151
|
Zhang Y, Raymo FM. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl Fluoresc 2020; 8:032002. [PMID: 32325443 DOI: 10.1088/2050-6120/ab8c5c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photochemical reactions can be designed to convert either irreversibly or reversibly a nonemissive reactant into an emissive product. The irreversible disconnection of a photocleavable group from an emissive chromophore or the reversible interconversion of a photochromic component is generally exploited to implement these operating principles for fluorescence switching. In both instances, the interplay of activating radiation, to convert the nonemissive state into the emissive species, and exciting radiation, to produce fluorescence from the latter, can be exploited to switch fluorescence on in a given area of interest at a precise interval of time. Such a level of spatiotemporal control provides the opportunity to reconstruct sub-diffraction images with resolution at the nanometer level. Indeed, closely-spaced emitters can be switched on under photochemical control at distinct intervals of time and localized independently at the single-molecule level. In combination with appropriate intracellular targeting strategies, some of these photoactivatable fluorophores can be switched and localized inside live cells to permit the visualization of sub-cellular structures with a spatial resolution that would be impossible to achieve with conventional fluorophores. As a result, photoactivatable fluorophores can become invaluable probes for the implementation of super-resolution imaging schemes aimed at the elucidation of the fundamental factors controlling cellular functions at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, FL, United States of America
| | | |
Collapse
|
152
|
Dogantzis NP, Hodgson GK, Impellizzeri S. Optical writing and single molecule reading of photoactivatable and silver nanoparticle-enhanced fluorescence. NANOSCALE ADVANCES 2020; 2:1956-1966. [PMID: 36132516 PMCID: PMC9418025 DOI: 10.1039/d0na00049c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/28/2020] [Indexed: 05/27/2023]
Abstract
We designed a hybrid nanoparticle-molecular system composed of silver nanostructures (AgNP) and a fluorogenic boron dipyrromethene (BODIPY) that can be selectively activated by UVA or UVC light in the presence of an appropriate photoacid generator (PAG). Light irradiation of the PAG encourages the release of p-toluenesulfonic, triflic or hydrobromic acid, any of which facilitate optical 'writing' by promoting the formation of a fluorescent species. Metal-enhanced fluorescence (MEF) by AgNP was achieved through rational design of the nano-molecular system in accordance with the principles of radiative decay engineering. In addition to increasing signal to noise, AgNP permitted shorter reaction times and low irradiance - all of which have important implications for applications of fluorescence activation in portable fluorescence patterning, bioimaging and super-resolution microscopy. Single molecule fluorescence microscopy provided unique insights into the MEF mechanism which were hidden by ensemble-averaged measurements, demonstrating that single molecule 'reading' is a valuable tool for characterizing particle-molecule interactions such as those responsible for the relative contributions of increased excitation and plasmophoric emission toward overall MEF. This work represents a step forward in the contemporary design of synergistic nano-molecular systems, and showcases the advantage of fusion between classic spectroscopic techniques and single molecule methods in terms of improved quantitative understanding of fluorophore-nanoparticle interactions, and how these interactions can be exploited to the fullest extent possible.
Collapse
Affiliation(s)
- Nicholas P Dogantzis
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Gregory K Hodgson
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| | - Stefania Impellizzeri
- Laboratory for Nanomaterials and Molecular Plasmonics, Department of Chemistry and Biology, Ryerson University 350 Victoria St. Toronto ON M5B 2K3 Canada
| |
Collapse
|
153
|
Morozumi A, Kamiya M, Uno SN, Umezawa K, Kojima R, Yoshihara T, Tobita S, Urano Y. Spontaneously Blinking Fluorophores Based on Nucleophilic Addition/Dissociation of Intracellular Glutathione for Live-Cell Super-resolution Imaging. J Am Chem Soc 2020; 142:9625-9633. [PMID: 32343567 DOI: 10.1021/jacs.0c00451] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Single-molecule localization microscopy (SMLM) allows the reconstruction of super-resolution images but generally requires prior intense laser irradiation and in some cases additives to induce blinking of conventional fluorophores. We previously introduced a spontaneously blinking rhodamine fluorophore based on an intramolecular spirocyclization reaction for live-cell SMLM under physiological conditions. Here, we report a novel principle of spontaneous blinking in living cells, which utilizes reversible ground-state nucleophilic attack of intracellular glutathione (GSH) upon a xanthene fluorophore. Structural optimization afforded two pyronine fluorophores with different colors, both of which exhibit equilibrium (between the fluorescent dissociated form and the nonfluorescent GSH adduct form) and blinking kinetics that enable SMLM of microtubules or mitochondria in living cells. Furthermore, by using spontaneously blinking fluorophores working in the near-infrared (NIR) and green ranges, we succeeded in dual-color live-cell SMLM without the need for optimization of the imaging medium.
