151
|
MacDermott-Opeskin H, McDevitt CA, O'Mara ML. Comparing Nonbonded Metal Ion Models in the Divalent Cation Binding Protein PsaA. J Chem Theory Comput 2020; 16:1913-1923. [PMID: 32059108 DOI: 10.1021/acs.jctc.9b01180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Divalent metal cations are essential for many biological processes; however, accurately modeling divalent metal ions has proved a significant challenge for molecular dynamics force fields. Here we show that the choice of ion model influences the observed dynamics in PsaA, a metal binding protein from Streptococcus pneumoniae. We conduct extensive unbiased simulations and free energy calculations of PsaA bound to its cognate ligand Mn2+ and inhibitory ligand Zn2+ using three nonbonded ion models: a 12-6 model, a 12-6-4 model, and a multisite model. The observed coordination geometries and metal binding dynamics are sensitive to the choice of ion model, with the most dramatic differences observed in free energy calculations of ion release. We show that the conformational ensemble of Mn-bound PsaA is more similar to the crystallographic metal bound open state. This work extends the current model of PsaA metal binding and provides a framework for the rationalization of experimentally determined metal binding behavior. Our findings support the use of the 12-6-4 ion model for further simulations of divalent cation binding proteins.
Collapse
Affiliation(s)
- Hugo MacDermott-Opeskin
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Megan L O'Mara
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
152
|
Bao L, Wang J, Xiao Y. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Phys Rev E 2020; 100:022412. [PMID: 31574664 DOI: 10.1103/physreve.100.022412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Indexed: 11/07/2022]
Abstract
Riboswitches are RNA-structured elements that modulate gene expression through changing their conformation in response to specific metabolite binding. However, the regulation mechanisms of riboswitches by ligand binding are still not well understood. At present two possible ligand-binding mechanisms have been proposed: conformational selection and induced fit. Based on explicit-solvent molecular dynamics (MD) simulations, we have studied the process of the binding of ligands (adenines) to add adenine riboswitch aptamer (AARA) in detail. Our results show that the relative high flexibility of the junction J23 of AARA allows the ligands to be captured by the binding pocket of AARA in a near-native state, which may be driven by hydrophobic and base-stacking interactions. In addition, the binding of a ligand makes the stem P1 and the junction J23 of AARA more stable than in the absence of the ligand. Generally, our analyses show that the ligand-binding process of the add adenine riboswitch may be partially embodied by a conformational selection mechanism.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
153
|
Żaczek S. MDMS: Software Facilitating Performing Molecular Dynamics Simulations. J Comput Chem 2020; 41:266-271. [PMID: 31660624 DOI: 10.1002/jcc.26090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/24/2019] [Accepted: 10/02/2019] [Indexed: 11/08/2022]
Abstract
Molecular Dynamics Made Simple (MDMS) is software that facilitates performing molecular dynamics (MD) simulations of solvated protein/protein-ligand complexes with Amber, one of the most popular MD codes. It guides users through the whole process of running MD starting with choosing a protein structure, preparing the model, parametrization of the system, establishing parameters for controlling MD, and finally running simulations. By accommodating every step required for running MD, this software ensures that the simulations performed by a user will provide as realistic insight as it is possible. Its sequential structure and a text-based interface ensure ease of use, while the flexibility required for complex cases is still preserved. MDMS also provides a very time-efficient and streamlined method to start MD simulations, which makes it a feasible tool for both novices and experienced computational chemists. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
154
|
Jardin C, Chaves G, Musset B. Assessing Structural Determinants of Zn 2+ Binding to Human H V1 via Multiple MD Simulations. Biophys J 2020; 118:1221-1233. [PMID: 31972155 DOI: 10.1016/j.bpj.2019.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/20/2019] [Accepted: 12/27/2019] [Indexed: 01/02/2023] Open
Abstract
Voltage-gated proton channels (HV1) are essential for various physiological tasks but are strongly inhibited by Zn2+ cations. Some determinants of Zn2+ binding have been elucidated experimentally and in computational studies. However, the results have always been interpreted under the assumption that Zn2+ binds to monomeric HV1 despite evidence that HV1 expresses as a dimer and that the dimer has a higher affinity for zinc than the monomer and experimental data that suggest coordination in the dimer interface. The results of former studies are also controversial, e.g., supporting either one single or two binding sites. Some structural determinants of the binding are still elusive. We performed a series of molecular dynamics simulations to address different structures of the human proton channel, the monomer and two plausible dimer conformations, to compare their respective potential to interact with and bind Zn2+ via the essential histidines. The series consisted of several copies of the system to generate independent trajectories and increase the significance compared to a single simulation. The amount of time simulated totals 29.9 μs for 126 simulations of systems comprising ∼59,000 to ∼187,000 atoms. Our approach confirms the existence of two binding sites in monomeric and dimeric human HV1. The dimer interface is more efficient for attracting and binding Zn2+ via the essential histidines than the monomer or a dimer with the histidines in the periphery. The higher affinity is due to the residues in the dimer interface that create an attractive electrostatic potential funneling the zinc cations toward the binding sites.
Collapse
Affiliation(s)
- Christophe Jardin
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany
| | - Gustavo Chaves
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany
| | - Boris Musset
- Institute of Physiology and Pathophysiology, Klinikum Nuremberg Medical School, Paracelsus Medical University, Nuremberg, Germany.
| |
Collapse
|
155
|
Wang J, Tang X, Zhang Y, Li Y, Zhu L, Zhang Q, Wang W. How to complete the tautomerization and substrate-assisted activation prior to C–C bond fission by meta-cleavage product hydrolase LigY? Catal Sci Technol 2020. [DOI: 10.1039/d0cy01102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two feasible binding modes could complete the C–C bond fission of the substrate. One is the bidentate mode and five-coordination, and the other is the monodentate mode and five-coordination.
Collapse
Affiliation(s)
- Junjie Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Xiaowen Tang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- P. R. China
| | - Yixin Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Yanwei Li
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Ledong Zhu
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Qingzhu Zhang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| | - Wenxing Wang
- Environment Research Institute
- Shandong University
- Qingdao 266237
- P. R. China
| |
Collapse
|
156
|
Chen J, Wang J, Pang L, Wang W, Zhao J, Zhu W. Deciphering molecular mechanism behind conformational change of the São Paolo metallo-β-lactamase 1 by using enhanced sampling. J Biomol Struct Dyn 2019; 39:140-151. [DOI: 10.1080/07391102.2019.1707121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Jinan Wang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Laixue Pang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Wei Wang
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
157
|
Young TA, Martí-Centelles V, Wang J, Lusby PJ, Duarte F. Rationalizing the Activity of an “Artificial Diels-Alderase”: Establishing Efficient and Accurate Protocols for Calculating Supramolecular Catalysis. J Am Chem Soc 2019; 142:1300-1310. [DOI: 10.1021/jacs.9b10302] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Tom A. Young
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Vicente Martí-Centelles
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Jianzhu Wang
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Paul J. Lusby
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, Scotland EH9 3FJ, U.K
| | - Fernanda Duarte
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
158
|
Santos LDA, Prandi IG, Ramalho TC. Could Quantum Mechanical Properties Be Reflected on Classical Molecular Dynamics? The Case of Halogenated Organic Compounds of Biological Interest. Front Chem 2019; 7:848. [PMID: 31921771 PMCID: PMC6923750 DOI: 10.3389/fchem.2019.00848] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
Essential to understanding life, the biomolecular phenomena have been an important subject in science, therefore a necessary path to be covered to make progress in human knowledge. To fully comprehend these processes, the non-covalent interactions are the key. In this review, we discuss how specific protein-ligand interactions can be efficiently described by low computational cost methods, such as Molecular Mechanics (MM). We have taken as example the case of the halogen bonds (XB). Albeit generally weaker than the hydrogen bonds (HB), the XBs play a key role to drug design, enhancing the affinity and selectivity toward the biological target. Along with the attraction between two electronegative atoms in XBs explained by the σ-hole model, important orbital interactions, as well as relief of Pauli repulsion take place. Nonetheless, such electronic effects can be only well-described by accurate quantum chemical methods that have strong limitations dealing with supramolecular systems due to their high computational cost. To go beyond the poor description of XBs by MM methods, reparametrizing the force-fields equations can be a way to keep the balance between accuracy and computational cost. Thus, we have shown the steps to be considered when parametrizing force-fields to achieve reliable results of complex non-covalent interactions at MM level for In Silico drug design methods.
