151
|
Gore BS, Wang JJ. Visible-light-induced oxidant/additive-free atom-economic synthesis of multifunctionalized cyclopropanes via energy transfer. Chem Commun (Camb) 2023; 59:5878-5881. [PMID: 37096547 DOI: 10.1039/d3cc01021j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Herein we describe intramolecular cascade reactions enabling the synthesis of bridged cyclopropanes, via the photoinduced energy-transfer catalysis of tethered conjugated dienes. Photocatalysis affords the efficient synthesis of complex tricyclic compounds that exhibit multiple stereocenters from readily accessible starting materials that would otherwise be difficult to obtain. This single-step reaction is characterized by its broad substrate scope, atom-economy, excellent selectivity, and satisfactory yield, which includes a facile scale-up synthesis and synthetic transformation. An in-depth mechanistic study reveals that the reaction proceeds via an energy-transfer pathway.
Collapse
Affiliation(s)
- Babasaheb Sopan Gore
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Road, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
152
|
Yin H, Wu Y, Jiang Y, Wang M, Wang S. Synthesis of Cyclohepta[ b]indoles and Furo[3,4- b]carbazoles from Indoles, Tertiary Propargylic Alcohols, and Activated Alkynes. Org Lett 2023; 25:3078-3082. [PMID: 37083483 DOI: 10.1021/acs.orglett.3c00885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
A robust metal-free and environmentally friendly approach to cyclohepta[b]indole and furo[3,4-b]carbazole frameworks via a three-component reaction from indoles, tertiary propargylic alcohols, and activated alkynes is described. A probable mechanism was proposed on the basis of the isolation and characterization of a key intermediate of the reaction. A gram-scale reaction and product derivatizations were also performed to demonstrate the practicality of the developed methodology.
Collapse
Affiliation(s)
- Haiting Yin
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yunjun Wu
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Yifan Jiang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
| | - Meifang Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Shaoyin Wang
- Department of Chemistry, Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, Anhui 241002, People's Republic of China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
153
|
Meyer CC, Verboom KL, Evarts MM, Jung WO, Krische MJ. Allyl Alcohol as an Acrolein Equivalent in Enantioselective C-C Coupling: Total Synthesis of Amphidinolides R, J, and S. J Am Chem Soc 2023; 145:8242-8247. [PMID: 36996284 PMCID: PMC10101927 DOI: 10.1021/jacs.3c01809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The first systematic study of catalytic enantioselective 1,2-additions to acrolein is described. Specifically, using allyl alcohol as a tractable, inexpensive acrolein proelectrophile, iridium-catalyzed acrolein allylation is achieved with high levels of regio-, anti-diastereo-, and enantioselectivity. This process delivers 3-hydroxy-1,5-hexadienes, a useful compound class that is otherwise challenging to access via enantioselective catalysis. Two-fold use of this method unlocks concise total syntheses of amphidinolide R (9 vs 23 steps, LLS) and amphidinolide J (9 vs 23 or 26 steps, LLS), which are prepared in fewer than half the steps previously possible, and the first total synthesis of amphidinolide S (10 steps, LLS).
Collapse
Affiliation(s)
- Cole C Meyer
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Katherine L Verboom
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madeline M Evarts
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
154
|
Vagstad AL. Engineering ribosomally synthesized and posttranslationally modified peptides as new antibiotics. Curr Opin Biotechnol 2023; 80:102891. [PMID: 36702077 DOI: 10.1016/j.copbio.2023.102891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 01/25/2023]
Abstract
The rise of antimicrobial resistance is an urgent public health threat demanding the invention of new drugs to combat infections. Naturally sourced nonribosomal peptides (NRPs) have a long history as antimicrobial drugs. Through recent advances in genome mining and engineering technologies, their ribosomally synthesized and posttranslationally modified peptide (RiPP) counterparts are poised to further contribute to the arsenal of anti-infectives. As natural products from diverse organisms involved in interspecies competition, many RiPPs already possess antimicrobial activities that can be further optimized as drug candidates. Owing to the mutability of precursor protein genes that encode their core structures and the availability of diverse posttranslational modification (PTM) enzymes with broad substrate tolerances, RiPP systems are well suited to engineer complex peptides with desired functions.
Collapse
Affiliation(s)
- Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, 8093 Zürich, Switzerland.
| |
Collapse
|
155
|
Guan C, Qi H, Han L, Liu M, Wang J, Zhang G, Ding C. Palladium‐Catalyzed Cyclopropanation of Aryl/Heteroaryl Fluoro‐sulfonates. ChemistrySelect 2023. [DOI: 10.1002/slct.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Chenfei Guan
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Huijie Qi
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Linjun Han
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Miaoyu Liu
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Jing Wang
- Lianhe Chemical Technology Co. Ltd. Huangyan Taizhou China 318020
| | - Guofu Zhang
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| | - Chengrong Ding
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 P. R. of China
| |
Collapse
|
156
|
Li CL, Yang Y, Zhou Y, Duan ZC, Yu ZX. Strain-Release-Controlled [4 + 2 + 1] Reaction of Cyclopropyl-Capped Diene-ynes/Diene-enes and Carbon Monoxide Catalyzed by Rhodium. J Am Chem Soc 2023; 145:5496-5505. [PMID: 36812021 DOI: 10.1021/jacs.3c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Achieving transition-metal-catalyzed reactions of diene-ynes/diene-enes and carbon monoxide (CO) to deliver [4 + 2 + 1] cycloadducts, rather than the kinetically favored [2 + 2 + 1] products, is challenging. Here, we report that this can be solved by adding a cyclopropyl (CP) cap to the diene moiety of the original substrates. The resulting CP-capped diene-ynes/diene-enes can react with CO under Rh catalysis to give [4 + 2 + 1] cycloadducts exclusively without forming [2 + 2 + 1] products. This reaction has a broad scope and can be used to synthesize useful 5/7 bicycles with a CP moiety. Of the same importance, the CP moiety in the [4 + 2 + 1] cycloadducts can act as an intermediate group for further transformations so that other challenging bicyclic 5/7 and tricyclic 5/7/5, 5/7/6, and 5/7/7 skeletons, some of which are widely found in natural products, can be accessed. The mechanism of this [4 + 2 + 1] reaction has been investigated by quantum chemical calculations, and the role of the CP group in avoiding the possible side [2 + 2 + 1] reaction has been identified, showing that the [4 + 2 + 1] is controlled by releasing the ring strain in the methylenecyclopropyl (MCP) group (about 7 kcal/mol) in the CP-capped dienes.
