIM 604975), indicating that haploinsufficiency of SOX5 contributes to neuro developmental delay. Although multiple deletions of the SOX5 gene have been reported in patients, none are strictly intragenic point mutations. Here, we report the identification of a de novo loss of function variant in SOX5 identified through whole exome sequencing. The proband presented with moderate developmental delay, bilateral optic atrophy, mildly dysmorphic features, and scoliosis, which correlates with the previously-described SOX5-associated phenotype. These results broaden the diagnostic spectrum of SOX5-related intellectual disability. Furthermore it highlights the utility of exome sequencing in establishing an etiological basis in clinically and genetically heterogeneous conditions such as intellectual disability.
Collapse
Affiliation(s)
- Addie Nesbitt
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth J Bhoj
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kristin McDonald Gibson
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Zhenming Yu
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elizabeth Denenberg
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Mahdi Sarmady
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Tanya Tischler
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kajia Cao
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Holly Dubbs
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Elaine H Zackai
- Division of Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Avni Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Molecular Genetics Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
165
|
Dexamethasone inhibits chondrocyte differentiation by suppression of Wnt/β-catenin signaling in the chondrogenic cell line ATDC5. Histochem Cell Biol 2015; 144:261-72. [DOI: 10.1007/s00418-015-1334-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2015] [Indexed: 12/26/2022]
|
166
|
Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, Lefebvre V, Harfe BD, Stadler HS, Akiyama H, Tufa SF, Keene DR, Schweitzer R. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development 2015; 142:2431-41. [PMID: 26062940 DOI: 10.1242/dev.122374] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Alice H Huang
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Timothy J Riordan
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Jennifer L Weibel
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Spencer S Watson
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Fanxin Long
- Department of Orthopaedics, Washington University, St Louis, MO 63110, USA
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - H Scott Stadler
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Gifu University, Gifu City, 501-1193, Japan
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| |
Collapse
|
167
|
Daigle M, Roumaud P, Martin LJ. Expressions of Sox9, Sox5, and Sox13 transcription factors in mice testis during postnatal development. Mol Cell Biochem 2015; 407:209-21. [PMID: 26045173 DOI: 10.1007/s11010-015-2470-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 05/29/2015] [Indexed: 01/01/2023]
Abstract
SRY-related box (Sox) transcription factors are conserved among vertebrate species. These proteins regulate multiple processes including sex determination and testis differentiation of the male embryo. Although members of the Sox family have been identified in pre- and postnatal Sertoli cells, they have never been characterized in adult Leydig cells. The objectives of this research were to identify expressions of Sox9, Sox5, and Sox13 in mice Leydig cell cultures and to establish their expression profiles in postnatal mice testes at different developmental stages. Methods used include Western blots and qPCR of stimulated MA-10 cell cultures and whole mice testes. Sox9, Sox5, and Sox13 proteins were detected in MA-10 cells as well as whole mouse testis. Although Sox9, Sox5, and Sox13 mRNA levels from whole mice testes tended to increase according to postnatal development, these results were not significant. Sox members were also detected in whole mice testis by Western Blot. However, Sox9, Sox5, and Sox13 protein expressions remained relatively constant during postnatal development from postnatal (P) day 60 to P365. Being newly characterized in the mouse testis, Sox13 was mainly localized by immunofluorescence within the nuclei of cells from seminiferous tubules, possibly spermatocytes and Sertoli cells. In addition, Sox9, Sox5, and Sox13 proteins were characterized in the nuclei of MA-10 Leydig cell cultures. Their expressions and transcriptional activities remained unaffected by activators of the cAMP/PKA pathway. Thus, Sox9, Sox5, and Sox13 transcription factors are expressed in postnatal testis and may regulate multiple functions such as steroidogenesis and spermatogenesis.
Collapse
Affiliation(s)
- Mikella Daigle
- Department of Biology, Université de Moncton, 18, Avenue Antonine Maillet, Moncton, NB, E1A 3E9, Canada
| | | | | |
Collapse
|
168
|
Tsang KY, Tsang SW, Chan D, Cheah KSE. The chondrocytic journey in endochondral bone growth and skeletal dysplasia. ACTA ACUST UNITED AC 2015; 102:52-73. [PMID: 24677723 DOI: 10.1002/bdrc.21060] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/23/2014] [Indexed: 12/29/2022]
Abstract
The endochondral bones of the skeleton develop from a cartilage template and grow via a process involving a cascade of chondrocyte differentiation steps culminating in formation of a growth plate and the replacement of cartilage by bone. This process of endochondral ossification, driven by the generation of chondrocytes and their subsequent proliferation, differentiation, and production of extracellular matrix constitute a journey, deviation from which inevitably disrupts bone growth and development, and is the basis of human skeletal dysplasias with a wide range of phenotypic severity, from perinatal lethality to progressively deforming. This highly coordinated journey of chondrocyte specification and fate determination is controlled by a myriad of intrinsic and extrinsic factors. SOX9 is the master transcription factor that, in concert with varying partners along the way, directs the different phases of the journey from mesenchymal condensation, chondrogenesis, differentiation, proliferation, and maturation. Extracellular signals, including bone morphogenetic proteins, wingless-related MMTV integration site (WNT), fibroblast growth factor, Indian hedgehog, and parathyroid hormone-related peptide, are all indispensable for growth plate chondrocytes to align and organize into the appropriate columnar architecture and controls their maturation and transition to hypertrophy. Chondrocyte hypertrophy, marked by dramatic volume increase in phases, is controlled by transcription factors SOX9, Runt-related transcription factor, and FOXA2. Hypertrophic chondrocytes mediate the cartilage to bone transition and concomitantly face a live-or-die situation, a subject of much debate. We review recent insights into the coordination of the phases of the chondrocyte journey, and highlight the need for a systems level understanding of the regulatory networks that will facilitate the development of therapeutic approaches for skeletal dysplasia.