Collapse
Affiliation(s)
| | - Ingrid G. Prandi
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, Lavras, Brazil
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia
| |
Collapse
|
159
|
Wu P, Fan F, Song J, Peng W, Liu J, Li C, Cao Z, Wang B. Theory Demonstrated a "Coupled" Mechanism for O 2 Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. J Am Chem Soc 2019; 141:19776-19789. [PMID: 31746191 DOI: 10.1021/jacs.9b09172] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiscale simulations have been performed to address the longstanding issue of "dioxygen activation" by the binuclear copper monooxygenases (PHM and DβM), which have been traditionally classified as "noncoupled" binuclear copper enzymes. Our QM/MM calculations rule out that CuM(II)-O2• is an active species for H-abstraction from the substrate. In contrast, CuM(II)-O2• would abstract an H atom from the cosubstrate ascorbate to form a CuM(II)-OOH intermediate in PHM and DβM. Consistent with the recently reported structural features of DβM, the umbrella sampling shows that the "open" conformation of the CuM(II)-OOH intermediate could readily transform into the "closed" conformation in PHM, in which we located a mixed-valent μ-hydroperoxodicopper(I,II) intermediate, (μ-OOH)Cu(I)Cu(II). The subsequent O-O cleavage and OH moiety migration to CuH generate the unexpected species (μ-O•)(μ-OH)Cu(II)Cu(II), which is revealed to be the reactive intermediate responsible for substrate hydroxylation. We also demonstrate that the flexible Met ligand is favorable for O-O cleavage reactions, while the replacement of Met with the strongly bound His ligand would inhibit the O-O cleavage reactivity. As such, the study not only demonstrates a "coupled" mechanism for O2 activation by binuclear copper monooxygenases but also deciphers the full catalytic cycle of PHM and DβM in accord with the available experimental data. These findings of O2 activation and substrate hydroxylation by binuclear copper monooxygenases could expand our understanding of the reactivities of the synthetic monocopper complexes.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China.,University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Fangfang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Jinshuai Song
- College of Chemistry, and Institute of Green Catalysis , Zhengzhou University , Zhengzhou 450001 , People's Republic of China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Jia Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Chunsen Li
- State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou , Fujian 350002 , People's Republic of China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry , Xiamen , Fujian 361005 , People's Republic of China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , People's Republic of China
| |
Collapse
|
160
|
Zou Y, Hu Y, Ge S, Zheng Y, Li Y, Liu W, Guo W, Zhang Y, Xu Q, Lai Y. Effective Virtual Screening Strategy toward heme-containing proteins: Identification of novel IDO1 inhibitors. Eur J Med Chem 2019; 184:111750. [DOI: 10.1016/j.ejmech.2019.111750] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/22/2019] [Accepted: 09/28/2019] [Indexed: 01/11/2023]
|
161
|
Ji M, Ding Y, Li X, Mao N, Chen J. Computational investigation of a ternary model of SnoN-SMAD3-SMAD4 complex. Comput Biol Chem 2019; 83:107159. [PMID: 31743832 DOI: 10.1016/j.compbiolchem.2019.107159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/28/2019] [Accepted: 11/03/2019] [Indexed: 12/18/2022]
Abstract
The transforming growth factor β (TGFβ) plays an essential role in the regulation of cellular processes such as cell proliferation, migration, differentiation, and apoptosis by association with SMAD transcriptional factors that are regulated by the transcriptional regulator SnoN. The crystal structure of SnoN-SMAD4 reveals that SnoN can adopt two binding modes, the open and closed forms, at the interfaces of SMAD4 subunits. Accumulating evidence indicates that SnoN can interact with both SMAD3 and SMAD4 to form a ternary SnoN-SMAD3-SMAD4 complex in the TGFβ signaling pathway. However, how the interaction of SnoN with the SMAD3 and SMAD4 remains unclear. Here, molecular dynamics (MD) simulations and molecular modeling methods were performed to figure out this issue. The simulations reveal that SnoNopen exists in two, open and semi-closed, conformations. Molecular modeling and MD simulation studies suggest that the SnoNclosed form interferes with the SMAD3-SMAD4 protein; in contract, the SnoNopen can form a stable SnoN-SMAD3-SMAD4 complex. These mechanistic mechanisms may help elucidate the detailed engagement of SnoN with two SMAD3 and SMAD4 transcriptional factors in the regulation of TGFβ signaling pathway.
Collapse
Affiliation(s)
- Mingfei Ji
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Yelei Ding
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, Naval Military Medical University, Shanghai, 200433, China.
| | - Jie Chen
- Department of Urology, Changzheng Hospital, Naval Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
162
|
Seal S, Doblhoff-Dier K, Meyer J. Dielectric Decrement for Aqueous NaCl Solutions: Effect of Ionic Charge Scaling in Nonpolarizable Water Force Fields. J Phys Chem B 2019; 123:9912-9921. [PMID: 31647235 PMCID: PMC6875873 DOI: 10.1021/acs.jpcb.9b07916] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We investigate the dielectric constant and the dielectric decrement of aqueous NaCl
solutions by means of molecular dynamic simulations. We thereby compare the performance
of four different force fields and focus on disentangling the origin of the dielectric
decrement and the influence of scaled ionic charges, as often used in nonpolarizable
force fields to account for the missing dynamic polarizability in the shielding of
electrostatic ion interactions. Three of the force fields showed excessive contact ion
pair formation, which correlates with a reduced dielectric decrement. In spite of the
fact that the scaling of charges only weakly influenced the average polarization of
water molecules around an ion, the rescaling of ionic charges did influence the
dielectric decrement, and a close-to-linear relation of the slope of the dielectric
constant as a function of concentration with the ionic charge was found.
Collapse
Affiliation(s)
- Sayan Seal
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Leiden University , PO Box 9502, 2300 RA Leiden , The Netherlands
| | - Katharina Doblhoff-Dier
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Leiden University , PO Box 9502, 2300 RA Leiden , The Netherlands
| | - Jörg Meyer
- Gorlaeus Laboratories, Leiden Institute of Chemistry , Leiden University , PO Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
163
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
164
|
Hu X, Provasi D, Ramsey S, Filizola M. Mechanism of μ-Opioid Receptor-Magnesium Interaction and Positive Allosteric Modulation. Biophys J 2019; 118:909-921. [PMID: 31676132 DOI: 10.1016/j.bpj.2019.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/31/2019] [Accepted: 10/08/2019] [Indexed: 01/09/2023] Open
Abstract
In the era of opioid abuse epidemics, there is an increased demand for understanding how opioid receptors can be allosterically modulated to guide the development of more effective and safer opioid therapies. Among the modulators of the μ-opioid (MOP) receptor, which is the pharmacological target for the majority of clinically used opioid drugs, are monovalent and divalent cations. Specifically, the monovalent sodium cation (Na+) has been known for decades to affect MOP receptor signaling by reducing agonist binding, whereas the divalent magnesium cation (Mg2+) has been shown to have the opposite effect, notwithstanding the presence of sodium chloride. Although ultra-high-resolution opioid receptor crystal structures have revealed a specific Na+ binding site and molecular dynamics (MD) simulation studies have supported the idea that this monovalent ion reduces agonist binding by stabilizing the receptor inactive state, the putative binding site of Mg2+ on the MOP receptor, as well as the molecular determinants responsible for its positive allosteric modulation of the receptor, are unknown. In this work, we carried out tens of microseconds of all-atom MD simulations to investigate the simultaneous binding of Mg2+ and Na+ cations to inactive and active crystal structures of the MOP receptor embedded in an explicit lipid-water environment and confirmed adequate sampling of Mg2+ ion binding with a grand canonical Monte Carlo MD method. Analyses of these simulations shed light on 1) the preferred binding sites of Mg2+ on the MOP receptor, 2) details of the competition between Mg2+ and Na+ cations for specific sites, 3) estimates of binding affinities, and 4) testable hypotheses of the molecular mechanism underlying the positive allosteric modulation of the MOP receptor by the Mg2+ cation.
Collapse
Affiliation(s)
- Xiaohu Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Steven Ramsey
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
165
|
Structural basis of sequence-specific Holliday junction cleavage by MOC1. Nat Chem Biol 2019; 15:1241-1248. [PMID: 31611704 DOI: 10.1038/s41589-019-0377-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/02/2019] [Indexed: 02/04/2023]
Abstract
The Holliday junction (HJ) is a key intermediate during homologous recombination and DNA double-strand break repair. Timely HJ resolution by resolvases is critical for maintaining genome stability. The mechanisms underlying sequence-specific substrate recognition and cleavage by resolvases remain elusive. The monokaryotic chloroplast 1 protein (MOC1) specifically cleaves four-way DNA junctions in a sequence-specific manner. Here, we report the crystal structures of MOC1 from Zea mays, alone or bound to HJ DNA. MOC1 uses a unique β-hairpin to embrace the DNA junction. A base-recognition motif specifically interacts with the junction center, inducing base flipping and pseudobase-pair formation at the strand-exchanging points. Structures of MOC1 bound to HJ and different metal ions support a two-metal ion catalysis mechanism. Further molecular dynamics simulations and biochemical analyses reveal a communication between specific substrate recognition and metal ion-dependent catalysis. Our study thus provides a mechanism for how a resolvase turns substrate specificity into catalytic efficiency.