Collapse
Affiliation(s)
- Chen-Long Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yusheng Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhao-Chen Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
157
|
Chen YL, Chen YC, Xiong LA, Huang QY, Gong TT, Chen Y, Ma LF, Fang L, Zhan ZJ. Discovery of phenylcarbamoyl xanthone derivatives as potent neuroprotective agents for treating ischemic stroke. Eur J Med Chem 2023; 251:115251. [PMID: 36921528 DOI: 10.1016/j.ejmech.2023.115251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Compounds of natural sources are widespread discovered in the treatment of ischemic stroke. Alpha-mangostin, a natural prenylated xanthone, has been found to display a therapeutic potential to treat ischemic stroke. However, the direct application of α-mangostin is limited due to its cytotoxicity and relatively low efficacy. Herein, structural modification of α-mangostin was necessary to improve its drug-ability. Currently, 34 α-mangostin phenylcarbamoyl derivatives were synthesized and evaluated for their neuroprotective activities by glutamate-induced excitotoxicity and H2O2-induced oxidative damage models in vitro. The results showed that compound 2 had the most therapeutic potential in both models. Whereafter, 2 has been proved to have powerful therapeutic effects by the MCAO ischemic stroke model in rats, which might be due to inhibition of inflammatory reaction and free radical accumulation. Besides, acute toxicity assay in rats showed that compound 2 had excellent safety. Overall, 2 could be a promising neuroprotective agent for the treatment of ischemic stroke deserving further investigations.
Collapse
Affiliation(s)
- Yi-Li Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yu-Chen Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Qu-Yang Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Ting-Ting Gong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yan Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
158
|
Zhang J, Xu W, Xu MH. Low Coordination State Rh I -Complex as High Performance Catalyst for Asymmetric Intramolecular Cyclopropanation: Construction of penta-Substituted Cyclopropanes. Angew Chem Int Ed Engl 2023; 62:e202216799. [PMID: 36602264 DOI: 10.1002/anie.202216799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
A simple, broad-scope rhodium(I)/chiral diene catalytic system for challenging asymmetric intramolecular cyclopropanation of various tri-substituted allylic diazoacetates was successfully developed. The low coordination state RhI -complex exhibits an extraordinarily high degree of tolerance to the variation in the extent of substitution of the allyl double bond, thus allowing the efficient construction of a wide range of penta-substituted, fused-ring cyclopropanes bearing three contiguous stereogenic centers, including two quaternary carbon stereocenters, in a highly enantioselective manner with ease at catalyst loading as low as 0.1 mol %. The stereoinduction mode of this RhI -carbene-directed asymmetric intramolecular cyclopropanation was investigated by DFT calculations, indicating that π-π stacking interactions between the aromatic rings of chiral diene ligand and diazo substrate play a key role in the control of the reaction enantioselectivity.
Collapse
Affiliation(s)
- Junyou Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.,Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weici Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ming-Hua Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
159
|
Fan Y, Li W, Nie W, Yao H, Ren Y, Wang M, Nie H, Gu C, Liu J, An B. Novel Dual-Target Kinase Inhibitors of EGFR and ALK Were Designed, Synthesized, and Induced Cell Apoptosis in Non-Small Cell Lung Cancer. Molecules 2023; 28:molecules28052006. [PMID: 36903251 PMCID: PMC10004195 DOI: 10.3390/molecules28052006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
ALK-positive NSCLC coexisting with EGFR mutations is a frequently occurring clinical phenomenon. Targeting ALK and EGFR simultaneously may be an effective way to treat these cancer patients. In this study, we designed and synthesized ten new dual-target EGFR/ALK inhibitors. Among them, the optimal compound 9j exhibited good activity with IC50 values of 0.07829 ± 0.03 μM and 0.08183 ± 0.02 μM against H1975 (EGFR T790M/L858R) and H2228 (EML4-ALK) cells, respectively. Immunofluorescence assays indicated that the compound could simultaneously inhibit the expression of phosphorylated EGFR and ALK proteins. A kinase assay demonstrated that compound 9j could inhibit both EGFR and ALK kinases; thus, exerting an antitumor effect. Additionally, compound 9j induced apoptosis in a dose-dependent manner and inhibited the invasion and migration of tumor cells. All of these results indicate that 9j is worthy of further study.
Collapse
Affiliation(s)
- Yangyang Fan
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wei Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenyan Nie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Han Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengxuan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Haoran Nie
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Chenxi Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiadai Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Baijiao An
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Yantai 264003, China
- Correspondence:
| |
Collapse
|
160
|
Ghosh A, Lipisa YB, Fridman N, Szpilman AM. 2-Nitro-cyclopropyl-1-carbonyl Compounds from Unsaturated Carbonyl Compounds and Nitromethane via Enolonium Species. J Org Chem 2023; 88:1977-1987. [PMID: 36749318 DOI: 10.1021/acs.joc.2c02125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
2-Nitrocyclopropanes bearing ketones, amides, esters, and carboxylic acids in the 1 position may be accessed as single diastereoisomers in one operation from the corresponding unsaturated carbonyl compounds. The source of the nitro-methylene component is nitromethane. The reaction proceeds at room temperature under mild conditions. The products may be converted into, e.g., cyclopropyl-amino acids in a single step. Both nitrocyclopropanes and amino-cyclopropanes are unique moieties found in biologically active compounds and natural products.
Collapse
Affiliation(s)
- Asit Ghosh
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Yuriy B Lipisa
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200009, Israel
| | - Alex M Szpilman
- Department of Chemical Sciences, Ariel University, Ariel 4070000, Israel
| |
Collapse
|
161
|
Cao LY, Wang JL, Wang K, Wu JB, Wang DK, Peng JM, Bai J, Zhuo CX. Catalytic Asymmetric Deoxygenative Cyclopropanation Reactions by a Chiral Salen-Mo Catalyst. J Am Chem Soc 2023; 145:2765-2772. [PMID: 36626166 DOI: 10.1021/jacs.2c12225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catalytic asymmetric cyclopropanation reaction of alkenes with diazo compounds is a direct and powerful method to construct chiral cyclopropanes that are essential to drug discovery. However, diazo compounds are potentially explosive and often require hazardous reagents for their preparation. Here, we report on the use of 1,2-dicarbonyl compounds as safe and readily available surrogates for diazo compounds in the direct catalytic asymmetric deoxygenative cyclopropanation reaction. Enabled by a class of simple and readily accessible chiral salen-Mo catalysts, the reaction proceeded with generally good enantioselectivities and yields toward a wide range of substrates (80 examples). Preliminary mechanistic studies suggested that the proposed μ-oxo bridged dinuclear Mo(III)-species was the catalytically active species. This strategy not only provides a promising route for the synthesis of chiral cyclopropanes but also opens a new window for the potential applications of chiral salen-Mo complexes in asymmetric catalysis.