Collapse
Affiliation(s)
| | - Mako Kamiya
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | - Ryosuke Kojima
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Toshitada Yoshihara
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Seiji Tobita
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu-shi, Gunma 376-8515, Japan
| | - Yasuteru Urano
- AMED-CREST, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
154
|
|
155
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
156
|
Zhang Y, Raymo FM. Live-Cell Imaging at the Nanoscale with Bioconjugatable and Photoactivatable Fluorophores. Bioconjug Chem 2020; 31:1052-1062. [PMID: 32150390 DOI: 10.1021/acs.bioconjchem.0c00073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Optical diffraction fundamentally limits the spatial resolution of conventional fluorescence images to length scales that are, at least, 2 orders of magnitude longer than the dimensions of individual molecules. As a result, the development of innovative probes and imaging schemes to overcome diffraction is very much needed to enable the investigation of the fundamental factors regulating cellular functions at the molecular level. In this context, the chemical synthesis of molecular constructs with photoactivatable fluorescence and the ability to label subcellular components of live cells can have transformative implications. Indeed, the fluorescence of the resulting assemblies can be activated with spatiotemporal control, even in the intracellular environment, to permit the sequential localization of individual emissive labels with precision at the nanometer level and the gradual reconstruction of images with subdiffraction resolution. The implementation of these operating principles for subdiffraction imaging, however, is only possible if demanding photochemical and photophysical requirements to enable photoactivation and localization as well as stringent structural requisites to allow the covalent labeling of intracellular targets in live cells are satisfied. Because of these complications, only a few synthetic photoactivatable fluorophores with appropriate performance for live-cell imaging at the nanoscale have been developed so far. Significant synthetic efforts in conjunction with spectroscopic analyses are still very much needed to advance this promising research area further and turn photoactivatable fluorophores into the imaging probes of choice for the investigation of live cells.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, Florida 33146-0431, United States
| |
Collapse
|
157
|
Thapaliya ER, Mazza MMA, Cusido J, Baker JD, Raymo FM. A Synthetic Strategy for the Structural Modification of Photoactivatable BODIPY‐Oxazine Dyads. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.201900276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ek Raj Thapaliya
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Mercedes M. A. Mazza
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Janet Cusido
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
- Department of Math and Natural Sciences Miami Dade College – Eduardo J. Padron Campus Miami USA
| | - James D. Baker
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| | - Françisco M. Raymo
- Laboratory for Molecular Photonics Departments of Biology and Chemistry University of Miami 1301 Memorial Drive Coral Gables FL 33146-0431 USA
| |
Collapse
|
158
|
Ogawa F, Karuo Y, Yamazawa R, Miyanaga K, Hori K, Tani K, Yamada K, Saito Y, Funabiki K, Tarui A, Sato K, Ito K, Kawai K, Omote M. Synthesis of Small Fluorescent Molecules and Evaluation of Photophysical Properties. J Org Chem 2020; 85:1253-1258. [PMID: 31851516 DOI: 10.1021/acs.joc.9b02857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of aniline-based fluorophores were newly synthesized. To increase their fluorescence quantum yields, it was particularly important to substitute 3,3,3-trifluoroprop-1-enyl (TFPE) groups next to the amino group to benefit from an extended π-electron delocalization. Among these, 5-CN-2-TFPE-aniline was found to behave as an excellent fluorophore with a reasonable fluorescence quantum yield of 0.89 even in aqueous solution. l-Alanine peptide, a nonfluorescent analogue of 5-CN-2-TFPE-aniline, was synthesized and successfully employed as an enzyme probe to detect aminopeptidase N activity.
