151
|
Liu J, Ma J, Liu Y, Xia J, Li Y, Wang ZP, Wei W. PROTACs: A novel strategy for cancer therapy. Semin Cancer Biol 2020; 67:171-179. [PMID: 32058059 DOI: 10.1016/j.semcancer.2020.02.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/29/2022]
Abstract
Chemotherapeutic strategy has been widely used for treating malignance by targeting irregular expressed or mutant proteins with small molecular inhibitors (SMIs) or monoclonal antibodies (mAbs). However, most intracellular proteins lack of active sites or antigens where SMIs or mAbs bind with, and are called as non-druggable targets for a long time. From the first year of this century, PROteolysis-TArgeting Chimeras (PROTACs) has emerged to be a promising approach for proteins, including those non-druggable ones, such as transcriptional factors and scaffold proteins. The first generation of peptide-based PROTACs adopts β-TrCP and VHL as E3 ligases, but the cellular permeability and chemical stability issues restrict their clinical application. The second generation of small molecule-based PROTACs adopts MDM2, VHL, IAPs and Cereblon as E3 ligases have been tensely studied. To date, the targets of PROTACs including those overexpressed oncogenic proteins such as ER, AR and BRDs, disease-relevant fusion proteins such as NPM/EML4-ALK and BCR-ABL, cancer-driven mutant proteins such as EGFR, kinases such as CDKs and RTKs. The major disadvantage of PROTACs is the noncancer specificity and relative higher toxicity, due to its catalytic role. To overcome this, we and other have recently developed several similar light-controllable PROTACs, termed as the third generation controllable PROTACs. The degradation of targets by those PROTACs can be triggered by UVA or visible light, providing a tool box for further PROTACs design. Here in this review, we introduce the historical milestones and prospective for further PROTACs development in clinical use.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jia Ma
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Yi Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jun Xia
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Yuyun Li
- Department of Clinical Laboratory Diagnostics, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, Research Center of Laboratory Medicine, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
152
|
Reynders M, Matsuura BS, Bérouti M, Simoneschi D, Marzio A, Pagano M, Trauner D. PHOTACs enable optical control of protein degradation. SCIENCE ADVANCES 2020; 6:eaay5064. [PMID: 32128406 PMCID: PMC7034999 DOI: 10.1126/sciadv.aay5064] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/22/2019] [Indexed: 05/13/2023]
Abstract
PROTACs (PROteolysis TArgeting Chimeras) are bifunctional molecules that target proteins for ubiquitylation by an E3 ligase complex and subsequent degradation by the proteasome. They have emerged as powerful tools to control the levels of specific cellular proteins. We now introduce photoswitchable PROTACs that can be activated with the spatiotemporal precision that light provides. These trifunctional molecules, which we named PHOTACs (PHOtochemically TArgeting Chimeras), consist of a ligand for an E3 ligase, a photoswitch, and a ligand for a protein of interest. We demonstrate this concept by using PHOTACs that target either BET family proteins (BRD2,3,4) or FKBP12. Our lead compounds display little or no activity in the dark but can be reversibly activated with different wavelengths of light. Our modular approach provides a method for the optical control of protein levels with photopharmacology and could lead to new types of precision therapeutics that avoid undesired systemic toxicity.
Collapse
Affiliation(s)
- Martin Reynders
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Bryan S. Matsuura
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Marleen Bérouti
- Department of Chemistry, New York University, New York, NY 10003, USA
- Department of Chemistry, Ludwig Maximilians University of Munich, 81377 Munich, Germany
| | - Daniele Simoneschi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Antonio Marzio
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Dirk Trauner
- Department of Chemistry, New York University, New York, NY 10003, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY 10016, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
153
|
Allen SJ, Lumb KJ. Protein-protein interactions: a structural view of inhibition strategies and the IL-23/IL-17 axis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 121:253-303. [PMID: 32312425 DOI: 10.1016/bs.apcsb.2019.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protein-protein interactions are central to biology and provide opportunities to modulate disease with small-molecule or protein therapeutics. Recent developments in the understanding of the tractability of protein-protein interactions are discussed with a focus on the ligandable nature of protein-protein interaction surfaces. General principles of inhibiting protein-protein interactions are illustrated with structural biology examples from six members of the IL-23/IL-17 signaling family (IL-1, IL-6, IL-17, IL-23 RORγT and TNFα). These examples illustrate the different approaches to discover protein-protein interaction inhibitors on a target-specific basis that has proven fruitful in terms of discovering both small molecule and biologic based protein-protein interaction inhibitors.
