151
|
|
152
|
Potowski M, Antonchick AP, Waldmann H. Catalytic asymmetric exo-selective [6+3] cycloaddition of iminoesters with fulvenes. Chem Commun (Camb) 2013; 49:7800-2. [DOI: 10.1039/c3cc43824d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
153
|
Titarenko Z, Vasilevich N, Zernov V, Kirpichenok M, Genis D. Oxygen-containing fragments in natural products. J Comput Aided Mol Des 2012; 27:125-60. [PMID: 23271273 DOI: 10.1007/s10822-012-9629-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/17/2012] [Indexed: 01/08/2023]
Abstract
An analysis of the chemical environment of the oxygen atoms in the DNP database compared to the CMC and SCD databases was performed. Some structural clusters were identified which are predominant among the natural products and can be considered as distinctive features of NPs. Fifty-three oxygen-containing structural fragments that are distinctive for the DNP (distinctive set of fragments DSF) in comparison with the SCD have been identified. A new descriptor Mc was introduced for describing the ratio of atoms involved in the DSF to the total number of heavy atoms. A significant difference in the Mc values among the reference databases allowed the use of a specific cluster of the DSF as a tool for performing similarity searches for oxygen-containing NP molecules, or for evaluation or comparison of databases according to their NP-likeness. An example illustrating that the suggested approach could allow not only estimating the NP-likeness, but also serve as a tool for designing new NP-like compounds is provided. The suggested approach for NP-likeness evaluation moves away from the traditional ideas of scaffolds, cycles, linkers and substituents.
Collapse
Affiliation(s)
- Zoya Titarenko
- ASINEX, 20 Geroev Panfilovtsev Str., Moscow 125480, Russia
| | | | | | | | | |
Collapse
|
154
|
Natural-product-derived fragments for fragment-based ligand discovery. Nat Chem 2012; 5:21-8. [DOI: 10.1038/nchem.1506] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/19/2012] [Indexed: 12/11/2022]
|
155
|
Rajarathinam B, Vasuki G. Diastereoselective Multicomponent Reaction in Water: Synthesis of 2-Azapyrrolizidine Alkaloid Analogues. Org Lett 2012; 14:5204-6. [DOI: 10.1021/ol302355w] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
156
|
Graphs and networks in chemical and biological informatics: past, present and future. Future Med Chem 2012; 4:2039-47. [DOI: 10.4155/fmc.12.128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chemical and biological network analysis has recently garnered intense interest from the perspective of drug design and discovery. While graph theoretic concepts have a long history in chemistry – predating quantum mechanics – and graphical measures of chemical structures date back to the 1970s, it is only recently with the advent of public repositories of information and availability of high-throughput assays and computational resources that network analysis of large-scale chemical networks, such as protein–protein interaction networks, has become possible. Drug design and discovery are undergoing a paradigm shift, from the notion of ‘one target, one drug’ to a much more nuanced view that relies on multiple sources of information: genomic, proteomic, metabolomic and so on. This holistic view of drug design is an incredibly daunting undertaking still very much in its infancy. Here, we focus on current developments in graph- and network-centric approaches in chemical and biological informatics, with particular reference to applications in the fields of SAR modeling and drug design. Key insights from the past suggest a path forward via visualization and fusion of multiple sources of chemical network data.
