151
|
Liu H, Li G, Zhang L, Li J, Wang M, Bu Y. Electronic promotion effect of double proton transfer on conduction of DNA through improvement of transverse electronic communication of base pairs. J Chem Phys 2011; 135:134315. [DOI: 10.1063/1.3646308] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
152
|
Bonin J, Robert M. Photoinduced Proton-Coupled Electron Transfers in Biorelevant Phenolic Systems. Photochem Photobiol 2011; 87:1190-203. [DOI: 10.1111/j.1751-1097.2011.00996.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
153
|
Shigaev A, Ponomarev O, Lakhno V. A new approach to microscopic modeling of a hole transfer in heteropolymer DNA. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.07.080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
154
|
Jung JA, Jeon SH, Han SW, Lee GJ, Bae IH, Kim SK. Energy Transfer from Ethidium to Cationic Porphyrins Mediated by DNA and Synthetic Polynucleotides at Low Binding Densities. B KOREAN CHEM SOC 2011. [DOI: 10.5012/bkcs.2011.32.8.2599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
155
|
Lee YA, Liu Z, Dedon PC, Geacintov NE, Shafirovich V. Solvent exposure associated with single abasic sites alters the base sequence dependence of oxidation of guanine in DNA in GG sequence contexts. Chembiochem 2011; 12:1731-9. [PMID: 21656632 PMCID: PMC3517150 DOI: 10.1002/cbic.201100140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Indexed: 12/12/2022]
Abstract
The effect of exposure of guanine in double-stranded oligonucleotides to aqueous solvent during oxidation by one-electron oxidants was investigated by introducing single synthetic tetrahydrofuran-type abasic sites (Ab) either adjacent to or opposite tandem GG sequences. The selective oxidation of guanine was initiated by photoexcitation of the aromatic sensitizers riboflavin and a pyrene derivative, and by the relatively small negatively charged carbonate radical anion. The relative rates of oxidation of the 5'- and 3' side G in runs of 5'⋅⋅⋅GG⋅⋅⋅ (evaluated by standard hot alkali treatment of the damaged DNA strand followed by high resolution gel electrophoresis of the cleavage fragments) are markedly affected by adjacent abasic sites either on the same or opposite strand. For example, in fully double-stranded DNA or one with an Ab adjacent to the 5'-G, the 5'-G/3'-G damage ratio is ≥4, but is inverted (<1.0) with the Ab adjacent to the 3'-G. These striking effects of Ab are attributed to the preferential localization of the "hole" on the most solvent-exposed guanine regardless of the size, charge, or reduction potential of the oxidizing species.
Collapse
Affiliation(s)
- Young-Ae Lee
- Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea)
| | - Zhi Liu
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| | - Peter C. Dedon
- Department of Biological Engineering and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (USA)
| | - Nicholas E. Geacintov
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| | - Vladimir Shafirovich
- Chemistry Department, 31 Washington Place, New York University, New York, NY 10003- 5180 (USA)
| |
Collapse
|
156
|
Thazhathveetil AK, Trifonov A, Wasielewski MR, Lewis FD. Increasing the speed limit for hole transport in DNA. J Am Chem Soc 2011; 133:11485-7. [PMID: 21728369 DOI: 10.1021/ja204815d] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transport of positive charge or holes in DNA occurs via a thermally activated multi-step hopping mechanism. The fastest hopping rates reported to date are those for repeating poly(purine) sequences in which hopping occurs via a random walk mechanism with rate constants of k(hop) = 4.3 × 10(9) s(-1) for poly(dG) and 1.2 × 10(9) s(-1) for poly(dA). We report here the dynamics of charge separation in DNA conjugates possessing repeating 7-deazaadenine (dzA) sequences. These data provide an estimated value of k(hop) = 4.2 × 10(10) s(-1) for poly(dzA), an order of magnitude faster than for poly(dG).
Collapse
Affiliation(s)
- Arun K Thazhathveetil
- Department of Chemistry and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60206-3113, USA
| | | | | | | |
Collapse
|
157
|
Dutta S, Baitalik S, Ghosh M, Flörke U, Nag K. Structural, photophysical and electrochemical studies of [RuN6]2+ complexes having polypyridine and azole mixed-donor sites. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.01.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
158
|
Kumar A, Sevilla MD. Density functional theory studies of the extent of hole delocalization in one-electron oxidized adenine and guanine base stacks. J Phys Chem B 2011; 115:4990-5000. [PMID: 21417208 PMCID: PMC3084348 DOI: 10.1021/jp200537t] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study investigates the extent of hole delocalization in one-electron oxidized adenine (A) and guanine (G) stacks and shows that new IR vibrational bands are predicted that are characteristic of hole delocalization within A-stacks. The geometries of A-stacks (A(i); i = 2-8) and G-stacks (GG and GGG) in their neutral and one-electron oxidized states were optimized with the bases in a B-DNA conformation using the M06-2X/6-31G* method. The highest occupied molecular orbital (HOMO) is localized on a single adenine in A-stacks and on a single guanine in GG and GGG stacks located at the 5'-site of the stack. On one-electron oxidation (removal of an electron from the HOMO of the neutral A- and G-stacks) a "hole" is created. Mulliken charge analysis shows that these "holes" are delocalized over two to three adenine bases in the A-stack. The calculated spin density distribution of A(i)(•+) (i = 2-8) also showed delocalization of the hole predominantly on two adenine bases, with some delocalization on a neighboring base. For GG and GGG radical cations, the hole was found to be localized on a single G in the stack. The calculated HFCCs of GG and GGG are in good agreement with the experiment. Further, from the vibrational frequency analysis, it was found that IR spectra of neutral and the corresponding one-electron oxidized adenine stacks are quite different. The IR spectra of A(2)(•+) has intense IR peaks between 900 and 1500 cm(-1) that are not present in the neutral A(2) stack. The presence of A(2)(•+) in the adenine stack has a characteristic intense peak at ~1100 cm(-1). Thus, IR and Raman spectroscopy has potential for monitoring the extent of hole delocalization in A stacks.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | |
Collapse
|
159
|
Trivedi M, Nagarajan R, Kumar A, Singh NK, Rath NP. Synthesis, structure, catalytic and calculated non-linear optical properties of cis- and trans-, mer-chlorobis(triphenyl phosphine/triphenyl arsine)-dipicolinato rutheniumIII complexes. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.02.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
160
|
Denofrio MP, Thomas AH, Lorente C. Oxidation of 2'-deoxyadenosine 5'-monophosphate photoinduced by lumazine. J Phys Chem A 2011; 114:10944-50. [PMID: 20873833 DOI: 10.1021/jp1061336] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UV radiation induces damages to the DNA molecule and its components through photosensitized reactions. Among these processes, photosensitized oxidations may occur through electron transfer or hydrogen abstraction (type I mechanism) and/or the production of singlet molecular oxygen ((1)O(2)) (type II mechanism). Lumazines are an important family of heterocyclic compounds present in biological systems as biosynthetic precursors and/or products of metabolic degradation. To evaluate the capability of lumazines to act as photosensitizers through type I mechanism, we have investigated the oxidation of 2'-deoxyadenosine 5'-monophosphate (dAMP) photosensitized by the specific compound called lumazine (pteridine-2,4(1,3H)-dione; Lum) in aqueous solutions under UV irradiation. The photochemical reactions were followed by UV/vis spectrophotometry, HPLC, electrochemical measurement of dissolved O(2), and an enzymatic method for H(2)O(2) determination. The effect of pH was evaluated and the participation of oxygen was investigated. In aerated solutions, oxidation of dAMP photoinduced by the acid form of Lum (pH 5.5) takes place through a type I mechanism, in which the excitation of Lum is followed by an electron transfer from dAMP molecule to the Lum triplet excited state. During the process, O(2) is consumed and H(2)O(2) is generated, whereas the photosensitizer is not consumed. In contrast, no evidence of a photochemical reaction induced by the basic form of Lum (pH 10.5) was observed.
Collapse
Affiliation(s)
- M Paula Denofrio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, Boulevard 113 y 64, 1900 La Plata, Argentina
| | | | | |
Collapse
|
161
|
Jacobs AC, Resendiz MJE, Greenberg MM. Product and mechanistic analysis of the reactivity of a C6-pyrimidine radical in RNA. J Am Chem Soc 2011; 133:5152-9. [PMID: 21391681 PMCID: PMC3071645 DOI: 10.1021/ja200317w] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nucleobase radicals are the major reactive intermediates produced when hydroxyl radical reacts with nucleic acids. 5,6-Dihydrouridin-6-yl radical (1) was independently generated from a ketone precursor via Norrish Type I photocleavage in a dinucleotide, single-stranded, and double-stranded RNA. This radical is a model of the major hydroxyl radical adduct of uridine. Tandem lesions resulting from addition of the peroxyl radical derived from 1 to the 5'-adjacent nucleotide are observed by ESI-MS. Radical 1 produces direct strand breaks at the 5'-adjacent nucleotide and at the initial site of generation. The preference for cleavage at these two positions depends upon the secondary structure of the RNA and whether O(2) is present or not. Varying the identity of the 5'-adjacent nucleotide has little effect on strand scission. In general, strand scission is significantly more efficient under anaerobic conditions than when O(2) is present. Strand scission is more than twice as efficient in double-stranded RNA than in a single-stranded oligonucleotide under anaerobic conditions. Internucleotidyl strand scission occurs via β-fragmentation following C2'-hydrogen atom abstraction by 1. The subsequently formed olefin cation radical ultimately yields products containing 3'-phosphate or 3'-deoxy-2'-ketouridine termini. These end groups are proposed to result from competing deprotonation pathways. The dependence of strand scission efficiency from 1 on secondary structure under anaerobic conditions suggests that this reactivity may be useful for extracting additional RNA structural information from hydroxyl radical reactions.
Collapse
Affiliation(s)
| | | | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218
| |
Collapse
|
162
|
Genereux JC, Wuerth SM, Barton JK. Single-step charge transport through DNA over long distances. J Am Chem Soc 2011; 133:3863-8. [PMID: 21348520 DOI: 10.1021/ja107033v] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum yields for charge transport across adenine tracts of increasing length have been measured by monitoring hole transport in synthetic oligonucleotides between photoexcited 2-aminopurine, a fluorescent analogue of adenine, and N(2)-cyclopropyl guanine. Using fluorescence quenching, a measure of hole injection, and hole trapping by the cyclopropyl guanine derivative, we separate the individual contributions of single- and multistep channels to DNA charge transport and find that with 7 or 8 intervening adenines the charge transport is a coherent, single-step process. Moreover, a transition occurs from multistep to single-step charge transport with increasing donor/acceptor separation, opposite to that generally observed in molecular wires. These results establish that coherent transport through DNA occurs preferentially across 10 base pairs, favored by delocalization over a full turn of the helix.