Collapse
Affiliation(s)
- Kwok Yeung Tsang
- Department of Biochemistry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | |
Collapse
|
169
|
Yao B, Wang Q, Liu CF, Bhattaram P, Li W, Mead TJ, Crish JF, Lefebvre V. The SOX9 upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers. Nucleic Acids Res 2015; 43:5394-408. [PMID: 25940622 PMCID: PMC4477657 DOI: 10.1093/nar/gkv426] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/17/2015] [Indexed: 01/18/2023] Open
Abstract
Two decades after the discovery that heterozygous mutations within and around SOX9 cause campomelic dysplasia, a generalized skeleton malformation syndrome, it is well established that SOX9 is a master transcription factor in chondrocytes. In contrast, the mechanisms whereby translocations in the –350/–50-kb region 5′ of SOX9 cause severe disease and whereby SOX9 expression is specified in chondrocytes remain scarcely known. We here screen this upstream region and uncover multiple enhancers that activate Sox9-promoter transgenes in the SOX9 expression domain. Three of them are primarily active in chondrocytes. E250 (located at –250 kb) confines its activity to condensed prechondrocytes, E195 mainly targets proliferating chondrocytes, and E84 is potent in all differentiated chondrocytes. E84 and E195 synergize with E70, previously shown to be active in most Sox9-expressing somatic tissues, including cartilage. While SOX9 protein powerfully activates E70, it does not control E250. It requires its SOX5/SOX6 chondrogenic partners to robustly activate E195 and additional factors to activate E84. Altogether, these results indicate that SOX9 expression in chondrocytes relies on widely spread transcriptional modules whose synergistic and overlapping activities are driven by SOX9, SOX5/SOX6 and other factors. They help elucidate mechanisms underlying campomelic dysplasia and will likely help uncover other disease mechanisms.
Collapse
Affiliation(s)
- Baojin Yao
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Qiuqing Wang
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Chia-Feng Liu
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Pallavi Bhattaram
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Wei Li
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Timothy J Mead
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - James F Crish
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular & Molecular Medicine, and Orthopaedic and Rheumatologic Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
170
|
Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Matsuguchi T. AMP-activated protein kinase (AMPK) activity negatively regulates chondrogenic differentiation. Bone 2015; 74:125-33. [PMID: 25497570 DOI: 10.1016/j.bone.2014.12.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022]
Abstract
Chondrocytes are derived from mesenchymal stem cells, and play an important role in cartilage formation. Sex determining region Y box (Sox) family transcription factors are essential for chondrogenic differentiation, whereas the intracellular signal pathways of Sox activation have not been clearly elucidated. AMP-activated protein kinase (AMPK) is a serine-threonine kinase generally regarded as a key regulator of cellular energy homeostasis. It is known that the catalytic alpha subunit of AMPK is activated by upstream AMPK kinases (AMPKKs) including liver kinase B1 (LKB1). We have previously reported that AMPK is a negative regulator of osteoblastic differentiation. Here, we have explored the role of AMPK in chondrogenic differentiation using in vitro culture models. The phosphorylation level of the catalytic AMPK alpha subunit significantly decreased during chondrogenic differentiation of primary chondrocyte precursors as well as ATDC-5, a well-characterized chondrogenic cell line. Treatment with metformin, an activator of AMPK, significantly reduced cartilage matrix formation and inhibited gene expression of sox6, sox9, col2a1 and aggrecan core protein (acp). Thus, chondrocyte differentiation is functionally associated with decreased AMPK activity.
Collapse
Affiliation(s)
- Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
171
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
172
|
Quintela I, Barros F, Lago-Leston R, Castro-Gago M, Carracedo A, Eiris J. A maternally inherited 16p13.11-p12.3 duplication concomitant with a de novoSOX5deletion in a male patient with global developmental delay, disruptive and obsessive behaviors and minor dysmorphic features. Am J Med Genet A 2015; 167:1315-22. [DOI: 10.1002/ajmg.a.36909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 11/14/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Ines Quintela
- Grupo de Medicina Xenomica - Universidad de Santiago de Compostela; Centro Nacional de Genotipado - Instituto Carlos III; Santiago de Compostela Spain
| | - Francisco Barros
- Grupo de Medicina Xenomica - USC, CIBERER; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
| | - Ramon Lago-Leston
- Grupo de Medicina Xenomica - USC; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
| | - Manuel Castro-Gago
- Departamento de Pediatria; Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica; Santiago de Compostela Spain
| | - Angel Carracedo
- Grupo de Medicina Xenomica - Universidad de Santiago de Compostela; Centro Nacional de Genotipado - Instituto Carlos III; Santiago de Compostela Spain
- Grupo de Medicina Xenomica - USC, CIBERER; Fundacion Publica Galega de Medicina Xenomica - SERGAS; Santiago de Compostela Spain
- Center of Excellence in Genomic Medicine Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Jesus Eiris
- Departamento de Pediatria; Hospital Clinico Universitario de Santiago de Compostela - Unidad de Neurologia Pediatrica; Santiago de Compostela Spain
| |
Collapse
|
173
|
Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S. Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliv Rev 2015; 84:107-22. [PMID: 25174307 DOI: 10.1016/j.addr.2014.08.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/01/2014] [Accepted: 08/20/2014] [Indexed: 01/09/2023]
Abstract
Cartilage tissue engineering has primarily focused on the generation of grafts to repair cartilage defects due to traumatic injury and disease. However engineered cartilage tissues have also a strong scientific value as advanced 3D culture models. Here we first describe key aspects of embryonic chondrogenesis and possible cell sources/culture systems for in vitro cartilage generation. We then review how a tissue engineering approach has been and could be further exploited to investigate different aspects of cartilage development and degeneration. The generated knowledge is expected to inform new cartilage regeneration strategies, beyond a classical tissue engineering paradigm.
