151
|
Li X, Zangiabadi M, Zhao Y. Molecularly Imprinted Synthetic Glucosidase for the Hydrolysis of Cellulose in Aqueous and Nonaqueous Solutions. J Am Chem Soc 2021; 143:5172-5181. [DOI: 10.1021/jacs.1c01352] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
152
|
Chen B, Peng Z, Li C, Feng Y, Sun Y, Tang X, Zeng X, Lin L. Catalytic Conversion of Biomass to Furanic Derivatives with Deep Eutectic Solvents. CHEMSUSCHEM 2021; 14:1496-1506. [PMID: 33576193 DOI: 10.1002/cssc.202100001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Biomass is the only renewable organic carbon resource in nature, and the transformation of abundant biomass into various chemicals has received immense spotlight. As a novel generation of designer solvents, deep eutectic solvents (DESs) have been widely used in biorefinery due to their excellent properties including low cost, easy preparation, and biodegradability. Although there have been some reports summarizing the performance of DESs for the transformation of biomass into various chemicals, few Reviews illuminate the relationship between the functional structure of DESs and catalytic conversion of biomass. Hence, this Minireview comprehensively summarizes the effects of the types of functional groups in DESs on catalytic conversion of biomass into furanic derivatives, such as carboxylic acid-based hydrogen-bond donors (HBDs), carbohydrate-based HBDs, polyalcohol-based HBDs, amine/amide-based HBDs, spatial structure of HBDs, and various hydrogen-bond acceptors (HBAs). It also further summarizes the effects of adding different additives into the DESs on the synthesis of high value-added chemicals, including water, liquid inorganic acids, Lewis acids, heteropoly acids, and typical solid acids. Moreover, current challenges and prospects for the application of DESs in biomass conversion are provided.
Collapse
Affiliation(s)
- Binglin Chen
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Zhiqing Peng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Chuang Li
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Yunchao Feng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, P.R. China
- Fujian Engineering and Research Centre of Clean and High-valued Technologies for Biomass, Xiamen, 361102, P.R. China
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, Xiamen, 361102, P.R. China
| |
Collapse
|
153
|
Chen H, Wan K, Zheng F, Zhang Z, Zhang H, Zhang Y, Long D. Recent Advances in Photocatalytic Transformation of Carbohydrates Into Valuable Platform Chemicals. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.615309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In response to the less accessible fossil resources and deteriorating environmental problems, catalytic conversion of the abundant and renewable lignocellulosic biomass to replace fossil resources for the production of value-added chemicals and fuels is of great importance. Depolymerization of carbohydrate and its derivatives can obtain a series of C5-C6 monosaccharides (e.g., glucose and xylose) and their derived platform compounds (e.g., HMF and furfural). Selective transformation of lignocellulose using sustainable solar energy via photocatalysis has attract broad interest from a growing scientific community. The unique photogenerated reactive species (e.g., h+, e−, •OH, •O2−, and 1O2), novel reaction pathways as well as the mild reaction conditions make photocatalysis a “dream reaction.” This review is aimed to provide an overview of the up-to-date contributions achieved in the selective photocatalytic transformation of carbohydrate and its derivatives. Photocatalytic methods, properties and merits of different catalytic systems are well summarized. We then put forward future perspective and challenges in this field.
Collapse
|
154
|
Chen G, Sun Q, Xu J, Zheng L, Rong J, Zong B. Sulfonic Derivatives as Recyclable Acid Catalysts in the Dehydration of Fructose to 5-Hydroxymethylfurfural in Biphasic Solvent Systems. ACS OMEGA 2021; 6:6798-6809. [PMID: 33748593 PMCID: PMC7970464 DOI: 10.1021/acsomega.0c05857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/03/2021] [Indexed: 05/27/2023]
Abstract
Biphasic systems have received increasing attention for acid-catalyzed dehydration of hexoses to 5-hydroxymethylfurfural (HMF) because of their high efficiency in in situ extraction and stabilization of HMF. Different organic solvents and acid catalysts were applied in these systems, but their effects on the dehydration activity and HMF yield, and the recycling of homogeneous acid catalysts remain largely unexplored. Here, we tested different solvent systems containing a wide range of organic solvents with low boiling points to study the effects of their chemical structures on fructose dehydration and provided stable H2O-dioxane and H2O-acetonitrile biphasic systems with high HMF yields of 76-79% using water-soluble sulfonic derivatives as homogeneous acid catalysts under mild conditions (383 K). By analyzing the partition coefficients of HMF and sulfonic derivatives, 94.3% of HMF and 87.1% of NH2SO3H were, respectively, restrained in the dioxane phase and aqueous phase in the H2O-dioxane biphasic system and easily divided by phase separation. The effects of the adjacent group in sulfonic derivatives and reaction temperature on fructose conversions and HMF yields suggest that in a specific biphasic system, the catalysts' acidity and reaction conditions significantly affect the fructose dehydration activity but hardly influence the optimal yield of HMF, and an almost constant amount of carbon loss was observed mainly due to the poor hydrothermal stability of fructose. Such developments offer a promising strategy to address the challenge in the separation and recycling of homogeneous acid catalysts in the practical HMF production.