Collapse
Affiliation(s)
- Joseph C Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | |
Collapse
|
163
|
Wenninger M, Fazio D, Megerle U, Trindler C, Schiesser S, Riedle E, Carell T. Flavin-Induced DNA Photooxidation and Charge Movement Probed by Ultrafast Transient Absorption Spectroscopy. Chembiochem 2011; 12:703-6. [DOI: 10.1002/cbic.201000730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 02/03/2023]
|
164
|
Yamada H, Kitauchi Y, Tanabe K, Ito T, Nishimoto SI. Anthraquinone-sensitized photooxidation of 5-methylcytosine in DNA leading to piperidine-induced efficient strand cleavage. Chemistry 2011; 17:2225-35. [PMID: 21294186 DOI: 10.1002/chem.201001884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Indexed: 11/10/2022]
Abstract
One-electron photooxidations of 5-methyl-2'-deoxycytidine (d(m)C) and 5-trideuteriomethyl-2'-deoxycytidine ([D(3)]d(m)C) by sensitization with anthraquinone (AQ) derivatives were investigated. Photoirradiation of an aerated aqueous solution containing d(m)C and anthraquinone 2-sulfonate (AQS) afforded 5-formyl-2'-deoxycytidine (d(f)C) and 5-hydroxymethyl-2'-deoxycytidine (d(hm)C) in good yield through an initial one-electron oxidation process. The deuterium isotope effect on the AQS-sensitized photooxidation of d(m)C suggests that the rate-determining step in the photosensitized oxidation of d(m)C involves internal transfer of the C5-hydrogen atom of a d(m)C-tetroxide intermediate to produce d(f)C and d(hm)C. In the case of a 5-methylcytosine ((m)C)-containing duplex DNA with an AQ chromophore that is incorporated into the backbone of the DNA strand so as to be immobilized at a specific position, (m)C underwent efficient direct one-electron oxidation by the photoexcited AQ, which resulted in an exclusive DNA strand cleavage at the target (m)C site upon hot piperidine treatment. In accordance with the suppression of the strand cleavage at 5-trideuterio-methylcytosine observed in a similar AQ photosensitization, it is suggested that deprotonation at the C5-methyl group of an intermediate (m)C radical cation may occur as a key elementary reaction in the photooxidative strand cleavage at the (m)C site. Incorporation of an AQ sensitizer into the interior of a strand of the duplex enhanced the one-electron photooxidation of (m)C, presumably because of an increased intersystem crossing efficiency that may lead to efficient piperidine-induced strand cleavage at an (m)C site in a DNA duplex.
Collapse
Affiliation(s)
- Hisatsugu Yamada
- Advanced Biomedical Engineering Research Unit, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan.
| | | | | | | | | |
Collapse
|
165
|
Kanvah S, Schuster GB. Effect of positively charged backbone groups on radical cation migration and reaction in duplex DNA. CAN J CHEM 2011. [DOI: 10.1139/v10-145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of DNA oligomers were prepared that contain guanidinium linkages (positively charged) positioned selectively in place of and among the normal negatively charged phosphodiester backbone groups of duplex DNA. One-electron oxidation of these DNA oligomers by UV irradiation of a covalently linked anthraquinone group generates a radical cation (electron “hole”) that migrates by hopping through the DNA and is trapped at reactive sites, GG steps, to form mutated bases that are detected by strand cleavage after subsequent piperidine treatment of the irradiated DNA. Analysis of the strand cleavage pattern reveals that guanidinium substitution in these oligomers does not measurably affect the charge migration rate but it does inhibit reaction at nearby guanines.
Collapse
Affiliation(s)
- Sriram Kanvah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Gary B. Schuster
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
166
|
Tashiro R, Ohtsuki A, Sugiyama H. The distance between donor and acceptor affects the proportion of C1' and C2' oxidation products of DNA in a BrU-containing excess electron transfer system. J Am Chem Soc 2011; 132:14361-3. [PMID: 20873822 DOI: 10.1021/ja106184w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the products of (Br)U in excess electron transfer and have demonstrated that in DNA the proportion of products changes with the distance between the donor and acceptor. On the basis of a labeling experiment using H(2)(18)O, we have shown that hole migration from Py(•+) formed after charge separation is involved in the reaction.
Collapse
Affiliation(s)
- Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Sciences, 3500-3 Minamitamagaki-cho, Suzuka-shi, Mie 513-8670, Japan
| | | | | |
Collapse
|
167
|
Intramolecular charge-transfer interactions in a julolidine–Bodipy molecular assembly as revealed via 13C NMR chemical shifts. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
168
|
Meng X, Moriuchi T, Tohnai N, Miyata M, Kawahata M, Yamaguchi K, Hirao T. Synthesis and assembling properties of bioorganometallic cyclometalated Au(iii) alkynyls bearing guanosine moieties. Org Biomol Chem 2011; 9:5633-6. [DOI: 10.1039/c1ob05842h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
169
|
Kashida H, Sekiguchi K, Higashiyama N, Kato T, Asanuma H. Cyclohexyl “base pairs” stabilize duplexes and intensify pyrene fluorescence by shielding it from natural base pairs. Org Biomol Chem 2011; 9:8313-20. [DOI: 10.1039/c1ob06325a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
170
|
Kumar A, Sevilla MD. Proton-coupled electron transfer in DNA on formation of radiation-produced ion radicals. Chem Rev 2010; 110:7002-23. [PMID: 20443634 PMCID: PMC2947616 DOI: 10.1021/cr100023g] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anil Kumar
- Department of Chemistry, Oakland University, Rochester, MI 48309
| | | |
Collapse
|
171
|
Reynisson J. Molecular mechanism of base pairing infidelity during DNA duplication upon one-electron oxidation. World J Clin Oncol 2010; 1:12-7. [PMID: 21603305 PMCID: PMC3095454 DOI: 10.5306/wjco.v1.i1.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 09/21/2010] [Accepted: 09/28/2010] [Indexed: 02/06/2023] Open
Abstract
The guanine radical cation (G•+) is formed by one-electron oxidation from its parent guanine (G). G•+ is rapidly deprotonated in the aqueous phase resulting in the formation of the neutral guanine radical [G(-H)•]. The loss of proton occurs at the N1 nitrogen, which is involved in the classical Watson-Crick base pairing with cytosine (C). Employing the density functional theory (DFT), it has been observed that a new shifted base pairing configuration is formed between G(-H)• and C constituting only two hydrogen bonds after deprotonation occurs. Using the DFT method, G(-H)• was paired with thymine (T), adenine (A) and G revealing substantial binding energies comparable to those of classical G-C and A-T base pairs. Hence, G(-H)• does not display any particular specificity for C compared to the other bases. Taking into account the long lifetime of the G(-H)• radical in the DNA helix (5 s) and the rapid duplication rate of DNA during mitosis/meiosis (5-500 bases per s), G(-H)• can pair promiscuously leading to errors in the duplication process. This scenario constitutes a new mechanism which explains how one-electron oxidation of the DNA double helix can lead to mutations.