Collapse
Affiliation(s)
- Futa Ogawa
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Yukiko Karuo
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Ryuji Yamazawa
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kanae Miyanaga
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Kazushige Hori
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Keita Tani
- Division of Natural Sciences , Osaka Kyoiku University , Kashiwara , Osaka 582-8582 , Japan
| | - Kengo Yamada
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Yuki Saito
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science , Gifu University , Yanagido, Gifu 501-1193 , Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kiyoshi Ito
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences , Setsunan University , Hirakata , Osaka 573-0101 , Japan
| |
Collapse
|
159
|
Vavrdová T, Křenek P, Ovečka M, Šamajová O, Floková P, Illešová P, Šnaurová R, Šamaj J, Komis G. Complementary Superresolution Visualization of Composite Plant Microtubule Organization and Dynamics. FRONTIERS IN PLANT SCIENCE 2020; 11:693. [PMID: 32582243 PMCID: PMC7290007 DOI: 10.3389/fpls.2020.00693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 05/01/2020] [Indexed: 05/04/2023]
Abstract
Microtubule bundling is an essential mechanism underlying the biased organization of interphase and mitotic microtubular systems of eukaryotes in ordered arrays. Microtubule bundle formation can be exemplified in plants, where the formation of parallel microtubule systems in the cell cortex or the spindle midzone is largely owing to the microtubule crosslinking activity of a family of microtubule associated proteins, designated as MAP65s. Among the nine members of this family in Arabidopsis thaliana, MAP65-1 and MAP65-2 are ubiquitous and functionally redundant. Crosslinked microtubules can form high-order arrays, which are difficult to track using widefield or confocal laser scanning microscopy approaches. Here, we followed spatiotemporal patterns of MAP65-2 localization in hypocotyl cells of Arabidopsis stably expressing fluorescent protein fusions of MAP65-2 and tubulin. To circumvent imaging difficulties arising from the density of cortical microtubule bundles, we use different superresolution approaches including Airyscan confocal laser scanning microscopy (ACLSM), structured illumination microscopy (SIM), total internal reflection SIM (TIRF-SIM), and photoactivation localization microscopy (PALM). We provide insights into spatiotemporal relations between microtubules and MAP65-2 crossbridges by combining SIM and ACLSM. We obtain further details on MAP65-2 distribution by single molecule localization microscopy (SMLM) imaging of either mEos3.2-MAP65-2 stochastic photoconversion, or eGFP-MAP65-2 stochastic emission fluctuations under specific illumination conditions. Time-dependent dynamics of MAP65-2 were tracked at variable time resolution using SIM, TIRF-SIM, and ACLSM and post-acquisition kymograph analysis. ACLSM imaging further allowed to track end-wise dynamics of microtubules labeled with TUA6-GFP and to correlate them with concomitant fluctuations of MAP65-2 tagged with tagRFP. All different microscopy modules examined herein are accompanied by restrictions in either the spatial resolution achieved, or in the frame rates of image acquisition. PALM imaging is compromised by speed of acquisition. This limitation was partially compensated by exploiting emission fluctuations of eGFP which allowed much higher photon counts at substantially smaller time series compared to mEos3.2. SIM, TIRF-SIM, and ACLSM were the methods of choice to follow the dynamics of MAP65-2 in bundles of different complexity. Conclusively, the combination of different superresolution methods allowed for inferences on the distribution and dynamics of MAP65-2 within microtubule bundles of living A. thaliana cells.
Collapse
|
160
|
Localization microscopy at doubled precision with patterned illumination. Nat Methods 2019; 17:59-63. [PMID: 31819263 PMCID: PMC6989044 DOI: 10.1038/s41592-019-0657-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/16/2019] [Indexed: 12/18/2022]
Abstract
MINFLUX offers a breakthrough in single molecule localization precision, but is limited in field-of-view. Here, we combine centroid estimation and illumination pattern induced photon count variations in a conventional widefield imaging setup to extract position information over a typical micron sized field-of-view. We show a near twofold improvement in precision over standard localization with the same photon count on DNA-origami nano-structures and tubulin in cells, using DNA-PAINT and STORM imaging.