Collapse
Affiliation(s)
- Gongzhe Chen
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Qianhui Sun
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Jia Xu
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Lufan Zheng
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Junfeng Rong
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| | - Baoning Zong
- State
Key Laboratory of Catalytic Materials and Reaction Engineering, Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
155
|
|
156
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021; 60:4712-4719. [PMID: 33230943 DOI: 10.1002/anie.202013843] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Indexed: 11/05/2022]
Abstract
Green synthesis of adipic acid from renewable biomass is a very attractive goal of sustainable chemistry. Herein, we report efficient catalysts for a two-step transformation of cellulose-derived glucose into adipic acid via glucaric acid. Carbon nanotube-supported platinum nanoparticles are found to work efficiently for the oxidation of glucose to glucaric acid. An activated carbon-supported bifunctional catalyst composed of rhenium oxide and palladium is discovered to be powerful for the removal of four hydroxyl groups in glucaric acid, affording adipic acid with a 99 % yield. Rhenium oxide functions for the deoxygenation but is less efficient for four hydroxyl group removal. The co-presence of palladium not only catalyzes the hydrogenation of olefin intermediates but also synergistically facilitates the deoxygenation. This work presents a green route for adipic acid synthesis and offers a bifunctional-catalysis strategy for efficient deoxygenation.
Collapse
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
157
|
Zhu Z, Yang L, Ke C, Fan G, Yang L, Li F. Highly efficient catalytic transfer hydrogenation of furfural over defect-rich amphoteric ZrO 2 with abundant surface acid-base sites. Dalton Trans 2021; 50:2616-2626. [PMID: 33522543 DOI: 10.1039/d0dt00055h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Currently, the catalytic transformation and utilization of biomass-derived compounds are of great importance to the alleviation of environmental problems and sustainable development. Among them, furfural alcohol derived from biomass resources has been found to be one of the most prospective biomass platforms for high-value chemicals and biofuels. Herein, high-surface-area ZrO2 with abundant oxygen defects and surface acid-base sites was synthesized and used as a heterogeneous catalyst for the catalytic transfer hydrogenation of furfural into furfural alcohol using alcohol as a hydrogen donor. The as-synthesized ZrO2 exhibited excellent catalytic performance with 98.2% FA conversion and 97.1% FOL selectivity, even comparable with that of a homogeneous Lewis acid catalyst. A series of characterization studies and experimental results revealed that acid sites on the surface of ZrO2 could adsorb and activate the C[double bond, length as m-dash]O bond in furfural and base sites could facilitate the formation of alkoxide species. The synergistic effect of surface acid-base sites affords a harmonious environment for the reaction, which is crucial for catalytic transfer hydrogenation of furfural with high efficiency. Furthermore, the as-prepared ZrO2 catalyst also exhibited a potential application for the efficient catalytic transfer hydrogenation of a series of biomass-derived carbonyl compounds.
Collapse
Affiliation(s)
- Zekun Zhu
- State Key Laboratory of Chemical Resources Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | | | | | | | | | | |
Collapse
|
158
|
Wu J, Qi M, Gözaydın G, Yan N, Gao Y, Chen X. Selectivity-Switchable Conversion of Chitin-Derived N-Acetyl- d-glucosamine into Commodity Organic Acids at Room Temperature. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingwei Wu
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, 201306 Shanghai, China
| | - Man Qi
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, 201306 Shanghai, China
| | - Gökalp Gözaydın
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Yongjun Gao
- College of Chemistry and Environmental Science, Hebei University, 071002 Baoding, China
| | - Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Rd, 201306 Shanghai, China
| |
Collapse
|
159
|
Xu WY, Zhuo KF, Gong TJ, Fu Y. Transition-Metal-Free Valorization of Biomass-derived Levulinic Acid Derivatives: Synthesis of Curcumene and Xanthorrhizol. CHEMSUSCHEM 2021; 14:884-891. [PMID: 33090706 DOI: 10.1002/cssc.202002167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Levulinic acid (LA) is acknowledged one of the most promising biomass-derived platform molecules and can be transformed into various value-added chemicals. Here, we report a new reaction process for the valorization of LA derivatives under transition-metal-free condition. The protocol combined with the conversion of the levulinate to tosylhydrazone and base promoted arylation, acylation, and etherification cross-coupling. Moreover, our method was applied to synthesize three biologically active molecules, rac-curcumene, rac-xanthorrhizol and rac-4,7-dimethyl-l-tetralone. This reaction discloses a new avenue for the high-value utilization of platform molecules.
Collapse
Affiliation(s)
- Wen-Yan Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Kai-Feng Zhuo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tian-Jun Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
- Hefei Institute of Energy, Hefei, P. R. China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, iChEM, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
160
|
Kim IT, Sinha TK, Lee J, Lee Y, Oh JS. Ultrasonic Treatment: An Acid-Free Green Approach Toward Preparing High-Performance Activated Carbon from Lignin. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c03627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- In Tae Kim
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, South Korea
| | - Tridib Kumar Sinha
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, South Korea
| | - Jongseong Lee
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, South Korea
| | - Younki Lee
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, South Korea
| | - Jeong Seok Oh
- Department of Materials Engineering and Convergence Technology, RIGET, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, South Korea
| |
Collapse
|
161
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
162
|
Egorova KS, Posvyatenko AV, Fakhrutdinov AN, Galushko AS, Seitkalieva MM, Ananikov VP. Synergistic/antagonistic cytotoxic effects in mixtures of ionic liquids with doxorubicin or mitoxantrone. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
163
|
Yan Q, Liu M, Xiao C, Fu D, Wei J, Fang D, Yang J. Predicting properties of ionic liquid homologue of N-alkylpyridinium acetate. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
164
|
Abstract
Deep eutectic solvents (DESs) have emerged as promising green solvents, due to their versatility and properties such as high biodegradability, inexpensiveness, ease of preparation and negligible vapor pressure. Thus, DESs have been used as sustainable media and green catalysts in many chemical processes. On the other hand, lignocellulosic biomass as an abundant source of renewable carbon has received ample interest for the production of biobased chemicals. In this review, the state of the art of the catalytic use of DESs in upgrading the biomass-related substances towards biofuels and value-added chemicals is presented, and the gap in the knowledge is indicated to direct the future research.