Collapse
Affiliation(s)
- Jóhannes Reynisson
- Jóhannes Reynisson, Department of Chemistry and Auckland Bioengineering Institute, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
172
|
Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA. Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J Am Chem Soc 2010; 133:42-50. [PMID: 21067186 DOI: 10.1021/ja106158b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Direct radical addition reactions at the C(8)-site of 2'-deoxyguanosine (dG) can afford C(8)-Ar-dG adducts that are produced by carcinogenic arylhydrazines, polycyclic aromatic hydrocarbons, and certain phenolic toxins. Such modified nucleobases are also highly fluorescent for sensing applications and possess useful electron transfer properties. The site-specific synthesis of oligonucleotides containing the C(8)-Ar-G adduct can be problematic. These lesions are sensitive to acids and oxidants that are commonly used in solid-phase DNA synthesis and are too bulky to be accepted as substrates for enzymatic synthesis by DNA polymerases. Using the Suzuki-Miyaura cross-coupling reaction, we have synthesized a number of C(8)-Ar-G-modified oligonucleotides (dimers, trimers, decamers, and a 15-mer) using a range of arylboronic acids. Good to excellent yields were obtained, and the reaction is insensitive to the nature of the bases flanking the convertible 8-Br-G nucleobase, as both pyrimidines and purines are tolerated. The impact of the C(8)-Ar-G lesion was also characterized by electrospray ionization tandem mass spectrometry, UV melting temperature analysis, circular dichroism, and fluorescence spectroscopy. The C(8)-Ar-G-modified oligonucleotides are expected to be useful substrates for diagnostic applications and understanding the biological impact of the C(8)-Ar-G lesion.
Collapse
Affiliation(s)
- Alireza Omumi
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
173
|
Wang J, Li H, Zhang L, Bu Y. Unexpected dissociation energetics of the Na(+) counterion from GC motifs in DNA hole-migration. Phys Chem Chem Phys 2010; 12:13099-106. [PMID: 20824253 DOI: 10.1039/b927202j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We present here a theoretical investigation of the electronic and energetic properties of Na(+)GC, a DNA motif bound to a sodium ion (Na(+)) at the N(7) and O(6) sites of guanine (G), and its hole-trapped derivative [Na(+)GC](+) using density functional theory calculations. Normally, Na(+)GC has positive dissociation energies along various dissociation channels. However, hole-trapping of the Na(+)GC motif can lead to an unusual energetic phenomenon. Hole-trapping can reduce not only the dissociation barrier by destabilizing the Na(+)GC motif to a metastable state, but also the dissociation energy of the Na(+)N(7)/O(6) bond with an unexpected change from a positive to a negative value (61.51 versus-16.18 kcal mol(-1)). This unexpected negative dissociation energy phenomenon implies that this motif can store energy (∼16 kcal mol(-1)) in the Na(+)N(7)/O(6) bond zone due to hole-trapping. The topological properties of electron densities and the Laplacian values at the bond critical points indicate that this energetic phenomenon mainly originates from additional electrostatic repulsions between two moieties linked via a high-energy bond (Na(+)N(7)/O(6)). Proton transfer from G induced by hole-trapping can expand the negative dissociation energy zone to both Na(+)N(7)/O(6) and Watson-Crick (WC) H-bond zones. Similar phenomena can be observed for the Na(+) binding at the minor groove. Solvation of the hole-trapped Na(+)GC motif can change the negative dissociation energies by varying degrees, depending on the solvent-binding sites and the polarity of the solvents.
Collapse
Affiliation(s)
- Jun Wang
- The Center for Modeling & Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan 250100, PR China
| | | | | | | |
Collapse
|
174
|
Jakobsson M, Stafström S. Hole mobility and transport mechanisms in lambda-DNA. J Chem Phys 2010; 131:155102. [PMID: 20568885 DOI: 10.1063/1.3244677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have performed a study of charge transport in lambda-DNA using a recently developed model based on Marcus theory and dynamic Monte Carlo simulations. The model accounts for charge delocalization over multiple adjacent identical nucleobases. Such delocalized states are found to act as traps for charge transport and therefore have a negative impact on the charge carrier (hole) mobility. Both the electric field and temperature dependence of the mobility in lambda-DNA is reported in this paper. Furthermore, the detailed information produced by the simulation allow us to plot the progress of a hole propagating through the DNA sequence and this is used to identify the bottlenecks that limits the charge transport process.
Collapse
Affiliation(s)
- Mattias Jakobsson
- Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden.
| | | |
Collapse
|
175
|
Price CS, Razskazovskiy Y, Bernhard WA. Factors affecting the yields of C1' and C5' oxidation products in radiation-damaged DNA: the indirect effect. Radiat Res 2010; 174:645-9. [PMID: 20954863 DOI: 10.1667/rr2263.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study reports the effects of denaturation and deoxygenation on radiation-induced formation of 2-deoxyribonolactone (2-dL) and 5'-aldehyde (5'-Ald) lesions in highly polymerized DNA. The radiation-chemical yields of 2-dL were determined through quantification of its dephosphorylation product 5-methylenefuranone (5MF). The formation of 5'-Ald was monitored qualitatively through the release of furfural (Fur) under the same conditions. The yields of 2-dL were found to be 7.3 ± 0.3 nmol J(-1), or about 18% of the yield of free base release measured in the same samples. Denaturation increased the efficiency of 2-dL formation approximately twofold while deoxygenation resulted in a fourfold decrease. The release of Fur is about twofold lower than that of 5MF in aerated native DNA samples and is further reduced by denaturation of the DNA. Unlike 5MF, the formation of Fur requires the presence of molecular oxygen, which is consistent with peroxyl radical-mediated oxidation of C5' radicals into 5'-Ald. In contrast, the existence of an oxygen-independent pathway of 2-dL formation suggests that C1' sugar radicals can also be oxidized by radiation-produced oxidizing intermediates such as electron-loss centers on guanines.