Collapse
Affiliation(s)
- Samantha J Allen
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| | - Kevin J Lumb
- Lead Discovery & Profiling, Discovery Sciences, Janssen R&D LLC, Spring House, PA, United States
| |
Collapse
|
154
|
Wang Y, Deng S, Xu J. Proteasomal and lysosomal degradation for specific and durable suppression of immunotherapeutic targets. Cancer Biol Med 2020; 17:583-598. [PMID: 32944392 PMCID: PMC7476092 DOI: 10.20892/j.issn.2095-3941.2020.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2020] [Indexed: 12/26/2022] Open
Abstract
Cancer immunotherapy harness the body’s immune system to eliminate cancer, by using a broad panel of soluble and membrane proteins as therapeutic targets. Immunosuppression signaling mediated by ligand-receptor interaction may be blocked by monoclonal antibodies, but because of repopulation of the membrane via intracellular organelles, targets must be eliminated in whole cells. Targeted protein degradation, as exemplified in proteolysis targeting chimera (PROTAC) studies, is a promising strategy for selective inhibition of target proteins. The recently reported use of lysosomal targeting molecules to eliminate immune checkpoint proteins has paved the way for targeted degradation of membrane proteins as crucial anti-cancer targets. Further studies on these molecules’ modes of action, target-binding “warheads”, lysosomal sorting signals, and linker design should facilitate their rational design. Modifications and derivatives may improve their cell-penetrating ability and the in vivo stability of these pro-drugs. These studies suggest the promise of alternative strategies for cancer immunotherapy, with the aim of achieving more potent and durable suppression of tumor growth. Here, the successes and limitations of antibody inhibitors in cancer immunotherapy, as well as research progress on PROTAC- and lysosomal-dependent degradation of target proteins, are reviewed.
Collapse
Affiliation(s)
- Yungang Wang
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Department of Laboratory Medicine, The First People's Hospital of Yancheng City, Yancheng 224006, China
| | - Shouyan Deng
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China.,Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jie Xu
- Institutes of Biomedical Sciences, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, Fudan University, Shanghai 200433, China
| |
Collapse
|
155
|
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y, Rao Y. PROTACs: great opportunities for academia and industry. Signal Transduct Target Ther 2019; 4:64. [PMID: 31885879 PMCID: PMC6927964 DOI: 10.1038/s41392-019-0101-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Although many kinds of therapies are applied in the clinic, drug-resistance is a major and unavoidable problem. Another disturbing statistic is the limited number of drug targets, which are presently only 20-25% of all protein targets that are currently being studied. Moreover, the focus of current explorations of targets are their enzymatic functions, which ignores the functions from their scaffold moiety. As a promising and appealing technology, PROteolysis TArgeting Chimeras (PROTACs) have attracted great attention both from academia and industry for finding available approaches to solve the above problems. PROTACs regulate protein function by degrading target proteins instead of inhibiting them, providing more sensitivity to drug-resistant targets and a greater chance to affect the nonenzymatic functions. PROTACs have been proven to show better selectivity compared to classic inhibitors. PROTACs can be described as a chemical knockdown approach with rapidity and reversibility, which presents new and different biology compared to other gene editing tools by avoiding misinterpretations that arise from potential genetic compensation and/or spontaneous mutations. PRTOACs have been widely explored throughout the world and have outperformed not only in cancer diseases, but also in immune disorders, viral infections and neurodegenerative diseases. Although PROTACs present a very promising and powerful approach for crossing the hurdles of present drug discovery and tool development in biology, more efforts are needed to gain to get deeper insight into the efficacy and safety of PROTACs in the clinic. More target binders and more E3 ligases applicable for developing PROTACs are waiting for exploration.
