151
|
Zhao X, Yang F, Zou SY, Zhou QQ, Chen ZS, Ji K. Cu-Catalyzed Intermolecular γ-Site C–H Amination of Cyclohexenone Derivatives: The Benefit of Bifunctional Ligands. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xin Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- School of Pharmacy, Baotou Medical College, Baotou 014060, Inner Mongolia, P. R. China
| | - Fang Yang
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Shao-Yu Zou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Qian-Qian Zhou
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
| | - Kegong Ji
- College of Chemistry and Pharmacy, Northwest A&F University, 3 Taicheng Road, Yangling, Xianyang 712100, Shaanxi, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
152
|
Petrillo A, Hoffmann A, Becker J, Herres‐Pawlis S, Schindler S. Copper Mediated Intramolecular vs. Intermolecular Oxygenations: The Spacer makes the Difference! Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Petrillo
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| | - Sonja Herres‐Pawlis
- Institute of Inorganic Chemistry RWTH Aachen University Landoltweg 1a 52074 Aachen Germany
| | - Siegfried Schindler
- Institute of Inorganic and Analytical Chemistry Justus-Liebig-University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
153
|
Davydov R, Herzog AE, Jodts RJ, Karlin KD, Hoffman BM. End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. J Am Chem Soc 2022; 144:377-389. [PMID: 34981938 PMCID: PMC8785356 DOI: 10.1021/jacs.1c10252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this report, we investigate the physical and chemical properties of monocopper Cu(I) superoxo and Cu(II) peroxo and hydroperoxo complexes. These are prepared by cryoreduction/annealing of the parent [LCuI(O2)]+ Cu(I) dioxygen adducts with the tripodal, N4-coordinating, tetradentate ligands L = PVtmpa, DMMtmpa, TMG3tren and are best described as [LCuII(O2•-)]+ Cu(II) complexes that possess end-on (η1-O2•-) superoxo coordination. Cryogenic γ-irradiation (77 K) of the EPR-silent parent complexes generates mobile electrons from the solvent that reduce the [LCuII(O2•-)]+ within the frozen matrix, trapping the reduced form fixed in the structure of the parent complex. Cryoannealing, namely progressively raising the temperature of a frozen sample in stages and then cooling back to low temperature at each stage for examination, tracks the reduced product as it relaxes its structure and undergoes chemical transformations. We employ EPR and ENDOR (electron-nuclear double resonance) as powerful spectroscopic tools for examining the properties of the states that form. Surprisingly, the primary products of reduction of the Cu(II) superoxo species are metastable cuprous superoxo [LCuI(O2•-)]+ complexes. During annealing to higher temperatures this state first undergoes internal electron transfer (IET) to form the end-on Cu(II) peroxo state, which is then protonated to form Cu(II)-OOH species. This is the first time these methods, which have been used to determine key details of metalloenzyme catalytic cycles and are a powerful tools for tracking PCET reactions, have been applied to copper coordination compounds.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Austin E Herzog
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Richard J Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| |
Collapse
|
154
|
Bose S, Dutta S, Koley D. Entering Chemical Space with Theoretical Underpinning of the Mechanistic Pathways in the Chan–Lam Amination. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sanjoy Bose
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741 246, India
| |
Collapse
|
155
|
Richezzi M, Ferreyra J, Puzzolo J, Milesi L, Palopoli CM, Moreno DM, Hureau C, Signorella SR. Versatile Activity of a Copper(II) Complex Bearing a N4‐Tetradentate Schiff Base Ligand with Reduced Oxygen Species. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Micaela Richezzi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Joaquín Ferreyra
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Juan Puzzolo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Lisandro Milesi
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Claudia M. Palopoli
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Diego M. Moreno
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Química Física ARGENTINA
| | - Christelle Hureau
- CNRS: Centre National de la Recherche Scientifique LCC - Laboratoire de Chimie de Coordination FRANCE
| | | |
Collapse
|
156
|
Lan Z, Toney J, Mallikarjun Sharada S. A computational mechanistic study of CH hydroxylation with mononuclear copper–oxygen complexes. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01128j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A computational study of methane hydroxylation by oxygen-bound monocopper complexes.
Collapse
Affiliation(s)
- Zhenzhuo Lan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Jacob Toney
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
157
|
Lee YJ, Kim H, Kim Y, Cho KH, Hong S, Nam KT, Kim SH, Choi CH, Seo J. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A peptide antibiotic, daptomycin, was repurposed to a multicopper catalyst presenting cooperative rate enhancement in O–O bond formation and activation reactions.
Collapse
Affiliation(s)
- Yen Jea Lee
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Haesol Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Kang Hee Cho
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sugyeong Hong
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Hyuck Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jiwon Seo
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
158
|
Chen CY, Tsai ML. Tris(Imidazolyl) Dicopper(I) Complex and its Reactivity to Exert Catalytic Oxidation of Sterically Hindered Phenol Substrates via a [Cu2O]2+ Core. Dalton Trans 2022; 51:2428-2443. [DOI: 10.1039/d1dt04084g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Cu ion ligated with histidine residues is a common active site motif of various Cu-containing metalloenzymes exerting versatile catalytic oxidation reactions. Due to the scarce of structurally characterized biomimetic...
Collapse
|
159
|
Santander-Nelli M, Cortés-Arriagada D, Sanhueza L, Dreyse P. Dependence between luminescence properties of Cu( i) complexes and electronic/structural parameters derived from steric effects. NEW J CHEM 2022. [DOI: 10.1039/d2nj00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantification of steric effects induced by bulky N^N ligands and their relationship with the luminescence properties of Cu(i) complexes.
Collapse
Affiliation(s)
- Mireya Santander-Nelli
- Advanced Integrated Technologies (AINTECH), Chorrillo Uno, Parcela 21, Lampa, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, General Gana 1702, Santiago 8370854, Chile
| | - Diego Cortés-Arriagada
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación. Universidad Tecnológica Metropolitana, Ignacio Valdivieso, 2409, San Joaquín, Santiago 8940577, Chile
| | - Luis Sanhueza
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BioMA), Universidad Católica de Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile
| | - Paulina Dreyse
- Departamento de Química, Universidad Técnica Federico Santa María, Avda. España 1680, Casilla 2390123, Valparaíso, Chile
| |
Collapse
|
160
|
Kelly JC, Bloomfield AJ. High-spin, tetrahedral cobalt( ii) and nickel( ii) complexes supported by monoprotic aminophosphine ligands, and attempted extension to copper( ii) complexes: synthesis, characterization, and unexpected reactivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02651a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and characterization of two bidentate ligands containing an aliphatic monoprotic aminophosphine moiety, as well as novel complexes with Co(ii), Ni(ii), and Cu(ii).
Collapse
Affiliation(s)
- Jordan C. Kelly
- Department of Chemistry & Biochemistry, Duquesne University, 600 Forbes Ave. Pittsburgh, PA 15282, USA
| | - Aaron J. Bloomfield
- Department of Chemistry & Biochemistry, Duquesne University, 600 Forbes Ave. Pittsburgh, PA 15282, USA
| |
Collapse
|
161
|
Van Trieste GP, Reibenspies JH, Chen YS, Sengupta D, Thompson RR, Powers DC. Oxygen-atom transfer photochemistry of a molecular copper bromate complex. Chem Commun (Camb) 2022; 58:12608-12611. [DOI: 10.1039/d2cc04403j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the synthesis and oxygen-atom transfer (OAT) photochemistry of [Cu(tpa)BrO3]ClO4.
Collapse
Affiliation(s)
| | | | - Yu-Sheng Chen
- ChemMatCARS, University of Chicago, Argonne, IL 60439, USA
| | - Debabrata Sengupta
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Richard R. Thompson
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|
162
|
Smits NWG, Rademaker D, Konovalov AI, Siegler MA, Hetterscheid DGH. Influence of the spatial distribution of copper sites on the selectivity of the oxygen reduction reaction. Dalton Trans 2021; 51:1206-1215. [PMID: 34951437 PMCID: PMC8763313 DOI: 10.1039/d1dt03296h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Moving towards a hydrogen economy raises the demand for affordable and efficient catalysts for the oxygen reduction reaction. Cu-bmpa (bmpa = bis(2-picolyl)amine) is shown to have moderate activity, but poor selectivity for the 4-electron reduction of oxygen to water. To enhance the selectivity towards water formation, the cooperative effect of three Cu-bmpa binding sites in a single trinuclear complex is investigated. The catalytic currents in the presence of the trinuclear sites are lower, possibly due to the more rigid structure and therefore higher reorganization energies and/or slower diffusion rates of the catalytic species. Although the oxygen reduction activity of the trinuclear complexes is lower than that of mononuclear Cu-bmpa, the selectivity of the copper mediated oxygen reduction was significantly enhanced towards the 4-electron process due to a cooperative effect between three copper centers that have been positioned in close proximity. These results indicate that the cooperativity between metal ions within biomimetic sites can greatly enhance the ORR selectivity.