Collapse
Affiliation(s)
- Charles S Price
- Department of Physics and Astronomy, East Tennessee State University, Johnson City, Tennessee 37614, USA
| | | | | |
Collapse
|
176
|
Kobayashi K. Evidence of formation of adenine dimer cation radical in DNA: the importance of adenine base stacking. J Phys Chem B 2010; 114:5600-4. [PMID: 20369809 DOI: 10.1021/jp100589w] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deprotonation of the adenine (A) base in both mononucleotide and oligonucleotide (ODN) was measured by nanosecond pulse radiolysis. The cation radical (A(+*)) of deoxyadenosine (dA), produced by oxidation with SO(4)(-*), rapidly deprotonated to form the neutral A radical (A(- H)(*)) with a rate constant of 2.0 x 10(7) s(-1) and a pK(a) value of 4.2, as determined by transient spectroscopy. A similar process was observed in experiments performed on a variety of double-stranded ODNs containing adenine x thymine (A x T) base pairs. The transient spectrum of A(+)(*) in an ODN composed of alternating A x T pairs was essentially identical to that of free dA and differed from the spectra of ODNs containing AA and AAA. In contrast, the spectra of A(- H)(*) were not affected by the sequence. These results suggest that the positive charge on A(+)(*) in ODNs is delocalized as the dimer is stabilized by pi-orbital stacking between adjacent A's. The rate constants for deprotonation of A(+)(*) in ODNs containing AA and AAA (0.9-1.1 x 10(7) s(-1)) were a factor of 2 smaller than the rate constants for deprotonation of A(+)(*) in ODNs containing alternating A x T and dA (2.0 x 10(7) s(-1)). This suggests that the formation of a charge resonance stabilized dimer AA(+)(*) in DNA produced a significant barrier to deprotonation.
Collapse
Affiliation(s)
- Kazuo Kobayashi
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki Osaka 567-0047, Japan.
| |
Collapse
|
177
|
Kratochvílová I, Todorciuc T, Král K, Nemec H, Buncek M, Sebera J, Zális S, Vokácová Z, Sychrovský V, Bednárová L, Mojzes P, Schneider B. Charge transport in DNA oligonucleotides with various base-pairing patterns. J Phys Chem B 2010; 114:5196-205. [PMID: 20353252 DOI: 10.1021/jp100264v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We combined various experimental (scanning tunneling microscopy and Raman spectroscopy) and theoretical (density functional theory and molecular dynamics) approaches to study the relationships between the base-pairing patterns and the charge transfer properties in DNA 32-mer duplexes that may be relevant for identification and repair of defects in base pairing of the genetic DNA and for DNA use in nanotechnologies. Studied were two fully Watson-Crick (W-C)-paired duplexes, one mismatched (containing three non-W-C pairs), and three with base pairs chemically removed. The results show that the charge transport varies strongly between these duplexes. The conductivity of the mismatched duplex is considerably lower than that of the W-C-paired one despite the fact that their structural integrities and thermal stabilities are comparable. Structurally and thermally much less stable abasic duplexes have still lower conductivity but not markedly different from the mismatched duplex. All duplexes are likely to conduct by the hole mechanism, and water orbitals increase the charge transport probability.
Collapse
Affiliation(s)
- Irena Kratochvílová
- Institute of Physics AS CR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Leung EKY, Sen D. The use of charge flow and quenching (CFQ) to probe nucleic acid folds and folding. Methods 2010; 52:141-9. [PMID: 20554046 DOI: 10.1016/j.ymeth.2010.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Indexed: 12/12/2022] Open
Abstract
Charge flow and quenching ("CFQ") is a relatively new, versatile, and easily carried out methodology for probing a number of unique features of DNA and RNA folded structures, and of their folding pathways. An electrical charge (an electron hole, or radical cation) is injected site-specifically into the end of a pre-determined reference helix within the larger DNA or RNA structure. The fate of the injected charge, as it percolates through the folded DNA or RNA is then monitored by mapping the oxidative consequences of the charge flow. Some of the kinds of structural and folding information that can be obtained from CFQ experiments include: a quantitative measure of helix-helix connectivity; the dynamics of specific bases; folding and unfolding pathways; the mapping of unusual, conformation-dependent, electronic properties of individual bases; extents of solvent exposure and susceptibility to quenching from the solvent. CFQ is a relatively new methodology, and is applicable to DNA and RNA structures and folds. In the near future it is expected that the range of applications of this methodology will increase dramatically.
Collapse
Affiliation(s)
- Edward K Y Leung
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | |
Collapse
|
179
|
Slinker JD, Muren NB, Gorodetsky AA, Barton JK. Multiplexed DNA-modified electrodes. J Am Chem Soc 2010; 132:2769-74. [PMID: 20131780 DOI: 10.1021/ja909915m] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the use of silicon chips with 16 DNA-modified electrodes (DME chips) utilizing DNA-mediated charge transport for multiplexed detection of DNA and DNA-binding protein targets. Four DNA sequences were simultaneously distinguished on a single DME chip with 4-fold redundancy, including one incorporating a single base mismatch. These chips also enabled investigation of the sequence-specific activity of the restriction enzyme Alu1. DME chips supported dense DNA monolayer formation with high reproducibility, as confirmed by statistical comparison to commercially available rod electrodes. The working electrode areas on the chips were reduced to 10 microm in diameter, revealing microelectrode behavior that is beneficial for high sensitivity and rapid kinetic analysis. These results illustrate how DME chips facilitate sensitive and selective detection of DNA and DNA-binding protein targets in a robust and internally standardized multiplexed format.
Collapse
Affiliation(s)
- Jason D Slinker
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
180
|
Abstract
Double-helical DNA has been shown to conduct both electrons and electron holes, the latter over distances of >20 nm. DNA is thus a material of significant interest for the bottom-up construction of nanocircuitry. Here, we describe a contractile DNA nanoswitch, which can toggle between a structurally extended "off" state and a contracted "on" state, with a 40-fold conductivity difference between the two. To turn on, two short motifs of guanine-guanine mismatches in an otherwise standard double helix synapse to form a conductive G-quadruplex, bypassing an insulating element within the helix. This switch can be turned repeatedly on by treatment with millimolar concentrations of K(+) and turned off by sequestration of the K(+) by a crown ether. Circular dichroism and thymine-thymine photocross-linking experiments reveal that strand orientations within the on state G-quadruplex are wholly antiparallel and that the two conductive double-helices interface with the same face of the quadruplex. Although this DNA nanoswitch is chemically gated, it should be adaptable to other kinds of gating and thus serve as a prototype for increasingly sophisticated and complex electronic devices made of DNA.