Collapse
|
165
|
Ru Nanoparticles on a Sulfonated Carbon Layer Coated SBA-15 for Catalytic Hydrogenation of Furfural into 1, 4-pentanediol. Catal Letters 2021. [DOI: 10.1007/s10562-020-03520-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
166
|
Jing Y, Wang Y, Furukawa S, Xia J, Sun C, Hülsey MJ, Wang H, Guo Y, Liu X, Yan N. Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb
2
O
5
Catalyst. Angew Chem Int Ed Engl 2021; 60:5527-5535. [DOI: 10.1002/anie.202011063] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/23/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yaxuan Jing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysis and Battery Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Jie Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengyang Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Max J. Hülsey
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yong Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ning Yan
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
167
|
Jing Y, Wang Y, Furukawa S, Xia J, Sun C, Hülsey MJ, Wang H, Guo Y, Liu X, Yan N. Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb
2
O
5
Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011063] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yaxuan Jing
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysis and Battery Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Jie Xia
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Chengyang Sun
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Max J. Hülsey
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Haifeng Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yong Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaohui Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Research Institute of Industrial Catalysis School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ning Yan
- Department of Chemical & Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
168
|
Deng W, Yan L, Wang B, Zhang Q, Song H, Wang S, Zhang Q, Wang Y. Efficient Catalysts for the Green Synthesis of Adipic Acid from Biomass. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013843] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Weiping Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Longfei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qihui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Haiyan Song
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shanshan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and Esters College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
169
|
Kumar K, Kumar M, Upadhyayula S. Catalytic Conversion of Glucose into Levulinic Acid Using 2-Phenyl-2-Imidazoline Based Ionic Liquid Catalyst. Molecules 2021; 26:molecules26020348. [PMID: 33445440 PMCID: PMC7827230 DOI: 10.3390/molecules26020348] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/02/2021] [Accepted: 01/07/2021] [Indexed: 11/21/2022] Open
Abstract
Levulinic acid (LA) is an industrially important product that can be catalytically valorized into important value-added chemicals. In this study, hydrothermal conversion of glucose into levulinic acid was attempted using Brønsted acidic ionic liquid catalyst synthesized using 2-phenyl-2-imidazoline, and 2-phenyl-2-imidazoline-based ionic liquid catalyst used in this study was synthesized in the laboratory using different anions (NO3, H2PO4, and Cl) and characterized using 1H NMR, TGA, and FT-IR spectroscopic techniques. The activity trend of the Brønsted acidic ionic liquid catalysts synthesized in the laboratory was found in the following order: [C4SO3HPhim][Cl] > [C4SO3HPhim][NO3] > [C4SO3HPhim][H2PO4]. A maximum 63% yield of the levulinic acid was obtained with 98% glucose conversion at 180 °C and 3 h reaction time using [C4SO3HPhim][Cl] ionic liquid catalyst. The effect of different reaction conditions such as reaction time, temperature, ionic liquid catalyst structures, catalyst amount, and solvents on the LA yield were investigated. Reusability of [C4SO3HPhim][Cl] catalyst up to four cycles was observed. This study demonstrates the potential of the 2-phenyl-2-imidazoline-based ionic liquid for the conversion of glucose into the important platform chemical levulinic acid.
Collapse
|
170
|
Ma H, Li Z, Chen L, Teng J. LiCl-promoted-dehydration of fructose-based carbohydrates into 5-hydroxymethylfurfural in isopropanol. RSC Adv 2021; 11:1404-1410. [PMID: 35424116 PMCID: PMC8693523 DOI: 10.1039/d0ra08737h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
The carbohydrate-derived 5-hydroxymethylfurfural (HMF) is one of the most versatile intermediate chemicals, and is promising to bridge the growing gap between the supply and demand of energy and chemicals. Developing a low-cost catalytic system will be helpful to the production of HMF in industry. Herein, the commercially available lithium chloride (LiCl) and isopropanol (i-PrOH) are used to construct a cost-effective and low-toxic system, viz., LiCl/i-PrOH, for the preparation of HMF from fructose-based carbohydrates, achieving ∼80% of HMF yield under the optimum conditions. The excellent promotion effect of LiCl on fructose conversion in i-PrOH could be attributed to the synergistic effect of LiCl with i-PrOH through the LiCl-promoted and i-PrOH-aided dehydration process, and the co-operation of LiCl and i-PrOH for stabilizing the as-formed HMF by hydrogen/coordination bonds, giving a low activation energy of 68.68 kJ mol-1 with a pre-exponential factor value of 1.2 × 104 min-1. The LiCl/i-PrOH system is a substrate-tolerant and scalable catalytic system, fructose (scaled up 10 times), sucrose, and inulin also give 73.6%, 30.3%, and 70.3% HMF yield, respectively. Moreover, this system could be reused 8 times without significant loss of activity. The readily available and low-toxic LiCl, the sustainable solvent (i-PrOH), the renewable starting materials, and the mild reaction conditions make this system promising and sustainable for the industrial production of HMF in future.
Collapse
Affiliation(s)
- Hao Ma
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Zhenzhen Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Lili Chen
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Junjiang Teng
- College of Chemistry, Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| |
Collapse
|
171
|
Di Fidio N, Timmermans JW, Antonetti C, Raspolli Galletti AM, Gosselink RJA, Bisselink RJM, Slaghek TM. Electro-oxidative depolymerisation of technical lignin in water using platinum, nickel oxide hydroxide and graphite electrodes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01037a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In order to improve the lignin exploitation to added-value bioproducts, a mild chemical conversion route based on electrochemistry was investigated.