Collapse
|
157
|
Reymond JL, Awale M. Exploring chemical space for drug discovery using the chemical universe database. ACS Chem Neurosci 2012; 3:649-57. [PMID: 23019491 DOI: 10.1021/cn3000422] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 04/25/2012] [Indexed: 01/20/2023] Open
Abstract
Herein we review our recent efforts in searching for bioactive ligands by enumeration and virtual screening of the unknown chemical space of small molecules. Enumeration from first principles shows that almost all small molecules (>99.9%) have never been synthesized and are still available to be prepared and tested. We discuss open access sources of molecules, the classification and representation of chemical space using molecular quantum numbers (MQN), its exhaustive enumeration in form of the chemical universe generated databases (GDB), and examples of using these databases for prospective drug discovery. MQN-searchable GDB, PubChem, and DrugBank are freely accessible at www.gdb.unibe.ch.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| | - Mahendra Awale
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, 3012 Berne, Switzerland
| |
Collapse
|
158
|
Potowski M, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Highly Enantioselective Catalytic [6+3] Cycloadditions of Azomethine Ylides. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201204394] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
159
|
Potowski M, Bauer JO, Strohmann C, Antonchick AP, Waldmann H. Highly Enantioselective Catalytic [6+3] Cycloadditions of Azomethine Ylides. Angew Chem Int Ed Engl 2012; 51:9512-6. [DOI: 10.1002/anie.201204394] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Indexed: 12/20/2022]
|
160
|
Kumar CVS, Puranik VG, Ramana CV. InCl3-Mediated Addition of Indole to Isatogens: An Expeditious Synthesis of 13-deoxy-Isatisine A. Chemistry 2012; 18:9601-11. [DOI: 10.1002/chem.201103604] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 04/24/2012] [Indexed: 12/12/2022]
|
161
|
Weller MG. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. SENSORS 2012; 12:9181-209. [PMID: 23012539 PMCID: PMC3444097 DOI: 10.3390/s120709181] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 06/26/2012] [Accepted: 07/02/2012] [Indexed: 12/24/2022]
Abstract
The success of modern methods in analytical chemistry sometimes obscures the problem that the ever increasing amount of analytical data does not necessarily give more insight of practical relevance. As alternative approaches, toxicity- and bioactivity-based assays can deliver valuable information about biological effects of complex materials in humans, other species or even ecosystems. However, the observed effects often cannot be clearly assigned to specific chemical compounds. In these cases, the establishment of an unambiguous cause-effect relationship is not possible. Effect-directed analysis tries to interconnect instrumental analytical techniques with a biological/biochemical entity, which identifies or isolates substances of biological relevance. Successful application has been demonstrated in many fields, either as proof-of-principle studies or even for complex samples. This review discusses the different approaches, advantages and limitations and finally shows some practical examples. The broad emergence of effect-directed analytical concepts might lead to a true paradigm shift in analytical chemistry, away from ever growing lists of chemical compounds. The connection of biological effects with the identification and quantification of molecular entities leads to relevant answers to many real life questions.
Collapse
Affiliation(s)
- Michael G Weller
- Division 1.5 Protein Analysis, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Strasse 11, 12489 Berlin, Germany.
| |
Collapse
|
162
|
Lachance H, Wetzel S, Kumar K, Waldmann H. Charting, navigating, and populating natural product chemical space for drug discovery. J Med Chem 2012; 55:5989-6001. [PMID: 22537178 DOI: 10.1021/jm300288g] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Natural products are a heterogeneous group of compounds with diverse, yet particular molecular properties compared to synthetic compounds and drugs. All relevant analyses show that natural products indeed occupy parts of chemical space not explored by available screening collections while at the same time largely adhering to the rule-of-five. This renders them a valuable, unique, and necessary component of screening libraries used in drug discovery. With ChemGPS-NP on the Web and Scaffold Hunter two tools are available to the scientific community to guide exploration of biologically relevant NP chemical space in a focused and targeted fashion with a view to guide novel synthesis approaches. Several of the examples given illustrate the possibility of bridging the gap between computational methods and compound library synthesis and the possibility of integrating cheminformatics and chemical space analyses with synthetic chemistry and biochemistry to successfully explore chemical space for the identification of novel small molecule modulators of protein function.The examples also illustrate the synergistic potential of the chemical space concept and modern chemical synthesis for biomedical research and drug discovery. Chemical space analysis can map under explored biologically relevant parts of chemical space and identify the structure types occupying these parts. Modern synthetic methodology can then be applied to efficiently fill this “virtual space” with real compounds.From a cheminformatics perspective, there is a clear demand for open-source and easy to use tools that can be readily applied by educated nonspecialist chemists and biologists in their daily research. This will include further development of Scaffold Hunter, ChemGPS-NP, and related approaches on the Web. Such a “cheminformatics toolbox” would enable chemists and biologists to mine their own data in an intuitive and highly interactive process and without the need for specialized computer science and cheminformatics expertise. We anticipate that it may be a viable, if not necessary, step for research initiatives based on large high-throughput screening campaigns,in particular in the pharmaceutical industry, to make the most out of the recent advances in computational tools in order to leverage and take full advantage of the large data sets generated and available in house. There are “holes” in these data sets that can and should be identified and explored by chemistry and biology.