Collapse
Affiliation(s)
- N W G Smits
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - D Rademaker
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - A I Konovalov
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| | - M A Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - D G H Hetterscheid
- Leiden Institute of Chemistry, Leiden University, P.O. box 9502, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
163
|
Gerz I, Jannuzzi SAV, Hylland KT, Negri C, Wragg DS, Øien‐Ødegaard S, Tilset M, Olsbye U, DeBeer S, Amedjkouh M. Structural Elucidation, Aggregation, and Dynamic Behaviour of N,N,N,N-Copper(I) Schiff Base Complexes in Solid and in Solution: A Combined NMR, X-ray Spectroscopic and Crystallographic Investigation. Eur J Inorg Chem 2021; 2021:4762-4775. [PMID: 35874966 PMCID: PMC9298233 DOI: 10.1002/ejic.202100722] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Indexed: 12/30/2022]
Abstract
A series of Cu(I) complexes of bidentate or tetradentate Schiff base ligands bearing either 1-H-imidazole or pyridine moieties were synthesized. The complexes were studied by a combination of NMR and X-ray spectroscopic techniques. The differences between the imidazole- and pyridine-based ligands were examined by 1H, 13C and 15N NMR spectroscopy. The magnitude of the 15Nimine coordination shifts was found to be strongly affected by the nature of the heterocycle in the complexes. These trends showed good correlation with the obtained Cu-Nimine bond lengths from single-crystal X-ray diffraction measurements. Variable-temperature NMR experiments, in combination with diffusion ordered spectroscopy (DOSY) revealed that one of the complexes underwent a temperature-dependent interconversion between a monomer, a dimer and a higher aggregate. The complexes bearing tetradentate imidazole ligands were further studied using Cu K-edge XAS and VtC XES, where DFT-assisted assignment of spectral features suggested that these complexes may form polynuclear oligomers in solid state. Additionally, the Cu(II) analogue of one of the complexes was incorporated into a metal-organic framework (MOF) as a way to obtain discrete, mononuclear complexes in the solid state.
Collapse
Affiliation(s)
- Isabelle Gerz
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | | | - Knut T. Hylland
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - Chiara Negri
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - David S. Wragg
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - Sigurd Øien‐Ødegaard
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - Mats Tilset
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - Unni Olsbye
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| | - Serena DeBeer
- Department of Inorganic SpectroscopyMax Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Mohamed Amedjkouh
- Department of ChemistryUniversity of OsloP. O. Box 1033 Blindern0315OsloNorway
- Centre for Materials Science and NanotechnologyUniversity of OsloP.O. Box 1126 Blindern0316OsloNorway
| |
Collapse
|
164
|
Khatua M, Goswami B, Kamal, Samanta S. Azide-Alkyne "Click" Reaction in Water Using Parts-Per-Million Amine-Functionalized Azoaromatic Cu(I) Complex as Catalyst: Effect of the Amine Side Arm. Inorg Chem 2021; 60:17537-17554. [PMID: 34806366 DOI: 10.1021/acs.inorgchem.1c02115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of Cu(II) complexes, 1-4 and 6, were synthesized through a reaction of amine-functionalized pincer-like ligands, HL1,2, La,b, and a bidentate ligand L1 with CuCl2·2H2O. The chemical reduction of complex 1 using 1 equiv of sodium l-ascorbate resulted in a dimeric Cu(I) complex 5 in excellent yield. All of the complexes, 1-6, were thoroughly characterized using various physicochemical characterization techniques, single-crystal X-ray structure determination, and density functional theory calculations. Ligands HL1,2 and La,b behaved as tridentated donors by the coordination of the amine side arm in their respective Cu(II) complexes, and the amine side arm remained as a pendant in Cu(I) complexes. All of these complexes (1-6) were explored for copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition (CuAAC) reaction at room temperature in water under air. Complex 5 directly served as an active catalyst; however, complexes 1-4 and 6 required 1 equiv of sodium l-ascorbate to generate their corresponding active Cu(I) catalyst. It has been observed that azo-based ligand-containing Cu(I)-complexes are air-stable and were highly efficient for the CuAAC reaction. The amine side arm in the ligand backbone has a dramatic role in accelerating the reaction rate. Mechanistic investigations showed that the alkyne C-H deprotonation was the rate-limiting step and the pendant amine side arm intramolecularly served as a base for Cu-coordinated alkyne deprotonation, leading to the azide-alkyne 2 + 3 cycloaddition reaction. Thus, variation of the amine side arm in complexes 1-4 and use of the most basic diisopropyl amine moiety in complex 4 has resulted in an unique amine-functionalized azoaromatic Cu(I) system for CuAAC reaction upon sodium l-ascorbate reduction. The complex 4 has shown excellent catalysis at its low parts-per-million level loading in water. The catalytic protocol was versatile and exhibited very good functional group tolerance. It was also employed efficiently to synthesize a number of useful functional triazoles having medicinal, catalytic, and targeting properties.
Collapse
Affiliation(s)
- Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India 741246
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, India 181221
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, Jammu, India 181221
| |
Collapse
|
165
|
Chen QF, Cheng ZY, Liao RZ, Zhang MT. Bioinspired Trinuclear Copper Catalyst for Water Oxidation with a Turnover Frequency up to 20000 s -1. J Am Chem Soc 2021; 143:19761-19768. [PMID: 34793144 DOI: 10.1021/jacs.1c08078] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solar-powered water splitting is a dream reaction for constructing an artificial photosynthetic system for producing solar fuels. Natural photosystem II is a prototype template for research on artificial solar energy conversion by oxidizing water into molecular oxygen and supplying four electrons for fuel production. Although a range of synthetic molecular water oxidation catalysts have been developed, the understanding of O-O bond formation in this multielectron and multiproton catalytic process is limited, and thus water oxidation is still a big challenge. Herein, we report a trinuclear copper cluster that displays outstanding reactivity toward catalytic water oxidation inspired by multicopper oxidases (MCOs), which provides efficient catalytic four-electron reduction of O2 to water. This synthetic mimic exhibits a turnover frequency of 20000 s-1 in sodium bicarbonate solution, which is about 150 and 15 times higher than that of the mononuclear Cu catalyst (F-N2O2Cu, 131.6 s-1) and binuclear Cu2 complex (HappCu2, 1375 s-1), respectively. This work shows that the cooperation between multiple metals is an effective strategy to regulate the formation of O-O bond in water oxidation catalysis.
Collapse
Affiliation(s)
- Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ze-Yu Cheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
166
|
Quek SY, Debnath S, Laxmi S, van Gastel M, Krämer T, England J. Sterically Stabilized End-On Superoxocopper(II) Complexes and Mechanistic Insights into Their Reactivity with O-H, N-H, and C-H Substrates. J Am Chem Soc 2021; 143:19731-19747. [PMID: 34783549 DOI: 10.1021/jacs.1c07837] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Instability of end-on superoxocopper(II) complexes, with respect to conversion to peroxo-bridged dicopper(II) complexes, has largely constrained their study to very low temperatures. This limits their kinetic capacity to oxidize substrates. In response, we have developed a series of bulky ligands, Ar3-TMPA (Ar = tpb, dpb, dtbpb), and used them to support copper(I) complexes that react with O2 to yield [CuII(η1-O2•-)(Ar3-TMPA)]+ species, which are stable against dimerization at all temperatures. Binding of O2 saturates at subambient temperatures and can be reversed by warming. The onset of oxygenation for the Ar = tpb and dpb systems is observed at 25 °C, and all three [CuII(η1-O2•-)(Ar3-TMPA)]+ complexes are stable against self-decay at temperatures of ≤-20 °C. This provides a wide temperature window for study of these complexes, which was exploited by performing extensive reaction kinetics measurements for [CuII(η1-O2•-)(tpb3-TMPA)]+ using a broad range of O-H, N-H, and C-H bond substrates. This includes correlation of second order rate constants (k2) versus oxidation potentials (Eox) for a range of phenols, construction of Eyring plots, and temperature-dependent kinetic isotope effect (KIE) measurements. The data obtained indicate that reaction with all substrates proceeds via H atom transfer (HAT), reaction with the phenols proceeds with significant charge transfer, and full tunneling of both H and D atoms occurs in the case of 1,2-diphenylhydrazine and 4-methoxy-2,6-di-tert-butylphenol. Oxidation of C-H bonds proved to be kinetically challenging, and whereas [CuII(η1-O2•-)(tpb3-TMPA)]+ can oxidize moderately strong O-H and N-H bonds, it is only able to oxidize very weak C-H bonds.