Collapse
Affiliation(s)
- Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Hongying Gao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Yiqing Yang
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084 P. R. China
| | - Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yue Wu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yugang Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yan Tong
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing, 100084 P. R. China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
156
|
Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, Zheng G. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X L. Chem Commun (Camb) 2019; 55:14765-14768. [PMID: 31754664 PMCID: PMC7057339 DOI: 10.1039/c9cc07217a] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BCL-XL, an anti-apoptotic BCL-2 family protein, plays a key role in cancer cell survival. However, the potential of BCL-XL as an anti-cancer target has been hampered by the on-target platelet toxicity because platelets depend on BCL-XL to maintain their viability. Here we report the development of a PROTAC BCL-XL degrader, XZ424, which has increased selectivity for BCL-XL-dependent MOLT-4 cells over human platelets compared with conventional BCL-XL inhibitors. This proof-of-concept study demonstrates the potential of utilizing a PROTAC approach to achieve tissue selectivity.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
157
|
Han X, Zhao L, Xiang W, Qin C, Miao B, Xu T, Wang M, Yang CY, Chinnaswamy K, Stuckey J, Wang S. Discovery of Highly Potent and Efficient PROTAC Degraders of Androgen Receptor (AR) by Employing Weak Binding Affinity VHL E3 Ligase Ligands. J Med Chem 2019; 62:11218-11231. [PMID: 31804827 DOI: 10.1021/acs.jmedchem.9b01393] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Androgen receptor (AR) is a validated therapeutic target for the treatment of metastatic castration-resistant prostate cancer (mCRPC). We report herein our design, synthesis, and biological characterization of highly potent small-molecule proteolysis targeting chimera (PROTAC) AR degraders using a potent AR antagonist and E3 ligase ligands with weak binding affinities to VHL protein. Our study resulted in the discovery of 11 (ARD-266), which effectively induces degradation of AR protein in AR-positive (AR+) LNCaP, VCaP, and 22Rv1 prostate cancer cell lines with DC50 values of 0.2-1 nM. ARD-266 is capable of reducing the AR protein level by >95% in these AR+ prostate cancer cell lines and effectively reduces AR-regulated gene expression suppression. For the first time, we demonstrated that an E3 ligand with micromolar binding affinity to its E3 ligase complex can be successfully employed for the design of highly potent and efficient PROTAC degraders and this finding may have a significant implication for the field of PROTAC research.
Collapse
Affiliation(s)
| | - Lijie Zhao
- School of Pharmaceutical Sciences and Institute of Drug Discovery & Development , Zhengzhou University , Zhengzhou 450001 , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Huang Q, Zhong Y, Dong H, Zheng Q, Shi S, Zhu K, Qu X, Hu W, Zhang X, Wang Y. Revisiting signal transducer and activator of transcription 3 (STAT3) as an anticancer target and its inhibitor discovery: Where are we and where should we go? Eur J Med Chem 2019; 187:111922. [PMID: 31810784 DOI: 10.1016/j.ejmech.2019.111922] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022]
Abstract
As a transcription factor, STAT3 protein transduces extracellular signals to the nucleus and then activates transcription of target genes. STAT3 has been well validated as an attractive anticancer target due to its important roles in cancer initiation and progression. Identification of specific and potent STAT3 inhibitors has attracted much attention, while there has been no STAT3 targeted drug approved for clinical application. In this review, we will briefly introduce STAT3 protein and review its role in multiple aspects of cancer, and systematically summarize the recent advances in discovery of STAT3 inhibitors, especially the ones discovered in the past five years. In the last part of the review, we will discuss the possible new strategies to overcome the difficulties of developing potent and specific STAT3 inhibitors and hope to shed light on future drug design and inhibitor optimization.
Collapse
Affiliation(s)
- Qiuyao Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yan Zhong
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qiyao Zheng
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuo Shi
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kai Zhu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Xinming Qu
- Innovation Practice Center, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xiaolei Zhang
- Guangdong Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Yuanxiang Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
159
|
Wei J, Hu J, Wang L, Xie L, Jin MS, Chen X, Liu J, Jin J. Discovery of a First-in-Class Mitogen-Activated Protein Kinase Kinase 1/2 Degrader. J Med Chem 2019; 62:10897-10911. [PMID: 31730343 DOI: 10.1021/acs.jmedchem.9b01528] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
MEK1 and MEK2 (also known as MAP2K1 and MAP2K2) are the "gatekeepers" of the ERK signaling output with redundant roles in controlling ERK activity. Numerous inhibitors targeting MEK1/2 have been developed including three FDA-approved drugs. However, acquired resistance to MEK1/2 inhibitors has been observed in patients, and new therapeutic strategies are needed to overcome the resistance. Here, we report a first-in-class degrader of MEK1/2, MS432 (23), which potently and selectively degraded MEK1 and MEK2 in a VHL E3 ligase- and proteasome-dependent manner and suppressed ERK phosphorylation in cells. It inhibited colorectal cancer and melanoma cell proliferation much more effectively than its negative control MS432N (24), and its effect was phenocopied by MEK1/2 knockdown. Compound 23 was highly selective for MEK1/2 in global proteomic profiling studies. It was also bioavailable in mice and can be used for in vivo efficacy studies. We provide two well-characterized chemical tools to the biomedical community.