Collapse
Affiliation(s)
- Li-Ya Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Kai Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jiang-Bin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - De-Ku Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jia-Min Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jin Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
162
|
Teresa J, Velado M, Fernández de la Pradilla R, Viso A, Lozano B, Tortosa M. Enantioselective Suzuki cross-coupling of 1,2-diboryl cyclopropanes. Chem Sci 2023; 14:1575-1581. [PMID: 36794195 PMCID: PMC9906671 DOI: 10.1039/d2sc05789a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Herein, we describe the catalytic enantioselective cross-coupling of 1,2-bisboronic esters. Prior work on group specific cross coupling is limited to the use of geminal bis-boronates. This desymmetrization provides a novel approach to prepare enantioenriched cyclopropyl boronates with three contiguous stereocenters, that could be further derivatized through selective functionalization of the carbon-boron bond. Our results suggest that transmetallation, which is the enantiodetermining step, takes place with retention of stereochemistry at carbon.
Collapse
Affiliation(s)
- Javier Teresa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Marina Velado
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | | | - Alma Viso
- Instituto de Química Orgánica General (IQOG), CSIC Juan de la Cierva 3 28006 Madrid Spain
| | - Blanca Lozano
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| | - Mariola Tortosa
- Organic Chemistry Department, Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid (UAM) 28049 Madrid Spain
| |
Collapse
|
163
|
Mendel M, Gnägi L, Dabranskaya U, Schoenebeck F. Rapid and Modular Access to Vinyl Cyclopropanes Enabled by Air-stable Palladium(I) Dimer Catalysis. Angew Chem Int Ed Engl 2023; 62:e202211167. [PMID: 36226918 PMCID: PMC10107780 DOI: 10.1002/anie.202211167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 12/23/2022]
Abstract
While vinyl cyclopropanes are valuable functional groups in drugs or natural products as well as established precursors to trigger a rich variety of synthetic transformations, their reactive nature can make their installation via direct catalytic approaches challenging. We herein present a modular access to (di)vinyl cyclopropanes under very mild conditions and full conservation of stereochemistry, allowing access to the cis or trans cyclopropane- as well as E or Z vinyl-stereochemical relationships. Our protocol relies on air-stable dinuclear PdI catalysis, which enables rapid (<30 min) and selective access to a diverse range of vinyl cyclopropane motifs at room temperature, even on gram scale.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Lars Gnägi
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | | | | |
Collapse
|
164
|
Thai-Savard L, Sayes M, Perreault-Dufour J, Hong G, Wells LA, Kozlowski MC, Charette AB. Organocatalyzed Visible Light-Mediated gem-Borosilylcyclopropanation. J Org Chem 2023; 88:1515-1521. [PMID: 36655845 PMCID: PMC10106276 DOI: 10.1021/acs.joc.2c02535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The borosilylcyclopropanation of styrene derivatives using a (diiodo(trimethylsilyl)methyl)boronic ester carbene precursor is reported herein. The key reagent was synthesized in a 4-step sequence using inexpensive and commercially available starting materials. This method enabled the preparation of novel 1,1,2-tri- and 1,1,2,2-tetrasubstituted borosilylcyclopropanes up to excellent yields and diastereoselectivity. The reaction is organocatalyzed by eosin Y in the presence of visible light. A mechanism consistent with the experimental observations was postulated based on density functional theory calculations. The versatility of these entities was highlighted through post-functionalization reactions.
Collapse
Affiliation(s)
- Léa Thai-Savard
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Morgane Sayes
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Josiane Perreault-Dufour
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Gang Hong
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| | - Lucille A. Wells
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Marisa C. Kozlowski
- Roy and Diana Vagelos Laboratories, Penn/Merck Laboratory for High-Throughput Experimentation, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - André B. Charette
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
165
|
Wu B, Ding QJ, Wang ZL, Zhu R. Alkyne Polymers from Stable Butatriene Homologues: Controlled Radical Polymerization of Vinylidenecyclopropanes. J Am Chem Soc 2023; 145:2045-2051. [PMID: 36688814 DOI: 10.1021/jacs.2c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Controlled polymerization of cumulenic monomers represents a promising yet underdeveloped strategy toward well-defined alkyne polymers. Here we report a stereoelectronic effect-inspired approach using simple vinylidenecyclopropanes (VDCPs) as butatriene homologues in controlled radical ring-opening polymerizations. While being thermally stable, VDCPs mimic butatrienes via conjugation of the cyclopropane ring. This leads to exclusive terminal-selective propagation that affords a highly structurally regular alkyne-based backbone, featuring complete ring-opening and no backbiting regardless of polymerization conditions.
Collapse
Affiliation(s)
- Bin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian-Jun Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zheng-Lin Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
166
|
Cai CY, Teng QX, Murakami M, Ambudkar SV, Chen ZS, Korlipara VL. Design, Synthesis and Biological Evaluation of Quinazolinamine Derivatives as Breast Cancer Resistance Protein and P-Glycoprotein Inhibitors with Improved Metabolic Stability. Biomolecules 2023; 13:biom13020253. [PMID: 36830622 PMCID: PMC9953095 DOI: 10.3390/biom13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 01/31/2023] Open
Abstract
A series of twenty-two quinazolinamine derivatives showing potent inhibitory activities on breast cancer resistance protein (BCRP) and p-glycoprotein (P-gp) were synthesized. A cyclopropyl-containing quinazolinamine 22 was identified as a dual BCRP and P-gp inhibitor, while azide-containing quinazolinamine 33 showed BCRP inhibitory activity. These lead compounds were further investigated in a battery of mechanistic experiments. Compound 22 changed the localization of BCRP and P-gp in cells, thus inhibiting the efflux of anticancer drugs by the two ATP-binding cassette (ABC) transporters. In addition, both 22 and 33 significantly stimulated the ATP hydrolysis of the BCRP transporter, indicating that they can be competitive substrates of the BCRP transporter, and thereby increase the accumulation of mitoxantrone in BCRP-overexpressing H460/MX20 cells. Azide derivative 33, exhibited a greater inhibitory effect on BCRP after UV activation and can serve as a valuable probe for investigating the interactions of quinazolinamine derivatives with BCRP. Notably, the dual BCRP and P-gp inhibitors 4-5, 22-24, 27, and BCRP inhibitor 33 showed improved metabolic stability compared to Ko143.