Collapse
Affiliation(s)
- Sebastian Y Quek
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Suman Debnath
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shoba Laxmi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr D-45470, Germany
| | - Tobias Krämer
- Department of Chemistry, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland.,Hamilton Institute, Maynooth University, Maynooth, Co. Kildare W23 F2H6, Ireland
| | - Jason England
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,Department of Chemistry, University of Lincoln, Lincoln LN6 7TW, U.K
| |
Collapse
|
167
|
Battistella B, Warm K, Cula B, Lu B, Hildebrandt P, Kuhlmann U, Dau H, Mebs S, Ray K. The influence of secondary interactions on the [Ni(O 2)] + mediated aldehyde oxidation reactions. J Inorg Biochem 2021; 227:111668. [PMID: 34923388 DOI: 10.1016/j.jinorgbio.2021.111668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/14/2021] [Accepted: 11/14/2021] [Indexed: 11/30/2022]
Abstract
A rate enhancement of one to two orders of magnitude can be obtained in the aldehyde deformylation reactions by replacing the -N(CH3) groups of [NiIII(O2)(Me4[12]aneN4)]+ (Me4[12]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane) and [NiIII(O2)(Me4[13]aneN4)]+ (Me4[13]aneN4 = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclotridecane) complexes by -NH in [NiIII(O2)([12]aneN4)]+ (2; [12]aneN4 = 1,4,7,10-tetraazacyclododecane) and [NiIII(O2)([13]aneN4)]+ (4; [13]aneN4 = 1,4,7,10-tetraazacyclotridecane). Based on detailed spectroscopic, reaction-kinetics and theoretical investigations, the higher reactivities of 2 and 4 are attributed to the changes in the secondary-sphere interactions between the [NiIII(O2)]+ and [12]aneN4 or [13]aneN4 moieties, which open up an alternative electrophilic pathway for the aldehyde oxidation reaction. Identification of primary kinetic isotope effects on the reactivity and stability of 2 when the -NH groups of the [12]aneN4 ligand are deuterated may also suggest the presence of secondary interaction between the -NH groups of [12]aneN4 and [NiIII(O2)]+ moieties, although, such interactions are not obvious in the DFT calculated optimized structure at the employed level of theory.
Collapse
Affiliation(s)
- Beatrice Battistella
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Warm
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Beatrice Cula
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Bernd Lu
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekretariat PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Uwe Kuhlmann
- Technische Universität Berlin, Institut für Chemie, Sekretariat PC 14, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Holger Dau
- Freie Universität zu Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Stefan Mebs
- Freie Universität zu Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Kallol Ray
- Humboldt-Universität zu Berlin, Institut für Chemie, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
168
|
Castillo I, Torres‐Flores AP, Abad‐Aguilar DF, Berlanga‐Vázquez A, Orio M, Martínez‐Otero D. Cellulose Depolymerization with LPMO‐inspired Cu Complexes. ChemCatChem 2021. [DOI: 10.1002/cctc.202101169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ivan Castillo
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior Cu, 04510 México
| | - Andrea P. Torres‐Flores
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior Cu, 04510 México
| | - Diego F. Abad‐Aguilar
- Instituto de Química Universidad Nacional Autónoma de México Circuito Exterior Cu, 04510 México
| | | | - Maylis Orio
- Aix Marseille Université CNRS, Centrale Marseille, iSm2 13397 Marseille France
| | - Diego Martínez‐Otero
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM Carretera Toluca-Atlacomulco km 14.5 Toluca 50200 Estado de México México
| |
Collapse
|
169
|
Weng W, Weberg AB, Gera R, Tomson NC, Anna JM. Probing Ligand Effects on the Ultrafast Dynamics of Copper Complexes via Midinfrared Pump-Probe and 2DIR Spectroscopies. J Phys Chem B 2021; 125:12228-12241. [PMID: 34723540 DOI: 10.1021/acs.jpcb.1c06370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of ligand structural variation on the ultrafast dynamics of a series of copper coordination complexes were investigated using polarization-dependent mid-IR pump-probe spectroscopy and two-dimensional infrared (2DIR) spectroscopy. The series consists of three copper complexes [(R3P3tren)CuIIN3]BAr4F (1PR3, R3P3tren = tris[2-(phosphiniminato)ethyl]amine, BAr4F = tetrakis(pentafluorophenyl)borate) where the number of methyl and phenyl groups in the PR3 ligand are systematically varied across the series (PR3 = PMe3, PMe2Ph, PMePh2). The asymmetric stretching mode of azide in the 1PR3 series is used as a vibrational probe of the small-molecule binding site. The results of the pump-probe measurements indicate that the vibrational energy of azide dissipates through intramolecular pathways and that the bulkier phenyl groups lead to an increase in the spatial restriction of the diffusive reorientation of bound azide. From 2DIR experiments, we characterize the spectral diffusion of the azide group and find that an increase in the number of phenyl groups maps to a broader inhomogeneous frequency distribution (Δ2). This indicates that an increase in the steric bulk of the secondary coordination sphere acts to create more distinct configurations in the local environment that are accessible to the azide group. This work demonstrates how ligand structural variation affects the ultrafast dynamics of a small molecular group bound to the metal center, which could provide insight into the structure-function relationship of the copper coordination complexes and transition-metal coordination complexes in general.
Collapse
Affiliation(s)
- Wei Weng
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander B Weberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rahul Gera
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Neil C Tomson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jessica M Anna
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
170
|
Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Top Catal 2021. [DOI: 10.1007/s11244-021-01525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
171
|
Carsch KM, Iliescu A, McGillicuddy RD, Mason JA, Betley TA. Reversible Scavenging of Dioxygen from Air by a Copper Complex. J Am Chem Soc 2021; 143:18346-18352. [PMID: 34672573 DOI: 10.1021/jacs.1c10254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report that exposing the dipyrrin complex (EMindL)Cu(N2) to air affords rapid, quantitative uptake of O2 in either solution or the solid-state to yield (EMindL)Cu(O2). The air and thermal stability of (EMindL)Cu(O2) is unparalleled in molecular copper-dioxygen coordination chemistry, attributable to the ligand flanking groups which preclude the [Cu(O2)]1+ core from degradation. Despite the apparent stability of (EMindL)Cu(O2), dioxygen binding is reversible over multiple cycles with competitive solvent exchange, thermal cycling, and redox manipulations. Additionally, rapid, catalytic oxidation of 1,2-diphenylhydrazine to azoarene with the generation of hydrogen peroxide is observed, through the intermittency of an observable (EMindL)Cu(H2O2) adduct. The design principles gleaned from this study can provide insight for the formation of new materials capable of reversible scavenging of O2 from air under ambient conditions with low-coordinate CuI sorbents.