Collapse
|
174
|
Abstract
Due to a blood supply shortage, articular cartilage has a limited capacity for self-healing once damaged. Articular chondrocytes, cartilage progenitor cells, embryonic stem cells, and mesenchymal stem cells are candidate cells for cartilage regeneration. Significant current attention is paid to improving chondrogenic differentiation capacity; unfortunately, the potential chondrogenic hypertrophy of differentiated cells is largely overlooked. Consequently, the engineered tissue is actually a transient cartilage rather than a permanent one. The development of hypertrophic cartilage ends with the onset of endochondral bone formation which has inferior mechanical properties. In this review, current strategies for inhibition of chondrogenic hypertrophy are comprehensively summarized; the impact of cell source options is discussed; and potential mechanisms underlying these strategies are also categorized. This paper aims to provide guidelines for the prevention of hypertrophy in the regeneration of cartilage tissue. This knowledge may also facilitate the retardation of osteophytes in the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Song Chen
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ruijun Cong
- Department of Orthopaedics, The 10th People's Hospital of Shanghai, Affiliated with Tongji University, Shanghai 200072, China
| | - HaiShan Wu
- Department of Joint Surgery, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai 200003, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506, USA
- Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506, USA
- Corresponding author. Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, One Medical Center Drive, Morgantown, WV 26506-9196, USA. Tel.: +1 304 293 1072; fax: +1 304 293 7070.
| |
Collapse
|
175
|
Abstract
Low back pain is the most common musculoskeletal problem and the single most common cause of disability, often attributed to degeneration of the intervertebral disc. Lack of effective treatment is directly related to our limited understanding of the pathways responsible for maintaining disc health. While transcriptional analysis has permitted initial insights into the biology of the intervertebral disc, complete proteomic characterization is required. We therefore employed liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) protein/peptide separation and mass spectrometric analyses to characterize the protein content of intervertebral discs from skeletally mature wild-type mice. A total of 1360 proteins were identified and categorized using PANTHER. Identified proteins were primarily intracellular/plasma membrane (35%), organelle (30%), macromolecular complex (10%), extracellular region (9%). Molecular function categorization resulted in three distinct categories: catalytic activity (33%), binding (molecule interactions) (29%), and structural activity (13%). To validate our list, we confirmed the presence of 14 of 20 previously identified IVD-associated markers, including matrix proteins, transcriptional regulators, and secreted proteins. Immunohistochemical analysis confirmed distinct localization patterns of select protein with the intervertebral disc. Characterization of the protein composition of healthy intervertebral disc tissue is an important first step in identifying cellular processes and pathways disrupted during aging or disease progression.
Collapse
|
176
|
Desai K, Spikings E, Zhang T. Short-Term Chilled Storage of Zebrafish (Danio rerio) Embryos in Cryoprotectant As an Alternative to Cryopreservation. Zebrafish 2015; 12:111-20. [DOI: 10.1089/zeb.2013.0961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Kunjan Desai
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, Georgia
- Institute of Biomedical Science and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Emma Spikings
- Institute of Biomedical Science and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Tiantian Zhang
- Institute of Biomedical Science and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
- School of Applied Sciences, Bournemouth University, Poole, United Kingdom
| |
Collapse
|
177
|
Jackson HE, Ono Y, Wang X, Elworthy S, Cunliffe VT, Ingham PW. The role of Sox6 in zebrafish muscle fiber type specification. Skelet Muscle 2015; 5:2. [PMID: 25671076 PMCID: PMC4323260 DOI: 10.1186/s13395-014-0026-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. Methods The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Results Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. Conclusions The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog. Electronic supplementary material The online version of this article (doi:10.1186/s13395-014-0026-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harriet E Jackson
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Yosuke Ono
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Xingang Wang
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Stone Elworthy
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Vincent T Cunliffe
- Bateson Centre, University of Sheffield, Western Bank, Sheffield, S10 2TN UK
| | - Philip W Ingham
- ASTAR Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Lee Kong Chian School of Medicine, Nanyang Technological University, Proteos, 61 Biopolis Drive, Singapore, 138673 Republic of Singapore ; Department of Medicine, Imperial College, South Kensington Campus, London, SW7 2AZ UK
| |
Collapse
|
178
|
|
179
|
Okada K, Fukai A, Mori D, Hosaka Y, Yano F, Chung UI, Kawaguchi H, Tanaka S, Ikeda T, Saito T. Identification of SCAN domain zinc-finger gene ZNF449 as a novel factor of chondrogenesis. PLoS One 2014; 9:e115169. [PMID: 25546433 PMCID: PMC4278888 DOI: 10.1371/journal.pone.0115169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/19/2014] [Indexed: 11/21/2022] Open
Abstract
Transcription factors SOX9, SOX5 and SOX6 are indispensable for generation and differentiation of chondrocytes. However, molecular mechanisms to induce the SOX genes are poorly understood. To address this issue, we previously determined the human embryonic enhancer of SOX6 by 5′RACE analysis, and identified the 46-bp core enhancer region (CES6). We initially performed yeast one-hybrid assay for screening other chondrogenic factors using CES6 as bait, and identified a zinc finger protein ZNF449. ZNF449 and Zfp449, a counterpart in mouse, transactivated enhancers or promoters of SOX6, SOX9 and COL2A1. Zfp449 was expressed in mesenchyme-derived tissues including cartilage, calvaria, muscle and tendon, as well as in other tissues including brain, lung and kidney. In limb cartilage of mouse embryo, Zfp449 protein was abundantly located in periarticular chondrocytes, and decreased in accordance with the differentiation. Zfp449 protein was also detected in articular cartilage of an adult mouse. During chondrogenic differentiation of human mesenchymal stem cells, ZNF449 was increased at an early stage, and its overexpression enhanced SOX9 and SOX6 only at the initial stage of the differentiation. We further generated Zfp449 knockout mice to examine the in vivo roles; however, no obvious abnormality was observed in skeletal development or articular cartilage homeostasis. ZNF449 may regulate chondrogenic differentiation from mesenchymal progenitor cells, although the underlying mechanisms are still unknown.