Collapse
Affiliation(s)
- Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA
| | - Megumi Murakami
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Suresh V. Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA
- Correspondence: (Z.-S.C.); (V.L.K.)
| | - Vijaya L. Korlipara
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA
- Correspondence: (Z.-S.C.); (V.L.K.)
| |
Collapse
|
167
|
Schaus L, Das A, Knight AM, Jimenez-Osés G, Houk KN, Garcia-Borràs M, Arnold FH, Huang X. Protoglobin-Catalyzed Formation of cis-Trifluoromethyl-Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2023; 62:e202208936. [PMID: 36533936 PMCID: PMC9894577 DOI: 10.1002/anie.202208936] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 12/23/2022]
Abstract
Trifluoromethyl-substituted cyclopropanes (CF3 -CPAs) constitute an important class of compounds for drug discovery. While several methods have been developed for synthesis of trans-CF3 -CPAs, stereoselective production of corresponding cis-diastereomers remains a formidable challenge. We report a biocatalyst for diastereo- and enantio-selective synthesis of cis-CF3 -CPAs with activity on a variety of alkenes. We found that an engineered protoglobin from Aeropyrnum pernix (ApePgb) can catalyze this unusual reaction at preparative scale with low-to-excellent yield (6-55 %) and enantioselectivity (17-99 % ee), depending on the substrate. Computational studies revealed that the steric environment in the active site of the protoglobin forced iron-carbenoid and substrates to adopt a pro-cis near-attack conformation. This work demonstrates the capability of enzyme catalysts to tackle challenging chemistry problems and provides a powerful means to expand the structural diversity of CF3 -CPAs for drug discovery.
Collapse
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Anders M Knight
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Gonzalo Jimenez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/M. Aurèlia Capmany, 69, 17003, Girona, Spain
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125, USA
| | - Xiongyi Huang
- Department of Chemistry, Johns-Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
168
|
Gudelis E, Krikštolaitytė S, Stančiauskaitė M, Šachlevičiūtė U, Bieliauskas A, Milišiūnaitė V, Jankauskas R, Kleizienė N, Sløk FA, Šačkus A. Synthesis of New Azetidine and Oxetane Amino Acid Derivatives through Aza-Michael Addition of NH-Heterocycles with Methyl 2-(Azetidin- or Oxetan-3-Ylidene)Acetates. Molecules 2023; 28:1091. [PMID: 36770762 PMCID: PMC9921373 DOI: 10.3390/molecules28031091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
In this paper, a simple and efficient synthetic route for the preparation of new heterocyclic amino acid derivatives containing azetidine and oxetane rings was described. The starting (N-Boc-azetidin-3-ylidene)acetate was obtained from (N-Boc)azetidin-3-one by the DBU-catalysed Horner-Wadsworth-Emmons reaction, followed by aza-Michael addition with NH-heterocycles to yield the target functionalised 3-substituted 3-(acetoxymethyl)azetidines. Methyl 2-(oxetan-3-ylidene)acetate was obtained in a similar manner, which was further treated with various (N-Boc-cycloaminyl)amines to yield the target 3-substituted 3-(acetoxymethyl)oxetane compounds. The synthesis and diversification of novel heterocyclic amino acid derivatives were achieved through the Suzuki-Miyaura cross-coupling from the corresponding brominated pyrazole-azetidine hybrid with boronic acids. The structures of the novel heterocyclic compounds were confirmed via 1H-, 13C-, 15N-, and 19F-NMR spectroscopy, as well as HRMS investigations.
Collapse
Affiliation(s)
- Emilis Gudelis
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Monika Stančiauskaitė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Urtė Šachlevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Rokas Jankauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Neringa Kleizienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
| | - Frank A. Sløk
- Vipergen ApS, Gammel Kongevej 23A, V DK-1610 Copenhagen, Denmark
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, LT-51423 Kaunas, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
169
|
Han D, Sun J, Jin J. Picolinamide Ligands: Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Bromocyclopropane and Beyond. Chem Asian J 2023; 18:e202201132. [PMID: 36479828 DOI: 10.1002/asia.202201132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
The arylcyclopropane motif as the combination of aryl and cyclopropyl ring systems can be found in an increasing amount of approved and investigational drugs. Herein, we have developed a mild, efficient nickel-catalyzed reductive cross-coupling protocol, featuring a simple Ni(II) precatalyst and a novel picolinamide NN2 pincer ligand. A variety of (hetero)aryl bromides could successfully couple with cyclopropyl bromide to furnish the valued arylcyclopropanes in good to excellent yields. This method is applicable to other alkyl bromides as well. Notably, the reaction is tolerant of a broad range of functionalities including free amines. Furthermore, the synthesis of several significant intermediates of bioactive molecules was achieved in grams, proving the practicability of this method.
Collapse
Affiliation(s)
- Dongyang Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jie Sun
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
170
|
Structure-guided design of novel HEPT analogs with enhanced potency and safety: From Isopropyl-HEPTs to Cyclopropyl-HEPTs. Eur J Med Chem 2023; 246:114939. [PMID: 36442370 DOI: 10.1016/j.ejmech.2022.114939] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Members of the HEPT class are potential non-nucleoside inhibitors of HIV-1 reverse transcriptase. Our previously disclosed one representative HEPT analog 2 produced potent inhibitory activity against wild-type HIV-1 (EC50 = 63.0 nM), but its high cytotoxicity and low selectivity index still needs to be improved (CC50 = 34.0 μM, SI = 565). In this work, a series of novel cyclopropyl-substituted HEPT analogs were developed by substituting a cyclopropyl ring for the isopropyl group at the C-5 position of 2 with the purpose of improving its potency and safety. Of this series, the most potent compound 9h featuring a 2,5-fluoro substitution on the C-6 benzene ring exerted significantly increased inhibitory activity toward wild-type HIV-1 (EC50 = 0.017 μM), which was 4-fold more active than the lead compound 2. The cytotoxicity of 9h was also reduced with much higher selectivity index (SI > 2328). This compound possessed good pharmacokinetics profiles and potential safety: (1) No obvious in vitro inhibition effect toward CYP enzyme and hERG was observed in 9h; (2) The single-dose acute toxicity test did not induce mice death and obvious pathological damage; (3) Excellent oral bioavailability of 9h (F= 86%) in rats was unveiled. These results provide valuable guidance for further development of HEPT anti-HIV-1 drugs.