Collapse
Affiliation(s)
- Yu Chuan Huang
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
181
|
Dwivedi SD, Dubey SK, Singh AK, Pandey KK, Pandey DS. New ruthenium(II) thiolato complexes: Synthesis, reactivity, spectral, structural and DFT studies. Inorganica Chim Acta 2010. [DOI: 10.1016/j.ica.2010.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
182
|
Wagner JR, Cadet J. Oxidation reactions of cytosine DNA components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions. Acc Chem Res 2010; 43:564-71. [PMID: 20078112 DOI: 10.1021/ar9002637] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Indirect evidence strongly suggests that oxidation reactions of cytosine and its minor derivative 5-methylcytosine play a major role in mutagenesis and cancer. Therefore, there is an emerging necessity to identify the final oxidation products of these reactions, to search for their formation in cellular DNA, and to assess their mutagenic features. In this Account, we report and discuss the main *OH and one-electron-mediated oxidation reactions, two of the most potent sources of DNA damage, of cytosine and 5-methylcytosine nucleosides that have been recently characterized. The addition of *OH to the 5,6-unsaturated double bond of cytosine and 5-methylcytosine generates final degradation products that resemble those observed for uracil and thymine. The main product from the oxidation of cytosine, cytosine glycol, has been shown to undergo dehydration at a much faster rate as a free nucleoside than when inserted into double-stranded DNA. On the other hand, the predominant *OH addition at C5 of cytosine or 5-methylcytosine leads to the formation of 5-hydroxy-5,6-dihydro radicals that give rise to novel products with an imidazolidine structure. The mechanism of the formation of imidazolidine products is accounted for by rearrangement reactions that in the presence of molecular oxygen likely involve an intermediate pyrimidine endoperoxide. The reactions of the radical cations of cytosine and 5-methylcytosine are governed by competitive hydration, mainly at C6 of the pyrimidine ring, and deprotonation from the exocyclic amino and methyl group, leading in most cases to products similar to those generated by *OH. 5-Hydroxypyrimidines, the dehydration products of cytosine and uracil glycols, have a low oxidation potential, and their one-electron oxidation results in a cascade of decomposition reactions involving the formation of isodialuric acid, dialuric acid, 5-hydroxyhydantoin, and its hydroxyketone isomer. In biology, GC --> AT transitions are the most common mutations in the genome of aerobic organisms, including the lacI gene in bacteria, lacI transgenes in rodents, and the HPRT gene in rodents and humans, so a more complete understanding of cytosine oxidation is an essential research goal. The data and insights presented here shed new light on oxidation reactions of cytosine and 5-methylcytosine and should facilitate their validation in cellular DNA.
Collapse
Affiliation(s)
- J. Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - Jean Cadet
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
- Institut Nanosciences et Cryogénie, CEA/Grenoble, F-38054 Grenoble Cedex 9, France
| |
Collapse
|
183
|
Campbell NP, Finch AS, Rokita SE. Modulating the Ground- and Excited-State Oxidation Potentials of Diaminonaphthalene by Sequential N-Methylation. Chemphyschem 2010; 11:1768-73. [DOI: 10.1002/cphc.200900969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
184
|
Wang J, Sun L, Bu Y. Negative dissociation energy phenomenon of metastable H-bonds as revealed in triplex DNA hole migration. J Phys Chem B 2010; 114:1144-7. [PMID: 20000456 DOI: 10.1021/jp9100637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Ab initio calculations reveal an unknown energetic phenomenon for H-bonds in the hole-trapping triplex C(p)*GC motif observed experimentally in hole migration which can explain the lower but really available oxidization possibility in C(p)*GC site. Hole trapping can considerably destabilize the C(p)*GC unit and lead to an unexpected barrier-hindered channel with a negative dissociation energy. This channel is governed by a balance between electrostatic repulsion and H-bonding attraction in the two associated moieties and different attenuations of two opposite interactions with respect to the H-bond distance. This C(p)*GC unit can be viewed as a high-energy node in a DNA wire which modulates migration of a hole into or through it via its unusual energetics. It provides useful information for understanding of an unknown type of the complicated intermolecular interactions, a novel type of "high-energy" bond, and can be applied further to interpret the hidden transport properties and the energy conversion/transfer mechanisms in the related fields.
Collapse
Affiliation(s)
- Jun Wang
- The Center for Modeling and Simulation Chemistry, Institute of Theoretical Chemistry, Shandong University, Jinan, 250100, P.R. China
| | | | | |
Collapse
|
185
|
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
186
|
HO* radicals induce an unexpected high proportion of tandem base lesions refractory to repair by DNA glycosylases. Proc Natl Acad Sci U S A 2010; 107:5528-33. [PMID: 20212167 DOI: 10.1073/pnas.1000193107] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reaction of HO(*) radicals with double-stranded calf thymus DNA produces high levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and, to a minor extent, 8-oxo-7,8-dihydro-2'-deoxyadenosine (8-oxodAdo). Formation of the hydroxylated purine lesions is explained by addition of HO(*) to the C8 position of the purine moiety. It has been reported that tandem lesions containing a formylamine residue neighboring 8-oxodGuo could be produced through addition of a transiently generated pyrimidine peroxyl radical onto the C8 of an adjacent purine base. Formation of such tandem lesions accounted for approximately 10% of the total 8-oxodGuo. In the present work we show that addition of HO(*) onto the C8 of purine accounts for only approximately 5% of the generated 8-oxodGuo. About 50% of the 8-hydroxylated purine lesions, including 8-oxodGuo and 8-oxodAdo, are involved in tandem damage and are produced by peroxyl addition onto the C8 of a vicinal purine base. In addition, the remaining 45% of the 8-oxodGuo are produced by an electron transfer reaction, providing an explanation for the higher yield of formation of 8-oxodGuo compared to 8-oxodAdo. Interestingly, we show that >40% of the 8-oxodGuo involved in tandem lesions is refractory to excision by DNA glycosylases. Altogether our results demonstrate that, subsequently to a single oxidation event, peroxidation reactions significantly increase the yield of formation of hydroxylated purine modifications, generating a high proportion of tandem lesions partly refractory to base excision repair.