Collapse
Affiliation(s)
- Nicola Di Fidio
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | - Johan W. Timmermans
- Wageningen Food and Biobased Research
- Wageningen University & Research
- 6708 WG Wageningen
- The Netherlands
| | - Claudia Antonetti
- Department of Chemistry and Industrial Chemistry
- University of Pisa
- 56124 Pisa
- Italy
| | | | - Richard J. A. Gosselink
- Wageningen Food and Biobased Research
- Wageningen University & Research
- 6708 WG Wageningen
- The Netherlands
| | - Roel J. M. Bisselink
- Wageningen Food and Biobased Research
- Wageningen University & Research
- 6708 WG Wageningen
- The Netherlands
| | - Ted M. Slaghek
- Wageningen Food and Biobased Research
- Wageningen University & Research
- 6708 WG Wageningen
- The Netherlands
| |
Collapse
|
172
|
Manjunathan P, Shanbhag DY, Vinu A, Shanbhag GV. Recognizing soft templates as stimulators in multivariate modulation of tin phosphate and its application in catalysis for alkyl levulinate synthesis. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01637c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft template tunes and controls explicitly both morphology and nature of active sites during the synthesis of tin phosphate catalyst. This synthesis strategy helped in producing alkyl levulinate in high yields from one-pot alcoholysis of furfuryl alcohol.
Collapse
Affiliation(s)
- Pandian Manjunathan
- Materials Science and Catalysis Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bengaluru-562164
- India
- Graduate Studies
| | - Dhanush Y. Shanbhag
- Global Innovative Center for Advanced Nanomaterials (GICAN)
- Faculty of Engineering and Built Environment
- The University of Newcastle
- Callaghan
- Australia
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN)
- Faculty of Engineering and Built Environment
- The University of Newcastle
- Callaghan
- Australia
| | - Ganapati V. Shanbhag
- Materials Science and Catalysis Division
- Poornaprajna Institute of Scientific Research (PPISR)
- Bengaluru-562164
- India
| |
Collapse
|
173
|
Song D, Liu J, Zhang C, Guo Y. Design of Brønsted acidic ionic liquid functionalized mesoporous organosilica nanospheres for efficient synthesis of ethyl levulinate and levulinic acid from 5-hydroxymethylfurfural. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01941k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous organosilica nanosphere-immobilized Brønsted acidic ionic liquids with a controlled particle size and pore morphology exhibit high activity and selectivity.
Collapse
Affiliation(s)
- Daiyu Song
- School of Environment
- Northeast Normal University
- Changchun 130117
- P.R. China
| | - Jingyu Liu
- School of Environment
- Northeast Normal University
- Changchun 130117
- P.R. China
| | - Chaoyue Zhang
- School of Environment
- Northeast Normal University
- Changchun 130117
- P.R. China
| | - Yihang Guo
- School of Environment
- Northeast Normal University
- Changchun 130117
- P.R. China
| |
Collapse
|
174
|
Manjunathan P, Upare PP, Lee M, Hwang DW. One-pot fructose conversion into 5-ethoxymethylfurfural using a sulfonated hydrophobic mesoporous organic polymer as a highly active and stable heterogeneous catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00883h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We report a sulfonated hydrophobic mesoporous organic polymer (MOP-SO3H) as a highly efficient heterogeneous catalyst for one-pot 5-ethoxymethylfurfural (EMF) production from fructose in ethanol solvent.
Collapse
Affiliation(s)
- Pandian Manjunathan
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Pravin P. Upare
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Maeum Lee
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
| | - Dong Won Hwang
- Green Carbon Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeongro, Yuseong, Daejeon 34114, Republic of Korea
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), 217 Gwahangno, Yuseong, Daejeon 34113, Republic of Korea
| |
Collapse
|
175
|
Wang Z, Zhao P, Wu J, Gao J, Zhang L, Xu D. ZIF-8-porous ionic liquids for the extraction of 2,2,3,3-tetrafluoro-1-propanol and water mixture. NEW J CHEM 2021. [DOI: 10.1039/d1nj01053k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Porous ionic liquids were employed for the extraction of TFP and water via a unique liquid porous structure and intermolecular interaction.
Collapse
Affiliation(s)
- Zenghui Wang
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Pingping Zhao
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
- Shandong Key Laboratory of Biochemical Analysis
| | - Jimin Wu
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Jun Gao
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Lianzheng Zhang
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Dongmei Xu
- College of Chemical and Biological Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| |
Collapse
|
176
|
de Assis GC, Silva IMA, dos Santos TG, dos Santos TV, Meneghetti MR, Meneghetti SMP. Photocatalytic processes for biomass conversion. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02358b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review focuses on the photocatalytic conversion of biomass, emphasizing several types of systems, including different photocatalysts and biomass derivatives.