Collapse
Affiliation(s)
- Keita Okada
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Atsushi Fukai
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Sports Medicine and Orthopedics, Kanto Rosai Hospital, Japan Labour Health and Welfare Organization, Kanagawa, Japan
| | - Daisuke Mori
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoko Hosaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Orthopedic Surgery, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Fumiko Yano
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ung-il Chung
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kawaguchi
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Spine Center, Tokyo Shinjuku Medical Center, Japan Community Health care Organization, Tokyo, Japan
| | - Sakae Tanaka
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Ikeda
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Transfusion Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taku Saito
- Sensory & Motor System Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Bone and Cartilage Regenerative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
180
|
Constitutive L-Sox5 overexpression delays differentiation of ATDC5 cells into chondrocytes and correlates with reduced expression of differentiation markers. Mol Cell Biochem 2014; 401:21-6. [DOI: 10.1007/s11010-014-2288-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 11/26/2014] [Indexed: 12/26/2022]
|
181
|
Chen H, Ghori-Javed FY, Rashid H, Adhami MD, Serra R, Gutierrez SE, Javed A. Runx2 regulates endochondral ossification through control of chondrocyte proliferation and differentiation. J Bone Miner Res 2014; 29:2653-65. [PMID: 24862038 PMCID: PMC4535340 DOI: 10.1002/jbmr.2287] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/08/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
Abstract
Synthesis of cartilage by chondrocytes is an obligatory step for endochondral ossification. Global deletion of the Runx2 gene results in complete failure of the ossification process, but the underlying cellular and molecular mechanisms are not fully known. Here, we elucidated Runx2 regulatory control distinctive to chondrocyte and cartilage tissue by generating Runx2 exon 8 floxed mice. Deletion of Runx2 gene in chondrocytes caused failure of endochondral ossification and lethality at birth. The limbs of Runx2(ΔE8/ΔE8) mice were devoid of mature chondrocytes, vasculature, and marrow. We demonstrate that the C-terminus of Runx2 drives its biological activity. Importantly, nuclear import and DNA binding functions of Runx2 are insufficient for chondrogenesis. Molecular studies revealed that despite normal levels of Sox9 and PTHrP, chondrocyte differentiation and cartilage growth are disrupted in Runx2(ΔE8/ΔE8) mice. Loss of Runx2 in chondrocytes also impaired osteoprotegerin-receptor activator of NF-κB ligand (OPG-RANKL) signaling and chondroclast development. Dwarfism observed in Runx2 mutants was associated with the near absence of proliferative zone in the growth plates. Finally, we show Runx2 directly regulates a unique set of cell cycle genes, Gpr132, Sfn, c-Myb, and Cyclin A1, to control proliferative capacity of chondrocyte. Thus, Runx2 is obligatory for both proliferation and differentiation of chondrocytes.
Collapse
Affiliation(s)
- Haiyan Chen
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Quiroga AC, Stolt CC, Diez del Corral R, Dimitrov S, Pérez-Alcalá S, Sock E, Barbas JA, Wegner M, Morales AV. Sox5 controls dorsal progenitor and interneuron specification in the spinal cord. Dev Neurobiol 2014; 75:522-38. [PMID: 25363628 DOI: 10.1002/dneu.22240] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 11/08/2022]
Abstract
The basic organization of somatosensory circuits in the spinal cord is already setup during the initial patterning of the dorsal neural tube. Extrinsic signals, such as Wnt and TGF-β pathways, activate combinatorial codes of transcription factors that are responsible for generating a pattern of discrete domains of dorsal progenitors (dp). These progenitors will give rise to distinct dorsal interneurons (dI). The Wnt/ βcatenin signaling pathway controls specification of dp/dI1-3 progenitors and interneurons. According to the current model in the field, Wnt/βcatenin activity seems to act in a graded fashion in the spinal cord, as different relative levels determine the identity of adjacent progenitors. However, it is not clear how this activity gradient is controlled and how the identities of dI1-3 are differentially regulated by Wnt signalling. We have determined that two SoxD transcription factors, Sox5 and Sox6, are expressed in restricted domains of dorsal progenitors in the neural tube. Using gain- and loss-of function approaches in chicken embryos, we have established that Sox5 controls cell fate specification of dp2 and dp3 progenitors and, as a result, controls the correct number of the corresponding dorsal interneurons (dI2 and dI3). Furthermore, Sox5 exerts its function by restricting dorsally Wnt signaling activity via direct transcriptional induction of the negative Wnt pathway regulator Axin2. By that way, Sox5 acts as a Wnt pathway modulator that contributes to sharpen the dorsal gradient of Wnt/βcatenin activity to control the distinction of two functionally distinct types of interneurons, dI2 and dI3 involved in the somatosensory relay.
Collapse
Affiliation(s)
- Alejandra C Quiroga
- Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, CSIC, Madrid, 28002, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Sox5 Is a DNA-binding cofactor for BMP R-Smads that directs target specificity during patterning of the early ectoderm. Dev Cell 2014; 31:374-382. [PMID: 25453832 DOI: 10.1016/j.devcel.2014.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/16/2014] [Accepted: 10/02/2014] [Indexed: 11/21/2022]
Abstract
The SoxD factor, Sox5, is expressed in ectodermal cells at times and places where BMP signaling is active, including the cells of the animal hemisphere at blastula stages and the neural plate border and neural crest at neurula stages. Sox5 is required for proper ectoderm development, and deficient embryos display patterning defects characteristic of perturbations of BMP signaling, including loss of neural crest and epidermis and expansion of the neural plate. We show that Sox5 is essential for activation of BMP target genes in embryos and explants, that it physically interacts with BMP R-Smads, and that it is essential for recruitment of Smad1/4 to BMP regulatory elements. Our findings identify Sox5 as the long-sought DNA-binding partner for BMP R-Smads essential to plasticity and pattern in the early ectoderm.