Collapse
Affiliation(s)
- Jieli Wei
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jianping Hu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Li Wang
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Ling Xie
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Margaret S Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Xian Chen
- Department of Biochemistry and Biophysics , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| |
Collapse
|
160
|
Valeur E, Narjes F, Ottmann C, Plowright AT. Emerging modes-of-action in drug discovery. MEDCHEMCOMM 2019; 10:1550-1568. [PMID: 31673315 PMCID: PMC6786009 DOI: 10.1039/c9md00263d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
An increasing focus on complex biology to cure diseases rather than merely treat symptoms has transformed how drug discovery can be approached. Instead of activating or blocking protein function, a growing repertoire of drug modalities can be leveraged or engineered to hijack cellular processes, such as translational regulation or degradation mechanisms. Drug hunters can therefore access a wider arsenal of modes-of-action to modulate biological processes and this review summarises these emerging strategies by highlighting the most representative examples of these approaches.
Collapse
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry , Research and Early Development, Cardiovascular, Renal & Metabolism , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden .
| | - Frank Narjes
- Medicinal Chemistry , Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA) , BioPharmaceuticals R&D , AstraZeneca, Gothenburg , 43183 Mölndal , Sweden
| | - Christian Ottmann
- Department of Biomedical Engineering and Institute for Complex Molecular Systems , Technische Universiteit Eindhoven , Den Dolech 2 , 5612 , AZ , Eindhoven , the Netherlands
- Department of Chemistry , University of Duisburg-Essen , Universitätsstraße 7 , 45117 , Essen , Germany
| | - Alleyn T Plowright
- Integrated Drug Discovery , Sanofi-Aventis Deutschland GmbH , Industriepark Höchst , D-65926 Frankfurt am Main , Germany
| |
Collapse
|
161
|
Flanagan JJ, Neklesa TK. Targeting Nuclear Receptors with PROTAC degraders. Mol Cell Endocrinol 2019; 493:110452. [PMID: 31125586 DOI: 10.1016/j.mce.2019.110452] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/13/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
Abstract
Nuclear receptors comprise a class of intracellular transcription factors whose major role is to act as sensors of various stimuli and to convert the external signal into a transcriptional output. Nuclear receptors (NRs) achieve this by possessing a ligand binding domain, which can bind cell permeable agonists, a DNA-binding domain, which binds the upstream sequences of target genes, and a regulatory domain that recruits the transcriptional machinery. The ligand binding alters the activation state of the NR, either by activating or inactivating its transcriptional output. Given the central role of NRs in signal transduction, many currently approved therapeutics modulate the activity of NRs. Here we discuss how PROTAC degraders afford a novel approach to abrogate the downstream signaling activity of NRs. We highlight six broad functional reasons why PROTAC degraders are preferable to the classical ligand binding pocket antagonists, with specific examples provided for each category. Lastly, as Androgen Receptor and Estrogen Receptor PROTAC degraders are being pursued as treatment for prostate cancer and breast cancer, respectively, a rationale is provided for the translational utility for the degradation of these two NRs.
Collapse
Affiliation(s)
| | - Taavi K Neklesa
- Halda Therapeutics, 23 Business Park, Branford, CT, 06405, USA.
| |
Collapse
|
162
|
Heim C, Pliatsika D, Mousavizadeh F, Bär K, Hernandez Alvarez B, Giannis A, Hartmann MD. De-Novo Design of Cereblon (CRBN) Effectors Guided by Natural Hydrolysis Products of Thalidomide Derivatives. J Med Chem 2019; 62:6615-6629. [PMID: 31251063 PMCID: PMC6750895 DOI: 10.1021/acs.jmedchem.9b00454] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/16/2022]
Abstract
Targeted protein degradation via cereblon (CRBN), a substrate receptor of an E3 ubiquitin ligase complex, is an increasingly important strategy in various clinical settings, in which the substrate specificity of CRBN is altered via the binding of small-molecule effectors. To date, such effectors are derived from thalidomide and confer a broad substrate spectrum that is far from being fully characterized. Here, we employed a rational and modular approach to design novel and minimalistic CRBN effectors. In this approach, we took advantage of the binding modes of hydrolyzed metabolites of several thalidomide-derived effectors, which we elucidated via crystallography. These yielded key insights for the optimization of the minimal core binding moiety and its linkage to a chemical moiety that imparts substrate specificity. Based on this scaffold, we present a first active de-novo CRBN effector that is able to degrade the neo-substrate IKZF3 in the cell culture.