Collapse
|
171
|
Dampalla C, Nguyen HN, Rathnayake AD, Kim Y, Perera KD, Madden TK, Thurman HA, Machen AJ, Kashipathy MM, Liu L, Battaile KP, Lovell S, Chang KO, Groutas WC. Broad-Spectrum Cyclopropane-Based Inhibitors of Coronavirus 3C-like Proteases: Biochemical, Structural, and Virological Studies. ACS Pharmacol Transl Sci 2023; 6:181-194. [PMID: 36654747 PMCID: PMC9841783 DOI: 10.1021/acsptsci.2c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/29/2022]
Abstract
The advent of SARS-CoV-2, the causative agent of COVID-19, and its worldwide impact on global health, have provided the impetus for the development of effective countermeasures that can be deployed against the virus, including vaccines, monoclonal antibodies, and direct-acting antivirals (DAAs). Despite these efforts, the current paucity of DAAs has created an urgent need for the creation of an enhanced and diversified portfolio of broadly acting agents with different mechanisms of action that can effectively abrogate viral infection. SARS-CoV-2 3C-like protease (3CLpro), an enzyme essential for viral replication, is a validated target for the discovery of SARS-CoV-2 therapeutics. In this report, we describe the structure-guided utilization of the cyclopropane moiety in the design of highly potent inhibitors of SARS-CoV-2 3CLpro, SARS-CoV-1 3CLpro, and MERS-CoV 3CLpro. High-resolution cocrystal structures were used to identify the structural determinants associated with the binding of the inhibitors to the active site of the enzyme and unravel the mechanism of action. Aldehydes 5c and 11c inhibited SARS-CoV-2 replication with EC50 values of 12 and 11 nM, respectively. Furthermore, the corresponding aldehyde bisulfite adducts 5d and 11d were equipotent with EC50 values of 13 and 12 nM, respectively. The safety index (SI) values for compounds 5c / 11c and 5d / 11d ranged between 7692 and 9090. Importantly, aldehydes 5c / 11c and bisulfite adducts 5d / 11d potently inhibited MERS-CoV 3CLpro with IC50 values of 80 and 120 nM, and 70 and 70 nM, respectively. Likewise, compounds 5c / 11c and 5d / 11d inhibited SARS-CoV-1 with IC50 values of 960 and 350 nM and 790 and 240 nM, respectively. Taken together, these studies suggest that the inhibitors described herein have low cytotoxicity and high potency and are promising candidates for further development as broad-spectrum direct-acting antivirals against highly pathogenic coronaviruses.
Collapse
Affiliation(s)
- Chamandi
S. Dampalla
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| | - Harry Nhat Nguyen
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| | - Athri D. Rathnayake
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| | - Yunjeong Kim
- Department
of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Krishani Dinali Perera
- Department
of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Trent K. Madden
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| | - Hayden A. Thurman
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| | - Alexandra J. Machen
- Protein
Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Maithri M. Kashipathy
- Protein
Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Protein
Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P. Battaile
- NYX,
New York Structural Biology Center, Upton, New York 11973, United States
| | - Scott Lovell
- Protein
Structure and X-ray Crystallography Laboratory, The University of Kansas, Lawrence, Kansas 66047, United States
| | - Kyeong-Ok Chang
- Department
of Diagnostic Medicine & Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - William C. Groutas
- Department
of Chemistry and Biochemistry, Wichita State
University, Wichita, Kansas 67260, United States
| |
Collapse
|
172
|
The Solubility Studies and the Complexation Mechanism Investigations of Biologically Active Spiro[cyclopropane-1,3'-oxindoles] with β-Cyclodextrins. Pharmaceutics 2023; 15:pharmaceutics15010228. [PMID: 36678857 PMCID: PMC9861668 DOI: 10.3390/pharmaceutics15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
In this work, we first improved the aqueous solubility of biologically active spiro[cyclopropane-1,3′-oxindoles] (SCOs) via their complexation with different β-cyclodextrins (β-CDs) and proposed a possible mechanism of the complex formation. β-CDs significantly increased the water solubility of SCOs (up to fourfold). Moreover, the nature of the substituents in the β-CDs influenced the solubility of the guest molecule (MβCD > SBEβCD > HPβCD). Complexation preferably occurred via the inclusion of aromatic moieties of SCOs into the hydrophobic cavity of β-CDs by the numerous van der Waals contacts and formed stable supramolecular systems. The phase solubility technique and optical microscopy were used to determine the dissociation constants of the complexes (Kc~102 M−1) and reveal a significant decrease in the size of the formed crystals. FTIR-ATR microscopy, PXRD, and 1H-1H ROESY NMR measurements, as well as molecular modeling studies, were carried out to elucidate the host−guest interaction mechanism of the complexation. Additionally, in vitro experiments were carried out and revealed enhancements in the antibacterial activity of SCOs due to their complexation with β-CDs.
Collapse
|
173
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
174
|
Fischer D, Lindner H, Amberg WM, Carreira EM. Intermolecular Organophotocatalytic Cyclopropanation of Unactivated Olefins. J Am Chem Soc 2023; 145:774-780. [PMID: 36607827 PMCID: PMC9853868 DOI: 10.1021/jacs.2c11680] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Intermolecular cyclopropanation of mono-, di-, and trisubstituted olefins with α-bromo-β-ketoesters and α-bromomalonates under organophotocatalysis is reported. The reaction displays broad functional group tolerance, including substrates bearing acids, alcohols, halides, ethers, ketones, nitriles, esters, amides, carbamates, silanes, stannanes, boronic esters, as well as arenes, and furnishes highly substituted cyclopropanes. The transformation may be performed in the presence of air and moisture with 0.5 mol % of a benzothiazinoquinoxaline as organophotocatalyst. Mechanistic investigations, involving Stern-Volmer quenching, quantum yield determination, and deuteration experiments, are carried out, and a catalytic cycle for the transformation is discussed.
Collapse
|
175
|
Zoll AJ, Molas JC, Mercado BQ, Ellman JA. Imine Directed Cp*Rh III -Catalyzed N-H Functionalization and Annulation with Amino Amides, Aldehydes, and Diazo Compounds. Angew Chem Int Ed Engl 2023; 62:e202210822. [PMID: 36331194 PMCID: PMC9805510 DOI: 10.1002/anie.202210822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 11/06/2022]
Abstract
A multicomponent annulation that proceeds by imine directed Cp*RhIII -catalyzed N-H functionalization is disclosed. The transformation affords piperazinones displaying a range of functionality and is the first example of transition metal-catalyzed multicomponent N-H functionalization. A broad range of readily available α-amino amides, including those derived from glycine, α-substituted, and α,α-disubstituted amino acids, were effective inputs and enabled the incorporation of a variety of amino acid side chains with minimal racemization. Branched and unbranched alkyl aldehydes and various stabilized diazo compounds were also efficient reactants. The piperazinone products were further modified through efficient transformations. Mechanistic studies, including X-ray crystallographic characterization of a catalytically competent five-membered rhodacycle with imine and amide nitrogen chelation, provide support for the proposed mechanism.