Collapse
|
161
|
Doh JK, Enns CA, Beatty KE. Implementing VIPER for Imaging Cellular Proteins by Fluorescence Microscopy. Bio Protoc 2019; 9:e3413. [PMID: 32665966 PMCID: PMC7360171 DOI: 10.21769/bioprotoc.3413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Genetically-encoded tags are useful tools for multicolor and multi-scale cellular imaging. Versatile Interacting Peptide (VIP) tags, such as VIPER, are new genetically-encoded tags that can be used in various imaging applications. VIP tags consist of a coiled-coil heterodimer, with one peptide serving as the genetic tag and the other ("probe peptide") delivering a reporter compatible with imaging. Heterodimer formation is rapid and specific, allowing proteins to be selectively labeled for live-cell and fixed-cell imaging. In this Bio-Protocol, we include a detailed guide for implementing the VIPER technology for imaging receptors on live cells and intracellular targets in fixed cells. This protocol is complemented by two other Bio-Protocols outlining the use of VIPER (Doh et al., 2019a and 2019b).
Collapse
Affiliation(s)
- Julia K. Doh
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Caroline A. Enns
- Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Kimberly E. Beatty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon 97239, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| |
Collapse
|
162
|
Karlsson JKG, Laude A, Hall MJ, Harriman A. Photo-isomerization of the Cyanine Dye Alexa-Fluor 647 (AF-647) in the Context of dSTORM Super-Resolution Microscopy. Chemistry 2019; 25:14983-14998. [PMID: 31515919 DOI: 10.1002/chem.201904117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Cyanine dyes, as used in super-resolution fluorescence microscopy, undergo light-induced "blinking", enabling localization of fluorophores with spatial resolution beyond the optical diffraction limit. Despite a plethora of studies, the molecular origins of this blinking are not well understood. Here, we examine the photophysical properties of a bio-conjugate cyanine dye (AF-647), used extensively in dSTORM imaging. In the absence of a potent sacrificial reductant, light-induced electron transfer and intermediates formed via the metastable, triplet excited state are considered unlikely to play a significant role in the blinking events. Instead, it is found that, under conditions appropriate to dSTORM microscopy, AF-647 undergoes reversible photo-induced isomerization to at least two long-lived dark species. These photo-isomers are characterized spectroscopically and their interconversion probed by computational means. The first-formed isomer is light sensitive and transforms to a longer-lived species in modest yield that could be involved in dSTORM related blinking. Permanent photobleaching of AF-647 occurs with very low quantum yield and is partially suppressed by the anaerobic redox buffer.
Collapse
Affiliation(s)
- Joshua K G Karlsson
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Alex Laude
- Bio-Imaging Unit, Medical School, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Michael J Hall
- School of Natural and Environmental Sciences, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Anthony Harriman
- Molecular Photonics Laboratory, SNES, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
163
|
Neal TA, Neal JF, Eippert AB, Moore C, Allen HC, Badjić JD. An easily accessible isospiropyran switch. Org Biomol Chem 2019; 17:9124-9128. [PMID: 31573016 DOI: 10.1039/c9ob01822k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In the presence of SiCl4, three molecules of 5'-bromo-2'-hydroxyacetophenone underwent an unexpected tandem aldol condensation to give a novel isospiropyran switch (69%), with X-ray crystallography confirming its structure. The strong Brønsted acid CH3SO3H turned the colorless isospiropyran into its protonated and open form possessing red color. This process was reversed using the Et3N base, with the acid/base toggling repeatable for at least six times (UV-Vis). When printed on a silica plate, however, the isospiropyran formed a blue-colored product due to, as posited, its stabilization by hydrogen bonding (HB) to silica. An exposure to HB-competing ethyl acetate temporarily "erased" the print only to be brought back by subjecting the plate to a higher temperature for evaporating the solvent. The isospiropyran described here is an easily accessible, chromic, modular and switchable compound that one can incorporate into dynamic materials or use for building chemosensors, molecular machines and organic electronic devices.
Collapse
Affiliation(s)
- Taylor A Neal
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, 43210 Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
164
|
Frei MS, Hoess P, Lampe M, Nijmeijer B, Kueblbeck M, Ellenberg J, Wadepohl H, Ries J, Pitsch S, Reymond L, Johnsson K. Photoactivation of silicon rhodamines via a light-induced protonation. Nat Commun 2019; 10:4580. [PMID: 31594948 PMCID: PMC6783549 DOI: 10.1038/s41467-019-12480-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Photoactivatable fluorophores are important for single-particle tracking and super-resolution microscopy. Here we present a photoactivatable fluorophore that forms a bright silicon rhodamine derivative through a light-dependent protonation. In contrast to other photoactivatable fluorophores, no caging groups are required, nor are there any undesired side-products released. Using this photoactivatable fluorophore, we create probes for HaloTag and actin for live-cell single-molecule localization microscopy and single-particle tracking experiments. The unusual mechanism of photoactivation and the fluorophore's outstanding spectroscopic properties make it a powerful tool for live-cell super-resolution microscopy.