Collapse
Affiliation(s)
- Kurtis M Carsch
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Andrei Iliescu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Ryan D McGillicuddy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
172
|
Preparation of a biomimetic Cu(II) protoporphyrin magnetic nanocomposite and its application for the selective adsorption of angiotensin I. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
173
|
Veiga N, Alvarez N, Castellano EE, Ellena J, Facchin G, Torre MH. Comparative Study of Antioxidant and Pro-Oxidant Properties of Homoleptic and Heteroleptic Copper Complexes with Amino Acids, Dipeptides and 1,10-Phenanthroline: The Quest for Antitumor Compounds. Molecules 2021; 26:6520. [PMID: 34770929 PMCID: PMC8587672 DOI: 10.3390/molecules26216520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
In a search for new antitumoral agents, a series of homoleptic copper(II) complexes with amino acids and dipeptides, as well as heteroleptic complexes containing both dipeptides and 1,10-phenanthroline, were studied. Furthermore, a single-crystal structure containing alanyl-leucinato ([Cu3(AlaLeu)3(H2O)3(CO3)]·PF6·H2O), which is the first homotrinuclear carbonato-bridged copper(II) complex with a dipeptide moiety, is presented. To assess possible antitumor action mechanisms, we focused on the comparative analysis of pro- and antioxidant behaviors. Pro-oxidant activity, in which the reactive oxygen species (ROS) formed by the reaction of the complexes with H2O2 produce oxidative damage to 2-deoxy-d-ribose, was evaluated using the TBARS method. Additionally, the antioxidant action was quantified through the superoxide dismutase (SOD)-like activity, using a protocol based on the inhibitory effect of SOD on the reduction of nitrobluetetrazolium (NBT) by the superoxide anion generated by the xanthine/xanthine oxidase system. Our findings show that Cu-amino acid complexes are strong ROS producers and moderate SOD mimics. Conversely, Cu-dipeptide-phen complexes are good SOD mimics but poor ROS producers. The activity of Cu-dipeptide complexes was strongly dependent on the dipeptide. A DFT computational analysis revealed that complexes with high SOD-like activity tend to display a large dipole moment and condensed-to-copper charge, softness and LUMO contribution. Moreover, good ROS producers have higher global hardness and copper electrophilicity, lower copper softness and flexible and freely accessible coordination polyhedra.
Collapse
Affiliation(s)
- Nicolás Veiga
- Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo C.P. 11800, Uruguay; (N.V.); (N.A.)
| | - Natalia Alvarez
- Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo C.P. 11800, Uruguay; (N.V.); (N.A.)
| | - Eduardo E. Castellano
- Laboratório Multiusuário de Cristalografia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos CEP 13566-590, Brazil; (E.E.C.); (J.E.)
| | - Javier Ellena
- Laboratório Multiusuário de Cristalografia Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos CEP 13566-590, Brazil; (E.E.C.); (J.E.)
| | - Gianella Facchin
- Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo C.P. 11800, Uruguay; (N.V.); (N.A.)
| | - María H. Torre
- Química Inorgánica, DEC, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, Montevideo C.P. 11800, Uruguay; (N.V.); (N.A.)
| |
Collapse
|
174
|
Brinkmeier A, Dalle KE, D'Amore L, Schulz RA, Dechert S, Demeshko S, Swart M, Meyer F. Modulation of a μ-1,2-Peroxo Dicopper(II) Intermediate by Strong Interaction with Alkali Metal Ions. J Am Chem Soc 2021; 143:17751-17760. [PMID: 34658244 DOI: 10.1021/jacs.1c08645] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The properties of metal/dioxygen species, which are key intermediates in oxidation catalysis, can be modulated by interaction with redox-inactive Lewis acids, but structural information about these adducts is scarce. Here we demonstrate that even mildly Lewis acidic alkali metal ions, which are typically viewed as innocent "spectators", bind strongly to a reactive cis-peroxo dicopper(II) intermediate. Unprecedented structural insight has now been obtained from X-ray crystallographic characterization of the "bare" CuII2(μ-η1:η1-O2) motif and its Li+, Na+, and K+ complexes. UV-vis, Raman, and electrochemical studies show that the binding persists in MeCN solution, growing stronger in proportion to the cation's Lewis acidity. The affinity for Li+ is surprisingly high (∼70 × 104 M-1), leading to Li+ extraction from its crown ether complex. Computational analysis indicates that the alkali ions influence the entire Cu-OO-Cu core, modulating the degree of charge transfer from copper to dioxygen. This induces significant changes in the electronic, magnetic, and electrochemical signatures of the Cu2O2 species. These findings have far-reaching implications for analyses of transient metal/dioxygen intermediates, which are often studied in situ, and they may be relevant to many (bio)chemical oxidation processes when considering the widespread presence of alkali cations in synthetic and natural environments.
Collapse
Affiliation(s)
- Alexander Brinkmeier
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Kristian E Dalle
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Lorenzo D'Amore
- Institut de Química Computacional i Catàlisi (IQCC) & Department de Química, Universitat de Girona, 17003 Girona, Spain
| | - Roland A Schulz
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany
| | - Marcel Swart
- Institut de Química Computacional i Catàlisi (IQCC) & Department de Química, Universitat de Girona, 17003 Girona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tamannstrasse 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
175
|
Levín P, Balsa LM, Silva CP, Herzog AE, Vega A, Pavez J, León IE, Lemus L. Artificial Chemical Nuclease and Cytotoxic Activity of a Mononuclear Copper(I) Complex and a Related Binuclear Double‐Stranded Helicate. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pedro Levín
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| | - Lucía M. Balsa
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Carlos P. Silva
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Austin E. Herzog
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Andrés Vega
- Departamento de Ciencias Químicas Facultad de Ciencias Exactas Universidad Andrés Bello Viña del Mar Chile
- Centro para el Desarrollo de Nanociencias y Nanotecnología, CEDENNA Santiago Chile
| | - Jorge Pavez
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
- Soft Matter Research and Technology Center, SMAT-C Santiago Chile
| | - Ignacio E. León
- Centro de Química Inorgánica (CEQUINOR-CONICET-UNLP) Facultad de Ciencias Exactas Universidad Nacional de La Plata Bv 120 1465 La Plata Argentina
| | - Luis Lemus
- Departamento Química de los Materiales Facultad de Química y Biología Universidad de Santiago de Chile Av. Libertador B. O'Higgins, 3363 Santiago Chile
| |
Collapse
|
176
|
Mitrushchenkov AO, Zanchet A, Hauser AW, de Lara-Castells MP. Nonadiabatic Effects in the Molecular Oxidation of Subnanometric Cu 5 Clusters. J Phys Chem A 2021; 125:9143-9150. [PMID: 34633823 PMCID: PMC8543446 DOI: 10.1021/acs.jpca.1c07271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The electronic structure
of subnanometric clusters, far off the
bulk regime, is still dominated by molecular characteristics. The
spatial arrangement of the notoriously undercoordinated metal atoms
is strongly coupled to the electronic properties of the system, which
makes this class of materials particularly interesting for applications
including luminescence, sensing, bioimaging, theranostics, energy
conversion, catalysis, and photocatalysis. Opposing a common rule
of thumb that assumes an increasing chemical reactivity with smaller
cluster size, Cu5 clusters have proven to be exceptionally
resistant to irreversible oxidation, i.e., the dissociative chemisorption
of molecular oxygen. Besides providing reasons for this behavior in
the case of heavy loading with molecular oxygen, we investigate the
competition between physisorption and molecular chemisorption from
the perspective of nonadiabatic effects. Landau–Zener theory
is applied to the Cu5(O2)3 complex
to estimate the probability for a switching between the electronic
states correlating the neutral O2 + Cu5(O2)2 and the ionic O2– + (Cu5(O2)2)+ fragments in a diabatic representation.
Our work demonstrates the involvement of strong nonadiabatic effects
in the associated charge transfer process, which might be a common
motive in reactions involving subnanometric metal structures.
Collapse
Affiliation(s)
| | - Alexandre Zanchet
- Instituto de Física Fundamental (AbinitSim Unit), CSIC, Serrano 123, 28006 Madrid, Spain
| | - Andreas W Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria
| | | |
Collapse
|
177
|
Yang J, Dong HT, Seo MS, Larson VA, Lee YM, Shearer J, Lehnert N, Nam W. The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)-Oxo Complex. J Am Chem Soc 2021; 143:16943-16959. [PMID: 34609879 DOI: 10.1021/jacs.1c04919] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, we report the preparation, spectroscopic and theoretical characterization, and reactivity studies of a Co(IV)-oxo complex bearing an N4-macrocyclic coligand, 12-TBC (12-TBC = 1,4,7,10-tetrabenzyl-1,4,7,10-tetraazacyclododecane). On the basis of the ligand and the structure of the Co(II) precursor, [CoII(12-TBC)(CF3SO3)2], one would assume that this species corresponds to a tetragonal Co(IV)-oxo complex, but the spectroscopic data do not support this notion. Co K-edge XAS data show that the treatment of the Co(II) precursor with iodosylbenzene (PhIO) as an oxidant at -40 °C in the presence of a proton source leads to a distinct shift in the Co K-edge, in agreement with the formation of a Co(IV) intermediate. The presence of the oxo group is further demonstrated by resonance Raman (rRaman) spectroscopy. Interestingly, the EPR data of this complex show a high degree of rhombicity, indicating structural distortion. This is further supported by the EXAFS data. Using DFT calculations, a structural model is developed for this complex with a ligand-protonated structure that features a Co═O···HN hydrogen bond and a four-coordinate Co center in a seesaw-shaped coordination geometry. Magnetic circular dichroism (MCD) spectroscopy further supports this finding. The hydrogen bond leads to an interesting polarization of the Co-oxo π-bonds, where one O(p) lone-pair is stabilized and leads to a regular Co(d) interaction, whereas the other π-bond shows an inverted ligand field. The reactivity of this complex in hydrogen atom and oxygen atom transfer reactions is discussed as well.