Collapse
Affiliation(s)
| | | | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| | - Jonathan A. Ellman
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520 (USA)
| |
Collapse
|
176
|
Xie J, Dong G. Cyclopropylcarbinyl cation chemistry in synthetic method development and natural product synthesis: cyclopropane formation and skeletal rearrangement. Org Chem Front 2023. [DOI: 10.1039/d3qo00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
In this Review, the underrecognized utilities of the cyclopropylcarbinyl cation chemistry are summarized in cyclopropane synthesis and skeletal rearrangements, and their applications in natural product total synthesis are highlighted.
Collapse
|
177
|
Cobalt-Catalyzed C–C Coupling Reactions with Csp3 Electrophiles. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
178
|
Siriboe MG, Fasan R. Engineered Myoglobin Catalysts for Asymmetric Intermolecular Cyclopropanation Reactions. BULLETIN OF JAPAN SOCIETY OF COORDINATION CHEMISTRY 2022; 80:4-13. [PMID: 37621732 PMCID: PMC10448740 DOI: 10.4019/bjscc.80.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Biocatalysis has covered an increasingly important role in the synthesis and manufacturing of pharmaceuticals and other high value compounds. In the interest of expanding the range of synthetically useful reactions accessible via biocatalysts, our group has explored the potential and application of engineered myoglobins for 'abiological' carbene transfer catalysis. These transformations provide a direct route for the construction of new carbon-carbon and carbon-heteroatom bonds, including the synthesis of cyclopropane rings, which are key motifs and pharmacophores in many drugs and bioactive natural products. In this award article, we survey the progress made by our group toward the development of myoglobin-based catalysts for asymmetric intermolecular cyclopropanation reactions. The high stereoselectivity exhibited by these biocatalysts in these reactions, combined with their broad substrate scope, scalability, and robustness to high substrate loading and organic co-solvents, contribute to make these systems particularly useful for chemical synthesis and biocatalysis at the preparative scale. Extension of the scope of biocatalytic carbene transfer reactions to include different classes of carbene donor reagents has created new opportunities for the asymmetric synthesis of functionalized cyclopropanes. Furthermore, the integration of myoglobin-catalyzed stereoselective cyclopropanations with chemical diversification of the enzymatic products has furnished attractive chemoenzymatic strategies to access a diverse range of optically active cyclopropane scaffolds of high value for drug discovery, medicinal chemistry, and the synthesis of natural products.
Collapse
Affiliation(s)
- Mary G Siriboe
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
179
|
Beutner GL, George DT. Opportunities for the Application and Advancement of the Corey–Chaykovsky Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gregory L. Beutner
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - David T. George
- Chemical Process Development, Bristol Myers Squibb Company, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
180
|
Schaus L, Das A, Knight AM, Jimenez‐Osés G, Houk KN, Garcia‐Borràs M, Arnold FH, Huang X. Protoglobin‐Catalyzed Formation of
cis
‐Trifluoromethyl‐Substituted Cyclopropanes by Carbene Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lucas Schaus
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anuvab Das
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Anders M. Knight
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Gonzalo Jimenez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE) Basque Research and Technology Alliance (BRTA) Bizkaia Technology Park, Building 800 48160 Derio Spain
- Ikerbasque, Basque Foundation for Science 48013 Bilbao Spain
| | - K. N. Houk
- Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Marc Garcia‐Borràs
- Institut de Química Computacional i Catàlisi and Departament de Química Universitat de Girona C/M. Aurèlia Capmany, 69 17003 Girona Spain
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 E California Blvd. Pasadena CA 91125 USA
| | - Xiongyi Huang
- Department of Chemistry Johns-Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
181
|
Livingstone K, Siebold K, Meyer S, Martín-Heras V, Daniliuc CG, Gilmour R. Skeletal Ring Contractions via I(I)/I(III) Catalysis: Stereoselective Synthesis of cis-α,α-Difluorocyclopropanes. ACS Catal 2022; 12:14507-14516. [PMID: 36504915 PMCID: PMC9724094 DOI: 10.1021/acscatal.2c04511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Indexed: 11/12/2022]
Abstract
The clinical success of α,α-difluorocyclopropanes, combined with limitations in the existing synthesis portfolio, inspired the development of an operationally simple, organocatalysis-based strategy to access cis-configured derivatives with high levels of stereoselectivity (up to >20:1 cis:trans). Leveraging an I(I)/I(III)-catalysis platform in the presence of an inexpensive HF source, it has been possible to exploit disubstituted bicyclobutanes (BCBs) as masked cyclobutene equivalents for this purpose. In situ generation of this strained alkene, enabled by Brønsted acid activation, facilitates an unprecedented 4 → 3 fluorinative ring contraction, to furnish cis-α,α-difluorinated cyclopropanes in a highly stereoselective manner (up to 88% yield). Mechanistic studies are disclosed together with conformational analysis (X-ray crystallography and NMR) to validate cis-α,α-difluorocyclopropanes as isosteres of the 1,4-dicarbonyl moiety. Given the importance of this unit in biology and the foundational no → π* interactions that manifest themselves in this conformation (e.g., collagen), it is envisaged that the title motif will find application in focused molecular design.