Collapse
Affiliation(s)
- Hugo Lachance
- Departmen of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | |
Collapse
|
163
|
Diez J, Martinez JP, Mestres J, Sasse F, Frank R, Meyerhans A. Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 2012; 11:52. [PMID: 22545867 PMCID: PMC3420326 DOI: 10.1186/1475-2859-11-52] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 04/30/2012] [Indexed: 12/19/2022] Open
Abstract
Myxobacteria are amongst the top producers of natural products. The diversity and unique structural properties of their secondary metabolites is what make these social microbes highly attractive for drug discovery. Screening of products derived from these bacteria has revealed a puzzling amount of hits against infectious and non-infectious human diseases. Preying mainly on other bacteria and fungi, why would these ancient hunters manufacture compounds beneficial for us? The answer may be the targeting of shared processes and structural features conserved throughout evolution.
Collapse
Affiliation(s)
- Juana Diez
- Molecular Virology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
164
|
Li JL, Zhou SL, Chen PQ, Dong L, Liu TY, Chen YC. Asymmetric Diels–Alder reaction of β,β-disubstituted enals and chromone-fused dienes: construction of collections with high molecular complexity and skeletal diversity. Chem Sci 2012. [DOI: 10.1039/c2sc20096a] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
165
|
Abstract
Recent advances and concepts for exploring chemical space are highlighted in this chapter and show how the synthetic chemical world meets the demand of making large and relevant collection of new molecules for analyzing the biological world more closely.
Collapse
|
166
|
Dückert H, Pries V, Khedkar V, Menninger S, Bruss H, Bird AW, Maliga Z, Brockmeyer A, Janning P, Hyman A, Grimme S, Schürmann M, Preut H, Hübel K, Ziegler S, Kumar K, Waldmann H. Natural product-inspired cascade synthesis yields modulators of centrosome integrity. Nat Chem Biol 2011; 8:179-84. [PMID: 22198731 DOI: 10.1038/nchembio.758] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 10/07/2011] [Indexed: 12/23/2022]
Abstract
In biology-oriented synthesis, the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is, in particular, met by the scaffolds of natural products selected in evolution. The synthesis of natural product-inspired compound collections calls for efficient reaction sequences that preferably combine multiple individual transformations in one operation. Here we report the development of a one-pot, twelve-step cascade reaction sequence that includes nine different reactions and two opposing kinds of organocatalysis. The cascade sequence proceeds within 10-30 min and transforms readily available substrates into complex indoloquinolizines that resemble the core tetracyclic scaffold of numerous polycyclic indole alkaloids. Biological investigation of a corresponding focused compound collection revealed modulators of centrosome integrity, termed centrocountins, which caused fragmented and supernumerary centrosomes, chromosome congression defects, multipolar mitotic spindles, acentrosomal spindle poles and multipolar cell division by targeting the centrosome-associated proteins nucleophosmin and Crm1.
Collapse
Affiliation(s)
- Heiko Dückert
- Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, Dortmund, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Eichner S, Knobloch T, Floss HG, Fohrer J, Harmrolfs K, Hermane J, Schulz A, Sasse F, Spiteller P, Taft F, Kirschning A. The interplay between mutasynthesis and semisynthesis: generation and evaluation of an ansamitocin library. Angew Chem Int Ed Engl 2011; 51:752-7. [PMID: 22135226 DOI: 10.1002/anie.201106249] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2011] [Indexed: 12/20/2022]
Affiliation(s)
- Simone Eichner
- Institut für Organische Chemie und Biomolekulares Wirkstoffzentrum (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, 30167 Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Eichner S, Knobloch T, Floss HG, Fohrer J, Harmrolfs K, Hermane J, Schulz A, Sasse F, Spiteller P, Taft F, Kirschning A. The Interplay between Mutasynthesis and Semisynthesis: Generation and Evaluation of an Ansamitocin Library. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
169
|
Antonchick AP, Schuster H, Bruss H, Schürmann M, Preut H, Rauh D, Waldmann H. Enantioselective synthesis of the spirotryprostatin A scaffold. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.04.056] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
170
|
|
171
|
Wetzel S, Bon RS, Kumar K, Waldmann H. Biology-Oriented Synthesis. Angew Chem Int Ed Engl 2011; 50:10800-26. [DOI: 10.1002/anie.201007004] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Indexed: 12/22/2022]
|
172
|