Collapse
Affiliation(s)
- Jindou Yang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Hai T Dong
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Virginia A Larson
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.,School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
178
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spektroskopische Charakterisierung eines reaktiven [Cu
2
(μ‐OH)
2
]
2+
Intermediates in Cu/TEMPO‐katalysierten aeroben Alkoholoxidationen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Katrin Warm
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | | | - Erik Andris
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Flemingovo náměstí 2 16610 Prague Czech Republic
| | - Stefan Mebs
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Holger Dau
- Institut für Physik Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Jana Roithová
- Radboud University Heyendaalseweg 135 6525 AJ Nijmegen Niederlande
| | - Kallol Ray
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
179
|
Warm K, Tripodi G, Andris E, Mebs S, Kuhlmann U, Dau H, Hildebrandt P, Roithová J, Ray K. Spectroscopic Characterization of a Reactive [Cu 2 (μ-OH) 2 ] 2+ Intermediate in Cu/TEMPO Catalyzed Aerobic Alcohol Oxidation Reaction. Angew Chem Int Ed Engl 2021; 60:23018-23024. [PMID: 34309168 PMCID: PMC8518518 DOI: 10.1002/anie.202108442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Indexed: 12/23/2022]
Abstract
CuI/TEMPO (TEMPO=2,2,6,6‐tetramethylpiperidinyloxyl) catalyst systems are versatile catalysts for aerobic alcohol oxidation reactions to selectively yield aldehydes. However, several aspects of the mechanism are yet unresolved, mainly because of the lack of identification of any reactive intermediates. Herein, we report the synthesis and characterization of a dinuclear [L12Cu2]2+ complex 1, which in presence of TEMPO can couple the catalytic 4 H+/4 e− reduction of O2 to water to the oxidation of benzylic and aliphatic alcohols. The mechanisms of the O2‐reduction and alcohol oxidation reactions have been clarified by the spectroscopic detection of the reactive intermediates in the gas and condensed phases, as well as by kinetic studies on each step in the catalytic cycles. Bis(μ‐oxo)dicopper(III) (2) and bis(μ‐hydroxo)dicopper(II) species 3 are shown as viable reactants in oxidation catalysis. The present study provides deep mechanistic insight into the aerobic oxidation of alcohols that should serve as a valuable foundation for ongoing efforts dedicated towards the understanding of transition‐metal catalysts involving redox‐active organic cocatalysts.
Collapse
Affiliation(s)
- Katrin Warm
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Guilherme Tripodi
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Erik Andris
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands.,Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 2, 16610, Prague, Czech Republic
| | - Stefan Mebs
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Holger Dau
- Institut für Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Institut für Chemie, Fakultät II, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Jana Roithová
- Radboud University, Heyendaalseweg 135, 6525, AJ, Nijmegen, Netherlands
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
180
|
Xu LP, Haines BE, Ajitha MJ, Yu JQ, Musaev DG. Unified Mechanistic Concept of the Copper-Catalyzed and Amide-Oxazoline-Directed C(sp 2)–H Bond Functionalization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Li-Ping Xu
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Brandon E. Haines
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Manjaly J. Ajitha
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Jin-Quan Yu
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Djamaladdin G. Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1521 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
181
|
Chen QC, Fridman N, Tumanskii B, Gross Z. A chromophore-supported structural and functional model of dinuclear copper enzymes, for facilitating mechanism of action studies. Chem Sci 2021; 12:12445-12450. [PMID: 34603675 PMCID: PMC8480325 DOI: 10.1039/d1sc02593g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Type III dicopper centres are the heart of the reactive sites of enzymes that catalyze the oxidation of catechols. Numerous synthetic model complexes have been prepared to uncover the fundamental chemistry involved in these processes, but progress is still lagging much behind that for heme enzymes. One reason is that the latter gain very much from the informative spectroscopic features of their porphyrin-based metal-chelating ligand. We now introduce sapphyrin-chelated dicopper complexes and show that they may be isolated in different oxidation states and coordination geometries, with distinctive colors and electronic spectra due to the heme-like ligands. The dicopper(i) complex 1-Cu2 was characterized by 1H and 19F NMR spectroscopy of the metal-chelating sapphyrin, the oxygenated dicopper(ii) complex 1-Cu2O2 by EPR, and crystallographic data was obtained for the tetracopper(ii)-bis-sapphyrin complex [1-Cu2O2]2. This uncovered a non-heme [Cu4(OH)4]4− cluster, held together with the aid of two sapphyrin ligands, with structural features reminiscent of those of catechol oxidase. Biomimetic activity was demonstrated by the 1-Cu2O2 catalyzed aerobic oxidation of catechol to quinone; the sapphyrin ligand aided very much in gaining information about reactive intermediates and the rate-limiting step of the reaction. Di-copper chelation by sapphyrin facilitates reaction mechanism investigations and characterization of reactive intermediates regarding biomimetic catechol oxidation.![]()
Collapse
Affiliation(s)
- Qiu-Cheng Chen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Boris Tumanskii
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
182
|
Moharreri E, Jafari T, Rathnayake D, Khanna H, Kuo CH, Suib SL, Nandi P. Role of catalytic nitrile decomposition in tricopper complex mediated direct partial oxidation of methane to methanol. Sci Rep 2021; 11:19175. [PMID: 34584179 PMCID: PMC8478979 DOI: 10.1038/s41598-021-98721-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/13/2021] [Indexed: 11/25/2022] Open
Abstract
Synthetic homogeneous system known to date performing methane to methanol conversion using O2 as terminal oxidant is unique and based on copper complex with piperazine-based ligand (Cu3L in Fig. 1) in a medium of acetonitrile. Prior work have shown that in order to achieve catalytic turnover, hydrogen peroxide is needed to regenerate the active site. We show in this paper that reaction solvent based on organic nitrile decompose concurrently with methane activation and that in the absence of either acetonitrile, Cu complex or hydrogen peroxide, the catalytic turnover does not happen. We show in this manuscript that the direct methane oxidation to methanol might have been mediated by catalytic Radziszewski oxidation between acetonitrile and H2O2. Additionally we have discovered that in the absence of methane, peroxide mediated acetonitrile decomposition also makes methanol via a background reaction which was hitherto unknown.
Collapse
Affiliation(s)
- Ehsan Moharreri
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Tahereh Jafari
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Dinithi Rathnayake
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Harshul Khanna
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Chung-Hao Kuo
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Steven L Suib
- Department of Chemistry and Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
| | - Partha Nandi
- Corporate Strategic Research, ExxonMobil Research and Engineering, 1545 US 22 East, Annandale, NJ, 08801, USA.
| |
Collapse
|
183
|
Pan HR, Chen HJ, Wu ZH, Ge P, Ye S, Lee GH, Hsu HF. Structural and Spectroscopic Evidence for a Side-on Fe(III)-Superoxo Complex Featuring Discrete O-O Bond Distances. JACS AU 2021; 1:1389-1398. [PMID: 34604849 PMCID: PMC8479760 DOI: 10.1021/jacsau.1c00184] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 05/26/2023]
Abstract
The O-O bond length is often used as a structural indicator to determine the valence states of bound O2 ligands in biological metal-dioxygen intermediates and related biomimetic complexes. Here, we report very distinct O-O bond lengths found for three crystallographic forms (1.229(4), 1.330(4), 1.387(2) Å at 100 K) of a side-on iron-dioxygen species. Despite their different O-O bond distances, all forms possess the same electronic structure of Fe(III)-O2 •-, as evidenced by their indistinguishable spectroscopic features. Density functional theory and ab initio calculations, which successfully reproduce spectroscopic parameters, predict a flat potential energy surface of an η2-O2 motif binding to the iron center regarding the O-O distance. Therefore, the discrete O-O bond lengths observed likely arise from differential intermolecular interactions in the second coordination sphere. The work suggests that the O-O distance is not a reliable benchmark to unequivocally identify the valence state of O2 ligands for metal-dioxygen species in O2-utilizing metalloproteins and synthetic complexes.