Collapse
|
184
|
Edea Z, Kim KS. A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2014; 56:23. [PMID: 26290712 PMCID: PMC4540274 DOI: 10.1186/2055-0391-56-23] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/26/2014] [Indexed: 11/11/2022]
Abstract
Background Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome–wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the FST approach. Results In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation (FST ≥0.490). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response ( HCST and RYR1). Conclusions Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations. Electronic supplementary material The online version of this article (doi:10.1186/2055-0391-56-23) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zewdu Edea
- Department of Animal Science, Chungbuk National University, Cheongju, 361-763 Korea
| | - Kwan-Suk Kim
- Department of Animal Science, Chungbuk National University, Cheongju, 361-763 Korea
| |
Collapse
|
185
|
Mazor M, Lespessailles E, Coursier R, Daniellou R, Best TM, Toumi H. Mesenchymal stem-cell potential in cartilage repair: an update. J Cell Mol Med 2014; 18:2340-50. [PMID: 25353372 PMCID: PMC4302639 DOI: 10.1111/jcmm.12378] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/27/2014] [Indexed: 01/05/2023] Open
Abstract
Articular cartilage damage and subsequent degeneration are a frequent occurrence in synovial joints. Treatment of these lesions is a challenge because this tissue is incapable of quality repair and/or regeneration to its native state. Non-operative treatments endeavour to control symptoms and include anti-inflammatory medications, viscosupplementation, bracing, orthotics and activity modification. Classical surgical techniques for articular cartilage lesions are frequently insufficient in restoring normal anatomy and function and in many cases, it has not been possible to achieve the desired results. Consequently, researchers and clinicians are focusing on alternative methods for cartilage preservation and repair. Recently, cell-based therapy has become a key focus of tissue engineering research to achieve functional replacement of articular cartilage. The present manuscript is a brief review of stem cells and their potential in the treatment of early OA (i.e. articular cartilage pathology) and recent progress in the field.
Collapse
Affiliation(s)
- M Mazor
- IPROS, CHRO, EA4708 Orleans University, Orleans, France
| | | | | | | | | | | |
Collapse
|
186
|
Okada M, Ikegawa S, Morioka M, Yamashita A, Saito A, Sawai H, Murotsuki J, Ohashi H, Okamoto T, Nishimura G, Imaizumi K, Tsumaki N. Modeling type II collagenopathy skeletal dysplasia by directed conversion and induced pluripotent stem cells. Hum Mol Genet 2014; 24:299-313. [PMID: 25187577 DOI: 10.1093/hmg/ddu444] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type II collagen is a major component of cartilage. Heterozygous mutations in the type II collagen gene (COL2A1) result in a group of skeletal dysplasias known as Type II collagenopathy (COL2pathy). The understanding of COL2pathy is limited by difficulties in obtaining live chondrocytes. In the present study, we converted COL2pathy patients' fibroblasts directly into induced chondrogenic (iChon) cells. The COL2pathy-iChon cells showed suppressed expression of COL2A1 and significant apoptosis. A distended endoplasmic reticulum (ER) was detected, thus suggesting the adaptation of gene expression and cell death caused by excess ER stress. Chondrogenic supplementation adversely affected the chondrogenesis due to forced elevation of COL2A1 expression, suggesting that the application of chondrogenic drugs would worsen the disease condition. The application of a chemical chaperone increased the secretion of type II collagen, and partially rescued COL2pathy-iChon cells from apoptosis, suggesting that molecular chaperons serve as therapeutic drug candidates. We next generated induced pluripotent stem cells from COL2pathy fibroblasts. Chondrogenically differentiated COL2pathy-iPS cells showed apoptosis and increased expression of ER stress-markers. Finally, we generated teratomas by transplanting COL2pathy iPS cells into immunodeficient mice. The cartilage in the teratomas showed accumulation of type II collagen within cells, a distended ER, and sparse matrix, recapitulating the patient's cartilage. These COL2pathy models will be useful for pathophysiological studies and drug screening.
Collapse
Affiliation(s)
- Minoru Okada
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Shiro Ikegawa
- Laboratory of Bone and Joint Diseases, Center for Integrated Medicinal Sciences, RIKEN, Japan
| | - Miho Morioka
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Akihiro Yamashita
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan
| | - Atsushi Saito
- Department of Biochemistry, Graduate School of Biomedical & Health Sciences, University of Hiroshima, Japan
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo College of Medicine, Japan
| | - Jun Murotsuki
- Maternal and Fetal Medicine, Miyagi Children's Hospital, Tohoku University School of Medicine, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children's Medical Center, Japan
| | - Toshio Okamoto
- Department of Pediatrics, Asahikawa Medical University, Japan
| | - Gen Nishimura
- Department of Pediatric Imaging, Tokyo Metropolitan Children's Medical Center, Japan and
| | - Kazunori Imaizumi
- Department of Biochemistry, Graduate School of Biomedical & Health Sciences, University of Hiroshima, Japan
| | - Noriyuki Tsumaki
- Cell Induction and Regulation Field, Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Japan Japan Science and Technology Agency, CREST, Tokyo, Japan
| |
Collapse
|
187
|
Kolek MJ, Edwards TL, Muhammad R, Balouch A, Shoemaker MB, Blair MA, Kor KC, Takahashi A, Kubo M, Roden DM, Tanaka T, Darbar D. A genome-wide association study to identify genomic modulators of rate control therapy in patients with atrial fibrillation. Am J Cardiol 2014; 114:593-600. [PMID: 25015694 DOI: 10.1016/j.amjcard.2014.05.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/13/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
For many patients with atrial fibrillation, ventricular rate control with atrioventricular (AV) nodal blockers is considered first-line therapy, although response to treatment is highly variable. Using an extreme phenotype of failure of rate control necessitating AV nodal ablation and pacemaker implantation, we conducted a genome-wide association study (GWAS) to identify genomic modulators of rate control therapy. Cases included 95 patients who failed rate control therapy. Controls (n = 190) achieved adequate rate control therapy with ≤2 AV nodal blockers using a conventional clinical definition. Genotyping was performed on the Illumina 610-Quad platform, and results were imputed to the 1000 Genomes reference haplotypes. A total of 554,041 single-nucleotide polymorphisms (SNPs) met criteria for minor allele frequency (>0.01), call rate (>95%), and quality control, and 6,055,224 SNPs were available after imputation. No SNP reached the canonical threshold for significance for GWAS of p <5 × 10(-8). Sixty-three SNPs with p <10(-5) at 6 genomic loci were genotyped in a validation cohort of 130 cases and 157 controls. These included 6q24.3 (near SAMD5/SASH1, p = 9.36 × 10(-8)), 4q12 (IGFBP7, p = 1.75 × 10(-7)), 6q22.33 (C6orf174, p = 4.86 × 10(-7)), 3p21.31 (CDCP1, p = 1.18 × 10(-6)), 12p12.1 (SOX5, p = 1.62 × 10(-6)), and 7p11 (LANCL2, p = 6.51 × 10(-6)). However, none of these were significant in the replication cohort or in a meta-analysis of both cohorts. In conclusion, we identified several potentially important genomic modulators of rate control therapy in atrial fibrillation, particularly SOX5, which was previously associated with heart rate at rest and PR interval. However, these failed to reach genome-wide significance.