Collapse
|
182
|
Discovery of a potent EGFR and ALK dual mutation inhibitor containing N-(3-((4-((2-(cyclopropylsulfinyl)phenyl)amino)pyrimidin-2-yl)amino) phenyl)acrylamide scaffold. Bioorg Chem 2022; 129:106188. [DOI: 10.1016/j.bioorg.2022.106188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
|
183
|
Myronova V, Cahard D, Marek I. Stereoselective Preparation of CF 3-Containing Cyclopropanes. Org Lett 2022; 24:9076-9080. [DOI: 10.1021/acs.orglett.2c03714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Veronika Myronova
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, 76821 Mont Saint Aignan, France
| | - Ilan Marek
- The Mallat Family Laboratory of Organic Chemistry, Schulich Faculty of Chemistry. Technion - Israel Institute of Technology, Haifa 3200009, Israel
| |
Collapse
|
184
|
Liu L, Dai M, Song L, Chen H, Bian M, Gao Y, Liu Z. Water‐assisted, Highly‐selective and Rapid Synthesis of Cyclopropane Derivatives by a [2+1] Annulation Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202203870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Li‐Jia Liu
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Ming Dai
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Lei Song
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Hui‐Yu Chen
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Ming Bian
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Yu‐Ning Gao
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
| | - Zhen‐Jiang Liu
- School of Chemical and Environmental Engineering Shanghai Institute of Technology 100 Haiquan Road Shanghai 201418 P. R. China
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
185
|
Vidal L, Chen PP, Nicolas E, Hackett A, Robertson CM, Houk KN, Aïssa C. Enantioselective Intramolecular Iridium-Catalyzed Cyclopropanation of α-Carbonyl Sulfoxonium Ylides. Org Lett 2022; 24:8503-8508. [DOI: 10.1021/acs.orglett.2c03396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lucas Vidal
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Pan-Pan Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Eva Nicolas
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Andrew Hackett
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Craig M. Robertson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Christophe Aïssa
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
186
|
West MS, Gabbey AL, Huestis MP, Rousseaux SAL. Ni-Catalyzed Reductive Cross-Coupling of Cyclopropylamines and Other Strained Ring NHP Esters with (Hetero)Aryl Halides. Org Lett 2022; 24:8441-8446. [DOI: 10.1021/acs.orglett.2c03570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Michael S. West
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alexis L. Gabbey
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Malcolm P. Huestis
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Sophie A. L. Rousseaux
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
187
|
2-(Cyclopropylamino)-5-(4-methoxybenzylidene)thiazol-4(5H)-one. MOLBANK 2022. [DOI: 10.3390/m1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicomponent reactions effectively contribute to modern organic and medicinal chemistry. 4-Thiazolidinone core and cyclopropyl moiety are important structural motifs for design of potential biologically active molecules. In the present paper, the convenient step-economy and cost-effective synthesis of 2-(cyclopropylamino)-5-(4-methoxybenzylidene)thiazol-4(5H)-one (2) is described based on the application of the MCR methodology. The proposed approach includes direct one-pot interaction of 2-thioxothiazolidin-4-one (rhodanine), 4-methoxybenzaldehyde with cyclopropylamine which was used in 10% excess compare to other reagents. The structure of synthesized compound 2 was confirmed using 1H, 13C, 2D NMR, LC-MS, IR and UV spectra. The presence of prototropic amino/imino tautomerism for synthesized compound 2 was observed based on spectral analysis data. Screening of antimicrobial activity against 12 strains of Gram-positive and Gram-negative bacteria, as well as yeasts, was performed for synthesized derivative 2.
Collapse
|
188
|
A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand. Molecules 2022; 27:molecules27217266. [DOI: 10.3390/molecules27217266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/16/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
The factors that affect acceleration and high trans/cis selectivity in the catalytic cyclopropanation reaction of styrene with ethyl diazoacetate by cobalt N-confused porphyrin (NCP) complexes were investigated using density functional theory calculations. The reaction rate was primarily related to the energy gap between the cobalt–carbene adduct intermediates, A and B, which was affected by the NCP skeletons and axial pyridine ligands more than the corresponding porphyrin complex. In addition, high trans/cis stereoselectivity was determined at the TS1 and, in part, in the isomerization process at the carbon-centered radical intermediates, Ctrans and Ccis.
Collapse
|
189
|
Liu M, Du H, Cui J, Shu W. Intermolecular Metal‐Free Cyclopropanation and Aziridination of Alkenes with XH
2
(X=N, C) by Thianthrenation**. Angew Chem Int Ed Engl 2022; 61:e202209929. [DOI: 10.1002/anie.202209929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Ming‐Shang Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Hai‐Wu Du
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Jian‐Fang Cui
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 Guangdong P.R. China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University 300071 Tianjin P.R. China
| |
Collapse
|
190
|
Ye M, Xu F, Bai Y, Zhang F, Wang W, Qian Y, Chen Z. Base-promoted highly efficient synthesis of nitrile-substituted cyclopropanes via Michael-initiated ring closure. RSC Adv 2022; 12:28576-28579. [PMID: 36320497 PMCID: PMC9536251 DOI: 10.1039/d2ra05393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/01/2022] [Indexed: 11/24/2022] Open
Abstract
A convenient and efficient annulation reaction has been developed for the general synthesis of dinitrile-substituted cyclopropanes in moderate to excellent yields. A variety of 2-arylacetonitriles and α-bromoennitriles were compatible under the standard conditions. The reaction was achieved through tandem Michael-type addition followed by intramolecular cyclization. The preliminary application of this method was confirmed by the synthesis of the 2,4-dioxo-3-azabicyclo[3.1.0]hexane scaffold.
Collapse
Affiliation(s)
- Min Ye
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Fan Xu
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Yun Bai
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Fanglian Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Wenjia Wang
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Yiping Qian
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| | - Zhengwang Chen
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University341000China+86 797-8793670+86 797-8793670
| |
Collapse
|
191
|
Nguyen T, Sreekumar S, Wang S, Jiang Q, Montel F, Buono F. Enantioselective Synthesis of trans-Disubstituted Cyclopropyltrifluoroborate Building Blocks through Ru-Catalyzed Cyclopropanation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thach Nguyen
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Sanil Sreekumar
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Shuai Wang
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Qi Jiang
- Material and Analytical Sciences, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| | - Florian Montel
- Discovery Research, Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, 65 Birkendorfer Strasse, Biberach an der Riss 88400, Germany
| | - Frederic Buono
- Chemical Development, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877-0378, United States
| |
Collapse
|
192
|
Sharland JC, Dunstan D, Majumdar D, Gao J, Tan K, Malik HA, Davies HML. Hexafluoroisopropanol for the Selective Deactivation of Poisonous Nucleophiles Enabling Catalytic Asymmetric Cyclopropanation of Complex Molecules. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jack C. Sharland
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - David Dunstan
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dyuti Majumdar
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jinhai Gao
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kian Tan
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hasnain A. Malik
- Global Discovery Chemistry, Novartis Institute of Biomedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
193
|
Richter MJR, Zécri FJ, Briner K, Schreiber SL. Modular Synthesis of Cyclopropane-Fused N-Heterocycles Enabled by Underexplored Diazo Reagents. Angew Chem Int Ed Engl 2022; 61:e202203221. [PMID: 35395129 PMCID: PMC9474654 DOI: 10.1002/anie.202203221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 01/13/2023]
Abstract
Cyclopropane-fused N-heterocycles are featured in various biologically active compounds and represent attractive scaffolds in medicinal chemistry. However, synthesis routes to access structurally and functionally diverse cyclopropane-fused N-heterocycles remain underexplored. Leveraging novel α-diazo acylating agents, we report a general approach for the direct and modular synthesis of cyclopropane-fused lactams from unsaturated amines. The operationally simple transformation, which proceeds through successive acylation, (3+2) cycloaddition and fragmentation, tolerates a broad range of functional groups and yields a wide spectrum of complex molecular scaffolds, including fused, bridged and spiro ring systems. We demonstrate the utility of this transformation in the concise syntheses of therapeutic agents milnaciprane and amitifadine.