Hedberg C, Dekker FJ, Rusch M, Renner S, Wetzel S, Vartak N, Gerding-Reimers C, Bon RS, Bastiaens PIH, Waldmann H. Development of Highly Potent Inhibitors of the Ras-Targeting Human Acyl Protein Thioesterases Based on Substrate Similarity Design. Angew Chem Int Ed Engl 2011; 50:9832-7. [DOI: 10.1002/anie.201102965] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/08/2011] [Indexed: 01/22/2023]
|
173
|
Hedberg C, Dekker FJ, Rusch M, Renner S, Wetzel S, Vartak N, Gerding-Reimers C, Bon RS, Bastiaens PIH, Waldmann H. Development of Highly Potent Inhibitors of the Ras-Targeting Human Acyl Protein Thioesterases Based on Substrate Similarity Design. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201102965] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
174
|
Gilmore K, Alabugin IV. Cyclizations of Alkynes: Revisiting Baldwin’s Rules for Ring Closure. Chem Rev 2011; 111:6513-56. [DOI: 10.1021/cr200164y] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kerry Gilmore
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306-4390
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306-4390
| |
Collapse
|
175
|
Schuffenhauer A, Varin T. Rule-Based Classification of Chemical Structures by Scaffold. Mol Inform 2011; 30:646-64. [PMID: 27467257 DOI: 10.1002/minf.201100078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 07/14/2011] [Indexed: 01/25/2023]
Abstract
Databases for small organic chemical molecules usually contain millions of structures. The screening decks of pharmaceutical companies contain more than a million of structures. Nevertheless chemical substructure searching in these databases can be performed interactively in seconds. Because of this nobody has really missed structural classification of these databases for the purpose of finding data for individual chemical substructures. However, a full deck high-throughput screen produces also activity data for more than a million of substances. How can this amount of data be analyzed? Which are the active scaffolds identified by an assays? To answer such questions systematic classifications of molecules by scaffolds are needed. In this review it is described how molecules can be hierarchically classified by their scaffolds. It is explained how such classifications can be used to identify active scaffolds in an HTS data set. Once active classes are identified, they need to be visualized in the context of related scaffolds in order to understand SAR. Consequently such visualizations are another topic of this review. In addition scaffold based diversity measures are discussed and an outlook is given about the potential impact of structural classifications on a chemically aware semantic web.
Collapse
Affiliation(s)
- Ansgar Schuffenhauer
- Novartis Institutes for BioMedical Research, CPC/LFP, WSJ-88.11.11, Postfach, Basel, Switzerland, CH-4002; phone:+41 61 32 45385.
| | - Thibault Varin
- Novartis Institutes for BioMedical Research, CPC/LFP, WSJ-88.11.11, Postfach, Basel, Switzerland, CH-4002; phone:+41 61 32 45385
| |
Collapse
|
176
|
Alabugin IV, Gilmore K, Manoharan M. Rules for Anionic and Radical Ring Closure of Alkynes. J Am Chem Soc 2011; 133:12608-23. [DOI: 10.1021/ja203191f] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306-4390, United States
| | - Kerry Gilmore
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306-4390, United States
| | - Mariappan Manoharan
- School of Science, Engineering and Mathematics, Bethune-Cookman University, Daytona Beach, Florida 32114, United States
| |
Collapse
|
177
|
Basu S, Ellinger B, Rizzo S, Deraeve C, Schürmann M, Preut H, Arndt HD, Waldmann H. Biology-oriented synthesis of a natural-product inspired oxepane collection yields a small-molecule activator of the Wnt-pathway. Proc Natl Acad Sci U S A 2011; 108:6805-10. [PMID: 21415367 PMCID: PMC3084053 DOI: 10.1073/pnas.1015269108] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In Biology Oriented Synthesis the scaffolds of biologically relevant compound classes inspire the synthesis of focused compound collections enriched in bioactivity. This criterion is met by the structurally complex scaffolds of natural products (NPs) selected in evolution. The synthesis of NP-inspired compound collections approaching the complexity of NPs calls for the development of efficient synthetic methods. We have developed a one pot 4-7 step synthesis of mono-, bi-, and tricyclic oxepanes that resemble the core scaffolds of numerous NPs with diverse bioactivities. This sequence entails a ring-closing ene-yne metathesis reaction as key step and makes productive use of polymer-immobilized scavenger reagents. Biological profiling of a corresponding focused compound collection in a reporter gene assay monitoring for Wnt-signaling modulation revealed active Wntepanes. This unique class of small-molecule activators of the Wnt pathway modulates the van-Gogh-like receptor proteins (Vangl), which were previously identified in noncanonical Wnt signaling, and acts in synergy with the canonical activator protein (Wnt-3a).