Collapse
|
187
|
Wang YF, Yu ZY, Wu J, Liu CB. Electron delocalization and charge transfer in polypeptide chains. J Phys Chem A 2010; 113:10521-6. [PMID: 19731905 DOI: 10.1021/jp9020036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the electron structure and charge-transfer mechanism in polypeptide chains are investigated according to natural bond orbitals (NBO) analysis at the level of B3LYP/6-311++G**. The results indicate that the delocalization of electrons between neighboring peptide subgroups can occur in two opposite directions, and the delocalization effect in the direction from the carboxyl end to the amino end has an obvious advantage. As a result of a strong hyperconjugative interaction, the lowest unoccupied NBO of the peptide subgroup, pi*C-O, has significant delocalization to neighboring subgroups, and the energies of these NBOs decrease from the carboxyl end to the amino end. The formation of intramolecular O...H-N type hydrogen bonds also helps to delocalize the electron from the carboxyl end to the amino end. Thus, the electron will flow to the amino end. The superexchange mechanism is suggested in the electron-transfer process.
Collapse
Affiliation(s)
- Ye-Fei Wang
- Institute of Theoretical Chemistry, Shandong University, Jinan 250100 Shandong, China
| | | | | | | |
Collapse
|
188
|
Neelakandan PP, Sanju KS, Ramaiah D. Effect of Bridging Units on Photophysical and DNA Binding Properties of a Few Cyclophanes. Photochem Photobiol 2010; 86:282-9. [DOI: 10.1111/j.1751-1097.2009.00660.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
189
|
Yokojima S, Yoshiki N, Yanoi W, Okada A. Solvent effects on ionization potentials of guanine runs and chemically modified guanine in duplex DNA: effect of electrostatic interaction and its reduction due to solvent. J Phys Chem B 2010; 113:16384-92. [PMID: 19947608 PMCID: PMC2825092 DOI: 10.1021/jp9054582] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
We examined the ionization potential (IP) corresponding to the free energy of a hole on duplex DNA by semiempirical molecular orbital theory with a continuum solvent model. As for the contiguous guanines (a guanine run), we found that the IP in the gas phase significantly decreases with the increasing number of nucleotide pairs of the guanine run, whereas the IP in water (OP, oxidation potential) only slightly does. The latter result is consistent with the experimental result for DNA oligomers in water. This decrease in the IP is mainly due to the attractive electrostatic interaction between the hole and a nucleotide pair in the duplex DNA. This interaction is reduced in water, which results in the small decrease in the IP in water. This mechanism explains the discrepancy between the experimental result and the previous computational results obtained by neglecting the solvent. As for the chemically modified guanine, the previous work showed that the removal of some solvent (water) molecules due to the attachment of a neutral functional group to a guanine in a duplex DNA stabilizes the hole on the guanine. One might naively have expected the opposite case, since a polar solvent usually stabilizes ions. This mechanism also explains this unexpected stabilization of a hole as follows. When some water molecules are removed, the attractive electrostatic interaction stabilizing the hole increases, and thus, the hole is stabilized. In order to design the hole energetics by a chemical modification of DNA, this mechanism has to be taken into account and can be used.
Collapse
Affiliation(s)
- Satoshi Yokojima
- Japan Science and Technology Corporation, 4-1-8 Honcho, Kawaguchi, 332-0012 Japan
| | | | | | | |
Collapse
|
190
|
Kanvah S, Joseph J, Schuster GB, Barnett RN, Cleveland CL, Landman U. Oxidation of DNA: damage to nucleobases. Acc Chem Res 2010; 43:280-7. [PMID: 19938827 DOI: 10.1021/ar900175a] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and compositional factors. These processes occur over a broad distribution of energies, times, and spatial scales. The emergence of a complete picture of DNA oxidation will require additional exploration of the structural, kinetic, and dynamic properties of DNA, but this Account offers insight into key elements of this challenge.
Collapse
|
191
|
Szyperska A, Rak J, Leszczynski J, Li X, Ko YJ, Wang H, Bowen KH. Low-Energy-Barrier Proton Transfer Induced by Electron Attachment to the Guanine⋅⋅⋅Cytosine Base Pair. Chemphyschem 2010; 11:880-8. [DOI: 10.1002/cphc.200900810] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
192
|
Daublain P, Thazhathveetil AK, Shafirovich V, Wang Q, Trifonov A, Fiebig T, Lewis FD. Dynamics and Efficiency of Electron Injection and Transport in DNA Using Pyrenecarboxamide as an Electron Donor and 5-Bromouracil as an Electron Acceptor. J Phys Chem B 2010; 114:14265-72. [DOI: 10.1021/jp9107393] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Pierre Daublain
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Arun K. Thazhathveetil
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Vladimir Shafirovich
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Qiang Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Anton Trifonov
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Torsten Fiebig
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| | - Frederick D. Lewis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, and Department of Chemistry, New York University, New York, New York 10003
| |
Collapse
|
193
|
Fluorescent analysis of excess electron transfer through DNA. Bioorg Med Chem Lett 2010; 20:994-6. [DOI: 10.1016/j.bmcl.2009.12.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/10/2009] [Accepted: 12/11/2009] [Indexed: 11/23/2022]
|
194
|
Kanvah S, Schuster GB. One-electron oxidation of DNA: thymine versus guanine reactivity. Org Biomol Chem 2010; 8:1340-3. [PMID: 20204205 DOI: 10.1039/b922881k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-electron oxidation of anthraquinone (AQ)-linked DNA oligonucleotides containing A/T base pairs with repeating TT steps results in the distance-dependent reaction of the resulting radical cation and base damage at the TT steps that is revealed by subsequent reaction as strand cleavage. However, the inclusion of a remote guanine or GG step inhibits the reaction at thymine and results in predominant reaction at the guanine bases. For the oligomers examined in this work, the results reveal that the specific sequence of nucleobases determines the distance dependence, location of reaction and the efficiency of radical cation migration. In particular, a sequence of A/T base pairs can behave either as a trap, shuttle or barrier, depending on the context of the entire oligomer. The A/T sequences act as a shuttle when reaction occurs at a remote G or GG step and the same sequence of A/T bases acts as a barrier when there is more than one GG step in the sequence. In contrast, the A/T steps act as a trap in sequences that lack guanines.