Collapse
|
188
|
Panman L, Papathanou M, Laguna A, Oosterveen T, Volakakis N, Acampora D, Kurtsdotter I, Yoshitake T, Kehr J, Joodmardi E, Muhr J, Simeone A, Ericson J, Perlmann T. Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 2014; 8:1018-25. [PMID: 25127144 DOI: 10.1016/j.celrep.2014.07.016] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/24/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022] Open
Abstract
Distinct midbrain dopamine (mDA) neuron subtypes are found in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA), but it is mainly SNc neurons that degenerate in Parkinson's disease. Interest in how mDA neurons develop has been stimulated by the potential use of stem cells in therapy or disease modeling. However, very little is known about how specific dopaminergic subtypes are generated. Here, we show that the expression profiles of the transcription factors Sox6, Otx2, and Nolz1 define subpopulations of mDA neurons already at the neural progenitor cell stage. After cell-cycle exit, Sox6 selectively localizes to SNc neurons, while Otx2 and Nolz1 are expressed in a subset of VTA neurons. Importantly, Sox6 ablation leads to decreased expression of SNc markers and a corresponding increase in VTA markers, while Otx2 ablation has the opposite effect. Moreover, deletion of Sox6 affects striatal innervation and dopamine levels. We also find reduced Sox6 levels in Parkinson's disease patients. These findings identify Sox6 as a determinant of SNc neuron development and should facilitate the engineering of relevant mDA neurons for cell therapy and disease modeling.
Collapse
Affiliation(s)
- Lia Panman
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; MRC Toxicology Unit, Leicester LE1 9HN, UK.
| | | | - Ariadna Laguna
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | | | | | - Dario Acampora
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Idha Kurtsdotter
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Takashi Yoshitake
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Jan Kehr
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Eliza Joodmardi
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden
| | - Jonas Muhr
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Antonio Simeone
- Institute of Genetics and Biophysics "A. Buzzati-Traverso," CNR, 80131 Naples, Italy; IRCCS Neuromed, Pozzilli IS 86077, Italy
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Thomas Perlmann
- Ludwig Institute for Cancer Research, 17177 Stockholm, Sweden; Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
189
|
Tanaka S, Suto A, Iwamoto T, Kashiwakuma D, Kagami SI, Suzuki K, Takatori H, Tamachi T, Hirose K, Onodera A, Suzuki J, Ohara O, Yamashita M, Nakayama T, Nakajima H. Sox5 and c-Maf cooperatively induce Th17 cell differentiation via RORγt induction as downstream targets of Stat3. ACTA ACUST UNITED AC 2014; 211:1857-74. [PMID: 25073789 PMCID: PMC4144730 DOI: 10.1084/jem.20130791] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A novel isoform of Sox5, Sox5t, and c-Maf activate RORγt to induce Th17 cells. Sox5−/− mice exhibit impaired Th17 differentiation and are thus resistant to EAE and delayed-type hypersensitivity. Stat3 signaling is essential for the induction of RORγt and subsequent Th17 cell differentiation. However, the downstream targets of Stat3 for RORγt expression remain largely unknown. We show here that a novel isoform of Sox5, named Sox5t, is induced in Th17 cells in a Stat3-dependent manner. In vivo, T cell–specific Sox5-deficient mice exhibit impaired Th17 cell differentiation and are resistant to experimental autoimmune encephalomyelitis and delayed-type hypersensitivity. Retrovirus-mediated induction of Sox5 together with c-Maf induces Th17 cell differentiation even in Stat3-deficient CD4+ T cells but not in RORγt-deficient CD4+ T cells, indicating that Sox5 and c-Maf induce Th17 cell differentiation as downstream effectors of Stat3 and as upstream inducers of RORγt. Moreover, Sox5 physically associates with c-Maf via the HMG domain of Sox5 and DNA-binding domain of c-Maf, and Sox5 together with c-Maf directly activates the promoter of RORγt in CD4+ T cells. Collectively, our results suggest that Sox5 and c-Maf cooperatively induce Th17 cell differentiation via the induction of RORγt as downstream targets of Stat3.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Taro Iwamoto
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Daisuke Kashiwakuma
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Shin-Ichiro Kagami
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Atsushi Onodera
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Junpei Suzuki
- Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Osamu Ohara
- Department of Human Genome Research, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Masakatsu Yamashita
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan Department of Immunology and Host Defenses, Ehime University Graduate School of Medicine, Ehime 791-0295, Japan
| | - Toshinori Nakayama
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan Core Research for Evolutional Science and Technology (CREST), Japan science and Technology Agency, Tokyo 102-0076, Japan
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology and Department of Immunology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
190
|
High levels of SOX5 decrease proliferative capacity of human B cells, but permit plasmablast differentiation. PLoS One 2014; 9:e100328. [PMID: 24945754 PMCID: PMC4063782 DOI: 10.1371/journal.pone.0100328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting the differentiation of B cells during the germinal center response.