Collapse
Affiliation(s)
- Sudipta Basu
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Bernhard Ellinger
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Stefano Rizzo
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
| | - Céline Deraeve
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
| | - Markus Schürmann
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Hans Preut
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Hans-Dieter Arndt
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; and
- Faculty of Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| |
Collapse
|
178
|
Ramallo IA, Salazar MO, Mendez L, Furlan RLE. Chemically engineered extracts: source of bioactive compounds. Acc Chem Res 2011; 44:241-50. [PMID: 21355557 DOI: 10.1021/ar100106n] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biological research and drug discovery critically depend on access to libraries of small molecules that have an affinity for biomacromolecules. By virtue of their sustained success as sources of lead compounds, natural products are recognized as "privileged" starting points in structural space for library development. Compared with synthetic compounds, natural products have distinguishing structural properties; indeed, researchers have begun to quantify and catalog the differences between the two classes of molecules. Measurable differences in the number of chiral centers, the degree of saturation, the presence of aromatic rings, and the number of the various heteroatoms are among the chief distinctions between natural and synthetic compounds. Natural products also include a significant proportion of recurring molecular scaffolds that are not present in currently marketed drugs: the bioactivity of these natural substructures has been refined over the long process of evolution. In this Account, we present our research aimed at preparing libraries of semisynthetic compounds, or chemically engineered extracts (CEEs), through chemical diversification of natural products mixtures. The approach relies on the power of numbers, that is, in the chemical alteration of a sizable fraction of the starting complex mixture. Major changes in composition can be achieved through the chemical transformation of reactive molecular fragments that are found in most natural products. If such fragments are common enough, their transformation represents an entry point for chemically altering a high proportion of the components of crude natural extracts. We have searched for common reactive fragments in the Dictionary of Natural Products (CRC Press) and identified several functional groups that are expected to be present in a large fraction of the components of an average natural crude extract. To date, we have used reactions that incorporate (i) nitrogen atoms through carbonyl groups, (ii) sulfur by transformation of -OH and amines, and (iii) bromine through double bonds and aromatic rings. The resulting CEEs had different composition and biomolecular properties than their natural progenitors. We isolated a semisynthetic β-glucosidase inhibitor from a CEE prepared by reaction with benzenesulfonyl chloride, an antifungal pyrazole from a CEE prepared by reaction with hydrazine, and an acetylcholinesterase inhibitor from a CEE prepared through bromination. Our results illustrate how biological activity can be generated through chemical diversification of natural product mixtures. Moreover, the level of control that can be asserted in the process by judicious design and experimental choices underscores the potential for further development of CEEs in both basic research and drug discovery.
Collapse
Affiliation(s)
- I. Ayelen Ramallo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química de Rosario (Conicet-UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Mario O. Salazar
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química de Rosario (Conicet-UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Luciana Mendez
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química de Rosario (Conicet-UNR), Suipacha 531, 2000 Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Instituto de Química de Rosario (Conicet-UNR), Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
179
|
Hong J. Role of natural product diversity in chemical biology. Curr Opin Chem Biol 2011; 15:350-4. [PMID: 21489856 DOI: 10.1016/j.cbpa.2011.03.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/15/2011] [Indexed: 12/31/2022]
Abstract
Through the natural selection process, natural products possess a unique and vast chemical diversity and have been evolved for optimal interactions with biological macromolecules. Owing to their diversity, target affinity, and specificity, natural products have demonstrated enormous potential as modulators of biomolecular function, been an essential source for drug discovery, and provided design principles for combinatorial library development.
Collapse
Affiliation(s)
- Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
180
|
Wender PA, Loy BA, Schrier AJ. Translating Nature's Library: The Bryostatins and Function-Oriented Synthesis. Isr J Chem 2011; 51:453-472. [PMID: 22661768 PMCID: PMC3364006 DOI: 10.1002/ijch.201100020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We review in part our computational, design, synthesis, and biological studies on a remarkable class of compounds and their designed analogs that have led to preclinical candidates for the treatment of cancer, a first-in-class approach to Alzheimer's disease, and a promising strategy to eradicate HIV/AIDS. Because these leads target, in part, protein kinase C (PKC) isozymes, they have therapeutic potential even beyond this striking set of therapeutic indications. This program has given rise to new synthetic methodology and represents an increasingly important direction of synthesis focused on achieving function through synthesis-informed design (function-oriented synthesis).