Collapse
Affiliation(s)
- Sriram Kanvah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
195
|
Migliore A. Full-electron calculation of effective electronic couplings and excitation energies of charge transfer states: Application to hole transfer in DNA pi-stacks. J Chem Phys 2010; 131:114113. [PMID: 19778106 PMCID: PMC2766402 DOI: 10.1063/1.3232007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work I develop and apply a theoretical method for calculating effective electronic couplings (or transfer integrals) between redox sites involved in hole or electron transfer reactions. The resulting methodology is a refinement and a generalization of a recently developed approach for transfer integral evaluation. In fact, it holds for any overlap between the charge-localized states used to represent charge transfer (CT) processes in the two-state model. The presented theoretical and computational analyses show that the prototype approach is recovered for sufficiently small overlaps. The method does not involve any empirical parameter. It allows a complete multielectron description, therefore including electronic relaxation effects. Furthermore, its theoretical formulation holds at any value of the given reaction coordinate and yields a formula for the evaluation of the vertical excitation energy (i.e., the energy difference between the adiabatic ground and first-excited electronic states) that rests on the same physical quantities used in transfer integral calculation. In this paper the theoretical approach is applied to CT in B-DNA base dimers within the framework of Density Functional Theory (DFT), although it can be implemented in other computational schemes. The results of this work, as compared with previous Hartree-Fock (HF) and post-HF evaluations, support the applicability of the current implementation of the method to larger pi-stacked arrays, where post-HF approaches are computationally unfeasible.
Collapse
Affiliation(s)
- Agostino Migliore
- Department of Chemistry and Center for Molecular Modeling, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
196
|
Ndlebe T, Panyutin I, Neumann R. Analysis of the contribution of charge transport in iodine-125-induced DNA damage. Radiat Res 2010; 173:98-109. [PMID: 20041764 DOI: 10.1667/rr1865.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Auger electron emitters like (125)I are the radionuclides of choice for gene-targeted radiotherapy. The highly localized damage they induce in DNA is produced by three mechanisms: direct damage by the emitted Auger electrons, indirect damage by diffusible free radicals produced by Auger electrons traveling in water, and charge neutralization of the residual, highly positively charged tellurium daughter atom by stripping electrons from covalent bonds of neighboring residues. The purpose of our work was to determine whether these mechanisms proceed through an intermediate energy transfer step along DNA. It was proposed that this intermediate step proceeds through the charge transport mechanism in DNA. Conventional charge transport has been described as either a hopping mechanism initiated by charge injection into DNA and propagated by charge migration along the DNA or a tunneling mechanism in which charge moves directly from a donor to an acceptor within DNA. Well-known barriers for the hopping mechanism were used to probe the role of charge transport in (125)I-induced DNA damage. We studied their effect on the distribution of DNA breaks produced by the decay of (125)I in samples frozen at -80 degrees C. We found that these barriers had no measurable effect on the distribution of (125)I-induced breaks.
Collapse
Affiliation(s)
- Thabisile Ndlebe
- Radiology and Imaging Sciences, Clinical Center, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
197
|
Prunkl C, Berndl S, Wanninger-Weiß C, Barbaric J, Wagenknecht HA. Photoinduced short-range electron transfer in DNA with fluorescent DNA bases: lessons from ethidium and thiazole orange as charge donors. Phys Chem Chem Phys 2010; 12:32-43. [DOI: 10.1039/b914487k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
198
|
Singh R, Jaiswal S, Kumar M, Singh P, Srivastav G, Yadav RA. DFT study of molecular geometries and vibrational characteristics of uracil and its thio-derivatives and their radical cations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2010; 75:267-276. [PMID: 19926335 DOI: 10.1016/j.saa.2009.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 10/08/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
DFT calculations at the B3LYP/6-311++G** level have been carried out to study the vibrational characteristics of the neutral molecules, anionic and cationic radicals of uracil, 2-thiouracil and 4-thiouracil. In the U molecule, C=C bond loses its double bond character and magnitude of the C=C stretching frequency decreases significantly as a result of radicalization. Frequency for the in-plane deformation mode of C=O increases when a sulfur atom is substituted for the oxygen atom at the site C(2) in the uracil molecule but decreases when a sulfur atom is substituted for the oxygen atom at the site C(4). The magnitude of both the N-H stretching frequencies decreases in all the radical cations as compared to their neutral molecules. Radicalization leads to significant changes in the magnitudes and intensities corresponding to some of the normal modes for all the three cases. Removal of an electron leads to decrease in the electronic charge mainly from the sulfur atom in the case of 2-TU and 4-TU, whereas it is distributed over the sites N(1), C(5), O(8) and O(10) in case of the U molecule.
Collapse
Affiliation(s)
- R Singh
- Department of Physics, Banaras Hindu University, Varanasi, India
| | | | | | | | | | | |
Collapse
|
199
|
Hariharan M, Karunakaran SC, Ramaiah D, Schulz I, Epe B. Photoinduced DNA damage efficiency and cytotoxicity of novel viologen linked pyrene conjugates. Chem Commun (Camb) 2010; 46:2064-6. [DOI: 10.1039/b924943e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
200
|
Joseph J, Schuster GB. One-electron oxidation of DNA: reaction at thymine. Chem Commun (Camb) 2010; 46:7872-8. [DOI: 10.1039/c0cc02118k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|