Collapse
|
191
|
Egawa S, Miura S, Yokoyama H, Endo T, Tamura K. Growth and differentiation of a long bone in limb development, repair and regeneration. Dev Growth Differ 2014; 56:410-24. [PMID: 24860986 DOI: 10.1111/dgd.12136] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/27/2014] [Indexed: 12/25/2022]
Abstract
Repair from traumatic bone fracture is a complex process that includes mechanisms of bone development and bone homeostasis. Thus, elucidation of the cellular/molecular basis of bone formation in skeletal development would provide valuable information on fracture repair and would lead to successful skeletal regeneration after limb amputation, which never occurs in mammals. Elucidation of the basis of epimorphic limb regeneration in amphibians would also provide insights into skeletal regeneration in mammals, since the epimorphic regeneration enables an amputated limb to re-develop the three-dimensional structure of bones. In the processes of bone development, repair and regeneration, growth of the bone is achieved through several events including not only cell proliferation but also aggregation of mesenchymal cells, enlargement of cells, deposition and accumulation of extracellular matrix, and bone remodeling.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | | | | | | | | |
Collapse
|
192
|
Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T, Cui M, Cui X, Imaizumi K. Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem 2014; 289:13810-20. [PMID: 24711445 PMCID: PMC4022855 DOI: 10.1074/jbc.m113.543322] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The endoplasmic reticulum (ER) stress transducer, box B-binding factor 2 human homolog on chromosome 7 (BBF2H7), is a basic leucine zipper (bZIP) transmembrane transcription factor. This molecule is activated in response to ER stress during chondrogenesis. The activated BBF2H7 accelerates cartilage matrix protein secretion through the up-regulation of Sec23a, which is responsible for protein transport from the ER to the Golgi apparatus and is a target of BBF2H7. In the present study, we elucidated the mechanisms of the transcriptional activation of Bbf2h7 in chondrocytes. The transcription of Bbf2h7 is regulated by Sex determining region Y-related high-mobility group box 9 (Sox9), a critical factor for chondrocyte differentiation that facilitates the expression of one of the major cartilage matrix proteins Type II collagen (Col2), through binding to the Sox DNA-binding motif in the Bbf2h7 promoter. BBF2H7 is activated as a transcription factor in response to physiological ER stress caused by abundant synthesis of cartilage matrix proteins, and consequently regulates the secretion of cartilage matrix proteins. Taken together, our findings demonstrate novel regulatory mechanisms of Sox9 for controlling the secretion of cartilage matrix proteins through the activation of BBF2H7-Sec23a signaling during chondrogenesis.
Collapse
Affiliation(s)
- Kenta Hino
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Atsushi Saito
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Miori Kido
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Soshi Kanemoto
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Rie Asada
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Tomoko Takai
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Min Cui
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Xiang Cui
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazunori Imaizumi
- From the Department of Biochemistry, Institute of Biomedical & Health Sciences, University of Hiroshima, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| |
Collapse
|
193
|
Cartilage tissue engineering: molecular control of chondrocyte differentiation for proper cartilage matrix reconstruction. Biochim Biophys Acta Gen Subj 2014; 1840:2414-40. [PMID: 24608030 DOI: 10.1016/j.bbagen.2014.02.030] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/06/2014] [Accepted: 02/26/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Articular cartilage defects are a veritable therapeutic problem because therapeutic options are very scarce. Due to the poor self-regeneration capacity of cartilage, minor cartilage defects often lead to osteoarthritis. Several surgical strategies have been developed to repair damaged cartilage. Autologous chondrocyte implantation (ACI) gives encouraging results, but this cell-based therapy involves a step of chondrocyte expansion in a monolayer, which results in the loss in the differentiated phenotype. Thus, despite improvement in the quality of life for patients, reconstructed cartilage is in fact fibrocartilage. Successful ACI, according to the particular physiology of chondrocytes in vitro, requires active and phenotypically stabilized chondrocytes. SCOPE OF REVIEW This review describes the unique physiology of cartilage, with the factors involved in its formation, stabilization and degradation. Then, we focus on some of the most recent advances in cell therapy and tissue engineering that open up interesting perspectives for maintaining or obtaining the chondrogenic character of cells in order to treat cartilage lesions. MAJOR CONCLUSIONS Current research involves the use of chondrocytes or progenitor stem cells, associated with "smart" biomaterials and growth factors. Other influential factors, such as cell sources, oxygen pressure and mechanical strain are considered, as are recent developments in gene therapy to control the chondrocyte differentiation/dedifferentiation process. GENERAL SIGNIFICANCE This review provides new information on the mechanisms regulating the state of differentiation of chondrocytes and the chondrogenesis of mesenchymal stem cells that will lead to the development of new restorative cell therapy approaches in humans. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
|
194
|
Aza-Carmona M, Barca-Tierno V, Hisado-Oliva A, Belinchón A, Gorbenko-del Blanco D, Rodriguez JI, Benito-Sanz S, Campos-Barros A, Heath KE. NPPB and ACAN, two novel SHOX2 transcription targets implicated in skeletal development. PLoS One 2014; 9:e83104. [PMID: 24421874 PMCID: PMC3885427 DOI: 10.1371/journal.pone.0083104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022] Open
Abstract
SHOX and SHOX2 transcription factors are highly homologous, with even identical homeodomains. Genetic alterations in SHOX result in two skeletal dysplasias; Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), while no human genetic disease has been linked to date with SHOX2. SHOX2 is, though, involved in skeletal development, as shown by different knockout mice models. Due to the high homology between SHOX and SHOX2, and their functional redundancy during heart development, we postulated that SHOX2 might have the same transcriptional targets and cofactors as SHOX in limb development. We selected two SHOX transcription targets regulated by different mechanisms: 1) the natriuretic peptide precursor B gene (NPPB) involved in the endochondral ossification signalling and directly activated by SHOX; and 2) Aggrecan (ACAN), a major component of cartilage extracellular matrix, regulated by the cooperation of SHOX with the SOX trio (SOX5, SOX6 and SOX9) via the protein interaction between SOX5/SOX6 and SHOX. Using the luciferase assay we have demonstrated that SHOX2, like SHOX, regulates NPPB directly whilst activates ACAN via its cooperation with the SOX trio. Subsequently, we have identified and characterized the protein domains implicated in the SHOX2 dimerization and also its protein interaction with SOX5/SOX6 and SHOX using the yeast-two hybrid and co-immunoprecipitation assays. Immunohistochemistry of human fetal growth plates from different time points demonstrated that SHOX2 is coexpressed with SHOX and the members of the SOX trio. Despite these findings, no mutation was identified in SHOX2 in a cohort of 83 LWD patients with no known molecular defect, suggesting that SHOX2 alterations do not cause LWD. In conclusion, our work has identified the first cofactors and two new transcription targets of SHOX2 in limb development, and we hypothesize a time- and tissue-specific functional redundancy between SHOX and SHOX2.