Collapse
Affiliation(s)
- Christopher Heim
- Department
of Protein Evolution, Max Planck Institute
for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Dimanthi Pliatsika
- Faculty
for Chemistry und Mineralogy, Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Farnoush Mousavizadeh
- Faculty
for Chemistry und Mineralogy, Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Kerstin Bär
- Department
of Protein Evolution, Max Planck Institute
for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Birte Hernandez Alvarez
- Department
of Protein Evolution, Max Planck Institute
for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Athanassios Giannis
- Faculty
for Chemistry und Mineralogy, Institute of Organic Chemistry, University of Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Marcus D. Hartmann
- Department
of Protein Evolution, Max Planck Institute
for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| |
Collapse
|
163
|
Girardini M, Maniaci C, Hughes SJ, Testa A, Ciulli A. Cereblon versus VHL: Hijacking E3 ligases against each other using PROTACs. Bioorg Med Chem 2019; 27:2466-2479. [PMID: 30826187 PMCID: PMC6561380 DOI: 10.1016/j.bmc.2019.02.048] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 02/07/2023]
Abstract
The von Hippel-Lindau (VHL) and cereblon (CRBN) proteins are substrate recognition subunits of two ubiquitously expressed and biologically important Cullin RING E3 ubiquitin ligase complexes. VHL and CRBN are also the two most popular E3 ligases being recruited by bifunctional Proteolysis-targeting chimeras (PROTACs) to induce ubiquitination and subsequent proteasomal degradation of a target protein. Using homo-PROTACs, VHL and CRBN have been independently dimerized to induce their own degradation. Here we report the design, synthesis and cellular activity of VHL-CRBN hetero-dimerizing PROTACs featuring diverse conjugation patterns. We found that the most active compound 14a induced potent, rapid and profound preferential degradation of CRBN over VHL in cancer cell lines. At lower concentrations, weaker degradation of VHL was instead observed. This work demonstrates proof of concept of designing PROTACs to hijack different E3 ligases against each other, and highlights a powerful and generalizable proximity-induced strategy to achieve E3 ligase knockdown.
Collapse
Affiliation(s)
- Miriam Girardini
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Scott J Hughes
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom.
| |
Collapse
|
164
|
Xi M, Chen Y, Yang H, Xu H, Du K, Wu C, Xu Y, Deng L, Luo X, Yu L, Wu Y, Gao X, Cai T, Chen B, Shen R, Sun H. Small molecule PROTACs in targeted therapy: An emerging strategy to induce protein degradation. Eur J Med Chem 2019; 174:159-180. [PMID: 31035238 DOI: 10.1016/j.ejmech.2019.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
Inhibitors and nucleic acid based techniques were two main approaches to interfere with protein signaling and respective cascade in the past. Until recently, a new class of small molecules named proteolysis-targeting chimeras (PROTACs) have emerged. Each contains a target warhead, a linker and an E3 ligand. These bifunctional molecules recruit E3 ligases and target specific proteins for degradation via the ubiquitin (Ub) proteasome system (UPS). The degradation provides several advantages over inhibition in potency, selectivity and drug resistance. Thus, a variety of small molecule PROTACs have been discovered so far. In this review, we summarize the biological mechanism, advantages and recent progress of PROTACs, trying to offer an outlook in development of drugs targeting degradation in future.
Collapse
Affiliation(s)
- Meiyang Xi
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yi Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Hongyu Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Kui Du
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Chunlei Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yanfei Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Liping Deng
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiang Luo
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Lemao Yu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Yonghua Wu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Xiaozhong Gao
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Bin Chen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China.
| | - Haopeng Sun
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
165
|
Pei H, Peng Y, Zhao Q, Chen Y. Small molecule PROTACs: an emerging technology for targeted therapy in drug discovery. RSC Adv 2019; 9:16967-16976. [PMID: 35519875 PMCID: PMC9064693 DOI: 10.1039/c9ra03423d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 05/14/2019] [Indexed: 12/27/2022] Open
Abstract
An overview of the latest developments in PROTAC technology and the possible directions of this approach is presented.
Collapse
Affiliation(s)
- Haixiang Pei
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| | - Qiuhua Zhao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology
- The Institute of Biomedical Sciences
- School of Life Sciences
- East China Normal University
- Shanghai 200241
| |
Collapse
|