Collapse
Affiliation(s)
- Matthieu J R Richter
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Frédéric J Zécri
- Novartis Institutes for BioMedical Research, Cambridge, MA 02142, USA
| | - Karin Briner
- Novartis Institutes for BioMedical Research, Cambridge, MA 02142, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
194
|
Turro RF, Brandstätter M, Reisman SE. Nickel-Catalyzed Reductive Alkylation of Heteroaryl Imines. Angew Chem Int Ed Engl 2022; 61:e202207597. [PMID: 35791274 PMCID: PMC9474666 DOI: 10.1002/anie.202207597] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 09/20/2023]
Abstract
The preparation of heterobenzylic amines by a Ni-catalyzed reductive cross-coupling between heteroaryl imines and C(sp3 ) electrophiles is reported. This umpolung-type alkylation proceeds under mild conditions, avoids the pre-generation of organometallic reagents, and exhibits good functional group tolerance. Mechanistic studies are consistent with the imine substrate acting as a redox-active ligand upon coordination to a low-valent Ni center. The resulting bis(2-imino)heterocycle⋅Ni complexes can engage in alkylation reactions with a variety of C(sp3 ) electrophiles, giving heterobenzylic amine products in good yields.
Collapse
Affiliation(s)
- Raymond F Turro
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Marco Brandstätter
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
195
|
Bharath Kumar P, Raju CE, Chandubhai PH, Sridhar B, Karunakar GV. Gold(I)-Catalyzed Regioselective Cyclization to Access Cyclopropane-Fused Tetrahydrobenzochromenes. Org Lett 2022; 24:6761-6766. [DOI: 10.1021/acs.orglett.2c02564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Perla Bharath Kumar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Patel Hinal Chandubhai
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
196
|
Feng X, Ren J, Gao X, Min Q, Zhang X. 3,3‐Difluoroallyl Sulfonium Salts: Practical and Bench‐Stable Reagents for Highly Regioselective
gem
‐Difluoroallylations. Angew Chem Int Ed Engl 2022; 61:e202210103. [DOI: 10.1002/anie.202210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao‐Tian Feng
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| | - Jin‐Xiu Ren
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xing Gao
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Qiao‐Qiao Min
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xingang Zhang
- Key Laboratory of Organofluorine Chemistry Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
197
|
Jing C, Jones BT, Adams RJ, Bower JF. Cyclopropane-Fused N-Heterocycles via Aza-Heck-Triggered C(sp 3)-H Functionalization Cascades. J Am Chem Soc 2022; 144:16749-16754. [PMID: 36083505 PMCID: PMC9501755 DOI: 10.1021/jacs.2c08304] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Unique examples of aza-Heck-based C(sp3)–H
functionalization
cascades are described. Under Pd(0)-catalyzed conditions, the aza-Heck-type
cyclization of N-(pentafluorobenzoyloxy)carbamates
generates alkyl–Pd(II) intermediates that effect C(sp3)–H palladation en route to cyclopropanes. Key factors that
control the site selectivity of the cyclopropanation process have
been elucidated such that selective access to a wide range of ring-
or spiro-fused systems can be achieved.
Collapse
Affiliation(s)
- Changcheng Jing
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Benjamin T Jones
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ross J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
198
|
Design, synthesis, and structure-activity relationship of novel RIPK2 inhibitors. Bioorg Med Chem Lett 2022; 75:128968. [PMID: 36058467 DOI: 10.1016/j.bmcl.2022.128968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
The NOD1/2 (nucleotide-binding oligomerization domain-containing protein 1/2) signaling pathways are involved in innate immune control and host defense. NOD dysfunction can result in a variety of autoimmune disorders. NOD-induced generation of inflammatory cytokines is mediated by receptor-interacting protein kinase 2 (RIPK2), which has been considered as a promising therapeutic target. Herein, we disclose the design, synthesis, and SAR study of a series of RIPK2 inhibitors. The lead compound 17 displayed a high affinity for RIPK2 (Kd = 5.9 nM) and was capable of inhibiting RIPK2 kinase function in an ADP-Glo assay. In vitro DMPK studies showed that compound 17 had good metabolic stability and no CYP inhibition. Compound 17 effectively suppressed inflammatory cytokine production in both cells and animal model.
Collapse
|
199
|
Feng XT, Ren JX, Gao X, Min QQ, Zhang X. 3,3‐Difluoroallyl Sulfonium Salts: Practical and Bench‐Stable Reagents for Highly Regioselective gem‐Difluoroallylations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao-Tian Feng
- Zhengzhou University Green Catalysis Center, and College of Chemistry Zhengzhou CHINA
| | - Jin-Xiu Ren
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 345 Linling road Shanghai CHINA
| | - Xing Gao
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 200032 Shanghai CHINA
| | - Qiao-Qiao Min
- Shanghai Institute of Organic Chemistry Key Laboratory of Organofluorine Chemistry 200032 Shanghai CHINA
| | - Xingang Zhang
- Shanghai Institute of Organic Chemistry Chinese Academy of Science Key Laboratory of Organofluorine Chemistry 345 Lingling Lu 200032 Shanghai CHINA
| |
Collapse
|
200
|
Zeng YF, Wu JB, Chen JT, Guo Y, Wang Z. Oxidative functionalization of alkylidenecyclopropanes and alkylidenecyclobutanes: a versatile platform to access nitrated cyclopropanes and cyclobutanes. Org Biomol Chem 2022; 20:7022-7026. [PMID: 36006008 DOI: 10.1039/d2ob01426b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A divergent radical nitration of alkylidenecyclopropanes (ACPs) and alkylidenecyclobutanes (ACBs) with Fe(NO3)3·9H2O or AgNO2 has been achieved, affording three categories of products including β-nitro alcohol, α-nitro ketone and nitro nitratosation products with yields up to 90%. Particularly, the cyclopropyl and cyclobutyl rings were conserved in the products. The applicability of this method was demonstrated by the scale-up experiment and reduction of the nitro into an amino group. Preliminary mechanistic studies suggested that the nitro radical was involved in the reaction process.
Collapse
Affiliation(s)
- Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Bo Wu
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Jin-Tao Chen
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Yu Guo
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhen Wang
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|