Collapse
Affiliation(s)
- Geovânia C. de Assis
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Igor M. A. Silva
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Tiago G. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Thatiane V. dos Santos
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Mario R. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| | - Simoni M. P. Meneghetti
- Group of Catalysis and Chemical Reactivity (GCAR)
- Institute of Chemistry and Biotechnology
- Federal University of Alagoas
- 57072-970 Maceió
- Brazil
| |
Collapse
|
177
|
Kim SA, Kim SE, Kim YK, Jang HY. Copper-Catalyzed Oxidative Cleavage of the C-C Bonds of β-Alkoxy Alcohols and β-1 Compounds. ACS OMEGA 2020; 5:31684-31691. [PMID: 33344820 PMCID: PMC7745431 DOI: 10.1021/acsomega.0c04162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Copper-catalyzed aerobic oxidation conditions were employed to promote the C-C bond cleavage of β-alkoxy alcohols and β-1 compounds (lignin model compounds). Besides these compounds, various 1,2 and 1,3-diols were successfully converted to aldehydes. We propose the Cu(I)-catalyzed mechanism explaining the C-C cleavage of these 1,2 and 1,3-dihydroxy compounds and β-alkoxy alcohols based on XPS data. Although our reaction conditions do not include large excess of bases and elaborated ligand-modified catalysts, copper salts with/without Me-TBD show good catalytic activities for C-C bond cleavage of various lignin model compounds.
Collapse
|
178
|
Zhao M, Wu B, Castner EW. Mixtures of octanol and an ionic liquid: Structure and transport. J Chem Phys 2020; 153:214501. [DOI: 10.1063/5.0031989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Man Zhao
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Edward W. Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
179
|
Design of quaternary ammonium type-ionic liquids as desiccants for an air-conditioning system. GREEN CHEMICAL ENGINEERING 2020; 1:109-116. [PMCID: PMC7561525 DOI: 10.1016/j.gce.2020.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The liquid desiccant air-conditioning system allows reducing energy consumption compared to the conventional compressor-type air conditioners. In order to develop desiccant materials for air conditioners, we have investigated the dehumidification capability of quaternary ammonium Ionic Liquids (ILs) and the equilibrium water vapor pressure of aqueous solutions of these ammonium salts. Among the seven tested types of ILs, 2-hydroxy-N ,N ,N -trimethylethan-1-aminium dimethylphosphate ([Ch][DMPO4]) displayed the best dehumidification capability and the lowest equilibrium water vapor pressure. Furthermore, the 80% aqueous solution of [Ch][DMPO4] exhibited a less corrosive effect on four types of metals, i.e., steel (hot dip zinc-aluminum alloy plated steel), copper (C1100P), aluminum (A5052), and stainless steel (SUS: SUS304). It should be noted that this [Ch][DMPO4] is not only non-toxic but also exhibits a stable nature; the aqueous solution produced no odor after storing for over 1 year under ambient conditions.
Collapse
|
180
|
Charge-separated metal-couple-site in NiZn alloy catalysts towards furfural hydrodeoxygenation reaction. J Catal 2020. [DOI: 10.1016/j.jcat.2020.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
181
|
Liu M, Zhang Z, Yan J, Liu S, Liu H, Liu Z, Wang W, He Z, Han B. Aerobic Oxidative Cleavage and Esterification of C(OH)–C Bonds. Chem 2020. [DOI: 10.1016/j.chempr.2020.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
182
|
Visible-light photoredox-catalyzed C-O bond cleavage of diaryl ethers by acridinium photocatalysts at room temperature. Nat Commun 2020; 11:6126. [PMID: 33257656 PMCID: PMC7705023 DOI: 10.1038/s41467-020-19944-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Cleavage of C-O bonds in lignin can afford the renewable aryl sources for fine chemicals. However, the high bond energies of these C-O bonds, especially the 4-O-5-type diaryl ether C-O bonds (~314 kJ/mol) make the cleavage very challenging. Here, we report visible-light photoredox-catalyzed C-O bond cleavage of diaryl ethers by an acidolysis with an aryl carboxylic acid and a following one-pot hydrolysis. Two molecules of phenols are obtained from one molecule of diaryl ether at room temperature. The aryl carboxylic acid used for the acidolysis can be recovered. The key to success of the acidolysis is merging visible-light photoredox catalysis using an acridinium photocatalyst and Lewis acid catalysis using Cu(TMHD)2. Preliminary mechanistic studies indicate that the catalytic cycle occurs via a rare selective electrophilic attack of the generated aryl carboxylic radical on the electron-rich aryl ring of the diphenyl ether. This transformation is applied to a gram-scale reaction and the model of 4-O-5 lignin linkages.
Collapse
|
183
|
Feng J, Fan T, Ma C, Xu Y, Jiang J, Pan H. Collaborative Conversion of Biomass Carbohydrates into Valuable Chemicals: Catalytic Strategy and Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13760-13769. [PMID: 33196190 DOI: 10.1021/acs.jafc.0c04804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Levulinate is one of the high added-value biomass-derived chemicals that is primarily produced from hexoses in cellulose and hemicellulose. Producing levulinate from pentoses in hemicellulose that is extensively distributed in biomass is still highly challenging. In this study, biomass materials and carbohydrates (including cellulose, xylan, glucose, fructose, and xylose) were collaboratively converted into levulinates efficiently over various zeolites with ethanol/dimethoxymethane as cosolvents. The key process for converting pentoses into levulinates is the synthesis of intermediates (furfural) into alkoxy methyl furfural via electrophilic substitution or their conversion into furfuryl alcohol via in situ hydrogenation. The substitution was achieved by the synergic effect between bifunctional catalysts and cosolvents, which promotes conversion of furfural into alkoxy methyl furfural via the electrophilic addition of alkoxy methyl radicals. Hydrogenation of furfural into furfuryl alcohol was impelled by the cooperative process between in situ generated H-donor from alcohol solvents and zeolite catalysts. Moreover, a favorable yield of 21.05 mol % of levulinates was achieved by simultaneous and collaborative conversion of cellulose and hemicellulose with the one-pot process using ethanol/dimethoxymethane as a cosolvent and the zeolite with B and L acid sites as a catalyst.