Collapse
|
166
|
Yao S, Moseley HNB. Finding High-Quality Metal Ion-Centric Regions Across the Worldwide Protein Data Bank. Molecules 2019; 24:E3179. [PMID: 31480623 PMCID: PMC6751499 DOI: 10.3390/molecules24173179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/23/2023] Open
Abstract
As the number of macromolecular structures in the worldwide Protein Data Bank (wwPDB) continues to grow rapidly, more attention is being paid to the quality of its data, especially for use in aggregated structural and dynamics analyses. In this study, we systematically analyzed 3.5 Å regions around all metal ions across all PDB entries with supporting electron density maps available from the PDB in Europe. All resulting metal ion-centric regions were evaluated with respect to four quality-control criteria involving electron density resolution, atom occupancy, symmetry atom exclusion, and regional electron density discrepancy. The resulting list of metal binding sites passing all four criteria possess high regional structural quality and should be beneficial to a wide variety of downstream analyses. This study demonstrates an approach for the pan-PDB evaluation of metal binding site structural quality with respect to underlying X-ray crystallographic experimental data represented in the available electron density maps of proteins. For non-crystallographers in particular, we hope to change the focus and discussion of structural quality from a global evaluation to a regional evaluation, since all structural entries in the wwPDB appear to have both regions of high and low structural quality.
Collapse
Affiliation(s)
- Sen Yao
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
- Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY 40536, USA
| | - Hunter N B Moseley
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA.
- Resource Center for Stable Isotope Resolved Metabolomics, University of Kentucky, Lexington, KY 40536, USA.
- Institute for Biomedical Informatics, University of Kentucky, Lexington, KY 40536, USA.
- Center for Clinical and Translational Science, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
167
|
Macchiagodena M, Pagliai M, Andreini C, Rosato A, Procacci P. Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands. J Chem Inf Model 2019; 59:3803-3816. [PMID: 31385702 DOI: 10.1021/acs.jcim.9b00407] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We developed and validated a novel force field in the context of the AMBER parameterization for the simulation of zinc(II)-binding proteins. The proposed force field assumes nonbonded spherical interactions between the central zinc(II) and the coordinating residues. A crucial innovative aspect of our approach is to account for the polarization effects of the cation by redefining the atomic charges of the coordinating residues and an adjustment of Lennard-Jones parameters of Zn-interacting atoms to reproduce mean distance distributions. The optimal transferable parametrization was obtained by performing accurate quantum mechanical calculations on a training set of high-quality protein structures, encompassing the most common folds of zinc(II) sites. The addressed sites contain a zinc(II) ion tetra-coordinated by histidine and cysteine residues and represent about 70% of all physiologically relevant zinc(II) sites in the Protein Data Bank. Molecular dynamics simulations with explicit solvent, carried out on several zinc(II)-binding proteins not included in the training set, show that our model for zinc(II) sites preserves the tetra-coordination of the metal site with remarkable stability, yielding zinc(II)-X mean distances similar to experimental data. Finally, the model was tested by evaluating the zinc(II)-binding affinities, using the alchemical free energy perturbation approach. The calculated dissociation constants correlate satisfactorily with the experimental counterpart demonstrating the validity and transferability of the proposed parameterization for zinc(II)-binding proteins.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| | - Claudia Andreini
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy.,Magnetic Resonance Center (CERM)-Università degli Studi di Firenze , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Antonio Rosato
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy.,Magnetic Resonance Center (CERM)-Università degli Studi di Firenze , Via L. Sacconi 6 , 50019 Sesto Fiorentino , Italy
| | - Piero Procacci
- Dipartimento di Chimica "Ugo Schiff" , Università degli Studi di Firenze , Via della Lastruccia 3 , 50019 Sesto Fiorentino , Italy
| |
Collapse
|
168
|
Lee J, Vinh NB, Drinkwater N, Yang W, Kannan Sivaraman K, Schembri LS, Gazdik M, Grin PM, Butler GS, Overall CM, Charman SA, McGowan S, Scammells PJ. Novel Human Aminopeptidase N Inhibitors: Discovery and Optimization of Subsite Binding Interactions. J Med Chem 2019; 62:7185-7209. [PMID: 31251594 DOI: 10.1021/acs.jmedchem.9b00757] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Aminopeptidase N (APN/CD13) is a zinc-dependent M1 aminopeptidase that contributes to cancer progression by promoting angiogenesis, metastasis, and tumor invasion. We have previously identified hydroxamic acid-containing analogues that are potent inhibitors of the APN homologue from the malarial parasite Plasmodium falciparum M1 aminopeptidase (PfA-M1). Herein, we describe the rationale that underpins the repurposing of PfA-M1 inhibitors as novel APN inhibitors. A series of novel hydroxamic acid analogues were developed using a structure-based design approach and evaluated their inhibition activities against APN. N-(2-(Hydroxyamino)-2-oxo-1-(3',4',5'-trifluoro-[1,1'-biphenyl]-4-yl)ethyl)-4-(methylsulfonamido)benzamide (6ad) proved to be an extremely potent inhibitor of APN activity in vitro, selective against other zinc-dependent enzymes such as matrix metalloproteases, and possessed limited cytotoxicity against Ad293 cells and favorable physicochemical and metabolic stability properties. The combined results indicate that compound 6ad may be a useful lead for the development of anticancer agents.
Collapse
Affiliation(s)
| | | | - Nyssa Drinkwater
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Wei Yang
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | - Komagal Kannan Sivaraman
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | | | | | | | | | | | | - Sheena McGowan
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology , Monash University , Clayton Campus , Clayton , VIC 3800 , Australia
| | | |
Collapse
|
169
|
Tomić A, Horvat G, Ramek M, Agić D, Brkić H, Tomić S. New Zinc Ion Parameters Suitable for Classical MD Simulations of Zinc Metallopeptidases. J Chem Inf Model 2019; 59:3437-3453. [PMID: 31274304 DOI: 10.1021/acs.jcim.9b00235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The main aim of this work was to find parameters for the zinc ion in human dipeptidyl peptidase III (DPP III) active site that would enable its reliable modeling. Since the parameters publicly available failed to reproduce the zinc ion coordination in the enzyme, we developed a new set of the hybrid bonded/nonbonded parameters for the zinc ion suitable for molecular modeling of the human DPP III, dynamics, and ligand binding. The parameters allowed exchange of the water molecules coordinating the zinc ion and proved to be robust enough to enable reliable modeling not only of human DPP III and its orthologues but also of the other zinc-dependent peptidases with the zinc ion coordination similar to that in dipeptidyl peptidases III, i.e., peptidases with the zinc ion coordinated with two histidines and one glutamate. The new parameters were tested on a set of 21 different systems comprising 8 different peptidases, 5 DPP III orthologues, thermolysin, neprilysin, and aminopeptidase N, and the results are summarized in the second part of the article.