Collapse
Affiliation(s)
- Hung-Ruei Pan
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Hsin-Jou Chen
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Zong-Han Wu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Pu Ge
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengfa Ye
- State
Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- Max-Planck-Institut
für Kohlenforschung, Mülheim
an der Ruhr D-45470, Germany
| | - Gene-Hsiang Lee
- Department
of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hua-Fen Hsu
- Department
of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
184
|
Jodts RJ, Ross MO, Koo CW, Doan PE, Rosenzweig AC, Hoffman BM. Coordination of the Copper Centers in Particulate Methane Monooxygenase: Comparison between Methanotrophs and Characterization of the Cu C Site by EPR and ENDOR Spectroscopies. J Am Chem Soc 2021; 143:15358-15368. [PMID: 34498465 DOI: 10.1021/jacs.1c07018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In nature, methane is oxidized to methanol by two enzymes, the iron-dependent soluble methane monooxygenase (sMMO) and the copper-dependent particulate MMO (pMMO). While sMMO's diiron metal active site is spectroscopically and structurally well-characterized, pMMO's copper sites are not. Recent EPR and ENDOR studies have established the presence of two monocopper sites, but the coordination environment of only one has been determined, that within the PmoB subunit and denoted CuB. Moreover, this recent work only focused on a type I methanotrophic pMMO, while previous observations of the type II enzyme were interpreted in terms of the presence of a dicopper site. First, this report shows that the type II Methylocystis species strain Rockwell pMMO, like the type I pMMOs, contains two monocopper sites and that its CuB site has a coordination environment identical to that of type I enzymes. As such, for the full range of pMMOs this report completes the refutation of prior and ongoing suggestions of multicopper sites. Second, and of primary importance, EPR/ENDOR measurements (a) for the first time establish the coordination environment of the spectroscopically observed site, provisionally denoted CuC, in both types of pMMO, thereby (b) establishing the assignment of this site observed by EPR to the crystallographically observed metal-binding site in the PmoC subunit. Finally, these results further indicate that CuC is the likely site of biological methane oxidation by pMMO, a conclusion that will serve as a foundation for proposals regarding the mechanism of this reaction.
Collapse
Affiliation(s)
- Richard J Jodts
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew O Ross
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Christopher W Koo
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Peter E Doan
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Brian M Hoffman
- Departments of Chemistry and Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
185
|
Jeon H, Choi S, Hong S. A mononuclear nonheme manganese(
III
)‐acylperoxo complex: Synthesis, characterization, and reactivity studies. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| | - Seoyeon Choi
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| | - Seungwoo Hong
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| |
Collapse
|
186
|
Chen Y, Shi H, Lee CS, Yiu SM, Man WL, Lau TC. Room Temperature Aerobic Peroxidation of Organic Substrates Catalyzed by Cobalt(III) Alkylperoxo Complexes. J Am Chem Soc 2021; 143:14445-14450. [PMID: 34477359 DOI: 10.1021/jacs.1c07158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Room temperature aerobic oxidation of hydrocarbons is highly desirable and remains a great challenge. Here we report a series of highly electrophilic cobalt(III) alkylperoxo complexes, CoIII(qpy)OOR supported by a planar tetradentate quaterpyridine ligand that can directly abstract H atoms from hydrocarbons (R'H) at ambient conditions (CoIII(qpy)OOR + R'H → CoII(qpy) + R'• + ROOH). The resulting alkyl radical (R'•) reacts rapidly with O2 to form alkylperoxy radical (R'OO•), which is efficiently scavenged by CoII(qpy) to give CoIII(qpy)OOR' (CoII(qpy) + R'OO• → CoIII(qpy)OOR'). This unique reactivity enables CoIII(qpy)OOR to function as efficient catalysts for aerobic peroxidation of hydrocarbons (R'H + O2 → R'OOH) under 1 atm air and at room temperature.
Collapse
Affiliation(s)
- Yunzhou Chen
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong HKSAR, PR China
| | - Huatian Shi
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong HKSAR, PR China.,Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong HKSAR, PR China
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong HKSAR, PR China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong HKSAR, PR China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon Tong HKSAR, PR China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong HKSAR, PR China
| |
Collapse
|
187
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium‐Ion Binding Mediates the Reversible Interconversion of
Cis
and
Trans
Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Natasha P. Vargo
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| | - Jill B. Harland
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Bradley W. Musselman
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics University of Michigan 930 North University Avenue Ann Arbor MI 41809-1055 USA
| | - Mehmed Z. Ertem
- Chemistry Division, Energy & Photon Sciences Brookhaven National Laboratory PO Box 5000 Upton NY 11973-5000 USA
| | - Jerome R. Robinson
- Department of Chemistry Brown University 324 Brook Street Providence RI 02912 USA
| |
Collapse
|
188
|
Zhong X, Bouchey CJ, Kabir E, Tolman WB. Using a monocopper-superoxo complex to prepare multicopper-peroxo species relevant to proposed enzyme intermediates. J Inorg Biochem 2021; 222:111498. [PMID: 34120095 PMCID: PMC9835715 DOI: 10.1016/j.jinorgbio.2021.111498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 01/16/2023]
Abstract
With the goal of generating a (peroxo)tricopper species analogous to the Peroxy Intermediate proposed for multicopper oxidases, solutions of the copper-superoxide complex [K(Krypt)][LCuO2] (L = N,N'-bis(2,6-diisopropylphenyl)-2,6-pyridinedicarboxamide, Krypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane) were reacted with the dicopper(I) complex [(TPBN)Cu2(MeCN)2][PF6]2 at -70 °C (TPBN = N,N,N',N'-tetrakis-(2-pyridylmethyl)-1,4-diaminobutane). A metastable intermediate formed, which on the basis of UV-vis, EPR, and resonance Raman spectroscopy was proposed to derive from reaction of two equivalents of the copper-superoxide with one equivalent of the dicopper(I) complex to yield a complex with two (peroxo)dicopper moieties rather than the desired (peroxo)tricopper PI model. A similar intermediate formed upon reaction of [K(Krypt)][LCuO2] with [(BPMA)Cu(MeCN)][PF6] (BPMA = N,N-bis(2-pyridylmethyl)-methyl-amine), which contained the same donor set as provided by TPBN. Comparison of resonance Raman data and consideration of structural preferences for LCuX species led to hypothesis of a μ-η1:η2-peroxo structure for both intermediates.
Collapse
Affiliation(s)
- Xinzhe Zhong
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America
| | - Caitlin J. Bouchey
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America,Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN 55455, United States of America
| | - Evanta Kabir
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America
| | - William B. Tolman
- Department of Chemistry, Washington University in St. Louis, One Brookings Hall, Campus Box 1134, St. Louis, MO 63130-4899, United States of America,Corresponding author. (W.B. Tolman)
| |
Collapse
|
189
|
Vargo NP, Harland JB, Musselman BW, Lehnert N, Ertem MZ, Robinson JR. Calcium-Ion Binding Mediates the Reversible Interconversion of Cis and Trans Peroxido Dicopper Cores. Angew Chem Int Ed Engl 2021; 60:19836-19842. [PMID: 34101958 DOI: 10.1002/anie.202105421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Indexed: 01/27/2023]
Abstract
Coupled dinuclear copper oxygen cores (Cu2 O2 ) featured in type III copper proteins (hemocyanin, tyrosinase, catechol oxidase) are vital for O2 transport and substrate oxidation in many organisms. μ-1,2-cis peroxido dicopper cores (C P) have been proposed as key structures in the early stages of O2 binding in these proteins; their reversible isomerization to other Cu2 O2 cores are directly relevant to enzyme function. Despite the relevance of such species to type III copper proteins and the broader interest in the properties and reactivity of bimetallic C P cores in biological and synthetic systems, the properties and reactivity of C P Cu2 O2 species remain largely unexplored. Herein, we report the reversible interconversion of μ-1,2-trans peroxido (T P) and C P dicopper cores. CaII mediates this process by reversible binding at the Cu2 O2 core, highlighting the unique capability for metal-ion binding events to stabilize novel reactive fragments and control O2 activation in biomimetic systems.