Collapse
Affiliation(s)
- Junfeng Feng
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Teng Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changyue Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yangyang Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianchun Jiang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Hui Pan
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
184
|
Cao D, Yu J, Zeng H, Li CJ. Dearomatization-Rearomatization Strategy for Synthesizing Carbazoles with 2,2'-Biphenols and Ammonia by Dual C(Ar)-OH Bond Cleavages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13200-13205. [PMID: 32223264 DOI: 10.1021/acs.jafc.0c00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbazole is an essential building block in various pharmaceuticals, agrochemicals, natural products, and materials. For future sustainability, it is highly desirable to synthesize carbazole derivatives directly from renewable resources or cheap raw materials. Phenolic compounds are a class of degradation products of lignin. On the other hand, ammonia is a very cheap industrial inorganic chemical. Herein, an efficient dearomatization-rearomatization strategy has been developed to directly cross-couple 2,2'-biphenols with ammonia by dual C(Ar)-OH bond cleavages. This strategy provides a greener pathway to synthesize valuable carbazole derivatives from phenols.
Collapse
Affiliation(s)
- Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yu
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
185
|
Shivhare A, Kumar A, Srivastava R. An Account of the Catalytic Transfer Hydrogenation and Hydrogenolysis of Carbohydrate‐Derived Renewable Platform Chemicals over Non‐Precious Heterogeneous Metal Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001415] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Atal Shivhare
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| | - Abhinav Kumar
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| | - Rajendra Srivastava
- Catalysis Research Laboratory Department of Chemistry IIT Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
186
|
Li X, Zhao Y. Synthetic glycosidases for the precise hydrolysis of oligosaccharides and polysaccharides. Chem Sci 2020; 12:374-383. [PMID: 34163603 PMCID: PMC8178952 DOI: 10.1039/d0sc05338d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
Glycosidases are an important class of enzymes for performing the selective hydrolysis of glycans. Although glycans can be hydrolyzed in principle by acidic water, hydrolysis with high selectivity using nonenzymatic catalysts is an unachieved goal. Molecular imprinting in cross-linked micelles afforded water-soluble polymeric nanoparticles with a sugar-binding boroxole in the imprinted site. Post-modification installed an acidic group near the oxygen of the targeted glycosidic bond, with the acidity and distance of the acid varied systematically. The resulting synthetic glycosidase hydrolyzed oligosaccharides and polysaccharides in a highly controlled fashion simply in hot water. These catalysts not only broke down amylose with similar selectivities to those of natural enzymes, but they also could be designed to possess selectivity not available with biocatalysts. Substrate selectivity was mainly determined by the sugar residues bound within the active site, including their spatial orientations. Separation of the product was accomplished through in situ dialysis, and the catalysts left behind could be used multiple times with no signs of degradation. This work illustrates a general method to construct synthetic glycosidases from readily available building blocks via self-assembly, covalent capture, and post-modification. In addition, controlled, precise, one-step hydrolysis is an attractive way to prepare complex glycans from naturally available carbohydrate sources.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University Ames Iowa 50011-3111 USA
| |
Collapse
|
187
|
Quantitative structure toxicity analysis of ionic liquids toward acetylcholinesterase enzyme using novel QSTR models with index of ideality of correlation and correlation contradiction index. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114055] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
188
|
Feng J, Tong L, Ma C, Xu Y, Jiang J, Yang Z, Pan H. Directional and integrated conversion of whole components in biomass for levulinates and phenolics with biphasic system. BIORESOURCE TECHNOLOGY 2020; 315:123776. [PMID: 32683287 DOI: 10.1016/j.biortech.2020.123776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Integrated conversion and stepwise extraction of whole components in biomass with biphasic system are introduced for producing chemicals: levulinates and phenolics. When methanol/dimethoxymethane as biphasic solvent, 46.51% methyl levulinate and 18.78% phenolics were obtained with a conversion of 80.59 wt% per 4 g rice straw under the mild reaction conditions. Levulinates were collected with a 87.5 wt% high purity of methyl levulinate with stepwise precipitation and extraction from the cellulose and hemicellulose. The results of acid value, freezing point, induction period, kinematic viscosity, and flash point supposed that the extracted methyl levulinate could meet the requirements of fuel additives. Depolymerized lignin was consisted of many low-molecular phenolics. These results illustrated that the biphasic system can promote the conversion of cellulose and hemicellulose to the same product methyl levulinate through different intermediate transition compounds, and the catalyst can contribute to directly cleave the glycosidic bonds, β-O-4, and 4-O-5 with adequate protons.
Collapse
Affiliation(s)
- Junfeng Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing Forestry University, Nanjing, Jiangsu 210042, China
| | - Le Tong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changyue Ma
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yangyang Xu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianchun Jiang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Zhongzhi Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China; Department of Biological Systems Engineering, University of Wisconsin-Madison, WI 53716, USA
| | - Hui Pan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
189
|
Lu S, Lyu J, Han X, Bai P, Guo X. Effective isomerization of glucose to fructose by Sn-MFI/MCM-41 composites as Lewis acid catalysts. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
190
|
Lin L, Mei Q, Han X, Parker SF, Yang S. Investigations of Hydrocarbon Species on Solid Catalysts by Inelastic Neutron Scattering. Top Catal 2020. [DOI: 10.1007/s11244-020-01389-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe status of surface species on solid catalysts during heterogeneous catalysis is often mysterious. Investigations of these surface species are crucial to deconvolute the reaction network and design more efficient catalysts. Vibrational spectroscopy is a powerful technique to study the interactions between surface species and the catalysts and infrared (IR) and Raman spectroscopies have been widely applied to study reaction mechanisms in heterogeneous catalysis. However, IR/Raman spectra are difficult to model computationally and important vibrational modes may be IR-, Raman- (or both) inactive due to restrictions by optical selection rules. Inelastic neutron scattering (INS) is another form of vibrational spectroscopy and relies on the scattering of neutrons by the atomic nucleus. A consequence of this is that INS is not subject to any optical selection rules and all vibrations are measurable in principle. INS spectroscopy has been used to investigate surface species on catalysts in a wide range of heterogeneous catalytic reactions. In this mini-review, we focus on applications of INS in two important fields: petrochemical reactions and C1 chemistry. We introduce the basic principles of the INS technique, followed by a discussion of its application in investigating two key catalytic systems: (i) the behaviour of hydrocarbons on metal-oxide and zeolite catalysts and (ii) the formation of hydrocarbonaceous species on methane reforming and Fischer–Tropsch catalysts. The power of INS in studying these important catalytic systems is demonstrated.