Collapse
Affiliation(s)
- Antonija Tomić
- Division of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička 54 , 10 000 Zagreb , Croatia.,Institute of Physical and Theoretical Chemistry , Graz University of Technology , Stremayrgasse 9 , 8010 Graz , Austria
| | - Gordan Horvat
- Department of Chemistry, Faculty of Science , University of Zagreb , Horvatovac 102A , 10 000 Zagreb , Croatia
| | - Michael Ramek
- Institute of Physical and Theoretical Chemistry , Graz University of Technology , Stremayrgasse 9 , 8010 Graz , Austria
| | - Dejan Agić
- Faculty of Agrobiotechnical Sciences Osijek , Josip Juraj Strossmayer University of Osijek , Petra Svačića 1d , 31 000 Osijek , Croatia
| | - Hrvoje Brkić
- Faculty of Medicine , Josip Juraj Strossmayer University of Osijek , J. Huttlera 4 , 31 000 Osijek , Croatia.,Faculty of Dental Medicine and Health , Josip Juraj Strossmayer University of Osijek , Crkvena 21 , 31 000 Osijek , Croatia
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry , Ruđer Bošković Institute , Bijenička 54 , 10 000 Zagreb , Croatia
| |
Collapse
|
170
|
Nikitin A, Del Frate G. Development of Nonbonded Models for Metal Cations Using the Electronic Continuum Correction. J Comput Chem 2019; 40:2464-2472. [PMID: 31301182 DOI: 10.1002/jcc.26021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/14/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022]
Abstract
The parametrization of classical nonbonded models of metal ions has been widely addressed in the recent years. Despite the continuous development of novel and more physically inspired functional forms, the 12-6 Lennard-Jones plus Coulomb potential is still the most adopted force field in molecular dynamics (MD) codes, owing to its simple form and easy implementation. However, due to the integer formal charge, unpolarizable force fields of ions may suffer from overestimated interatomic electrostatic interactions, leading to nonphysical clustering or repulsion between such full charges. The electronic continuum correction (ECC) can fix this problem through a simple inclusion of solvent polarization effects via ionic charge rescaling. In this work, the development of novel nonbonded models for mono, divalent, and highly charged metal ions is presented. For each metal species, the ionic charge has been scaled, according to the ECC. Lennard-Jones parameters have been optimized using experimental structural and thermodynamic properties as target quantities. Performances of the proposed models are discussed and compared with the literature data, while transferability attitudes among different and well-known water models are evaluated. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alexei Nikitin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation.,Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126, Pisa, Italy
| | - Gianluca Del Frate
- IMT School for Advanced Studies Lucca, Piazza S. Francesco 19, I-55100, Lucca, Italy
| |
Collapse
|
171
|
Xu M, Zhu T, Zhang JZH. Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential. J Phys Chem A 2019; 123:6587-6595. [DOI: 10.1021/acs.jpca.9b04087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingyuan Xu
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Tong Zhu
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - John Z. H. Zhang
- State Key Lab of Precision Spectroscopy, Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, Shanghai Key Laboratory of Green Chemistry & Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York City, New York 10003, United States
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
172
|
Liu C, Min F, Liu L, Chen J. Hydration properties of alkali and alkaline earth metal ions in aqueous solution: A molecular dynamics study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
173
|
Chen K, Li W, Wang J, Wang W. Binding of Copper Ions with Octapeptide Region in Prion Protein: Simulations with Charge Transfer Model. J Phys Chem B 2019; 123:5216-5228. [PMID: 31242743 DOI: 10.1021/acs.jpcb.9b02457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Copper ions are important cofactors of many metalloproteins. The binding dynamics of proteins to the copper ion is important for biological functions but is less understood at the microscopic level. What are the key factors determining the recognition and the stabilization of the copper ion during the binding? Our work investigates the binding dynamics of the copper ion with a simple system (the N-terminus of PrP) using simulation methods. To precisely characterize the protein?ion interaction, we build up an effective copper?peptide force field based on quantum chemistry calculations. In our model, the effects of charge transfer, protonation/deprotonation, and induced polarization are considered. With this force field, we successfully characterize the local structures and the complex interactions of the octapeptide around the copper ion. Furthermore, using an enhanced sampling method, the binding/unbinding processes of the copper ion with the octapeptide are simulated. Free-energy landscapes are generated in consequence, and multiple binding pathways are characterized. It is observed that various native ligands contribute differently to the binding processes. Some residues are related to the capture of the ion (behaving like ?arm?s), and some others contribute to the stabilization of the coordination structure (acting like ?core?s). These different interactions induce various pathways. Besides, a nonnative binding ligand is determined, and it has essential contributions and modulations to the binding pathways. With all these results, the picture of copper?octapeptide binding is outlined. These features are believed to happen in many ion?peptide interactions, such as the cooperative stabilization between the coordinations with neighboring backbone nitrogens and an auxiliary intermediate coordination with the neighboring oxygen from the N-terminal direction. We believe that our studies are valuable to understand the complicated ion?peptide binding processes.
Collapse
Affiliation(s)
- Ke Chen
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wenfei Li
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics , Nanjing University , Nanjing 210093 , P.R. China
| |
Collapse
|
174
|
Wang B, Cao Z, Rovira C, Song J, Shaik S. Fenton-Derived OH Radicals Enable the MPnS Enzyme to Convert 2-Hydroxyethylphosphonate to Methylphosphonate: Insights from Ab Initio QM/MM MD Simulations. J Am Chem Soc 2019; 141:9284-9291. [PMID: 31132257 DOI: 10.1021/jacs.9b02659] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mechanism for dioxygen activation represents one of the core issues in metalloenzymes. In most cases, the activation of the O2 molecule requires additional electrons from an external reducant. However, nonheme hydroxyethylphosphonate dioxygenase (HEPD) and methylphosphonate synthase (MPnS) are exceptional C-H oxygenases. Both enzymes do not utilize reductants, rather they employ directly iron(III)-superoxide species to initiate H-abstraction reactions and lead thereby to catalysis of the C-C cleavage in 2-hydroxyethylphosphonate (2-HEP). Using the recently characterized MPnS structure and QM(B3LYP)/MM-based metadynamics simulations, we deciphered the chemical mechanism for MPnS. Our simulations demonstrate O2 activation in MPnS is mediated by an adjacent Lysine residue (Lys28) in the active site, leading to an unusual H 2 O 2 intermediate in the reductant-independent nonheme MPnS enzyme. Furthermore, the so-generated H 2 O 2 intermediate is subsequently employed in a Fenton-type reaction, leading to a locked •OH radical that spontaneously attaches to the substrate carbonyl group. Meanwhile, the proton from the Fe(III)-OH is shuttled back to the deprotonated Lys28, affording the Fe(IV)-oxo species that is identified by experiment in HEPD. Thus, our calculations demonstrate an unusual proton-shuttle mechanism for O 2 activation in metalloenzymes.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 360015 , P. R. China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluís Companys, 23 , 08020 Barcelona , Spain
| | - Jinshuai Song
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou 450001 , P. R. China
| | - Sason Shaik
- Institute of Chemistry , The Hebrew University of Jerusalem , 9190407 Jerusalem , Israel
| |
Collapse
|
175
|
Molecular dynamics of carbon nanohorns and their complexes with cisplatin in aqueous solution. J Mol Graph Model 2019; 89:167-177. [DOI: 10.1016/j.jmgm.2019.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 11/21/2022]
|
176
|
Tandura SN, Belyaeva VV, Baryshok VP, Gostevsky BA, Smirnov VI. Structural Manifestations of the Polarizability Effect in 1-Halogensilatranes According to the Dipole-Induced Dipole Mechanism. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619060076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
177
|
Huang LK, Liao YY, Lin WH, Lin SM, Liu TY, Lee CH, Pan RL. Potassium Stimulation of IAA Transport Mediated by the Arabidopsis Importer AUX1 Investigated in a Heterologous Yeast System. J Membr Biol 2019; 252:183-194. [PMID: 31053903 DOI: 10.1007/s00232-019-00065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
Abstract
Auxin regulates diverse processes involved in plant growth and development. AUX1 is the first identified and most widely investigated auxin importer, and plays an important role in root gravitropism and the development of lateral root and root hair. However, the regulation of auxin transport by AUX1 is still not well understood. In this study, we examined the effect of metal ions on AUX1 transport function and found that the activity could be specifically stimulated four times by K+. Further experiments revealed the preference of KF on the enhancement of transport activity of AUX1 over KCl, KBr, and KI. In addition, the interaction between K+ and AUX1 confers AUX1 more resistant to thermal stress but more vulnerable to proteolysis. Conventional chemical modification indicated that the extracellular acidic amino acids of AUX1 play a key role in the K+ stimulation. Site-specific mutagenesis showed that the replacement of Asp166, Asp293, and Asp312 of AUX1 to alanine deteriorated the K+-stimulated auxin transport. By contrast, when these residues were mutated to glutamate, lysine, or asparagine, only the D312E variant restored the IAA transport activity to the wild-type level. It is thus convinced that D312 is presumably the most promising residue for the K+ stimulation on AUX1.
Collapse
Affiliation(s)
- Li-Kun Huang
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China
| | - Ya-Yun Liao
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China
| | - Wei-Hua Lin
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China
| | - Shih-Ming Lin
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan, Republic of China
| | - Tzu-Yin Liu
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China
| | - Ching-Hung Lee
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China.
| | - Rong-Long Pan
- Department of Life Science and Institute of Bioinformatics and Structural Biology, College of Life Science, National Tsing Hua University, No. 101, Sec. 2, Guangfu Rd. East Dist., Hsin Chu, 30013, Taiwan, Republic of China.
| |
Collapse
|
178
|
Lunghi A, Sanvito S. A unified picture of the covalent bond within quantum-accurate force fields: From organic molecules to metallic complexes' reactivity. SCIENCE ADVANCES 2019; 5:eaaw2210. [PMID: 31172029 PMCID: PMC6544456 DOI: 10.1126/sciadv.aaw2210] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/17/2019] [Indexed: 06/01/2023]
Abstract
Computational studies of chemical processes taking place over extended size and time scales are inaccessible by electronic structure theories and can be tackled only by atomistic models such as force fields. These have evolved over the years to describe the most diverse systems. However, as we improve the performance of a force field for a particular physical/chemical situation, we are also moving away from a unified description. Here, we demonstrate that a unified picture of the covalent bond is achievable within the framework of machine learning-based force fields. Ridge regression, together with a representation of the atomic environment in terms of bispectrum components, can be used to map a general potential energy surface for molecular systems at chemical accuracy. This protocol sets the ground for the generation of an accurate and universal class of potentials for both organic and organometallic compounds with no specific assumptions on the chemistry involved.