Collapse
Affiliation(s)
- Michelle S Frei
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Philipp Hoess
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility (ALMF), European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, University of Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Stefan Pitsch
- Spirochrome AG, Chalberweidstrasse 4, CH-8260, Stein am Rhein, Switzerland
| | - Luc Reymond
- Biomolecular Screening Facility, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- National Centre of Competence in Research (NCCR) in Chemical Biology, 1015, Lausanne, Switzerland.
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- National Centre of Competence in Research (NCCR) in Chemical Biology, 1015, Lausanne, Switzerland.
| |
Collapse
|
165
|
Beatty KE. Coloring Cell Complexity: The Case for an Expansive Fluorophore Palette. ACS CENTRAL SCIENCE 2019; 5:1490-1492. [PMID: 31572774 PMCID: PMC6764075 DOI: 10.1021/acscentsci.9b00842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
166
|
Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR, Tran J, Hilzenrat G, Kahram M, Tilley RD, Gaus K, Gooding JJ. Observing the Reversible Single Molecule Electrochemistry of Alexa Fluor 647 Dyes by Total Internal Reflection Fluorescence Microscopy. Angew Chem Int Ed Engl 2019; 58:14495-14498. [DOI: 10.1002/anie.201907298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/08/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Sanjun Fan
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - James E. A. Webb
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Ying Yang
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Jason Tran
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Mohaddeseh Kahram
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Richard D. Tilley
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
167
|
Fan S, Webb JEA, Yang Y, Nieves DJ, Gonçales VR, Tran J, Hilzenrat G, Kahram M, Tilley RD, Gaus K, Gooding JJ. Observing the Reversible Single Molecule Electrochemistry of Alexa Fluor 647 Dyes by Total Internal Reflection Fluorescence Microscopy. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanjun Fan
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - James E. A. Webb
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Ying Yang
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Daniel J. Nieves
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Vinicius R. Gonçales
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Jason Tran
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Geva Hilzenrat
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - Mohaddeseh Kahram
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Richard D. Tilley
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging University of New South Wales Sydney NSW 2052 Australia
| | - J. Justin Gooding
- School of Chemistry Australian Centre for NanoMedicine and The ARC Centre of Excellence in Convergent Bio-Nano Science and Technology University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
168
|
Danylchuk DI, Moon S, Xu K, Klymchenko AS. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019; 58:14920-14924. [PMID: 31392763 DOI: 10.1002/anie.201907690] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Indexed: 12/25/2022]
Abstract
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super-resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane-targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long-chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short-chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
169
|
Chintawar CC, Mane MV, Tathe AG, Biswas S, Patil NT. Gold-Catalyzed Cycloisomerization of Pyridine-Bridged 1,8-Diynes: An Expedient Access to Luminescent Cycl[3.2.2]azines. Org Lett 2019; 21:7109-7113. [DOI: 10.1021/acs.orglett.9b02677] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chetan C. Chintawar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Manoj V. Mane
- Physical Chemistry Division, CSIR − National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Akash G. Tathe
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Suprakash Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| | - Nitin T. Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal 462 066, India
| |
Collapse
|
170
|
Switchable Solvatochromic Probes for Live‐Cell Super‐resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
171
|
|
172
|
Jradi FM, Lavis LD. Chemistry of Photosensitive Fluorophores for Single-Molecule Localization Microscopy. ACS Chem Biol 2019; 14:1077-1090. [PMID: 30997987 DOI: 10.1021/acschembio.9b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Development of single-molecule localization microscopy (SMLM) has sparked a revolution in biological imaging, allowing "super-resolution" fluorescence microscopy below the diffraction limit of light. The past decade has seen an explosion in not only optical hardware for SMLM but also the development or repurposing of fluorescent proteins and small-molecule fluorescent probes for this technique. In this review, written by chemists for chemists, we detail the history of single-molecule localization microscopy and collate the collection of probes with demonstrated utility in SMLM. We hope it will serve as a primer for probe choice in localization microscopy as well as an inspiration for the development of new fluorophores that enable imaging of biological samples with exquisite detail.