Collapse
|
191
|
Kucherov FA, Gordeev EG, Kashin AS, Ananikov VP. Controlled Natural Biomass Deoxygenation Allows the Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45394-45403. [PMID: 32975930 DOI: 10.1021/acsami.0c14986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The present article describes a conceptual view on the design of reusable bioderived high-value-added materials. The translation of a highly complex irregular structure of natural biopolymer into a well-defined hierarchically organized molecular chain led to the discovery of unique adhesive properties enhanced by a novel multiple binding effect. For practical applications, biomass-derived furanic polyesters were found as reusable thermoplastic adhesives. Examined poly(ethylene-2,5-furandicarboxylate) (PEF) and poly(hexamethylene-2,5-furandicarboxylate) (PHF) showed strong adhesion to aluminum in single-lap shear tests (1.47 ± 0.1 and 1.18 ± 0.1 kN/cm2, respectively). After the separation, the joints could be easily restored by reheating of the metal parts. Three consecutive cycles of regluing were successfully performed without a significant drop in the adhesive strength. Strong adhesion of the biomass-derived polymers to glass surfaces was also observed (0.93 ± 0.11 kN/cm2 for PEF and 0.84 ± 0.06 kN/cm2 for PHF). An in-depth study of the surfaces after the shear tests, carried out by means of scanning electron microscopy, revealed predominantly cohesive failure in the case of aluminum samples and adhesive failure in the case of glass samples. Computational modeling revealed a multiple oxygen binding mode for the interaction of furanic polyester molecules with the glass surface and metal atoms. Only sustainable materials were used as a carbon source for the production of target polymers, which showed excellent compatibility with the practically most demanding constructing materials (a universal reusable hot-melt adhesive for copper, brass, Be-copper, Mn-bronze, zinc, aluminum, titanium, and glass).
Collapse
Affiliation(s)
- Fedor A Kucherov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russia
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russia
| | - Alexey S Kashin
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky Prospekt, 47, Moscow 119991, Russia
| |
Collapse
|
192
|
Sun Z, Cheng J, Wang D, Yuan TQ, Song G, Barta K. Downstream Processing Strategies for Lignin-First Biorefinery. CHEMSUSCHEM 2020; 13:5199-5212. [PMID: 32748524 DOI: 10.1002/cssc.202001085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/03/2020] [Indexed: 05/14/2023]
Abstract
The lignin-first strategy has emerged as one of the most powerful approaches for generating novel platform chemicals from lignin by efficient depolymerization of native lignin. Because of the emergence of this novel depolymerization method and the definition of viable platform chemicals, future focus will soon shift towards innovative downstream processing strategies. Very recently, many interesting approaches have emerged that describe the production of valuable products across the whole value chain, including bulk and fine chemical building blocks, and several concrete examples have been developed for the production of polymers, pharmaceutically relevant compounds, or fuels. This Minireview provides an overview of these recent advances. After a short summary of catalytic systems for obtaining aromatic monomers, a comprehensive discussion on their separation and applications is given. This Minireview will fill the gap in biorefinery between deriving high yields of lignin monomers and tapping into their potential for making valuable consumer products.
Collapse
Affiliation(s)
- Zhuohua Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Jinling Cheng
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Dingsheng Wang
- Department of Chemistry and the Key Laboratory of Atomic & Molecular Nanosciences, Tsinghua University, Beijing, 100084, P.R. China
| | - Tong-Qi Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Katalin Barta
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse 28/II, 8010, Graz, Austria
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 TC, Groningen (The, Netherlands
| |
Collapse
|
193
|
Solvent-Free Approaches in Carbohydrate Synthetic Chemistry: Role of Catalysis in Reactivity and Selectivity. Catalysts 2020. [DOI: 10.3390/catal10101142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Owing to their abundance in biomass and availability at a low cost, carbohydrates are very useful precursors for products of interest in a broad range of scientific applications. For example, they can be either converted into basic chemicals or used as chiral precursors for the synthesis of potentially bioactive molecules, even including nonsaccharide targets; in addition, there is also a broad interest toward the potential of synthetic sugar-containing structures in the field of functional materials. Synthetic elaboration of carbohydrates, in both the selective modification of functional groups and the assembly of oligomeric structures, is not trivial and often entails experimentally demanding approaches practiced by specialized groups. Over the last years, a large number of solvent-free synthetic methods have appeared in the literature, often being endowed with several advantages such as greenness, experimental simplicity, and a larger scope than analogous reactions in solution. Most of these methods are catalytically promoted, and the catalyst often plays a key role in the selectivity associated with the process. This review aims to describe the significant recent contributions in the solvent-free synthetic chemistry of carbohydrates, devoting a special critical focus on both the mechanistic role of the catalysts employed and the differences evidenced so far with corresponding methods in solution.