Collapse
|
179
|
Duay SS, Sharma G, Prabhakar R, Angeles-Boza AM, May ER. Molecular Dynamics Investigation into the Effect of Zinc(II) on the Structure and Membrane Interactions of the Antimicrobial Peptide Clavanin A. J Phys Chem B 2019; 123:3163-3176. [PMID: 30908921 DOI: 10.1021/acs.jpcb.8b11496] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Clavanin A (ClavA) is an antimicrobial peptide (AMP) whose antimicrobial activity is enhanced in the presence of Zn(II) ions. The antimicrobial activity of ClavA has been shown to increase 16-fold in the presence of Zn(II) ions. In this study, we investigate the potential sources of this enhancement, namely, the effect of Zn(II) binding on the helical conformation of ClavA and on the ClavA interaction with a model for gram-negative bacterial membranes. In addition, we investigate the effect of Zn(II) on the membrane mechanical properties. We employed all-atom equilibrium molecular dynamics simulations initiated from both fully helical and random coil structures of ClavA. We observe that Zn(II) can stabilize an existing helical conformation in the Zn(II)-binding region, but we do not observe induction of helical conformations in systems initiated in random coil configurations. Zn(II) binding to ClavA provides more favorable electrostatics for membrane association in the C-terminal region. This is evidenced by longer and stronger C-terminal-lipid interactions. Zn(II) is also capable of modulating the membrane properties in a manner which favors ClavA insertion and the potential for enhanced translocation into the cell. This work provides insights into the role of divalent metal cations in the antimicrobial activity of ClavA. This information can be used for the development of synthetic AMPs containing motifs that can bind metals (metalloAMPs) for therapeutic and medical purposes.
Collapse
Affiliation(s)
| | - Gaurav Sharma
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | - Rajeev Prabhakar
- Department of Chemistry , University of Miami , Coral Gables , Florida 33146 , United States
| | | | - Eric R May
- Department of Molecular and Cell Biology , University of Connecticut , 91 N. Eagleville Road , Storrs , Connecticut 06269 , United States
| |
Collapse
|
180
|
Cassone G, Kruse H, Sponer J. Interactions between cyclic nucleotides and common cations: an ab initio molecular dynamics study. Phys Chem Chem Phys 2019; 21:8121-8132. [PMID: 30932112 DOI: 10.1039/c8cp07492e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We present the first, to the best of our knowledge, ab initio molecular dynamics (AIMD) investigation on three aqueous solutions where an abasic cyclic nucleotide model is solvated in the presence of distinct cations (i.e., Na+, K+ and Mg2+). We elucidate the typical modalities of interaction between those ionic species and the nucleotide moiety by first-principles numerical simulations, starting from an inner-shell binding configuration on a time scale of 100 ps (total simulation time of ∼600 ps). Whereas the strong "structure-maker" Mg2+ is permanently bound to one of the two oxygen atoms of the phosphate group of the nucleotide model, Na+ and K+ show binding times τb of 65 ps and 10-15 ps, respectively, thus reflecting their chemical nature in aqueous solutions. Furthermore, we qualitatively relate these findings to approximate free-energy barriers of the cations' unbinding obtained by means of exploratory well-tempered metadynamics. With the aim of shedding light on the features of commonly employed force-fields (FFs), classical MD simulations (almost 200 trajectories with a total simulation time of ∼18 μs) using the biomolecular AMBER FF are also reported. By choosing several combinations of the parametrization for the water environment (i.e., TIP3P, SPC/E and OPC) and cations (i.e., Joung-Cheatham, Li-Merz 12-6 and Li-Merz 12-6-4), we found significant differences in the radial distribution functions and residence times compared to the ab initio results. The Na+ and K+ ions wrongly show quasi-identical radial distribution functions and the Li & Merz 12-6-4 Lennard-Jones parameters for Mg2+ were found to be essential in quickly reaching the binding state consistent with AIMD.
Collapse
Affiliation(s)
- Giuseppe Cassone
- Institute of Biophysics of the Czech Academy of Sciences, v.v.i, Královopolská 135, 61265 Brno, Czech Republic.
| | | | | |
Collapse
|
181
|
Mavrantzas VG, Pratsinis SE. The impact of molecular simulations in gas-phase manufacture of nanomaterials. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
182
|
Abstract
CRISPR-Cas9 is a bacterial immune system with exciting applications for genome editing. In spite of extensive experimental characterization, the active site chemistry of the RuvC domain-which performs DNA cleavages-has remained elusive. Its knowledge is key for structure-based engineering aimed at improving DNA cleavages. Here, we deliver an in-depth characterization by using quantum-classical (QM/MM) molecular dynamics (MD) simulations and a Gaussian accelerated MD method, coupled with bioinformatics analysis. We disclose a two-metal aided architecture in the RuvC active site, which is poised to operate DNA cleavages, in analogy with other DNA/RNA processing enzymes. The conformational dynamics of the RuvC domain further reveals that an "arginine finger" stably contacts the scissile phosphate, with the function of stabilizing the active complex. Remarkably, the formation of a catalytically competent state of the RuvC domain is only observed upon the conformational activation of the other nuclease domain of CRISPR-Cas9-i.e., the HNH domain-such allowing concerted cleavages of double stranded DNA. This structure is in agreement with the available experimental data and remarkably differs from previous models based on classical mechanics, demonstrating also that only quantum mechanical simulations can accurately describe the metal-aided active site in CRISPR-Cas9. This fully catalytic structure-in which both the HNH and RuvC domains are prone to perform DNA cleavages-constitutes a stepping-stone for understanding DNA cleavage and specificity. It calls for novel experimental verifications and offers the structural foundations for engineering efforts aimed at improving the genome editing capability of CRISPR-Cas9.
Collapse
Affiliation(s)
- Giulia Palermo
- Department of Bioengineering, Bourns College of Engineering , University of California Riverside , 900 University Avenue , Riverside , California 92521 , United States
| |
Collapse
|
183
|
Mahjoubi K, Mehnen B, Linguerri R, Hochlaf M, Mouhib H. Copper–Chalcogen Bonds in Olfaction: Accurate ab Initio Characterization of CuSH and CuOH. J Phys Chem A 2019; 123:1177-1185. [DOI: 10.1021/acs.jpca.8b10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- K. Mahjoubi
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - B. Mehnen
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - R. Linguerri
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - M. Hochlaf
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| | - H. Mouhib
- Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France
| |
Collapse
|
184
|
Leonarski F, D'Ascenzo L, Auffinger P. Nucleobase carbonyl groups are poor Mg 2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. RNA (NEW YORK, N.Y.) 2019; 25:173-192. [PMID: 30409785 PMCID: PMC6348993 DOI: 10.1261/rna.068437.118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/16/2018] [Indexed: 05/04/2023]
Abstract
Precise knowledge of Mg2+ inner-sphere binding site properties is vital for understanding the structure and function of nucleic acid systems. Unfortunately, the PDB, which represents the main source of Mg2+ binding sites, contains a substantial number of assignment issues that blur our understanding of the functions of these ions. Here, following a previous study devoted to Mg2+ binding to nucleobase nitrogens, we surveyed nucleic acid X-ray structures from the PDB with resolutions ≤2.9 Å to classify the Mg2+ inner-sphere binding patterns to nucleotide carbonyl, ribose hydroxyl, cyclic ether, and phosphodiester oxygen atoms. From this classification, we derived a set of "prior-knowledge" nucleobase Mg2+ binding sites. We report that crystallographic examples of trustworthy nucleobase Mg2+ binding sites are fewer than expected since many of those are associated with misidentified Na+ or K+ We also emphasize that binding of Na+ and K+ to nucleic acids is much more frequent than anticipated. Overall, we provide evidence derived from X-ray structures that nucleobases are poor inner-sphere binders for Mg2+ but good binders for monovalent ions. Based on strict stereochemical criteria, we propose an extended set of guidelines designed to help in the assignment and validation of ions directly contacting nucleobase and ribose atoms. These guidelines should help in the interpretation of X-ray and cryo-EM solvent density maps. When borderline Mg2+ stereochemistry is observed, alternative placement of Na+, K+, or Ca2+ must be considered. We also critically examine the use of lanthanides (Yb3+, Tb3+) as Mg2+ substitutes in crystallography experiments.