Collapse
Affiliation(s)
- Natasha P Vargo
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| | - Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Bradley W Musselman
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, 930 North University Avenue, Ann Arbor, MI, 41809-1055, USA
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, PO Box 5000, Upton, NY, 11973-5000, USA
| | - Jerome R Robinson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA
| |
Collapse
|
190
|
Paul M, Teubner M, Grimm-Lebsanft B, Buchenau S, Hoffmann A, Rübhausen M, Herres-Pawlis S. Influence of the amine donor on hybrid guanidine-stabilized Bis(μ-oxido) dicopper(III) complexes and their tyrosinase-like oxygenation activity towards polycyclic aromatic alcohols. J Inorg Biochem 2021; 224:111541. [PMID: 34416481 DOI: 10.1016/j.jinorgbio.2021.111541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/30/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
The tyrosinase-like activity of hybrid guanidine-stabilized bis(μ-oxido) dicopper(III) complexes [Cu2(μ-O)2(L)2](X)2 (L = 2-{2-((Diethylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNEt2, L2) and 2-{2-((Di-isopropylamino)methyl)phenyl}-1,1,3,3-tetramethylguanidine (TMGbenzNiPr2, L3); X = PF6-, BF4-, CF3SO3-) is described. New aromatic hybrid guanidine amine ligands were developed with varying amine donor function. Their copper(I) complexes were analyzed towards their ability to activate dioxygen in the presence of different weakly coordinating anions. The resulting bis(μ-oxido) species were characterized at low temperatures by UV/Vis and resonance Raman spectroscopy, cryo-ESI mass spectrometry and density functional theory calculations. Small structural changes in the ligand sphere were found to influence the characteristic ligand-to-metal charge transfer (LMCT) features of the bis(μ-oxido) species, correlating a redshift in the UV/Vis spectrum with weaker N-donor function of the ligand. DFT calculations elucidated the influence of the steric and electronic properties of the bis(μ-oxido) species leading to a higher twist of the Cu2O2 plane against the CuN2 plane and a stretching of the Cu2O2 core. Despite their moderate stability at -100 °C, the bis(μ-oxido) complexes exhibited a remarkable activity in catalytic oxygenation reactions of polycyclic aromatic alcohols. Further the selectivity of the catalyst in the hydroxylation reactions of challenging phenolic substrates is not changed despite an increasing shield of the reactive bis(μ-oxido) core. The generated quinones were found to form exclusively bent phenazines, providing a promising strategy to access tailored phenazine derivatives.
Collapse
Affiliation(s)
- Melanie Paul
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany
| | - Melissa Teubner
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany; Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Sören Buchenau
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Alexander Hoffmann
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| | - Michael Rübhausen
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sonja Herres-Pawlis
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1a, 52074 Aachen, Germany.
| |
Collapse
|
191
|
Itoh S, Shinke T, Itoh M, Wada T, Morimoto Y, Yanagisawa S, Sugimoto H, Kubo M. Revisiting Alkane Hydroxylation with m-CPBA (mChloroperbenzoic Acid) Catalyzed by Nickel(II) Complexes. Chemistry 2021; 27:14730-14737. [PMID: 34402568 DOI: 10.1002/chem.202102532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/09/2022]
Abstract
Mechanistic studies are performed on the alkane hydroxylation with m -CPBA ( m -chloroperbenzoic acid) catalyzed by nickel(II) complexes, Ni II (L). In the oxidation of cycloalkanes, Ni II (TPA) acts as an efficient catalyst with a high yield and a high alcohol selectivity. In the oxidation of adamantane, the tertiary carbon is predominantly oxidized. The reaction rate shows first-order dependence on [substrate] and [Ni II (L)] but is independent on [ m CPBA]; v obs = k 2 [substrate][ Ni II (L)]. The reaction exhibited a relatively large kinetic deuterium isotope effect ( KIE ) of 6.7, demonstrating that the hydrogen atom abstraction is involved in the rate-limiting step of the catalytic cycle. Furthermore, Ni II (L) supported by related tetradentate ligands exhibit apparently different catalytic activity, suggesting contribution of the Ni II (L) in the catalytic cycle. Based on the kinetic analysis and the significant effects of O 2 and CCl 4 on the product distribution pattern, possible contributions of (L)Ni II -O• and the acyloxyl radical as the reactive oxidants are discussed.
Collapse
Affiliation(s)
- Shinobu Itoh
- Osaka University, Graduate School of Engineering, 2-1 Yamadaoka, 565-0871, Suita, JAPAN
| | - Tomoya Shinke
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Mayu Itoh
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Takuma Wada
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Yuma Morimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | | | - Hideki Sugimoto
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka, Applied Chemistry, JAPAN
| | - Minoru Kubo
- Graduate School of Science, Life Science, JAPAN
| |
Collapse
|
192
|
Liu Y, Wang C, Tong Y, Ling Y, Zhou C, Xiong B. Cascade Reaction of α, β‐Unsaturated Ketones and 2‐Aminoaryl Alcohols for the Synthesis of 3‐Acylquinolines by a Copper Nanocatalyst. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yuan Liu
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Chen Wang
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yixin Tong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Yong Ling
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| | - Changjian Zhou
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng Jiangsu Province 224051 People's Republic of China
| | - Biao Xiong
- School of Pharmacy Nantong University 19 Qixiu Road Nantong Jiangsu Province 226001 People's Republic of China
| |
Collapse
|
193
|
Lan Z, Mallikarjun Sharada S. A framework for constructing linear free energy relationships to design molecular transition metal catalysts. Phys Chem Chem Phys 2021; 23:15543-15556. [PMID: 34254089 DOI: 10.1039/d1cp02278d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A computational framework for ligand-driven design of transition metal complexes is presented in this work. We propose a general procedure for the construction of active site-specific linear free energy relationships (LFERs), which are inspired from Hammett and Taft correlations in organic chemistry and grounded in the activation strain model (ASM). Ligand effects are isolated and quantified in terms of their contribution to interaction and strain energy components of ASM. Scalar descriptors that are easily obtainable are then employed to construct the complete LFER. We successfully demonstrate proof-of-concept by constructing and applying an LFER to CH activation with enzyme-inspired [Cu2O2]2+ complexes. The key benefit of using ASM is a built-in compensation or error cancellation between LFER prediction of interaction and strain terms, resulting in accurate barrier predictions for 37 of the 47 catalysts examined in this study. The LFER is also transferable with respect to level of theory and flexible towards the choice of reference system. The absence of interaction-strain compensation or poor model performance for the remaining systems is a consequence of the approximate nature of the chosen interaction energy descriptor and LFER construction of the strain term, which focuses largely on trends in substrate and not catalyst strain.
Collapse
Affiliation(s)
- Zhenzhuo Lan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA.
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA. and Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
194
|
Cu-promoted intramolecular hydroxylation of CH bonds using directing groups with varying denticity. J Inorg Biochem 2021; 223:111557. [PMID: 34352714 DOI: 10.1016/j.jinorgbio.2021.111557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
In this research article, we describe the Cu-promoted intramolecular hydroxylation of sp2 and sp3 CH bonds using directing groups with varying denticity (bi-, tri- and tetradentate) and natural oxidants (O2 and H2O2). We found that bidentate directing groups, in combination with Cu and H2O2, led to high hydroxylation yields. On the other hand, tetradentate directing groups did not form the hydroxylation products. Our mechanistic investigations suggest that bidentate directing groups allow for generating reactive mononuclear copper(II) hydroperoxide intermediates while tetradentate systems form dinuclear Cu2O2 species that do not oxidize CH bonds. Our findings might shed light on the reaction mechanism(s) by which Cu-dependent metalloenzymes such as particulate methane monooxygenase or lytic polysaccharide monooxygenase oxidize strong CH bonds.