Collapse
|
194
|
Guo H, Tomoka S, Smith RL. Catalytic hydrogenation of levulinic acid in ionic liquid mixtures using hydrogen gas in high-pressure CO2. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104891] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
195
|
Supramolecular gels of gluconamides derived from renewable resources: Antibacterial and anti‐biofilm applications. NANO SELECT 2020. [DOI: 10.1002/nano.202000058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
196
|
Jing Y, Wang Y. Catalytic Hydrodeoxygenation of Lignin-Derived Feedstock Into Arenes and Phenolics. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.00010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
197
|
Affiliation(s)
- Stefan Jopp
- Department of Technical and Analytical Chemistry Institute of Chemistry University of Rostock Albert‐Einstein‐Str. 3a Rostock Germany
| |
Collapse
|
198
|
Jing Y, Dong L, Guo Y, Liu X, Wang Y. Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. CHEMSUSCHEM 2020; 13:4181-4198. [PMID: 31886600 DOI: 10.1002/cssc.201903174] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/27/2019] [Indexed: 05/14/2023]
Abstract
Lignin is the most abundant biopolymer with aromatic building blocks and its valorization to sustainable chemicals and fuels has extremely great potential to reduce the excessive dependence on fossil resources, although such conversions remain challenging. The purpose of this Review is to present an insight into the catalytic conversion of lignin involving hydrogen, including reductive depolymerization and the hydrodeoxygenation of lignin-derived monomers to arenes, cycloalkanes and phenols, with a main focus on the catalyst systems and reaction mechanisms. The roles of hydrogenation sites (Ru, Pt, Pd, Rh) and acid sites (Nb, Ti, Mo), as well as their interaction in selective hydrodeoxygenation reactions are emphasized. Furthermore, some inspirational strategies for the production of other value-added chemicals are mentioned. Finally, some personal perspectives are provided to highlight the opportunities within this attractive field.
Collapse
Affiliation(s)
- Yaxuan Jing
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Lin Dong
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yong Guo
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Xiaohui Liu
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| | - Yanqin Wang
- Shanghai Key Laboratory of Functional Materials Chemistry and Research, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, No. 130 Meilong Road, Shanghai, 200237, P.R. China
| |
Collapse
|
199
|
Du X, Zhang H, Sullivan KP, Gogoi P, Deng Y. Electrochemical Lignin Conversion. CHEMSUSCHEM 2020; 13:4318-4343. [PMID: 33448690 DOI: 10.1002/cssc.202001187] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/17/2020] [Indexed: 06/12/2023]
Abstract
Lignin is the largest source of renewable aromatic compounds, making the recovery of aromatic compounds from this material a significant scientific goal. Recently, many studies have reported on lignin depolymerization and upgrading strategies. Electrochemical approaches are considered to be low cost, reagent free, and environmentally friendly, and can be carried out under mild reaction conditions. In this Review, different electrochemical lignin conversion strategies, including electrooxidation, electroreduction, hybrid electro-oxidation and reduction, and combinations of electrochemical and other processes (e. g., biological, solar) for lignin depolymerization and upgrading are discussed in detail. In addition to lignin conversion, electrochemical lignin fractionation from biomass and black liquor is also briefly discussed. Finally, the outlook and challenges for electrochemical lignin conversion are presented.
Collapse
Affiliation(s)
- Xu Du
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Haichuan Zhang
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
- Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, P. R. China
| | - Kevin P Sullivan
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory (NREL), Golden, CO 80401, USA
| | - Parikshit Gogoi
- Department of Chemistry, Nowgong College, Nagaon, 782001, Assam, India
| | - Yulin Deng
- School of Chemical & Biomolecular Engineering and Renewable Bioproducts Institute, Georgia Institute of Technology, 500 10th Street N.W., Atlanta, GA 303320620, USA
| |
Collapse
|
200
|
Xue Z, Yu H, He J, Zhang Y, Lan X, Liu R, Zhang L, Mu T. Highly Efficient Cleavage of Ether Bonds in Lignin Models by Transfer Hydrogenolysis over Dual-Functional Ruthenium/Montmorillonite. CHEMSUSCHEM 2020; 13:4579-4586. [PMID: 32419386 DOI: 10.1002/cssc.202000978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Cleavage of ether bonds is a crucial but challenging step for lignin valorization. To efficiently realize this transformation, the development of robust catalysts or catalytic systems is required. In this study, montmorillonite (MMT)-supported Ru (denoted as Ru/MMT) is fabricated as a dual-functional heterogeneous catalyst to cleave various types of ether bonds through transfer hydrogenolysis without using any additional acids or bases. The prepared Ru/MMT material is found to efficiently catalyze the cleavage of various lignin models and lignin-derived phenols; cyclohexanes (fuels) and cyclohexanols (key intermediates) are the main products. The synergistic effect between electron-enriched Ru and the acidic sites on MMT contributes to the excellent performance of Ru/MMT. Systematic studies reveal that the reaction proceeds through two possible reaction pathways, including the direct cleavage of ether bonds and the formation of intermediates with one hydrogenated benzene ring, for all examined types of ether bonds, namely, 4-O-5, α-O-4, and β-O-4.
Collapse
Affiliation(s)
- Zhimin Xue
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Haitao Yu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Yibin Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Xue Lan
- Department of Chemistry, Renmin University of China, Beijing, 100872, PR China
| | - Rundong Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Luyao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, PR China
| | - Tiancheng Mu
- Department of Chemistry, Renmin University of China, Beijing, 100872, PR China
| |
Collapse
|