Collapse
Affiliation(s)
- Filip Leonarski
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| | - Luigi D'Ascenzo
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Pascal Auffinger
- Architecture et Réactivité de l'ARN, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, 67084, France
| |
Collapse
|
185
|
Xu M, He X, Zhu T, Zhang JZH. A Fragment Quantum Mechanical Method for Metalloproteins. J Chem Theory Comput 2019; 15:1430-1439. [PMID: 30620584 DOI: 10.1021/acs.jctc.8b00966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An accurate energy calculation of metalloprotein is of crucial importance and also a theoretical challenge. In this work, a metal molecular fractionation with conjugate caps (metal-MFCC) approach is developed for efficient linear-scaling quantum calculation of potential energy and atomic forces of metalloprotein. In this approach, the potential energy of a given protein is calculated by a linear combination of potential energies of the neighboring residues, two-body interaction energy between non-neighboring residues that are spatially in close contact and the potential energy of the metal binding group. The calculation of each fragment is embedded in a field of point charges representing the remaining protein environment. Numerical studies were carried out to check the performance of this method, and the calculated potential energies and atomic forces all show excellent agreement with the full system calculations at the M06-2X/6-31G(d) level. By combining the energy calculation with molecular dynamic simulation, we performed an ab initio structural optimization for a zinc finger protein with high efficiency. The present metal-MFCC approach is linear-scaling with a low prefactor and trivially parallelizable. The individual fragment typically contains about 50 atoms, and it is thus possible to be calculated at higher levels of the quantum chemistry method. This fragment method can be routinely applied to perform structural optimization and ab initio molecular dynamic simulation for metalloproteins of any size.
Collapse
Affiliation(s)
- Mingyuan Xu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| | - Tong Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China
| | - John Z H Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai , 200062 , China.,NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai , 200062 , China.,Department of Chemistry , New York University , New York 10003 , United States
| |
Collapse
|
186
|
Du S, Fu H, Shao X, Chipot C, Cai W. Addressing Polarization Phenomena in Molecular Machines Containing Transition Metal Ions with an Additive Force Field. J Chem Theory Comput 2019; 15:1841-1847. [DOI: 10.1021/acs.jctc.8b00972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Shuangli Du
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Christophe Chipot
- LPCT, UMR 7019 Université de Lorraine CNRS, F-54506 Vandœuvre-lès-Nancy, France
- Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
187
|
Friedman R. Simulations of Biomolecules in Electrolyte Solutions. ADVANCED THEORY AND SIMULATIONS 2019. [DOI: 10.1002/adts.201800163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical SciencesLinnæus UniversityKalmar SE‐391 82 Sweden
| |
Collapse
|
188
|
Bonhenry D, Schober R, Schmidt T, Waldherr L, Ettrich RH, Schindl R. Mechanistic insights into the Orai channel by molecular dynamics simulations. Semin Cell Dev Biol 2019; 94:50-58. [PMID: 30639326 DOI: 10.1016/j.semcdb.2019.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/12/2018] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
Highly Ca2+ selective channels trigger a large variety of cellular signaling processes in both excitable and non-excitable cells. Among these channels, the Orai channel is unique in its activation mechanism and its structure. It mediates Ca2+ influx into the cytosol with an extremely small unitary conductance over longer time-scales, ranging from minutes up to several hours. Its activation is regulated by the Ca2+ content of the endoplasmic reticulum (ER). Depletion of luminal [Ca2+]ER is sensed by the STIM1 single transmembrane protein that directly binds and gates the Orai1 channel. Orai mediated Ca2+ influx increases cytosolic Ca2+ from 100 nM up to low micromolar range close to the pore and thereby forms Ca2+ microdomains. Hence, these features of the Orai channel can trigger long-term signaling processes without affecting the overall Ca2+ content of a single living cell. Here we focus on the architecture and dynamic conformational changes within the Orai channel. This review summarizes current achievements of molecular dynamics simulations in combination with live cell recordings to address gating and permeation of the Orai channel with molecular precision.
Collapse
Affiliation(s)
- Daniel Bonhenry
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic.
| | - Romana Schober
- Institute for Biophysics, Johannes Kepler University Linz, A-4040 Linz, Austria
| | - Tony Schmidt
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Linda Waldherr
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria
| | - Rüdiger H Ettrich
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady CZ-373 33, Czech Republic; College of Biomedical Sciences, Larkin University, Miami, FL 33169, United States
| | - Rainer Schindl
- Gottfried Schatz Research Center, Medical University of Graz, A-8010 Graz, Austria.
| |
Collapse
|
189
|
Abstract
Noncoding RNA molecules take part in many biological processes, while metal ions play crucial roles in helping RNAs to perform their functions. However, the statics and dynamics of these metal ions around RNA molecules are still not well understood. In this work, we report a detailed molecular dynamics study of the type-I preQ_{1}-bound riboswitch aptamer domain (PRAD) at different ionic conditions (K^{+}, Na^{+}, and Mg^{2+}). The results show that the structural properties and flexibility of the PRAD molecule greatly influence the distributions and dynamics of metal ions around it. Simultaneously, Na^{+} ions show a stronger competitiveness with Mg^{2+} ions than K^{+} ions, and the three types of metal ions have different modes of interaction with the RNA molecule. Furthermore, we have also investigated specific binding sites of metal ions on the PRAD molecule and found that the dynamics and hydration structures of metal ions located at the ion-binding sites were obviously affected by the RNA structure near these ion-binding sites. These results may be useful to understand the role of the metal ions in noncoding RNA functions.
Collapse
Affiliation(s)
- Lei Bao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Jun Wang
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| | - Yi Xiao
- Institute of Biophysics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
| |
Collapse
|
190
|
Di Pasquale N, Hudson T, Icardi M. Systematic derivation of hybrid coarse-grained models. Phys Rev E 2019; 99:013303. [PMID: 30780282 DOI: 10.1103/physreve.99.013303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
Molecular dynamics represents a key enabling technology for applications ranging from biology to the development of new materials. However, many real-world applications remain inaccessible to fully resolved simulations due to their unsustainable computational costs and must therefore rely on semiempirical coarse-grained models. Significant efforts have been devoted in the last decade towards improving the predictivity of these coarse-grained models and providing a rigorous justification of their use, through a combination of theoretical studies and data-driven approaches. One of the most promising research efforts is the (re)discovery of the Mori-Zwanzig projection as a generic, yet systematic, theoretical tool for deriving coarse-grained models. Despite its clean mathematical formulation and generality, there are still many open questions about its applicability and assumptions. In this work, we propose a detailed derivation of a hybrid multiscale system, generalizing and further investigating the approach developed in Español [Europhys. Lett. 88, 40008 (2009)10.1209/0295-5075/88/40008]. Issues such as the general coexistence of atoms (fully resolved degrees of freedom) and beads (larger coarse-grained units), the role of the fine-to-coarse mapping chosen, and the approximation of effective potentials are discussed. The theoretical discussion is supported by numerical simulations of a monodimensional nonlinear periodic benchmark system with an open-source parallel Julia code, easily extensible to arbitrary potential models and fine-to-coarse mapping functions. The results presented highlight the importance of introducing, in the macroscopic model, nonconstant fluctuating and dissipative terms, given by the Mori-Zwanzig approach, to correctly reproduce the reference fine-grained results, without requiring ad hoc calibration of interaction potentials and thermostats.
Collapse
Affiliation(s)
- Nicodemo Di Pasquale
- Department of Mathematics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
| | - Thomas Hudson
- Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matteo Icardi
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
191
|
Zuo Z, Liu J. Assessing the Performance of the Nonbonded Mg 2+ Models in a Two-Metal-Dependent Ribonuclease. J Chem Inf Model 2018; 59:399-408. [PMID: 30521334 DOI: 10.1021/acs.jcim.8b00627] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Magnesium ions (Mg2+), abundant in living cells, are essential for biomolecular structure, dynamics, and function. The biological importance of Mg2+ has motivated continuous development and improvement of various Mg2+ models for molecular dynamics (MD) simulations during the last decades. There are four types of nonbonded Mg2+ models: the point charge models based on a 12-6 or 12-6-4 type Lennard-Jones (LJ) potential, and the multisite models based on a 12-6 or 12-6-4 LJ potential. Here, we systematically assessed the performance of these four types of nonbonded Mg2+ models (21 models in total) in terms of maintaining a challenging intermediate state configuration captured in the structure of a prototypical two-metal-ion RNase H complex with an RNA/DNA hybrid. Our data demonstrate that the 12-6-4 multisite models, which account for charge-induced dipole interactions, perform the best in reproducing all the unique coordination modes in this intermediate state and maintaining the correct carboxylate denticity. Our benchmark work provides a useful guideline for MD simulations and structural refinement of Mg2+-containing biomolecular systems.