Collapse
Affiliation(s)
- Paul A. Wender
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| | - Brian A. Loy
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| | - Adam J. Schrier
- Department of Chemistry Department of Chemical and Systems Biology Stanford University Stanford, CA 94305, USA
| |
Collapse
|
181
|
Baskar B, Dakas PY, Kumar K. Natural Product Biosynthesis Inspired Concise and Stereoselective Synthesis of Benzopyrones and Related Scaffolds. Org Lett 2011; 13:1988-91. [DOI: 10.1021/ol200389p] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Baburaj Baskar
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn Strasse 11, 44227-Dortmund, Germany
| | - Pierre-Yves Dakas
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn Strasse 11, 44227-Dortmund, Germany
| | - Kamal Kumar
- Max-Planck-Institut für molekulare Physiologie, Otto-Hahn Strasse 11, 44227-Dortmund, Germany
| |
Collapse
|
182
|
Oguri H, Hiruma T, Yamagishi Y, Oikawa H, Ishiyama A, Otoguro K, Yamada H, O̅mura S. Generation of Anti-trypanosomal Agents through Concise Synthesis and Structural Diversification of Sesquiterpene Analogues. J Am Chem Soc 2011; 133:7096-105. [DOI: 10.1021/ja200374q] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Oguri
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takahisa Hiruma
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yutaka Yamagishi
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Aki Ishiyama
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuhiko Otoguro
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Satoshi O̅mura
- Division of Chemistry, Graduate School of Science and §Division of Innovative Research, Creative Research Institution, Hokkaido University, North 21, West 10, Kita-ku, Sapporo 001-0021, Japan
- Research Center for Tropical Diseases, Kitasato Institute for Life Sciences and ¶Graduate School of Infection Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
183
|
Möcklinghoff S, van Otterlo WAL, Rose R, Fuchs S, Zimmermann TJ, Dominguez Seoane M, Waldmann H, Ottmann C, Brunsveld L. Design and evaluation of fragment-like estrogen receptor tetrahydroisoquinoline ligands from a scaffold-detection approach. J Med Chem 2011; 54:2005-11. [PMID: 21381753 DOI: 10.1021/jm1011116] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A library of small tetrahydroisoquinoline ligands, previously identified via structure- and chemistry-based hierarchical organization of library scaffolds in tree-like arrangements, has been generated as novel estrogen receptor agonistic fragments via traditional medicinal chemistry exploration. The approach described has allowed for the rapid evaluation of a structure-activity relationship of the ligands concerning estrogen receptor affinity and estrogen receptor β subtype selectivity. The structural biological insights obtained from the fragments aid the understanding of larger analogues and constitute attractive starting points for further optimization.
Collapse
Affiliation(s)
- Sabine Möcklinghoff
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Technische Universiteit Eindhoven, Den Dolech 2, 5612AZ Eindhoven, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Islam K, Chin HF, Olivares AO, Saunders LP, De La Cruz EM, Kapoor TM. A myosin V inhibitor based on privileged chemical scaffolds. Angew Chem Int Ed Engl 2011; 49:8484-8. [PMID: 20878825 DOI: 10.1002/anie.201004026] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kabirul Islam
- Laboratory of Chemistry and Cell Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | | | |
Collapse
|
186
|
Oh S, Park SB. A design strategy for drug-like polyheterocycles with privileged substructures for discovery of specific small-molecule modulators. Chem Commun (Camb) 2011; 47:12754-61. [DOI: 10.1039/c1cc14042f] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
187
|
Schuster H, Martinez R, Bruss H, Antonchick AP, Kaiser M, Schürmann M, Waldmann H. Synthesis of the B-seco limonoid scaffold. Chem Commun (Camb) 2011; 47:6545-7. [DOI: 10.1039/c1cc11388g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
188
|
Islam K, Chin HF, Olivares AO, Saunders LP, De La Cruz EM, Kapoor TM. A Myosin V Inhibitor Based on Privileged Chemical Scaffolds. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|