Collapse
Affiliation(s)
- Fadi M. Jradi
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
173
|
Jang Y, Kim TI, Kim H, Choi Y, Kim Y. Photoactivatable BODIPY Platform: Light-Triggered Anticancer Drug Release and Fluorescence Monitoring. ACS APPLIED BIO MATERIALS 2019; 2:2567-2572. [DOI: 10.1021/acsabm.9b00259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yul Jang
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Tae-Il Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| | - Hyunjin Kim
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do 10408, Korea
| | - Yongdoo Choi
- National Cancer Center, 323 Ilsan-ro, Goyang-si, Gyeonggi-do 10408, Korea
| | - Youngmi Kim
- Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
174
|
Zhao CM, Wang KR, Wang C, He X, Li XL. Cooling-Induced NIR Emission Enhancement and Targeting Fluorescence Imaging of Biperylene Monoimide and Glycodendrimer Conjugates. ACS Macro Lett 2019; 8:381-386. [PMID: 35651141 DOI: 10.1021/acsmacrolett.9b00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Under high concentrations, strong pressure, and low temperature, fluorophores usually exhibit the fluorescence quenching phenomenon. Of significance, the development of aggregation-induced emission (AIE) and pressure-induced emission (PIE) fluorophores has perfectly prevented fluorescence quenching under high concentrations and strong pressure. However, cooling-induced fluorescence quenching in water is still an urgent problem. In this paper, cooling-induced emission (CIE) enhancement based on a biperylene monoimide (BPMI) derivative, BPMI-18Lac, with a conjugated lactose-based glycodendrimer was developed. BPMI-18Lac, as a non-AIE molecule, exhibited the CIE phenomenon with a fluorescent intensity increasing 7-fold when the temperature decreased from 80 to -40 °C. The mechanism was due to the inhibition of the intramolecular electron interactions between the perylene monoimide moieties linked by the C-C single bond. In addition, BPMI-18Lac, as a multivalent glycodendrimer, showed selective fluorescence imaging for HepG 2 cells through the ASGP receptor on the cell surface. Importantly, this work developed a water-soluble CIE molecule for potential application below freezing temperature.
Collapse
Affiliation(s)
- Chun-Miao Zhao
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Ke-Rang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Chong Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xu He
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xiao-Liu Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| |
Collapse
|
175
|
Porubský M, Gurská S, Stanková J, Hajdúch M, Džubák P, Hlaváč J. Amino-BODIPY as the ratiometric fluorescent sensor for monitoring drug release or “power supply” selector for molecular electronics. RSC Adv 2019; 9:25075-25083. [PMID: 35528670 PMCID: PMC9069925 DOI: 10.1039/c9ra03472b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/28/2019] [Indexed: 01/06/2023] Open
Abstract
The glutathione cleavable conjugates of amino-BODIPY dye with model drugs have been tested for monitoring the drug release via ratiometric fluorescence based on two excitation and one emission wavelength. As a self-immolative linker was used for the construction of conjugates, free amino-BODIPY was released with the drug. Different excitation profiles of the dye before and after conjugate cleavage and similar emission wavelengths that enabled monitoring the release of the drug via the OFF–ON effect were successfully tested inside the cancer cells. UV/Vis spectrometry could be used in the quantification of the conjugate/drug in an analyte irrespective of the cleavage grade. As the system functionality was based only on the altered acylamino-BODIPY present in the conjugate to amino-BODIPY released during the cleavage, the method could be applied as a ratiometric fluorescence theranostic system to other non-fluorescent drugs. Moreover, the present conjugates demonstrated their potential application in molecular electronics as a “power supply” selector enabling the application of two power sources for one “bulb” to maintain its light intensity. Amino-BODIPY as the universal and highly fluorescent OFF–ON and ratiometric sensor for thiol-mediated drug release monitoring.![]()
Collapse
Affiliation(s)
- Martin Porubský
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Jarmila Stanková
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine
- Faculty of Medicine and Dentistry
- Palacký University
- Olomouc
- Czech Republic
| | - Jan Hlaváč
- Department of Organic Chemistry
- Faculty of Science
- Palacký University
- 771 46 Olomouc
- Czech Republic
| |
Collapse
|