Collapse
Affiliation(s)
- Zhicheng Zuo
- Department of Pharmaceutical Sciences , University of North Texas System College of Pharmacy, University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| | - Jin Liu
- Department of Pharmaceutical Sciences , University of North Texas System College of Pharmacy, University of North Texas Health Science Center , Fort Worth , Texas 76107 , United States
| |
Collapse
|
192
|
Pu Z, Zhao M, Zhang Y, Sun W, Bao Y. Dynamic Description of the Catalytic Cycle of Malate Enzyme: Stereoselective Recognition of Substrate, Chemical Reaction, and Ligand Release. J Phys Chem B 2018; 122:12241-12250. [PMID: 30500201 DOI: 10.1021/acs.jpcb.8b05135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In protein engineering, investigations of catalytic cycle facilitate rational design of enzymes. In the present work, deeper analysis on the catalytic cycle of malate enzyme (EC 1.1.1.40), an enzyme involved in cancer metabolic and fatty acid synthesis, was performed. In substrate binding, stereoselective recognition of a substrate originates from distance and angle difference between two chiral substrates and Mn2+ as well as monodentate or coplanar ion reaction with Arg165. In catalytic transformation, the activation barrier for the hydride transfer of d-malate is 20.28 kcal/mol higher than that for l-malate. The activation barrier for β-decarboxylation of oxaloacetate is about 4.59 kcal/mol higher than the activation barrier for the hydride transfer of l-malate. The effective activation barrier is 16.44 kcal/mol, which is in close agreement with the value derived from the application of transition-state theory and the Eyring equation to kcat. In ligand release, l/d-malate needs to overcome a higher barrier than pyruvate to break all bonds in parallel and then to escape from the binding pocket. Leu167 and Asn421 comprise a swinging gate to control the product release. The more open gate is possibly required in the direction of pyruvate to l-malate. Our studies are focused on extending structural knowledge regarding the malate enzyme and provided a powerful strategy for future experimental investigations.
Collapse
Affiliation(s)
- Zhongji Pu
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Mengdi Zhao
- Department of Nanoenergy Engineering , Pusan National University , Busan 46241 , Republic of Korea
| | - Yue Zhang
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Wenhui Sun
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China
| | - Yongming Bao
- School of Life Science and Biotechnology , Dalian University of Technology , Dalian 116024 , China.,School of Food and Environment Science and Engineering , Dalian University of Technology , Panjin 124221 , China
| |
Collapse
|
193
|
Levi E, Aurbach D, Gatti C. Bond Order Conservation Principle and Peculiarities of the Metal-Metal Bonding. Inorg Chem 2018; 57:15550-15557. [PMID: 30480439 DOI: 10.1021/acs.inorgchem.8b02874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pauling's principles developed later in the bond valence model (BVM) are fundamental in description of bonding in ionic solids and surface phenomena on metals, but applicability of these principles to the metal-metal bonds in the bulk compounds was demonstrated only recently, with a spotlight on the bond valence-bond length correlations. This work is focused on the bond order conservation in cluster compounds and determination of empiric bond valence parameters for the metal-metal bonds, which ensure very simple and reasonably accurate bonding analysis, with zero cost, in any complex cluster compound. Such peculiarities of cluster compounds as matrix effect and nonuniform distribution of the ionic charges (bond valence sums) on the ligands around metal clusters, as well as other important examples of the BVM application to compounds with metal-metal bonds, are discussed.
Collapse
Affiliation(s)
- Elena Levi
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Doron Aurbach
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 5290002 , Israel
| | - Carlo Gatti
- CNR-ISTM Istituto di Scienze e Tecnologie Molecolari , via Golgi 19 , Milano I-20133 , Italy.,Istituto Lombardo Accademia di Scienze e Lettere , via Brera 28 , Milano I-20121 , Italy
| |
Collapse
|
194
|
Chandramouli B, Del Galdo S, Mancini G, Barone V. Mechanistic insights into metal ions transit through threefold ferritin channel. Biochim Biophys Acta Gen Subj 2018; 1863:472-480. [PMID: 30496786 DOI: 10.1016/j.bbagen.2018.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/26/2018] [Accepted: 11/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND The mechanism of how the hydrophilic threefold channel (C3) of ferritin nanocages facilitates diffusion of diverse metal ions into the internal cavity remains poorly explored. METHODS Computational modeling and free energy estimations were carried out on R. catesbeiana H´ ferritin. Transit features and associated energetics for Fe2+, Mg2+, Zn2+ ions through the C3 channel have been examined. RESULTS We highlight that iron conduction requires the involvement of two Fe2+ ions in the channel. In such doubly occupied configuration, as observed in X-ray structures, Fe2+ is displaced from the internal site (stabilized by D127) at lower energetic cost. Moreover, comparison of Fe2+, Mg2+ and Zn2+ transit features shows that E130 geometric constriction provides not only an electrostatic anchor to the incoming ions but also differentially influence their diffusion kinetics. CONCLUSIONS Overall, the study provides insights into Fe2+ entry mechanism and characteristic features of metal-protein interactions that influence the metal ions passage. The dynamics data suggest that E130 may act as a metal selectivity gate. This implicates an ion-specific entry mechanism through the channel with the distinct diffusion kinetics being the discriminating factor. GENERAL SIGNIFICANCE Ferritin nanocages not only act as biological iron reservoirs but also have gained importance in material science as template scaffolds for synthesizing metal nanoparticles. This study provides mechanistic understanding on the conduction of different metal ions through the channel.
Collapse
Affiliation(s)
- Balasubramanian Chandramouli
- Compunet, Istituto Italiano di Tecnologia (IIT), Via Morego 30, I-16163 Genova, Italy; Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy.
| | - Sara Del Galdo
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti OrganoMetallici (ICCOMCNR), UOS di Pisa, Area della Ricerca CNR, Via G. Moruzzi 1, I-56124 Pisa, Italy
| | - Giordano Mancini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy; Istituto Nazionale di Fisica Nucleare (INFN) sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy
| |
Collapse
|
195
|
Del Frate G, Nikitin A. Including Electronic Screening in Classical Force Field of Zinc Ion for Biomolecular Simulations. ChemistrySelect 2018. [DOI: 10.1002/slct.201802864] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Gianluca Del Frate
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa Italy
- Present address: IMT School for Advanced Studies Lucca Piazza S.Francesco 19 Lucca 55100 Italy
| | - Alexei Nikitin
- Engelhardt Institute of Molecular BiologyRussian Academy of Sciences Moscow 119991 Russia
- Scuola Normale Superiore Piazza dei Cavalieri 7 6126 Pisa Italy
| |
Collapse
|
196
|
Prasetyo N, Hünenberger PH, Hofer TS. Single-Ion Thermodynamics from First Principles: Calculation of the Absolute Hydration Free Energy and Single-Electrode Potential of Aqueous Li + Using ab Initio Quantum Mechanical/Molecular Mechanical Molecular Dynamics Simulations. J Chem Theory Comput 2018; 14:6443-6459. [PMID: 30284829 DOI: 10.1021/acs.jctc.8b00729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A recently proposed thermodynamic integration (TI) approach formulated in the framework of quantum mechanical/molecular mechanical molecular dynamics (QM/MM MD) simulations is applied to study the structure, dynamics, and absolute intrinsic hydration free energy Δs GM+,wat◦ of the Li+ ion at a correlated ab initio level of theory. Based on the results, standard values (298.15 K, ideal gas at 1 bar, ideal solute at 1 molal) for the absolute intrinsic hydration free energy [Formula: see text] of the proton, the surface electric potential jump χwat◦ upon entering bulk water, and the absolute single-electrode potential [Formula: see text] of the reference hydrogen electrode are calculated to be -1099.9 ± 4.2 kJ·mol-1, 0.13 ± 0.08 V, and 4.28 ± 0.04 V, respectively, in excellent agreement with the standard values recommended by Hünenberger and Reif on the basis of an extensive evaluation of the available experimental data (-1100 ± 5 kJ·mol-1, 0.13 ± 0.10 V, and 4.28 ± 0.13 V). The simulation results for Li+ are also compared to those for Na+ and K+ from a previous study in terms of relative hydration free energies ΔΔs GM+,wat◦ and relative electrode potentials [Formula: see text]. The calculated values are found to agree extremely well with the experimental differences in standard conventional hydration free energies ΔΔs GM+,wat• and redox potentials [Formula: see text]. The level of agreement between simulation and experiment, which is quantitative within error bars, underlines the substantial accuracy improvement achieved by applying a highly demanding QM/MM approach at the resolution-of-identity second-order Møller-Plesset perturbation (RIMP2) level over calculations relying on purely molecular mechanical or density functional theory (DFT) descriptions. A detailed analysis of the structural and dynamical properties of the Li+ hydrate indicates that a correct description of the solvation structure and dynamics is achieved as well at this level of theory. Consideration of the QM/MM potential-energy components also shows that the partitioning into QM and MM zones does not induce any significant energetic artifact for the system considered.