Collapse
|
195
|
Brückmann T, Becker J, Würtele C, Seuffert MT, Heuler D, Müller-Buschbaum K, Weiß M, Schindler S. Characterization of copper complexes with derivatives of the ligand (2-aminoethyl)bis(2-pyridylmethyl)amine (uns-penp) and their reactivity towards oxygen. J Inorg Biochem 2021; 223:111544. [PMID: 34333248 DOI: 10.1016/j.jinorgbio.2021.111544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
A series of copper(I) complexes with ligands derived from the tripodal ligand (2-aminoethyl)bis(2-pyridylmethyl)amine (uns-penp) have been structurally characterized and their redox chemistry analyzed by cyclic voltammetry. While the redox potentials of most of the complexes were similar their reactivity towards dioxygen was quite different. While the complex with a ferrocene derived ligand of uns-penp reacted in solution at low temperatures in a two-step reaction from the preliminary formed mononuclear end-on superoxido complex to a quite stable dinuclear peroxido complex it did not react with dioxygen in the solid state. Other complexes also did not react with dioxygen in the solid state while some showed a reversible formation to a green compound, indicating formation of an end-on superoxido complex that unfortunately so far could not be characterized. In contrast, copper complexes with the Me2uns-penp and Et-iProp-uns-penp formed dinuclear peroxido complexes in a solid-state reaction. While the reaction of dioxygen with the [Cu(Me2uns-penp]BPh4 was quite slow an instant reaction took place for [Cu(Et-iProp-uns-penp]BPh. Very unusual, it turned out that crystals of the copper(I) complex that could be structurally characterized still were crystalline when reacted with dioxygen. Therefore, it was possible to solve the structure of the corresponding dinuclear peroxido complex directly from the same batch of crystals. The crystalline structures of the copper(I) and copper(II) complex revealed that the reason for this is the fact, that the copper(I) complex is kind of preorganized for the uptake of dioxygen and does not really change in its overall structure when being oxidized.
Collapse
Affiliation(s)
- Tim Brückmann
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Jonathan Becker
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Christian Würtele
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Marcel Thomas Seuffert
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Dominik Heuler
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Klaus Müller-Buschbaum
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany
| | - Morten Weiß
- Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Siegfried Schindler
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität, Heinrich-Buff-Ring 17, 35392 Gießen, Germany.
| |
Collapse
|
196
|
Brinkmeier A, Schulz RA, Buchhorn M, Spyra CJ, Dechert S, Demeshko S, Krewald V, Meyer F. Structurally Characterized μ-1,2-Peroxo/Superoxo Dicopper(II) Pair. J Am Chem Soc 2021; 143:10361-10366. [PMID: 34191490 DOI: 10.1021/jacs.1c04316] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Superoxo complexes of copper are primary adducts in several O2-activating Cu-containing metalloenzymes as well as in other Cu-mediated oxidation and oxygenation reactions. Because of their intrinsically high reactivity, however, isolation of Cux(O2•-) species is challenging. Recent work (J. Am. Chem. Soc. 2017, 139, 9831; 2019, 141, 12682) established fundamental thermochemical data for the H atom abstraction reactivity of dicopper(II) superoxo complexes, but structural characterization of these important intermediates was so far lacking. Here we report the first crystallographic structure determination of a superoxo dicopper(II) species (3) together with the structure of its 1e- reduced peroxo congener (2; a rare cis-μ-1,2-peroxo dicopper(II) complex). Interconversion of 2 and 3 occurs at low potential (-0.58 V vs Fc/Fc+) and is reversible both chemically and electrochemically. Comparison of metric parameters (d(O-O) = 1.441(2) Å for 2 vs 1.329(7) Å for 3) and of spectroscopic signatures (ν̃(16O-16O) = 793 cm-1 for 2 vs 1073 cm-1 for 3) reflects that the redox process occurs at the bridging O2-derived unit. The CuII-O2•--CuII complex has an S = 1/2 spin ground state according to magnetic and EPR data, in agreement with density functional theory calculations. Computations further show that the potential associated with changes of the Cu-O-O-Cu dihedral angle is shallow for both 2 and 3. These findings provide a structural basis for the low reorganization energy of the kinetically facile 1e- interconversion of μ-1,2-superoxo/peroxo dicopper(II) couples, and they open the door for comprehensive studies of these key intermediates in Cux/O2 chemistry.
Collapse
Affiliation(s)
- Alexander Brinkmeier
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Roland A Schulz
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Moritz Buchhorn
- Fachbereich Chemie, Theoretische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Can-Jerome Spyra
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Sebastian Dechert
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Vera Krewald
- Fachbereich Chemie, Theoretische Chemie, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany.,International Center for Advanced Studies of Energy Conversion (ICASEC), Universität Göttingen, Tammannstraße 6, D-37077 Göttingen, Germany
| |
Collapse
|
197
|
Jeon H, Oh H, Hong S. Synthesis, characterization and catalytic activity of a mononuclear nonheme copper(II)-iodosylbenzene adduct. J Inorg Biochem 2021; 223:111524. [PMID: 34218127 DOI: 10.1016/j.jinorgbio.2021.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Iodosylbenzene (PhIO) and its derivatives have attracted significant attention due to their various applications in organic synthesis and biomimetic studies. For example, PhIO has been extensively used for generating high-valent metal-oxo species that have been regarded as key intermediates in diverse oxidative reactions in biological system. However, recent studies have shown that metal-iodosylbenzene adduct, known as a precursor of metal-oxo species, plays an important role in transition metal-catalyzed oxidation reactions. During last few decades, extensive investigations have been conducted on the synthesis and reactivity studies of metal-iodosylbenzene adducts with early and middle transition metals including manganese, iron, cobalt. Nevertheless, metal-iodosylbenzene adducts with late transition metals such as nickel, copper and zinc, still remains elusive. Herein, we report a novel copper(II)-iodosylbenzene adduct bearing a linear ligand composed of two pyridine rings and an ethoxyethanol side-chain, [Cu(OIPh)(HN3O2)]2+ (1). The copper(II)-iodosylbenzene adduct was characterized by several spectroscopic methods including UV-vis spectroscopy, electrospray ionization mass spectrometer (ESI MS), and electron paramagnetic resonance (EPR) combined with theoretical calculations. Interestingly, 1 can carry out the catalytic sulfoxidation reaction. In sulfoxidation reaction with thioanisole under catalytic reaction condition, not only two-electron but also four-electron oxidized products such sulfoxide and sulfone were yielded, respectively. However, 1 was not an efficient oxidant towards CH bond activation and epoxidation reactions due to the steric hindrance created by the intramolecular H-bonding interaction between HN3O2 ligand and iodosylbenzene moiety.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea
| | - Hana Oh
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea.
| |
Collapse
|
198
|
Chandra A, Ansari M, Monte‐Pérez I, Kundu S, Rajaraman G, Ray K. Ligand‐Constraint‐Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anirban Chandra
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Inés Monte‐Pérez
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Subrata Kundu
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay, Powai Mumbai Maharashtra 400 076 India
| | - Kallol Ray
- Department of Chemistry Humboldt-Universität zu Berlin Brook-Taylor-Strasse 2 12489 Berlin Germany
| |
Collapse
|
199
|
Chandra A, Ansari M, Monte-Pérez I, Kundu S, Rajaraman G, Ray K. Ligand-Constraint-Induced Peroxide Activation for Electrophilic Reactivity. Angew Chem Int Ed Engl 2021; 60:14954-14959. [PMID: 33843113 PMCID: PMC8252416 DOI: 10.1002/anie.202100438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/26/2021] [Indexed: 12/16/2022]
Abstract
μ‐1,2‐peroxo‐bridged diiron(III) intermediates P are proposed as reactive intermediates in various biological oxidation reactions. In sMMO, P acts as an electrophile, and performs hydrogen atom and oxygen atom transfers to electron‐rich substrates. In cyanobacterial ADO, however, P is postulated to react by nucleophilic attack on electrophilic carbon atoms. In biomimetic studies, the ability of μ‐1,2‐peroxo‐bridged dimetal complexes of Fe, Co, Ni and Cu to act as nucleophiles that effect deformylation of aldehydes is documented. By performing reactivity and theoretical studies on an end‐on μ‐1,2‐peroxodicobalt(III) complex 1 involving a non‐heme ligand system, L1, supported on a Sn6O6 stannoxane core, we now show that a peroxo‐bridged dimetal complex can also be a reactive electrophile. The observed electrophilic chemistry, which is induced by the constraints provided by the Sn6O6 core, represents a new domain for metal−peroxide reactivity.
Collapse
Affiliation(s)
- Anirban Chandra
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Inés Monte-Pérez
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Subrata Kundu
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
200
|
Chen H, Qiao P, Luo Y, Hu J, Gao Y. Cu‐Catalyzed Aerobic Oxidative Coupling of Tetrahydro‐β‐carbolines with Indoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Panpan Qiao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yining Luo
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Jing Hu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| | - Yu Gao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fuzhou University) Fujian Province University College of Chemistry Fuzhou University Fuzhou Fujian 350116 China
| |
Collapse
|