Collapse
Affiliation(s)
- Miriam Aza-Carmona
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Veronica Barca-Tierno
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alfonso Hisado-Oliva
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Alberta Belinchón
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Darya Gorbenko-del Blanco
- Dept. Celular Biology, Immunology & Neurosciences, Facultad de Medicina, Universidad de Barcelona, Barcelona, Spain
| | | | - Sara Benito-Sanz
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Angel Campos-Barros
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
| | - Karen E. Heath
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Enfermedades Raras (CIBERER), Instituto Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
195
|
|
196
|
Abstract
High-density micromass cultures of embryonic mesenchymal cells have proved to be an invaluable model for studying the entire chondrogenic program, from precartilaginous condensations through to chondrocyte hypertrophy. This culture model also provides a powerful system in which to explore the function of various factors in the commitment and differentiation of mesenchymal cells to the chondrogenic lineage. In this regard, micromass cultures provide a consistent and robust model for investigating the effects of genetic manipulations on skeletal phenotypes and for delineating their molecular basis. In this methods chapter, the derivation and use of micromass cultures from murine limb buds are described, but these techniques are also applicable to other organisms and mesenchymal cell sources.
Collapse
|
197
|
MORI Y, MORI D, CHUNG UI, TANAKA S, HEIERHORST J, BUCHOU T, BAUDIER J, KAWAGUCHI H, SAITO T. S100A1 and S100B are dispensable for endochondral ossification during skeletal development. Biomed Res 2014; 35:243-50. [DOI: 10.2220/biomedres.35.243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
198
|
Park SE, Oh KW, Lee WY, Baek KH, Yoon KH, Son HY, Lee WC, Kang MI. Association of osteoporosis susceptibility genes with bone mineral density and bone metabolism related markers in Koreans: the Chungju Metabolic Disease Cohort (CMC) study. Endocr J 2014; 61:1069-78. [PMID: 25132170 DOI: 10.1507/endocrj.ej14-0119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, we evaluated the association between bone mineral density (BMD) and 10 single-nucleotide polymorphisms (SNPs) within eight osteoporosis susceptibility genes that were previously identified in genome-wide association studies (GWASs). A total of 494 men and 493 postmenopausal women participating in the Chungju Metabolic Disease cohort study in Korea were included. The following 10 SNPs were genotyped: ZBTB40 rs6426749, MEF2C rs1366594, ESR1 rs2941740, TNFRSF11B rs3134070, TNFRSF11B rs2073617, SOX6 rs711785, LRP5 rs599083, TNFSF11 rs227438, TNFSF11 rs9594782, and FOXL1 rs10048146; and the association between these SNPs and bone metabolism-related markers was assessed. Two SNPs, TNFSF11 rs2277438 and FOXL1 rs1004816, were associated with lumbar spine BMD. TNFSF11 rs2277438 in men and SOX6 rs7117858 and FOXL1 rs10048146 in postmenopausal women were found to be associated with lumbar BMD. ZBTB40 rs6426749, MEF2C rs1366594, and LRP5 rs599083 showed significant associations with femur neck BMD. These three SNPs in men and MEF2C rs1366594 and ESR1 rs2941740 in postmenopausal women were associated with femur neck BMD. A significant association between MEF2C rs1366594 and serum calcium levels was observed in men. Serum phosphorus levels were related to SOX6 rs7117858. Serum PTH levels were significantly associated with TNFRSF11B rs3134070 in men, and SOX6 rs711858 in postmenopausal women. In conclusion, our study independently confirmed associations between several SNPs: ZBTB40, MEF2C, ESR1, SOX6, LRP5, TNFSF11, and FOXL1 and bone marrow density in the Korean population.
Collapse
Affiliation(s)
- Se Eun Park
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
199
|
Edwards SKE, Desai A, Liu Y, Moore CR, Xie P. Expression and function of a novel isoform of Sox5 in malignant B cells. Leuk Res 2013; 38:393-401. [PMID: 24418753 DOI: 10.1016/j.leukres.2013.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/11/2013] [Accepted: 12/14/2013] [Indexed: 01/04/2023]
Abstract
Using a mouse model with the tumor suppressor TRAF3 deleted from B cells, we identified Sox5 as a gene strikingly up-regulated in B lymphomas. Sox5 proteins were not detected in normal or premalignant TRAF3(-/-) B cells even after treatment with B cell stimuli. The Sox5 expressed in TRAF3(-/-) B lymphomas represents a novel isoform of Sox5, and was localized in the nucleus of malignant B cells. Overexpression of Sox5 inhibited cell cycle progression, and up-regulated the protein levels of p27 and β-catenin in human multiple myeloma cells. Together, our findings indicate that Sox5 regulates the proliferation of malignant B cells.
Collapse
Affiliation(s)
- Shanique K E Edwards
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Graduate Program in Molecular Biosciences, Rutgers University, Piscataway, NJ 08854, United States
| | - Anand Desai
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Yan Liu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Carissa R Moore
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Ping Xie
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States; Rutgers Cancer Institute of New Jersey, United States.
| |
Collapse
|
200
|
Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development 2013; 140:4129-44. [PMID: 24086078 DOI: 10.1242/dev.091793] [Citation(s) in RCA: 446] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Sox transcription factors play widespread roles during development; however, their versatile funtions have a relatively simple basis: the binding of a Sox protein alone to DNA does not elicit transcriptional activation or repression, but requires binding of a partner transcription factor to an adjacent site on the DNA. Thus, the activity of a Sox protein is dependent upon the identity of its partner factor and the context of the DNA sequence to which it binds. In this Primer, we provide an mechanistic overview of how Sox family proteins function, as a paradigm for transcriptional regulation of development involving multi-transcription factor complexes, and we discuss how Sox factors can thus regulate diverse processes during development.
Collapse
Affiliation(s)
- Yusuke Kamachi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | |
Collapse
|