Collapse
Affiliation(s)
- Niko Prasetyo
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria.,Austria-Indonesia Centre (AIC) for Computational Chemistry , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia.,Department of Chemistry, Faculty of Mathematics and Natural Sciences , Universitas Gadjah Mada , Sekip Utara , Yogyakarta 55281 , Indonesia
| | - Philippe H Hünenberger
- Laboratorium für Physikalische Chemie , ETH Zürich, ETH-Hönggerberg , HCI Building , CH-8093 Zürich , Switzerland
| | - Thomas S Hofer
- Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical Chemistry , University of Innsbruck , Innrain 80-82 , A-6020 Innsbruck , Austria
| |
Collapse
|
197
|
Vujović M, Huynh M, Steiner S, Garcia-Fernandez P, Elstner M, Cui Q, Gruden M. Exploring the applicability of density functional tight binding to transition metal ions. Parameterization for nickel with the spin-polarized DFTB3 model. J Comput Chem 2018; 40:400-413. [PMID: 30299559 DOI: 10.1002/jcc.25614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/18/2018] [Accepted: 09/11/2018] [Indexed: 01/04/2023]
Abstract
In this work, we explore the applicability and limitations of the current third order density functional tight binding (DFTB3) formalism for treating transition metal ions using nickel as an example. To be consistent with recent parameterization of DFTB3 for copper, the parametrization for nickel is conducted in a spin-polarized formulation and with orbital-resolved Hubbard parameters and their charge derivatives. The performance of the current parameter set is evaluated based on structural and energetic properties of a set of nickel-containing compounds that involve biologically relevant ligands. Qualitatively similar to findings in previous studies of copper complexes, the DFTB3 results are more reliable for nickel complexes with neutral ligands than for charged ligands; nevertheless, encouraging agreement is noted in comparison to the reference method, B3LYP/aug-cc-pVTZ, especially for structural properties, including cases that exhibit Jahn-Teller distortions; the structures also compare favorably to available X-ray data in the Cambridge Crystallographic Database for a number of nickel-containing compounds. As to limitations, we find it is necessary to use different d shell Hubbard charge derivatives for Ni(I) and Ni(II), due to the distinct electronic configurations for the nickel ion in the respective complexes, and substantial errors are observed for ligand binding energies, especially for charged ligands, d orbital splitting energies and splitting between singlet and triplet spin states for Ni(II) compounds. These observations highlight that future improvement in intra-d correlation and ligand polarization is required to enable the application of the DFTB3 model to complex transition metal ions. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Milena Vujović
- Center for Computational Chemistry and Bioinformatics, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16 11001, Belgrade, Serbia
| | - Mioy Huynh
- Departments of Chemistry, Physics, Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts
| | - Sebastian Steiner
- Institute of Physical Chemistry & Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe, 76131, Germany
| | - Pablo Garcia-Fernandez
- Departamento de Ciencias de la Tierra y Fısica de la Materia Condensada, Universidad de Cantabria,Cantabria Campus Internacional, Avenida de los Castros s/n 39005, Santander, Spain
| | - Marcus Elstner
- Institute of Physical Chemistry & Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, Kaiserstr. 12, Karlsruhe, 76131, Germany
| | - Qiang Cui
- Departments of Chemistry, Physics, Biomedical Engineering, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts
| | - Maja Gruden
- Center for Computational Chemistry and Bioinformatics, Faculty of Chemistry, University of Belgrade, Studentski trg 12-16 11001, Belgrade, Serbia
| |
Collapse
|
198
|
Žuvela P, Liu JJ, Yi M, Pomastowski PP, Sagandykova G, Belka M, David J, Bączek T, Szafrański K, Żołnowska B, Sławiński J, Supuran CT, Wong MW, Buszewski B. Target-based drug discovery through inversion of quantitative structure-drug-property relationships and molecular simulation: CA IX-sulphonamide complexes. J Enzyme Inhib Med Chem 2018; 33:1430-1443. [PMID: 30220229 PMCID: PMC6151961 DOI: 10.1080/14756366.2018.1511551] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In this work, a target-based drug screening method is proposed exploiting the synergy effect of ligand-based and structure-based computer-assisted drug design. The new method provides great flexibility in drug design and drug candidates with considerably lower risk in an efficient manner. As a model system, 45 sulphonamides (33 training, 12 testing ligands) in complex with carbonic anhydrase IX were used for development of quantitative structure-activity-lipophilicity (property)-relationships (QSPRs). For each ligand, nearly 5,000 molecular descriptors were calculated, while lipophilicity (logkw) and inhibitory activity (logKi) were used as drug properties. Genetic algorithm-partial least squares (GA-PLS) provided a QSPR model with high prediction capability employing only seven molecular descriptors. As a proof-of-concept, optimal drug structure was obtained by inverting the model with respect to reference drug properties. 3509 ligands were ranked accordingly. Top 10 ligands were further validated through molecular docking. Large-scale MD simulations were performed to test the stability of structures of selected ligands obtained through docking complemented with biophysical experiments.
Collapse
Affiliation(s)
- Petar Žuvela
- a Department of Chemistry , National University of Singapore , Singapore.,b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - J Jay Liu
- c Department of Chemical Engineering , Pukyong National University , Busan , Korea
| | - Myunggi Yi
- d Department of Biomedical Engineering , Pukyong National University , Busan , Korea
| | - Paweł P Pomastowski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Gulyaim Sagandykova
- e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| | - Mariusz Belka
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jonathan David
- a Department of Chemistry , National University of Singapore , Singapore
| | - Tomasz Bączek
- f Department of Pharmaceutical Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Krzysztof Szafrański
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Beata Żołnowska
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Jarosław Sławiński
- g Department of Organic Chemistry , Medical University of Gdańsk , Gdańsk , Poland
| | - Claudiu T Supuran
- h Dipartimento di Chimica, Universita degli Studi di Firenze , Polo Scientifico, Laboratorio di Chimica Bioinorganica , Sesto Fiorentino (Florence) , Italy.,i NEUROFARBA Department, Sezione di Scienze Farmaceutiche , Università degli Studi di Firenze , Sesto Fiorentino (Florence) , Italy
| | - Ming Wah Wong
- a Department of Chemistry , National University of Singapore , Singapore
| | - Bogusław Buszewski
- b Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland.,e Interdisciplinary Centre for Modern Technologies, Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
199
|
Sala D, Musiani F, Rosato A. Application of Molecular Dynamics to the Investigation of Metalloproteins Involved in Metal Homeostasis. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry; Department of Pharmacy and Biotechnology; University of Bologna; Viale Giuseppe Fanin 40, I 40127 Bologna Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM); University of Florence; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine; Via Luigi Sacconi 6 50019 Sesto Fiorentino Italy
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
| |
Collapse
|
200
|
Shen L, Zeng X, Hu H, Hu X, Yang W. Accurate Quantum Mechanical/Molecular Mechanical Calculations of Reduction Potentials in Azurin Variants. J Chem Theory Comput 2018; 14:4948-4957. [PMID: 30040901 DOI: 10.1021/acs.jctc.8b00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Understanding the regulation mechanism and molecular determinants of the reduction potential of metalloprotein is a major challenge. An ab initio quantum mechanical/molecular mechanical (QM/MM) method combining the minimum free energy path (MFEP) and fractional number of electron (FNE) approaches has been developed in our group to simulate the redox processes of large systems. The FNE scheme provides an efficient unique description for the redox process, while the MFEP method provides improved conformational sampling on complex environments such as protein in the QM/MM calculations. The reduction potentials of wild-type and seven mutants of azurin, a type 1 copper metalloprotein, were simulated with the QM/MM-MFEP+FNE approach in this paper. A range of 350 mV for the variations of the reduction potentials of these azurin proteins was reproduced faithfully with relative errors around 20 mV. The correlation between structural interactions and reduction potentials observed in simulations provides in-depth insight into the regulation of reduction potentials, which potentially can also be very useful to the engineering of metalloprotein-based electrocatalysts in artificial photosynthesis. The excellent accuracy and efficiency of the QM/MM-MFEP+FNE approach demonstrate the potential for simulations of many electron transfer processes in condensed phases and biochemical systems.
Collapse
Affiliation(s)
- Lin Shen
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiancheng Zeng
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Hao Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Xiangqian Hu
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Weitao Yang
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|